CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 85 results for author: <span class="mathjax">Kling, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Kling%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kling, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kling%2C+F&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kling, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Kling%2C+F&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Kling%2C+F&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Kling%2C+F&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13956">arXiv:2502.13956</a> <span> [<a href="https://arxiv.org/pdf/2502.13956">pdf</a>, <a href="https://arxiv.org/format/2502.13956">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Imaging the Photochemistry of Cyclobutanone using Ultrafast Electron Diffraction: Experimental Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Green%2C+A+E">A. E. Green</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Allum%2C+F">F. Allum</a>, <a href="/search/physics?searchtype=author&query=Gra%C3%9Fl%2C+M">M. Gra脽l</a>, <a href="/search/physics?searchtype=author&query=Lenzen%2C+P">P. Lenzen</a>, <a href="/search/physics?searchtype=author&query=Ashfold%2C+M+N+R">M. N. R. Ashfold</a>, <a href="/search/physics?searchtype=author&query=Bhattacharyya%2C+S">S. Bhattacharyya</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">X. Cheng</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">M. Centurion</a>, <a href="/search/physics?searchtype=author&query=Crane%2C+S+W">S. W. Crane</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R+G">R. G. Forbes</a>, <a href="/search/physics?searchtype=author&query=Goff%2C+N+A">N. A. Goff</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">L. Huang</a>, <a href="/search/physics?searchtype=author&query=Kaufman%2C+B">B. Kaufman</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Kramer%2C+P+L">P. L. Kramer</a>, <a href="/search/physics?searchtype=author&query=Lam%2C+H+V+S">H. V. S. Lam</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">K. A. Larsen</a>, <a href="/search/physics?searchtype=author&query=Lemons%2C+R">R. Lemons</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M+-">M. -F. Lin</a>, <a href="/search/physics?searchtype=author&query=Orr-Ewing%2C+A+J">A. J. Orr-Ewing</a>, <a href="/search/physics?searchtype=author&query=Rolles%2C+D">D. Rolles</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+A">A. Rudenko</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">S. K. Saha</a>, <a href="/search/physics?searchtype=author&query=Searles%2C+J">J. Searles</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13956v1-abstract-short" style="display: inline;"> We investigated the ultrafast structural dynamics of cyclobutanone following photoexcitation at $位=200$ nm using gas-phase megaelectronvolt ultrafast electron diffraction. Our investigation complements the simulation studies of the same process within this special issue. It provides information about both electronic state population and structural dynamics through well-separable inelastic and elas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13956v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13956v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13956v1-abstract-full" style="display: none;"> We investigated the ultrafast structural dynamics of cyclobutanone following photoexcitation at $位=200$ nm using gas-phase megaelectronvolt ultrafast electron diffraction. Our investigation complements the simulation studies of the same process within this special issue. It provides information about both electronic state population and structural dynamics through well-separable inelastic and elastic electron scattering signatures. We observe the depopulation of the photoexcited S$_2$ state of cyclobutanone with n3s Rydberg character through its inelastic electron scattering signature with a time constant of $(0.29 \pm 0.2)$ ps towards the S$_1$ state. The S$_1$ state population undergoes ring-opening via a Norrish Type-I reaction, likely while passing through a conical intersection with S$_0$. The corresponding structural changes can be tracked by elastic electron scattering signatures. These changes appear with a delay of $(0.14 \pm 0.05)$ ps with respect the initial photoexcitation, which is less than the S$_2$ depopulation time constant. This behavior provides evidence for the ballistic nature of the ring-opening once the S$_1$ state is reached. The resulting biradical species react further within $(1.2 \pm 0.2)$ ps via two rival fragmentation channels yielding ketene and ethylene, or propene and carbon monoxide. Our study showcases both the value of gas-phase ultrafast diffraction studies as an experimental benchmark for nonadiabatic dynamics simulation methods and the limits in the interpretation of such experimental data without comparison to such simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13956v1-abstract-full').style.display = 'none'; document.getElementById('2502.13956v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04175">arXiv:2411.04175</a> <span> [<a href="https://arxiv.org/pdf/2411.04175">pdf</a>, <a href="https://arxiv.org/format/2411.04175">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Science and Project Planning for the Forward Physics Facility in Preparation for the 2024-2026 European Particle Physics Strategy Update </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adhikary%2C+J">Jyotismita Adhikary</a>, <a href="/search/physics?searchtype=author&query=Anchordoqui%2C+L+A">Luis A. Anchordoqui</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+A+J">Alan J. Barr</a>, <a href="/search/physics?searchtype=author&query=Batell%2C+B">Brian Batell</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+J">Jianming Bian</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Citron%2C+M">Matthew Citron</a>, <a href="/search/physics?searchtype=author&query=De+Roeck%2C+A">Albert De Roeck</a>, <a href="/search/physics?searchtype=author&query=Diwan%2C+M+V">Milind V. Diwan</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Hill%2C+C+S">Christopher S. Hill</a>, <a href="/search/physics?searchtype=author&query=Jeong%2C+Y+S">Yu Seon Jeong</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+F">Felix Kling</a>, <a href="/search/physics?searchtype=author&query=Linden%2C+S">Steven Linden</a>, <a href="/search/physics?searchtype=author&query=M%C3%A4kel%C3%A4%2C+T">Toni M盲kel盲</a>, <a href="/search/physics?searchtype=author&query=Mavrokoridis%2C+K">Kostas Mavrokoridis</a>, <a href="/search/physics?searchtype=author&query=McFayden%2C+J">Josh McFayden</a>, <a href="/search/physics?searchtype=author&query=Otono%2C+H">Hidetoshi Otono</a>, <a href="/search/physics?searchtype=author&query=Rojo%2C+J">Juan Rojo</a>, <a href="/search/physics?searchtype=author&query=Soldin%2C+D">Dennis Soldin</a>, <a href="/search/physics?searchtype=author&query=Stasto%2C+A">Anna Stasto</a>, <a href="/search/physics?searchtype=author&query=Trojanowski%2C+S">Sebastian Trojanowski</a>, <a href="/search/physics?searchtype=author&query=Vicenzi%2C+M">Matteo Vicenzi</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04175v1-abstract-short" style="display: inline;"> The recent direct detection of neutrinos at the LHC has opened a new window on high-energy particle physics and highlighted the potential of forward physics for groundbreaking discoveries. In the last year, the physics case for forward physics has continued to grow, and there has been extensive work on defining the Forward Physics Facility and its experiments to realize this physics potential in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04175v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04175v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04175v1-abstract-full" style="display: none;"> The recent direct detection of neutrinos at the LHC has opened a new window on high-energy particle physics and highlighted the potential of forward physics for groundbreaking discoveries. In the last year, the physics case for forward physics has continued to grow, and there has been extensive work on defining the Forward Physics Facility and its experiments to realize this physics potential in a timely and cost-effective manner. Following a 2-page Executive Summary, we present the status of the FPF, beginning with the FPF's unique potential to shed light on dark matter, new particles, neutrino physics, QCD, and astroparticle physics. We summarize the current designs for the Facility and its experiments, FASER2, FASER$谓$2, FORMOSA, and FLArE, and conclude by discussing international partnerships and organization, and the FPF's schedule, budget, and technical coordination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04175v1-abstract-full').style.display = 'none'; document.getElementById('2411.04175v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02966">arXiv:2411.02966</a> <span> [<a href="https://arxiv.org/pdf/2411.02966">pdf</a>, <a href="https://arxiv.org/format/2411.02966">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.13970100">10.5281/zenodo.13970100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuCol Milestone Report No. 5: Preliminary Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Accettura%2C+C">Carlotta Accettura</a>, <a href="/search/physics?searchtype=author&query=Adrian%2C+S">Simon Adrian</a>, <a href="/search/physics?searchtype=author&query=Agarwal%2C+R">Rohit Agarwal</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C">Claudia Ahdida</a>, <a href="/search/physics?searchtype=author&query=Aim%C3%A9%2C+C">Chiara Aim茅</a>, <a href="/search/physics?searchtype=author&query=Aksoy%2C+A">Avni Aksoy</a>, <a href="/search/physics?searchtype=author&query=Alberghi%2C+G+L">Gian Luigi Alberghi</a>, <a href="/search/physics?searchtype=author&query=Alden%2C+S">Siobhan Alden</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+L">Luca Alfonso</a>, <a href="/search/physics?searchtype=author&query=Amapane%2C+N">Nicola Amapane</a>, <a href="/search/physics?searchtype=author&query=Amorim%2C+D">David Amorim</a>, <a href="/search/physics?searchtype=author&query=Andreetto%2C+P">Paolo Andreetto</a>, <a href="/search/physics?searchtype=author&query=Anulli%2C+F">Fabio Anulli</a>, <a href="/search/physics?searchtype=author&query=Appleby%2C+R">Rob Appleby</a>, <a href="/search/physics?searchtype=author&query=Apresyan%2C+A">Artur Apresyan</a>, <a href="/search/physics?searchtype=author&query=Asadi%2C+P">Pouya Asadi</a>, <a href="/search/physics?searchtype=author&query=Mahmoud%2C+M+A">Mohammed Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&query=Auchmann%2C+B">Bernhard Auchmann</a>, <a href="/search/physics?searchtype=author&query=Back%2C+J">John Back</a>, <a href="/search/physics?searchtype=author&query=Badea%2C+A">Anthony Badea</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+K+J">Kyu Jung Bae</a>, <a href="/search/physics?searchtype=author&query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&query=Balconi%2C+L">Lorenzo Balconi</a>, <a href="/search/physics?searchtype=author&query=Balli%2C+F">Fabrice Balli</a>, <a href="/search/physics?searchtype=author&query=Bandiera%2C+L">Laura Bandiera</a> , et al. (369 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02966v1-abstract-short" style="display: inline;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02966v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02966v1-abstract-full" style="display: none;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power consumption of the facility. The data is collected from a collaborative spreadsheet and transferred to overleaf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'none'; document.getElementById('2411.02966v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01700">arXiv:2411.01700</a> <span> [<a href="https://arxiv.org/pdf/2411.01700">pdf</a>, <a href="https://arxiv.org/format/2411.01700">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Coherent Electron Motion in a Photoionized Aromatic Molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&query=Isele%2C+E">Erik Isele</a>, <a href="/search/physics?searchtype=author&query=Grell%2C+G">Gilbert Grell</a>, <a href="/search/physics?searchtype=author&query=Ruberti%2C+M">Marco Ruberti</a>, <a href="/search/physics?searchtype=author&query=ONeal%2C+J+T">Jordan T. ONeal</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+O">Oliver Alexander</a>, <a href="/search/physics?searchtype=author&query=Beauvarlet%2C+S">Sandra Beauvarlet</a>, <a href="/search/physics?searchtype=author&query=Cesar%2C+D">David Cesar</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=Garratt%2C+D">Douglas Garratt</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">Kirk A. Larsen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&query=Koloren%C4%8D%2C+P">P艡emysl Koloren膷</a>, <a href="/search/physics?searchtype=author&query=McCracken%2C+G+A">Gregory A. McCracken</a>, <a href="/search/physics?searchtype=author&query=Tuthill%2C+D">Daniel Tuthill</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zifan Wang</a>, <a href="/search/physics?searchtype=author&query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&query=Borne%2C+K">Kurtis Borne</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&query=Doumy%2C+G">Gilles Doumy</a>, <a href="/search/physics?searchtype=author&query=Franz%2C+P+L">Paris L. Franz</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andrei Kamalov</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01700v1-abstract-short" style="display: inline;"> In molecular systems, the ultrafast motion of electrons initiates the process of chemical change. Tracking this electronic motion across molecules requires coupling attosecond time resolution to atomic-scale spatial sensitivity. In this work, we employ a pair of attosecond x-ray pulses from an x-ray free-electron laser to follow electron motion resulting from the sudden removal of an electron from… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01700v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01700v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01700v1-abstract-full" style="display: none;"> In molecular systems, the ultrafast motion of electrons initiates the process of chemical change. Tracking this electronic motion across molecules requires coupling attosecond time resolution to atomic-scale spatial sensitivity. In this work, we employ a pair of attosecond x-ray pulses from an x-ray free-electron laser to follow electron motion resulting from the sudden removal of an electron from a prototypical aromatic system, para-aminophenol. X-ray absorption enables tracking this motion with atomic-site specificity. Our measurements are compared with state-of-the-art computational modeling, reproducing the observed response across multiple timescales. Sub-femtosecond dynamics are assigned to states undergoing non-radiative decay, while few-femtosecond oscillatory motion is associated with electronic wavepacket motion in stable cation states, that will eventually couple to nuclear motion. Our work provides insight on the ultrafast charge motion preceding and initiating chemical transformations in moderately complex systems, and provides a powerful benchmark for computational models of ultrafast charge motion in matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01700v1-abstract-full').style.display = 'none'; document.getElementById('2411.01700v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06914">arXiv:2409.06914</a> <span> [<a href="https://arxiv.org/pdf/2409.06914">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Inner-Shell Lasing at Angstrom Wavelengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Linker%2C+T+M">Thomas M. Linker</a>, <a href="/search/physics?searchtype=author&query=Halavanau%2C+A">Aliaksei Halavanau</a>, <a href="/search/physics?searchtype=author&query=Kroll%2C+T">Thomas Kroll</a>, <a href="/search/physics?searchtype=author&query=Benediktovitch%2C+A">Andrei Benediktovitch</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/physics?searchtype=author&query=Michine%2C+Y">Yurina Michine</a>, <a href="/search/physics?searchtype=author&query=Chuchurka%2C+S">Stasis Chuchurka</a>, <a href="/search/physics?searchtype=author&query=Abhari%2C+Z">Zain Abhari</a>, <a href="/search/physics?searchtype=author&query=Ronchetti%2C+D">Daniele Ronchetti</a>, <a href="/search/physics?searchtype=author&query=Fransson%2C+T">Thomas Fransson</a>, <a href="/search/physics?searchtype=author&query=Weninger%2C+C">Clemens Weninger</a>, <a href="/search/physics?searchtype=author&query=Fuller%2C+F+D">Franklin D. Fuller</a>, <a href="/search/physics?searchtype=author&query=Aquila%2C+A">Andy Aquila</a>, <a href="/search/physics?searchtype=author&query=Alonso-Mori%2C+R">Roberto Alonso-Mori</a>, <a href="/search/physics?searchtype=author&query=Boutet%2C+S">Sebastien Boutet</a>, <a href="/search/physics?searchtype=author&query=Guetg%2C+M+W">Marc W. Guetg</a>, <a href="/search/physics?searchtype=author&query=Marinelli%2C+A">Agostino Marinelli</a>, <a href="/search/physics?searchtype=author&query=Lutman%2C+A+A">Alberto A. Lutman</a>, <a href="/search/physics?searchtype=author&query=Yabashi%2C+M">Makina Yabashi</a>, <a href="/search/physics?searchtype=author&query=Inoue%2C+I">Ichiro Inoue</a>, <a href="/search/physics?searchtype=author&query=Osaka%2C+T">Taito Osaka</a>, <a href="/search/physics?searchtype=author&query=Yamada%2C+J">Jumpei Yamada</a>, <a href="/search/physics?searchtype=author&query=Inubushi%2C+Y">Yuichi Inubushi</a>, <a href="/search/physics?searchtype=author&query=Yamaguchi%2C+G">Gota Yamaguchi</a>, <a href="/search/physics?searchtype=author&query=Hara%2C+T">Toru Hara</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06914v2-abstract-short" style="display: inline;"> Since the invention of the laser nonlinear effects such as filamentation, Rabi-cycling and collective emission have been explored in the optical regime leading to a wide range of scientific and industrial applications. X-ray free electron lasers (XFELs) have led to the extension of many optical techniques to X-rays for their advantages of angstrom scale spatial resolution and elemental specificity… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06914v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06914v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06914v2-abstract-full" style="display: none;"> Since the invention of the laser nonlinear effects such as filamentation, Rabi-cycling and collective emission have been explored in the optical regime leading to a wide range of scientific and industrial applications. X-ray free electron lasers (XFELs) have led to the extension of many optical techniques to X-rays for their advantages of angstrom scale spatial resolution and elemental specificity. One such example is XFEL driven population inversion of 1s core hole states resulting in inner-shell K$伪$ (2p to 1s) X-ray lasing in elements ranging from neon to copper, which has been utilized for nonlinear spectroscopy and development of next generation X-ray laser sources. Here we show that strong lasing effects, similar to those observed in the optical regime, can occur at 1.5 to 2.1 angstrom wavelengths during high intensity (> ${10^{19}}$ W/cm${^{2}}$) XFEL driven inner-shell lasing and superfluorescence of copper and manganese. Depending on the temporal substructure of the XFEL pump pulses(containing ${~10^{6}}$ - ${10^{8}}$ photons) i, the resulting inner-shell X-ray laser pulses can exhibit strong spatial inhomogeneities as well as spectral splitting, inhomogeneities and broadening. Through 3D Maxwell Bloch theory we show that the observed spatial inhomogeneities result from X-ray filamentation, and that the spectral splitting and broadening is driven by Rabi cycling with sub-femtosecond periods. Our simulations indicate that these X-ray pulses can have pulse lengths of less than 100 attoseconds and coherence properties that open the door for quantum X-ray optics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06914v2-abstract-full').style.display = 'none'; document.getElementById('2409.06914v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12450">arXiv:2407.12450</a> <span> [<a href="https://arxiv.org/pdf/2407.12450">pdf</a>, <a href="https://arxiv.org/format/2407.12450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Interim report for the International Muon Collider Collaboration (IMCC) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Accettura%2C+C">C. Accettura</a>, <a href="/search/physics?searchtype=author&query=Adrian%2C+S">S. Adrian</a>, <a href="/search/physics?searchtype=author&query=Agarwal%2C+R">R. Agarwal</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C">C. Ahdida</a>, <a href="/search/physics?searchtype=author&query=Aim%C3%A9%2C+C">C. Aim茅</a>, <a href="/search/physics?searchtype=author&query=Aksoy%2C+A">A. Aksoy</a>, <a href="/search/physics?searchtype=author&query=Alberghi%2C+G+L">G. L. Alberghi</a>, <a href="/search/physics?searchtype=author&query=Alden%2C+S">S. Alden</a>, <a href="/search/physics?searchtype=author&query=Amapane%2C+N">N. Amapane</a>, <a href="/search/physics?searchtype=author&query=Amorim%2C+D">D. Amorim</a>, <a href="/search/physics?searchtype=author&query=Andreetto%2C+P">P. Andreetto</a>, <a href="/search/physics?searchtype=author&query=Anulli%2C+F">F. Anulli</a>, <a href="/search/physics?searchtype=author&query=Appleby%2C+R">R. Appleby</a>, <a href="/search/physics?searchtype=author&query=Apresyan%2C+A">A. Apresyan</a>, <a href="/search/physics?searchtype=author&query=Asadi%2C+P">P. Asadi</a>, <a href="/search/physics?searchtype=author&query=Mahmoud%2C+M+A">M. Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/physics?searchtype=author&query=Back%2C+J">J. Back</a>, <a href="/search/physics?searchtype=author&query=Badea%2C+A">A. Badea</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+K+J">K. J. Bae</a>, <a href="/search/physics?searchtype=author&query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&query=Balconi%2C+L">L. Balconi</a>, <a href="/search/physics?searchtype=author&query=Balli%2C+F">F. Balli</a>, <a href="/search/physics?searchtype=author&query=Bandiera%2C+L">L. Bandiera</a>, <a href="/search/physics?searchtype=author&query=Barbagallo%2C+C">C. Barbagallo</a> , et al. (362 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12450v2-abstract-short" style="display: inline;"> The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12450v2-abstract-full').style.display = 'inline'; document.getElementById('2407.12450v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12450v2-abstract-full" style="display: none;"> The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accelerator complex, detectors and physics for a future muon collider. In 2023, European Commission support was obtained for a design study of a muon collider (MuCol) [3]. This project started on 1st March 2023, with work-packages aligned with the overall muon collider studies. In preparation of and during the 2021-22 U.S. Snowmass process, the muon collider project parameters, technical studies and physics performance studies were performed and presented in great detail. Recently, the P5 panel [4] in the U.S. recommended a muon collider R&D, proposed to join the IMCC and envisages that the U.S. should prepare to host a muon collider, calling this their "muon shot". In the past, the U.S. Muon Accelerator Programme (MAP) [5] has been instrumental in studies of concepts and technologies for a muon collider. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12450v2-abstract-full').style.display = 'none'; document.getElementById('2407.12450v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document summarises the International Muon Collider Collaboration (IMCC) progress and status of the Muon Collider R&D programme</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01944">arXiv:2407.01944</a> <span> [<a href="https://arxiv.org/pdf/2407.01944">pdf</a>, <a href="https://arxiv.org/format/2407.01944">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Effect of Burn Parameters on PAH Emissions at Conditions Relevant for Prescribed Fires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=T%C3%B6pperwien%2C+K">Karl T枚pperwien</a>, <a href="/search/physics?searchtype=author&query=Vignat%2C+G">Guillaume Vignat</a>, <a href="/search/physics?searchtype=author&query=Feinberg%2C+A+J">Alexandra J. Feinberg</a>, <a href="/search/physics?searchtype=author&query=Daube%2C+C">Conner Daube</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+M+W">Mitchell W. Alton</a>, <a href="/search/physics?searchtype=author&query=Fortner%2C+E+C">Edward C. Fortner</a>, <a href="/search/physics?searchtype=author&query=Canagaratna%2C+M+R">Manjula R. Canagaratna</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+M">Mary Johnson</a>, <a href="/search/physics?searchtype=author&query=Nadeau%2C+K">Kari Nadeau</a>, <a href="/search/physics?searchtype=author&query=Herndon%2C+S">Scott Herndon</a>, <a href="/search/physics?searchtype=author&query=Jayne%2C+J+T">John T. Jayne</a>, <a href="/search/physics?searchtype=author&query=Ihme%2C+M">Matthias Ihme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01944v1-abstract-short" style="display: inline;"> Wildfire smoke is a health hazard as it contains a mixture of carcinogenic volatile compounds and fine particulate matter. In particular, exposure to polycyclic aromatic hydrocarbons (PAHs) is a major concern, since these compounds have been recognized as important contributors to the overall carcinogenic risk of smoke exposure. In this work, gas and particle-phase PAH emissions from the combustio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01944v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01944v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01944v1-abstract-full" style="display: none;"> Wildfire smoke is a health hazard as it contains a mixture of carcinogenic volatile compounds and fine particulate matter. In particular, exposure to polycyclic aromatic hydrocarbons (PAHs) is a major concern, since these compounds have been recognized as important contributors to the overall carcinogenic risk of smoke exposure. In this work, gas and particle-phase PAH emissions from the combustion of Eastern White Pine (pinus strobus) were quantified using time-of-flight mass spectrometry over a range of burn conditions representative of wildfires and prescribed fires. These experiments allow for controlling conditions of fuel moisture, heat flux, and oxygen concentration to understand their impact on PAH emissions. We find that optimal conditions for fuel moisture content of 20 - 30%, heat load onto the sample of 60 - 70 kW/m$^2$, and oxygen concentrations of the burn environment of 5 - 15% can reduce the emissions of the heavy molar weight PAHs by up to 77%. Our analysis shows that the relative carcinogenic risk can be reduced by more than 50% under optimal conditions, offering a way for reducing emission exposure from forest treatment activities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01944v1-abstract-full').style.display = 'none'; document.getElementById('2407.01944v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Atmospheric Pollution Research</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15602">arXiv:2406.15602</a> <span> [<a href="https://arxiv.org/pdf/2406.15602">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Catalysis in Extreme Field Environments: The Case of Strongly Ionized $SiO_{2}$ Nanoparticle Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Linker%2C+T+M">Thomas M. Linker</a>, <a href="/search/physics?searchtype=author&query=Dagar%2C+R">Ritika Dagar</a>, <a href="/search/physics?searchtype=author&query=Feinberg%2C+A">Alexandra Feinberg</a>, <a href="/search/physics?searchtype=author&query=Sahel-Schackis%2C+S">Samuel Sahel-Schackis</a>, <a href="/search/physics?searchtype=author&query=Nomura%2C+K">Ken-ichi Nomura</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+A">Aiichiro Nakano</a>, <a href="/search/physics?searchtype=author&query=Shimojo%2C+F">Fuyuki Shimojo</a>, <a href="/search/physics?searchtype=author&query=Vashishta%2C+P">Priya Vashishta</a>, <a href="/search/physics?searchtype=author&query=Bergmann%2C+U">Uwe Bergmann</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a>, <a href="/search/physics?searchtype=author&query=Summers%2C+A+M">Adam M. Summers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15602v2-abstract-short" style="display: inline;"> High electric fields can significantly alter catalytic environments and the resultant chemical processes. Such fields arise naturally in biological systems but can also be artificially induced through localized excitations at nanoscale. Recently, strong field excitation of dielectric nanoparticles has emerged as an avenue for studying catalysis in highly ionized environments producing extreme elec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15602v2-abstract-full').style.display = 'inline'; document.getElementById('2406.15602v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15602v2-abstract-full" style="display: none;"> High electric fields can significantly alter catalytic environments and the resultant chemical processes. Such fields arise naturally in biological systems but can also be artificially induced through localized excitations at nanoscale. Recently, strong field excitation of dielectric nanoparticles has emerged as an avenue for studying catalysis in highly ionized environments producing extreme electric fields. While the dynamics of surface ion emission driven by ultrafast laser ionization has been heavily explored, understanding the molecular dynamics leading to fragmentation has remained elusive. To address this, we employed a multiscale approach utilizing non-adiabatic quantum molecular dynamics (NAQMD) simulations on hydrogenated silica surfaces in both bare and wetted environments under field conditions mimicking those of an ionized nanoparticle. Our findings indicate that hole localization drives fragmentation dynamics, leading to surface silanol dissociation within 50 fs and charge transfer-induced water splitting in wetted environments within 150 fs. Further insight into such ultrafast mechanisms is critical for advancement of catalysis on the surface of charged nanosystems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15602v2-abstract-full').style.display = 'none'; document.getElementById('2406.15602v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12520">arXiv:2403.12520</a> <span> [<a href="https://arxiv.org/pdf/2403.12520">pdf</a>, <a href="https://arxiv.org/format/2403.12520">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.021802">10.1103/PhysRevLett.133.021802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the $谓_e$ and $谓_渭$ Interaction Cross Sections at the LHC with FASER's Emulsion Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abraham%2C+R+M">Roshan Mammen Abraham</a>, <a href="/search/physics?searchtype=author&query=Anders%2C+J">John Anders</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Atkinson%2C+J">Jeremy Atkinson</a>, <a href="/search/physics?searchtype=author&query=Bernlochner%2C+F+U">Florian U. Bernlochner</a>, <a href="/search/physics?searchtype=author&query=Boeckh%2C+T">Tobias Boeckh</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Brenner%2C+L">Lydia Brenner</a>, <a href="/search/physics?searchtype=author&query=Burger%2C+A">Angela Burger</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">Roberto Cardella</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cavanagh%2C+C">Charlotte Cavanagh</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Debieux%2C+S">Stephane Debieux</a>, <a href="/search/physics?searchtype=author&query=D%27Onofrio%2C+M">Monica D'Onofrio</a>, <a href="/search/physics?searchtype=author&query=Desai%2C+A">Ansh Desai</a>, <a href="/search/physics?searchtype=author&query=Dmitrievsky%2C+S">Sergey Dmitrievsky</a>, <a href="/search/physics?searchtype=author&query=Eley%2C+S">Sinead Eley</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a> , et al. (80 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12520v2-abstract-short" style="display: inline;"> This paper presents the first results of the study of high-energy electron and muon neutrino charged-current interactions in the FASER$谓$ emulsion/tungsten detector of the FASER experiment at the LHC. A subset of the FASER$谓$ volume, which corresponds to a target mass of 128.6~kg, was exposed to neutrinos from the LHC $pp$ collisions with a centre-of-mass energy of 13.6~TeV and an integrated lumin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12520v2-abstract-full').style.display = 'inline'; document.getElementById('2403.12520v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12520v2-abstract-full" style="display: none;"> This paper presents the first results of the study of high-energy electron and muon neutrino charged-current interactions in the FASER$谓$ emulsion/tungsten detector of the FASER experiment at the LHC. A subset of the FASER$谓$ volume, which corresponds to a target mass of 128.6~kg, was exposed to neutrinos from the LHC $pp$ collisions with a centre-of-mass energy of 13.6~TeV and an integrated luminosity of 9.5 fb$^{-1}$. Applying stringent selections requiring electrons with reconstructed energy above 200~GeV, four electron neutrino interaction candidate events are observed with an expected background of $0.025^{+0.015}_{-0.010}$, leading to a statistical significance of 5.2$蟽$. This is the first direct observation of electron neutrino interactions at a particle collider. Eight muon neutrino interaction candidate events are also detected, with an expected background of $0.22^{+0.09}_{-0.07}$, leading to a statistical significance of 5.7$蟽$. The signal events include neutrinos with energies in the TeV range, the highest-energy electron and muon neutrinos ever detected from an artificial source. The energy-independent part of the interaction cross section per nucleon is measured over an energy range of 560--1740 GeV (520--1760 GeV) for $谓_e$ ($谓_渭$) to be $(1.2_{-0.7}^{+0.8}) \times 10^{-38}~\mathrm{cm}^{2}\,\mathrm{GeV}^{-1}$ ($(0.5\pm0.2) \times 10^{-38}~\mathrm{cm}^{2}\,\mathrm{GeV}^{-1}$), consistent with Standard Model predictions. These are the first measurements of neutrino interaction cross sections in those energy ranges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12520v2-abstract-full').style.display = 'none'; document.getElementById('2403.12520v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 021802 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12764">arXiv:2402.12764</a> <span> [<a href="https://arxiv.org/pdf/2402.12764">pdf</a>, <a href="https://arxiv.org/format/2402.12764">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Delays in X-ray Molecular Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Mountney%2C+M">Miles Mountney</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jun Wang</a>, <a href="/search/physics?searchtype=author&query=Ortmann%2C+L">Lisa Ortmann</a>, <a href="/search/physics?searchtype=author&query=Al-Haddad%2C+A">Andre Al-Haddad</a>, <a href="/search/physics?searchtype=author&query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=Garratt%2C+D">Douglas Garratt</a>, <a href="/search/physics?searchtype=author&query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&query=Haxton%2C+D">Daniel Haxton</a>, <a href="/search/physics?searchtype=author&query=Isele%2C+E">Erik Isele</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+I">Igor Ivanov</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+J">Jiabao Ji</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=Marangos%2C+J+P">Jon P. Marangos</a>, <a href="/search/physics?searchtype=author&query=Obaid%2C+R">Razib Obaid</a>, <a href="/search/physics?searchtype=author&query=O%27Neal%2C+J+T">Jordan T. O'Neal</a>, <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Shivaram%2C+N+H">Niranjan H. Shivaram</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12764v1-abstract-short" style="display: inline;"> The photoelectric effect is not truly instantaneous, but exhibits attosecond delays that can reveal complex molecular dynamics. Sub-femtosecond duration light pulses provide the requisite tools to resolve the dynamics of photoionization. Accordingly, the past decade has produced a large volume of work on photoionization delays following single photon absorption of an extreme ultraviolet (XUV) phot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12764v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12764v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12764v1-abstract-full" style="display: none;"> The photoelectric effect is not truly instantaneous, but exhibits attosecond delays that can reveal complex molecular dynamics. Sub-femtosecond duration light pulses provide the requisite tools to resolve the dynamics of photoionization. Accordingly, the past decade has produced a large volume of work on photoionization delays following single photon absorption of an extreme ultraviolet (XUV) photon. However, the measurement of time-resolved core-level photoionization remained out of reach. The required x-ray photon energies needed for core-level photoionization were not available with attosecond tabletop sources. We have now measured the x-ray photoemission delay of core-level electrons, and here report unexpectedly large delays, ranging up to 700 attoseconds in NO near the oxygen K-shell threshold. These measurements exploit attosecond soft x-ray pulses from a free-electron laser (XFEL) to scan across the entire region near the K-shell threshold. Furthermore, we find the delay spectrum is richly modulated, suggesting several contributions including transient trapping of the photoelectron due to shape resonances, collisions with the Auger-Meitner electron that is emitted in the rapid non-radiative relaxation of the molecule, and multi-electron scattering effects. The results demonstrate how x-ray attosecond experiments, supported by comprehensive theoretical modelling, can unravel the complex correlated dynamics of core-level photoionization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12764v1-abstract-full').style.display = 'none'; document.getElementById('2402.12764v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15250">arXiv:2401.15250</a> <span> [<a href="https://arxiv.org/pdf/2401.15250">pdf</a>, <a href="https://arxiv.org/format/2401.15250">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental Demonstration of Attosecond Pump-Probe Spectroscopy with an X-ray Free-Electron Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Beauvarlet%2C+S">Sandra Beauvarlet</a>, <a href="/search/physics?searchtype=author&query=Cesar%2C+D">David Cesar</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=Franz%2C+P+L">Paris L. Franz</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+O">Oliver Alexander</a>, <a href="/search/physics?searchtype=author&query=Bohler%2C+D">Dorian Bohler</a>, <a href="/search/physics?searchtype=author&query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&query=Averbukh%2C+V">Vitali Averbukh</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&query=Doumy%2C+G">Gilles Doumy</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R">Ruaridh Forbes</a>, <a href="/search/physics?searchtype=author&query=Gessner%2C+O">Oliver Gessner</a>, <a href="/search/physics?searchtype=author&query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/physics?searchtype=author&query=Isele%2C+E">Erik Isele</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">Kirk A. Larsen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/physics?searchtype=author&query=McCracken%2C+G+A">Gregory A. McCracken</a>, <a href="/search/physics?searchtype=author&query=Obaid%2C+R">Razib Obaid</a>, <a href="/search/physics?searchtype=author&query=ONeal%2C+J+T">Jordan T. ONeal</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15250v1-abstract-short" style="display: inline;"> Pump-probe experiments with sub-femtosecond resolution are the key to understanding electronic dynamics in quantum systems. Here we demonstrate the generation and control of sub-femtosecond pulse pairs from a two-colour X-ray free-electron laser (XFEL). By measuring the delay between the two pulses with an angular streaking diagnostic, we characterise the group velocity of the XFEL and demonstrate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15250v1-abstract-full').style.display = 'inline'; document.getElementById('2401.15250v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15250v1-abstract-full" style="display: none;"> Pump-probe experiments with sub-femtosecond resolution are the key to understanding electronic dynamics in quantum systems. Here we demonstrate the generation and control of sub-femtosecond pulse pairs from a two-colour X-ray free-electron laser (XFEL). By measuring the delay between the two pulses with an angular streaking diagnostic, we characterise the group velocity of the XFEL and demonstrate control of the pulse delay down to 270 as. We demonstrate the application of this technique to a pump-probe measurement in core-excited para-aminophenol. These results demonstrate the ability to perform pump-probe experiments with sub-femtosecond resolution and atomic site specificity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15250v1-abstract-full').style.display = 'none'; document.getElementById('2401.15250v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, main manuscript (5 figures) + supplementary materials (25 figures), 30 figures total. Submitted to Nature Photonics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02621">arXiv:2401.02621</a> <span> [<a href="https://arxiv.org/pdf/2401.02621">pdf</a>, <a href="https://arxiv.org/format/2401.02621">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Tracking Surface Charge Dynamics on Single Nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dagar%2C+R">Ritika Dagar</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wenbin Zhang</a>, <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Linker%2C+T+M">Thomas M. Linker</a>, <a href="/search/physics?searchtype=author&query=Sousa-Castillo%2C+A">Ana Sousa-Castillo</a>, <a href="/search/physics?searchtype=author&query=Neuhaus%2C+M">Marcel Neuhaus</a>, <a href="/search/physics?searchtype=author&query=Mitra%2C+S">Sambit Mitra</a>, <a href="/search/physics?searchtype=author&query=Biswas%2C+S">Shubhadeep Biswas</a>, <a href="/search/physics?searchtype=author&query=Feinberg%2C+A">Alexandra Feinberg</a>, <a href="/search/physics?searchtype=author&query=Summers%2C+A+M">Adam M. Summers</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+A">Aiichiro Nakano</a>, <a href="/search/physics?searchtype=author&query=Vashishta%2C+P">Priya Vashishta</a>, <a href="/search/physics?searchtype=author&query=Shimojo%2C+F">Fuyuki Shimojo</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jian Wu</a>, <a href="/search/physics?searchtype=author&query=Vera%2C+C+C">Cesar Costa Vera</a>, <a href="/search/physics?searchtype=author&query=Maier%2C+S+A">Stefan A. Maier</a>, <a href="/search/physics?searchtype=author&query=Cort%C3%A9s%2C+E">Emiliano Cort茅s</a>, <a href="/search/physics?searchtype=author&query=Bergues%2C+B">Boris Bergues</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02621v1-abstract-short" style="display: inline;"> Surface charges play a fundamental role in physics and chemistry, particularly in shaping the catalytic properties of nanomaterials. Tracking nanoscale surface charge dynamics remains challenging due to the involved length and time scales. Here, we demonstrate real-time access to the nanoscale charge dynamics on dielectric nanoparticles employing reaction nanoscopy. We present a four-dimensional v… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02621v1-abstract-full').style.display = 'inline'; document.getElementById('2401.02621v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02621v1-abstract-full" style="display: none;"> Surface charges play a fundamental role in physics and chemistry, particularly in shaping the catalytic properties of nanomaterials. Tracking nanoscale surface charge dynamics remains challenging due to the involved length and time scales. Here, we demonstrate real-time access to the nanoscale charge dynamics on dielectric nanoparticles employing reaction nanoscopy. We present a four-dimensional visualization of the non-linear charge dynamics on strong-field irradiated single SiO$_2$ nanoparticles with femtosecond-nanometer resolution and reveal how surface charges affect surface molecular bonding with quantum dynamical simulations. We performed semi-classical simulations to uncover the roles of diffusion and charge loss in the surface charge redistribution process. Understanding nanoscale surface charge dynamics and its influence on chemical bonding on a single nanoparticle level unlocks an increased ability to address global needs in renewable energy and advanced healthcare. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02621v1-abstract-full').style.display = 'none'; document.getElementById('2401.02621v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages with (4+6(SI)) figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16121">arXiv:2312.16121</a> <span> [<a href="https://arxiv.org/pdf/2312.16121">pdf</a>, <a href="https://arxiv.org/format/2312.16121">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Far-field Petahertz Sampling of Plasmonic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wong%2C+K">Kai-Fu Wong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Weiwei Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zilong Wang</a>, <a href="/search/physics?searchtype=author&query=Wanie%2C+V">Vincent Wanie</a>, <a href="/search/physics?searchtype=author&query=M%C3%A5nsson%2C+E">Erik M氓nsson</a>, <a href="/search/physics?searchtype=author&query=Hoeing%2C+D">Dominik Hoeing</a>, <a href="/search/physics?searchtype=author&query=Bl%C3%B6chl%2C+J">Johannes Bl枚chl</a>, <a href="/search/physics?searchtype=author&query=Nubbemeyer%2C+T">Thomas Nubbemeyer</a>, <a href="/search/physics?searchtype=author&query=Azzeer%2C+A+M">Abdallah M. Azzeer</a>, <a href="/search/physics?searchtype=author&query=Trabattoni%2C+A">Andrea Trabattoni</a>, <a href="/search/physics?searchtype=author&query=Lange%2C+H">Holger Lange</a>, <a href="/search/physics?searchtype=author&query=Calegari%2C+F">Francesca Calegari</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16121v1-abstract-short" style="display: inline;"> The collective response of metal nanostructures to optical excitation leads to localized plasmon generation with nanoscale field confinement driving applications in e.g. quantum optics, optoelectronics, and nanophotonics, where a bottleneck is the ultrafast loss of coherence by different damping channels. The present understanding is built-up on indirect measurements dictated by the extreme timesc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16121v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16121v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16121v1-abstract-full" style="display: none;"> The collective response of metal nanostructures to optical excitation leads to localized plasmon generation with nanoscale field confinement driving applications in e.g. quantum optics, optoelectronics, and nanophotonics, where a bottleneck is the ultrafast loss of coherence by different damping channels. The present understanding is built-up on indirect measurements dictated by the extreme timescales involved. Here, we introduce a straightforward field sampling method that allows to measure the plasmonic field of arbitrary nanostructures in the most relevant petahertz regime. We compare experimental data for colloidal nanoparticles to finite-difference-time-domain calculations, which show that the dephasing of the plasmonic excitation can be resolved with sub-cycle resolution. Furthermore, we observe a substantial reshaping of the spectral phase of the few-cycle pulse induced by this collective excitation and we demonstrate ad-hoc pulse shaping by tailoring the plasmonic sample. The results pave the way towards both a fundamental understanding of ultrafast energy transformation in nanosystems and practical applications of nanostructures in extreme scale spatio-temporal control of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16121v1-abstract-full').style.display = 'none'; document.getElementById('2312.16121v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13044">arXiv:2303.13044</a> <span> [<a href="https://arxiv.org/pdf/2303.13044">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07244-z">10.1038/s41586-024-07244-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lightwave-controlled band engineering in quantum materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mitra%2C+S">Sambit Mitra</a>, <a href="/search/physics?searchtype=author&query=Jim%C3%A9nez-Gal%C3%A1n%2C+%C3%81">脕lvaro Jim茅nez-Gal谩n</a>, <a href="/search/physics?searchtype=author&query=Neuhaus%2C+M">Marcel Neuhaus</a>, <a href="/search/physics?searchtype=author&query=Silva%2C+R+E+F">Rui E F Silva</a>, <a href="/search/physics?searchtype=author&query=Pervak%2C+V">Volodymyr Pervak</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F Kling</a>, <a href="/search/physics?searchtype=author&query=Biswas%2C+S">Shubhadeep Biswas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13044v2-abstract-short" style="display: inline;"> Stacking and twisting atom-thin sheets create superlattice structures with unique emergent properties, while tailored light fields can manipulate coherent electron transport on ultrafast timescales. The unification of these two approaches may lead to ultrafast creation and manipulation of band structure properties, which is a crucial objective for the advancement of quantum technology. Here, we ad… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13044v2-abstract-full').style.display = 'inline'; document.getElementById('2303.13044v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13044v2-abstract-full" style="display: none;"> Stacking and twisting atom-thin sheets create superlattice structures with unique emergent properties, while tailored light fields can manipulate coherent electron transport on ultrafast timescales. The unification of these two approaches may lead to ultrafast creation and manipulation of band structure properties, which is a crucial objective for the advancement of quantum technology. Here, we address this by demonstrating a tailored lightwave-driven analogue to twisted layer stacking. This results in sub-femtosecond control of time-reversal symmetry breaking and thereby band structure engineering in a hexagonal boron nitride monolayer. The results practically demonstrate the realization of the topological Haldane model in an insulator. Twisting the lightwave relative to the lattice orientation enables switching between band configurations, providing unprecedented control over the magnitude and location of the band gap, and curvature. A resultant asymmetric population at complementary quantum valleys lead to a measurable valley Hall current, detected via optical harmonic polarimetry. The universality and robustness of the demonstrated sub-femtosecond control opens a new way to band structure engineering on the fly paving a way towards large-scale ultrafast quantum devices for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13044v2-abstract-full').style.display = 'none'; document.getElementById('2303.13044v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages main text, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 628 752 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07095">arXiv:2302.07095</a> <span> [<a href="https://arxiv.org/pdf/2302.07095">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.063111">10.1103/PhysRevA.107.063111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Streaking single-electron ionization in open-shell molecules driven by X-ray pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mountney%2C+M+E">M. E. Mountney</a>, <a href="/search/physics?searchtype=author&query=Driver%2C+T+C">T. C. Driver</a>, <a href="/search/physics?searchtype=author&query=Marinelli%2C+A">A. Marinelli</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J+P">J. P. Cryan</a>, <a href="/search/physics?searchtype=author&query=Emmanouilidou%2C+A">A. Emmanouilidou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07095v2-abstract-short" style="display: inline;"> We obtain continuum molecular wavefunctions for open-shell molecules in the Hartree-Fock framework. We do so while accounting for the singlet or triplet total spin symmetry of the molecular ion, that is, of the open-shell orbital and the initial orbital where the electron ionizes from. Using these continuum wavefunctions, we obtain the dipole matrix elements for a core electron that ionizes due to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07095v2-abstract-full').style.display = 'inline'; document.getElementById('2302.07095v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07095v2-abstract-full" style="display: none;"> We obtain continuum molecular wavefunctions for open-shell molecules in the Hartree-Fock framework. We do so while accounting for the singlet or triplet total spin symmetry of the molecular ion, that is, of the open-shell orbital and the initial orbital where the electron ionizes from. Using these continuum wavefunctions, we obtain the dipole matrix elements for a core electron that ionizes due to single-photon absorption by a linearly polarized X-ray pulse. After ionization from the X-ray pulse, we control or streak the electron dynamics using a circularly polarized infrared (IR) pulse. For a high intensity IR pulse and photon energies of the X-ray pulse close to the ionization threshold of the $1蟽$ or $2蟽$ orbitals, we achieve control of the angle of escape of the ionizing electron by varying the phase delay between the X-ray and IR pulses. For a low intensity IR pulse, we obtain final electron momenta distributions on the plane of the IR pulse and we find that many features of these distributions correspond to the angular patterns of electron escape solely due to the X-ray pulse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07095v2-abstract-full').style.display = 'none'; document.getElementById('2302.07095v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.05587">arXiv:2212.05587</a> <span> [<a href="https://arxiv.org/pdf/2212.05587">pdf</a>, <a href="https://arxiv.org/format/2212.05587">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Reaction Nanoscopy of Ion Emission from Sub-wavelength Propanediol Droplets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Dagar%2C+R">Ritika Dagar</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wenbin Zhang</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arijit Majumdar</a>, <a href="/search/physics?searchtype=author&query=Neuhaus%2C+M">Marcel Neuhaus</a>, <a href="/search/physics?searchtype=author&query=Ihme%2C+M">Matthias Ihme</a>, <a href="/search/physics?searchtype=author&query=Bergues%2C+B">Boris Bergues</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.05587v1-abstract-short" style="display: inline;"> Droplets provide unique opportunities for the investigation of laser-induced surface chemistry. Chemical reactions on the surface of charged droplets are ubiquitous in nature and can provide critical insight into more efficient processes for industrial chemical production. Here, we demonstrate the application of the reaction nanoscopy technique to strong-field ionized nanodroplets of propanediol (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05587v1-abstract-full').style.display = 'inline'; document.getElementById('2212.05587v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.05587v1-abstract-full" style="display: none;"> Droplets provide unique opportunities for the investigation of laser-induced surface chemistry. Chemical reactions on the surface of charged droplets are ubiquitous in nature and can provide critical insight into more efficient processes for industrial chemical production. Here, we demonstrate the application of the reaction nanoscopy technique to strong-field ionized nanodroplets of propanediol (PDO). The technique's sensitivity to the near-field around the droplet allows for the in-situ characterization of the average droplet size and charge. The use of ultrashort laser pulses enables control of the amount of surface charge by the laser intensity. Moreover, we demonstrate the surface chemical sensitivity of reaction nanoscopy by comparing droplets of the isomers 1,2-PDO and 1,3-PDO in their ion emission and fragmentation channels. Referencing the ion yields to gas-phase data, we find an enhanced production of methyl cations from droplets of the 1,2-PDO isomer. Density functional theory simulations support that this enhancement is due to the alignment of 1,2-PDO molecules on the surface. The results pave the way towards spatio-temporal observations of charge dynamics and surface reactions on droplets in pump-probe studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05587v1-abstract-full').style.display = 'none'; document.getElementById('2212.05587v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07062">arXiv:2211.07062</a> <span> [<a href="https://arxiv.org/pdf/2211.07062">pdf</a>, <a href="https://arxiv.org/format/2211.07062">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Resonance effects in Brunel harmonic generation in thin film organic semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+W">Weiwei Li</a>, <a href="/search/physics?searchtype=author&query=Saleh%2C+A">Ahmad Saleh</a>, <a href="/search/physics?searchtype=author&query=Sharma%2C+M">Manas Sharma</a>, <a href="/search/physics?searchtype=author&query=Sierka%2C+M">Marek Sierka</a>, <a href="/search/physics?searchtype=author&query=H%C3%BCnecke%2C+C">Christian H眉necke</a>, <a href="/search/physics?searchtype=author&query=Neuhaus%2C+M">Marcel Neuhaus</a>, <a href="/search/physics?searchtype=author&query=Hedewig%2C+L">Lina Hedewig</a>, <a href="/search/physics?searchtype=author&query=Bergues%2C+B">Boris Bergues</a>, <a href="/search/physics?searchtype=author&query=Alharbi%2C+M">Meshaal Alharbi</a>, <a href="/search/physics?searchtype=author&query=Azzeer%2C+A+M">Abdallah M. Azzeer</a>, <a href="/search/physics?searchtype=author&query=Gr%C3%A4fe%2C+S">Stefanie Gr盲fe</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a>, <a href="/search/physics?searchtype=author&query=Alharbi%2C+A+F">Abdullah F. Alharbi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zilong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07062v1-abstract-short" style="display: inline;"> Organic semiconductors have attracted extensive attention due to their excellent optical and electronic properties. Here, we present an experimental and theoretical study of Brunel harmonic generation in two types of porphyrin thin films: tetraphenylporphyrin (TPP) and its organometallic complex derivative Zinc tetraphenylporphyrin (ZnTPP). Our results show that the $蟺$-$蟺^\ast$ excitation of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07062v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07062v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07062v1-abstract-full" style="display: none;"> Organic semiconductors have attracted extensive attention due to their excellent optical and electronic properties. Here, we present an experimental and theoretical study of Brunel harmonic generation in two types of porphyrin thin films: tetraphenylporphyrin (TPP) and its organometallic complex derivative Zinc tetraphenylporphyrin (ZnTPP). Our results show that the $蟺$-$蟺^\ast$ excitation of the porphyrin ringsystem plays a major role in the harmonic generation process. We uncovered the contribution of an interband process to Brunel harmonic generation. In particular, the resonant ($S_0 \rightarrow S_2$ transition) enhanced multiphoton excitation is found to lead to an early onset of non-perturbative behavior for the 5th harmonic. Similar resonance effects are expected in Brunel harmonic generation with other organic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07062v1-abstract-full').style.display = 'none'; document.getElementById('2211.07062v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05369">arXiv:2210.05369</a> <span> [<a href="https://arxiv.org/pdf/2210.05369">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Linear and Nonlinear Optical Properties of Iridium Nanoparticles by Atomic Layer deposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schmitt%2C+P">Paul Schmitt</a>, <a href="/search/physics?searchtype=author&query=Paul%2C+P">Pallabi Paul</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Weiwei Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zilong Wang</a>, <a href="/search/physics?searchtype=author&query=David%2C+C">Christin David</a>, <a href="/search/physics?searchtype=author&query=Daryakar%2C+N">Navid Daryakar</a>, <a href="/search/physics?searchtype=author&query=Hanemann%2C+K">Kevin Hanemann</a>, <a href="/search/physics?searchtype=author&query=Felde%2C+N">Nadja Felde</a>, <a href="/search/physics?searchtype=author&query=Munser%2C+A">Anne-Sophie Munser</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a>, <a href="/search/physics?searchtype=author&query=Schroeder%2C+S">Sven Schroeder</a>, <a href="/search/physics?searchtype=author&query=Tuennermann%2C+A">Andreas Tuennermann</a>, <a href="/search/physics?searchtype=author&query=Szeghalmi%2C+A">Adriana Szeghalmi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05369v1-abstract-short" style="display: inline;"> Nonlinear optical phenomena enable novel photonic and optoelectronic applications. Especially metallic nanoparticles and thin films with nonlinear optical properties offer the potential for micro-optical system integration. For this purpose, new nonlinear materials need to be continuously identified, investigated, and utilized for nonlinear optical applications. While noble metal nanoparticles, na… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05369v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05369v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05369v1-abstract-full" style="display: none;"> Nonlinear optical phenomena enable novel photonic and optoelectronic applications. Especially metallic nanoparticles and thin films with nonlinear optical properties offer the potential for micro-optical system integration. For this purpose, new nonlinear materials need to be continuously identified, investigated, and utilized for nonlinear optical applications. While noble metal nanoparticles, nanostructures, and thin films of Ag and Au were widely studied, iridium (Ir) nanoparticles and ultra-thin films have not been investigated yet. Here, we present a combined theoretical and experimental study on the linear and nonlinear optical properties of Ir nanoparticles deposited by atomic layer deposition (ALD). Linear optical constants, i.e., the effective refractive index n and extinction coefficient k, were evaluated at different growth stages of nanoparticle formation. Both linear and nonlinear optical properties of these Ir ALD coatings were calculated theoretically using Bruggeman and Maxwell-Garnett theories. The third-order susceptibility of Ir nanoparticle samples was experimentally investigated using the Z-scan technique. Overall, our studies demonstrate the potential of ultrathin Ir NPs as an alternative nonlinear optical material at an atomic scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05369v1-abstract-full').style.display = 'none'; document.getElementById('2210.05369v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01998">arXiv:2209.01998</a> <span> [<a href="https://arxiv.org/pdf/2209.01998">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-XUV-photon double ionization of Neon studied at the Extreme Light Infrastructure (ELI-ALPS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Orfanos%2C+I">I. Orfanos</a>, <a href="/search/physics?searchtype=author&query=Skantzakis%2C+E">E. Skantzakis</a>, <a href="/search/physics?searchtype=author&query=Nayak%2C+A">A. Nayak</a>, <a href="/search/physics?searchtype=author&query=Dumergue%2C+M">M. Dumergue</a>, <a href="/search/physics?searchtype=author&query=K%C3%BChn%2C+S">S. K眉hn</a>, <a href="/search/physics?searchtype=author&query=Sansone%2C+G">G. Sansone</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Schr%C3%B6der%2C+H">H. Schr枚der</a>, <a href="/search/physics?searchtype=author&query=Bergues%2C+B">B. Bergues</a>, <a href="/search/physics?searchtype=author&query=Kahaly%2C+S">S. Kahaly</a>, <a href="/search/physics?searchtype=author&query=Varju%2C+K">K. Varju</a>, <a href="/search/physics?searchtype=author&query=Forembski%2C+A">A. Forembski</a>, <a href="/search/physics?searchtype=author&query=Nikolopoulos%2C+L+A+A">L. A. A. Nikolopoulos</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a>, <a href="/search/physics?searchtype=author&query=Charalambidis%2C+D">D. Charalambidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01998v1-abstract-short" style="display: inline;"> Two XUV-photon double ionization of Ne, induced by an intense few-pulse attosecond train with a ~ 4 fs envelope duration is investigated experimentally and theoretically. The experiment is performed at ELI-ALPS utilizing the recently constructed 10 Hz gas phase high-order harmonic generation SYLOS GHHG-COMPACT beamline. A total pulse energy up to ~1 渭J generated in Argon in conjunction with high r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01998v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01998v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01998v1-abstract-full" style="display: none;"> Two XUV-photon double ionization of Ne, induced by an intense few-pulse attosecond train with a ~ 4 fs envelope duration is investigated experimentally and theoretically. The experiment is performed at ELI-ALPS utilizing the recently constructed 10 Hz gas phase high-order harmonic generation SYLOS GHHG-COMPACT beamline. A total pulse energy up to ~1 渭J generated in Argon in conjunction with high reflectivity optics in the XUV region, allowed the observation of the doubly charged state of Ne induced by 40 eV central XUV photon energies. The interaction of the intense attosecond pulse train with Ne is also theoretically studied via a second-order time dependent perturbation theory equations-of-motion. The results of this work, combined with the feasibility of conducting XUV-pump-XUV-probe experiments, constitute a powerful tool for many potential applications. Those include attosecond pulse metrology as well as time resolved investigations of the dynamics underlying direct and sequential double ionization and their electron correlation effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01998v1-abstract-full').style.display = 'none'; document.getElementById('2209.01998v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13215">arXiv:2207.13215</a> <span> [<a href="https://arxiv.org/pdf/2207.13215">pdf</a>, <a href="https://arxiv.org/format/2207.13215">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast quantum dynamics driven by the strong space charge field of a relativistic electron beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cesar%2C+D">D. Cesar</a>, <a href="/search/physics?searchtype=author&query=Acharya%2C+A">A. Acharya</a>, <a href="/search/physics?searchtype=author&query=Cryan%2C+J+P">J. P. Cryan</a>, <a href="/search/physics?searchtype=author&query=Kartsev%2C+A">A. Kartsev</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Lindenberg%2C+A+M">A. M. Lindenberg</a>, <a href="/search/physics?searchtype=author&query=Pemmaraju%2C+C+D">C. D. Pemmaraju</a>, <a href="/search/physics?searchtype=author&query=Poletayev%2C+A+D">A. D. Poletayev</a>, <a href="/search/physics?searchtype=author&query=Yakovlev%2C+V+S">V. S. Yakovlev</a>, <a href="/search/physics?searchtype=author&query=Marinelli%2C+A">A. Marinelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13215v1-abstract-short" style="display: inline;"> In this article, we illustrate how the Coulomb field of a highly relativistic electron beam can be shaped into a broadband pulse suitable for driving ultrafast and strong-field physics. In contrast to a solid-state laser, the Coulomb field creates a pulse which can be intrinsically synchronized with an x-ray free electron laser (XFEL), can have a cutoff frequency which is broadly tunable from THz… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13215v1-abstract-full').style.display = 'inline'; document.getElementById('2207.13215v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13215v1-abstract-full" style="display: none;"> In this article, we illustrate how the Coulomb field of a highly relativistic electron beam can be shaped into a broadband pulse suitable for driving ultrafast and strong-field physics. In contrast to a solid-state laser, the Coulomb field creates a pulse which can be intrinsically synchronized with an x-ray free electron laser (XFEL), can have a cutoff frequency which is broadly tunable from THz to EUV, and which acts on target systems as a "half-cycle" impulse. Explicit examples are presented to emphasize how the unique features of this excitation can be a tool for novel science at XFEL facilities like the LCLS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13215v1-abstract-full').style.display = 'none'; document.getElementById('2207.13215v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.11427">arXiv:2207.11427</a> <span> [<a href="https://arxiv.org/pdf/2207.11427">pdf</a>, <a href="https://arxiv.org/format/2207.11427">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05066">10.1088/1748-0221/19/05/P05066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The FASER Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Mansour%2C+E+A">Elham Amin Mansour</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bernlochner%2C+F">Florian Bernlochner</a>, <a href="/search/physics?searchtype=author&query=Boeckh%2C+T">Tobias Boeckh</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Brenner%2C+L">Lydia Brenner</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cavanagh%2C+C">Charlotte Cavanagh</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Crespo-Lopez%2C+O">Olivier Crespo-Lopez</a>, <a href="/search/physics?searchtype=author&query=Debieux%2C+S">Stephane Debieux</a>, <a href="/search/physics?searchtype=author&query=D%27Onofrio%2C+M">Monica D'Onofrio</a>, <a href="/search/physics?searchtype=author&query=Dougherty%2C+L">Liam Dougherty</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Ezzat%2C+A">Abdallah Ezzat</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a> , et al. (72 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.11427v1-abstract-short" style="display: inline;"> FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11427v1-abstract-full').style.display = 'inline'; document.getElementById('2207.11427v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.11427v1-abstract-full" style="display: none;"> FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASER$谓$, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system and its commissioning using cosmic-rays collected in September 2021 and during the LHC pilot beam test carried out in October 2021. FASER will start taking LHC collision data in 2022, and will run throughout LHC Run 3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11427v1-abstract-full').style.display = 'none'; document.getElementById('2207.11427v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">92 pages, 72 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-FASER-2022-001 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P05066 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09932">arXiv:2206.09932</a> <span> [<a href="https://arxiv.org/pdf/2206.09932">pdf</a>, <a href="https://arxiv.org/format/2206.09932">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.052011">10.1103/PhysRevD.106.052011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino Detection without Neutrino Detectors: Discovering Collider Neutrinos at FASER with Electronic Signals Only </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arakawa%2C+J">Jason Arakawa</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ismail%2C+A">Ahmed Ismail</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+F">Felix Kling</a>, <a href="/search/physics?searchtype=author&query=Waterbury%2C+M">Michael Waterbury</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09932v1-abstract-short" style="display: inline;"> The detection of collider neutrinos will provide new insights about neutrino production, propagation, and interactions at TeV energies, the highest human-made energies ever observed. During Run 3 of the LHC, the FASER experiment is expected to detect roughly $10^4$ collider neutrinos using its emulsion-based neutrino detector FASER$谓$. In this study, we show that, even without processing the emuls… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09932v1-abstract-full').style.display = 'inline'; document.getElementById('2206.09932v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09932v1-abstract-full" style="display: none;"> The detection of collider neutrinos will provide new insights about neutrino production, propagation, and interactions at TeV energies, the highest human-made energies ever observed. During Run 3 of the LHC, the FASER experiment is expected to detect roughly $10^4$ collider neutrinos using its emulsion-based neutrino detector FASER$谓$. In this study, we show that, even without processing the emulsion data, low-level input provided by the electronic detector components of FASER and FASER$谓$ will be able to establish a $5蟽$ discovery of collider neutrinos with as little as $5~\text{fb}^{-1}$ of integrated luminosity. These results foreshadow the possible early discovery of collider neutrinos in LHC Run 3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09932v1-abstract-full').style.display = 'none'; document.getElementById('2206.09932v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-101, UCI-TR-2022-09 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04220">arXiv:2206.04220</a> <span> [<a href="https://arxiv.org/pdf/2206.04220">pdf</a>, <a href="https://arxiv.org/format/2206.04220">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Experiments and Facilities for Accelerator-Based Dark Sector Searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ilten%2C+P">Philip Ilten</a>, <a href="/search/physics?searchtype=author&query=Tran%2C+N">Nhan Tran</a>, <a href="/search/physics?searchtype=author&query=Achenbach%2C+P">Patrick Achenbach</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Battaglieri%2C+M">Marco Battaglieri</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+J">Jianming Bian</a>, <a href="/search/physics?searchtype=author&query=Bisio%2C+P">Pietro Bisio</a>, <a href="/search/physics?searchtype=author&query=Celentano%2C+A">Andrea Celentano</a>, <a href="/search/physics?searchtype=author&query=Citron%2C+M">Matthew Citron</a>, <a href="/search/physics?searchtype=author&query=Crivelli%2C+P">Paolo Crivelli</a>, <a href="/search/physics?searchtype=author&query=de+Lellis%2C+G">Giovanni de Lellis</a>, <a href="/search/physics?searchtype=author&query=Di+Crescenzo%2C+A">Antonia Di Crescenzo</a>, <a href="/search/physics?searchtype=author&query=Diwan%2C+M">Milind Diwan</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Gatto%2C+C">Corrado Gatto</a>, <a href="/search/physics?searchtype=author&query=Gori%2C+S">Stefania Gori</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+F">Felix Kling</a>, <a href="/search/physics?searchtype=author&query=Marsicano%2C+L">Luca Marsicano</a>, <a href="/search/physics?searchtype=author&query=Mazza%2C+S+M">Simone M. Mazza</a>, <a href="/search/physics?searchtype=author&query=McFayden%2C+J">Josh McFayden</a>, <a href="/search/physics?searchtype=author&query=Molina-Bueno%2C+L">Laura Molina-Bueno</a>, <a href="/search/physics?searchtype=author&query=Spreafico%2C+M">Marco Spreafico</a>, <a href="/search/physics?searchtype=author&query=Toro%2C+N">Natalia Toro</a>, <a href="/search/physics?searchtype=author&query=Toups%2C+M">Matthew Toups</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04220v1-abstract-short" style="display: inline;"> This paper provides an overview of experiments and facilities for accelerator-based dark matter searches as part of the US Community Study on the Future of Particle Physics (Snowmass 2021). Companion white papers to this paper present the physics drivers: thermal dark matter, visible dark portals, and new flavors and rich dark sectors. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04220v1-abstract-full" style="display: none;"> This paper provides an overview of experiments and facilities for accelerator-based dark matter searches as part of the US Community Study on the Future of Particle Physics (Snowmass 2021). Companion white papers to this paper present the physics drivers: thermal dark matter, visible dark portals, and new flavors and rich dark sectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04220v1-abstract-full').style.display = 'none'; document.getElementById('2206.04220v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15265">arXiv:2203.15265</a> <span> [<a href="https://arxiv.org/pdf/2203.15265">pdf</a>, <a href="https://arxiv.org/format/2203.15265">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Spatio-temporal sampling of near-petahertz vortex fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bl%C3%B6chl%2C+J">Johannes Bl枚chl</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%B6tz%2C+J">Johannes Sch枚tz</a>, <a href="/search/physics?searchtype=author&query=Maliakkal%2C+A">Ancyline Maliakkal</a>, <a href="/search/physics?searchtype=author&query=%C5%A0reibere%2C+N">Nat膩lija 艩reibere</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zilong Wang</a>, <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Hommelhoff%2C+P">Peter Hommelhoff</a>, <a href="/search/physics?searchtype=author&query=Staudte%2C+A">Andre Staudte</a>, <a href="/search/physics?searchtype=author&query=Corkum%2C+P+B">Paul B. Corkum</a>, <a href="/search/physics?searchtype=author&query=Bergues%2C+B">Boris Bergues</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15265v1-abstract-short" style="display: inline;"> Measuring the field of visible light with high spatial resolution has been challenging, as many established methods only detect a focus-averaged signal. Here, we introduce a near-field method for optical field sampling that overcomes that limitation by employing the localization of the enhanced near-field of a nanometric needle tip. A probe field perturbs the photoemission from the tip, which is i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15265v1-abstract-full').style.display = 'inline'; document.getElementById('2203.15265v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15265v1-abstract-full" style="display: none;"> Measuring the field of visible light with high spatial resolution has been challenging, as many established methods only detect a focus-averaged signal. Here, we introduce a near-field method for optical field sampling that overcomes that limitation by employing the localization of the enhanced near-field of a nanometric needle tip. A probe field perturbs the photoemission from the tip, which is induced by a pump pulse, generating a field-dependent current modulation that can easily be captured with our electronic detection scheme. The approach provides reliable characterization of near-petahertz fields. We show that not only the spiral wave-front of visible femtosecond light pulses carrying orbital angular momentum (OAM) can be resolved, but also the field evolution with time in the focal plane. Additionally, our method is polarization sensitive, which makes it applicable to vectorial field reconstruction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15265v1-abstract-full').style.display = 'none'; document.getElementById('2203.15265v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, supplemental information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09030">arXiv:2203.09030</a> <span> [<a href="https://arxiv.org/pdf/2203.09030">pdf</a>, <a href="https://arxiv.org/format/2203.09030">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/adae26">10.1088/1361-6471/adae26 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ruso%2C+L+A">L. Alvarez Ruso</a>, <a href="/search/physics?searchtype=author&query=Ankowski%2C+A+M">A. M. Ankowski</a>, <a href="/search/physics?searchtype=author&query=Bacca%2C+S">S. Bacca</a>, <a href="/search/physics?searchtype=author&query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&query=Carlson%2C+J">J. Carlson</a>, <a href="/search/physics?searchtype=author&query=Gardiner%2C+S">S. Gardiner</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Jimenez%2C+R">R. Gonzalez-Jimenez</a>, <a href="/search/physics?searchtype=author&query=Gupta%2C+R">R. Gupta</a>, <a href="/search/physics?searchtype=author&query=Hobbs%2C+T+J">T. J. Hobbs</a>, <a href="/search/physics?searchtype=author&query=Hoferichter%2C+M">M. Hoferichter</a>, <a href="/search/physics?searchtype=author&query=Isaacson%2C+J">J. Isaacson</a>, <a href="/search/physics?searchtype=author&query=Jachowicz%2C+N">N. Jachowicz</a>, <a href="/search/physics?searchtype=author&query=Jay%2C+W+I">W. I. Jay</a>, <a href="/search/physics?searchtype=author&query=Katori%2C+T">T. Katori</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+F">F. Kling</a>, <a href="/search/physics?searchtype=author&query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S+W">S. W. Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+H+-">H. -W. Lin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/physics?searchtype=author&query=Lovato%2C+A">A. Lovato</a>, <a href="/search/physics?searchtype=author&query=Mahn%2C+K">K. Mahn</a>, <a href="/search/physics?searchtype=author&query=Menendez%2C+J">J. Menendez</a>, <a href="/search/physics?searchtype=author&query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/physics?searchtype=author&query=Morfin%2C+J">J. Morfin</a>, <a href="/search/physics?searchtype=author&query=Pastore%2C+S">S. Pastore</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09030v2-abstract-short" style="display: inline;"> Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neut… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09030v2-abstract-full').style.display = 'inline'; document.getElementById('2203.09030v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09030v2-abstract-full" style="display: none;"> Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neutrino scattering. Higher-energy interactions involve a variety of reaction mechanisms including quasi-elastic scattering, resonance production, and deep inelastic scattering that must all be included to reliably predict cross sections for energies relevant to DUNE and other accelerator neutrino experiments. This white paper discusses the theoretical status, challenges, required resources, and path forward for achieving precise predictions of neutrino-nucleus scattering and emphasizes the need for a coordinated theoretical effort involved lattice QCD, nuclear effective theories, phenomenological models of the transition region, and event generators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09030v2-abstract-full').style.display = 'none'; document.getElementById('2203.09030v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">81 pages, contribution to Snowmass 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-05, FERMILAB-FN-1161-T, MITP-22-027 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05090">arXiv:2203.05090</a> <span> [<a href="https://arxiv.org/pdf/2203.05090">pdf</a>, <a href="https://arxiv.org/format/2203.05090">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac865e">10.1088/1361-6471/ac865e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Forward Physics Facility at the High-Luminosity LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+F">Felix Kling</a>, <a href="/search/physics?searchtype=author&query=Reno%2C+M+H">Mary Hall Reno</a>, <a href="/search/physics?searchtype=author&query=Rojo%2C+J">Juan Rojo</a>, <a href="/search/physics?searchtype=author&query=Soldin%2C+D">Dennis Soldin</a>, <a href="/search/physics?searchtype=author&query=Anchordoqui%2C+L+A">Luis A. Anchordoqui</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Ismail%2C+A">Ahmed Ismail</a>, <a href="/search/physics?searchtype=author&query=Harland-Lang%2C+L">Lucian Harland-Lang</a>, <a href="/search/physics?searchtype=author&query=Kelly%2C+K+J">Kevin J. Kelly</a>, <a href="/search/physics?searchtype=author&query=Pandey%2C+V">Vishvas Pandey</a>, <a href="/search/physics?searchtype=author&query=Trojanowski%2C+S">Sebastian Trojanowski</a>, <a href="/search/physics?searchtype=author&query=Tsai%2C+Y">Yu-Dai Tsai</a>, <a href="/search/physics?searchtype=author&query=Alameddine%2C+J">Jean-Marco Alameddine</a>, <a href="/search/physics?searchtype=author&query=Araki%2C+T">Takeshi Araki</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Asai%2C+K">Kento Asai</a>, <a href="/search/physics?searchtype=author&query=Bacchetta%2C+A">Alessandro Bacchetta</a>, <a href="/search/physics?searchtype=author&query=Balazs%2C+K">Kincso Balazs</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+A+J">Alan J. Barr</a>, <a href="/search/physics?searchtype=author&query=Battistin%2C+M">Michele Battistin</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+J">Jianming Bian</a>, <a href="/search/physics?searchtype=author&query=Bertone%2C+C">Caterina Bertone</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+W">Weidong Bai</a> , et al. (211 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05090v1-abstract-short" style="display: inline;"> High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe Standard Mod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05090v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05090v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05090v1-abstract-full" style="display: none;"> High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe Standard Model (SM) processes and search for physics beyond the Standard Model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05090v1-abstract-full').style.display = 'none'; document.getElementById('2203.05090v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">429 pages, contribution to Snowmass 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCI-TR-2022-01, CERN-PBC-Notes-2022-001, FERMILAB-PUB-22-094-ND-SCD-T, INT-PUB-22-006, BONN-TH-2022-04 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.01116">arXiv:2112.01116</a> <span> [<a href="https://arxiv.org/pdf/2112.01116">pdf</a>, <a href="https://arxiv.org/format/2112.01116">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.166825">10.1016/j.nima.2022.166825 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The tracking detector of the FASER experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bernlochner%2C+F">Florian Bernlochner</a>, <a href="/search/physics?searchtype=author&query=Boeckh%2C+T">Tobias Boeckh</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Brenner%2C+L">Lydia Brenner</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cavanagh%2C+C">Charlotte Cavanagh</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Crespo-Lopez%2C+O">Olivier Crespo-Lopez</a>, <a href="/search/physics?searchtype=author&query=Dmitrievsky%2C+S">Sergey Dmitrievsky</a>, <a href="/search/physics?searchtype=author&query=D%27Onofrio%2C+M">Monica D'Onofrio</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Ezzat%2C+A">Abdallah Ezzat</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gibson%2C+S">Stephen Gibson</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">Sergio Gonzalez-Sevilla</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.01116v2-abstract-short" style="display: inline;"> FASER is a new experiment designed to search for new light weakly-interacting long-lived particles (LLPs) and study high-energy neutrino interactions in the very forward region of the LHC collisions at CERN. The experimental apparatus is situated 480 m downstream of the ATLAS interaction-point aligned with the beam collision axis. The FASER detector includes four identical tracker stations constru… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.01116v2-abstract-full').style.display = 'inline'; document.getElementById('2112.01116v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.01116v2-abstract-full" style="display: none;"> FASER is a new experiment designed to search for new light weakly-interacting long-lived particles (LLPs) and study high-energy neutrino interactions in the very forward region of the LHC collisions at CERN. The experimental apparatus is situated 480 m downstream of the ATLAS interaction-point aligned with the beam collision axis. The FASER detector includes four identical tracker stations constructed from silicon microstrip detectors. Three of the tracker stations form a tracking spectrometer, and enable FASER to detect the decay products of LLPs decaying inside the apparatus, whereas the fourth station is used for the neutrino analysis. The spectrometer has been installed in the LHC complex since March 2021, while the fourth station is not yet installed. FASER will start physics data taking when the LHC resumes operation in early 2022. This paper describes the design, construction and testing of the tracking spectrometer, including the associated components such as the mechanics, readout electronics, power supplies and cooling system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.01116v2-abstract-full').style.display = 'none'; document.getElementById('2112.01116v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods Phys. Res., A 1034 (2022) 166825 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14464">arXiv:2111.14464</a> <span> [<a href="https://arxiv.org/pdf/2111.14464">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond correlated electron dynamics at C$_{60}$ giant plasmon resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Biswas%2C+S">Shubhadeep Biswas</a>, <a href="/search/physics?searchtype=author&query=Trabattoni%2C+A">Andrea Trabattoni</a>, <a href="/search/physics?searchtype=author&query=Rupp%2C+P">Philipp Rupp</a>, <a href="/search/physics?searchtype=author&query=Magrakvelidze%2C+M">Maia Magrakvelidze</a>, <a href="/search/physics?searchtype=author&query=Madjet%2C+M+E">Mohamed El-Amine Madjet</a>, <a href="/search/physics?searchtype=author&query=De+Giovannini%2C+U">Umberto De Giovannini</a>, <a href="/search/physics?searchtype=author&query=Castrovilli%2C+M+C">Mattea C. Castrovilli</a>, <a href="/search/physics?searchtype=author&query=Galli%2C+M">Mara Galli</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qingcao Liu</a>, <a href="/search/physics?searchtype=author&query=M%C3%A5nsson%2C+E+P">Erik P. M氓nsson</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%B6tz%2C+J">Johannes Sch枚tz</a>, <a href="/search/physics?searchtype=author&query=Wanie%2C+V">Vincent Wanie</a>, <a href="/search/physics?searchtype=author&query=L%C3%A9gar%C3%A9%2C+F">Fran莽ois L茅gar茅</a>, <a href="/search/physics?searchtype=author&query=Wnuk%2C+P">Pawel Wnuk</a>, <a href="/search/physics?searchtype=author&query=Nisoli%2C+M">Mauro Nisoli</a>, <a href="/search/physics?searchtype=author&query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/physics?searchtype=author&query=Chakraborty%2C+H+S">Himadri S. Chakraborty</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a>, <a href="/search/physics?searchtype=author&query=Calegari%2C+F">Francesca Calegari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14464v1-abstract-short" style="display: inline;"> Fullerenes have unique physical and chemical properties that are associated with their delocalized conjugated electronic structure. Among them, there is a giant ultra-broadband - and therefore ultrafast - plasmon resonance, which for C$_{60}$ is in the extreme-ultraviolet energy range. While this peculiar resonance has attracted considerable interest for the potential downscaling of nanoplasmonic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14464v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14464v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14464v1-abstract-full" style="display: none;"> Fullerenes have unique physical and chemical properties that are associated with their delocalized conjugated electronic structure. Among them, there is a giant ultra-broadband - and therefore ultrafast - plasmon resonance, which for C$_{60}$ is in the extreme-ultraviolet energy range. While this peculiar resonance has attracted considerable interest for the potential downscaling of nanoplasmonic applications such as sensing, drug delivery and photocatalysis at the atomic level, its electronic character has remained elusive. The ultrafast decay time of this collective excitation demands attosecond techniques for real-time access to the photoinduced dynamics. Here, we uncover the role of electron correlations in the giant plasmon resonance of C$_{60}$ by employing attosecond photoemission chronoscopy. We find a characteristic photoemission delay of up to 200 attoseconds pertaining to the plasmon that is purely induced by coherent large-scale correlations. This result provides novel insight into the quantum nature of plasmonic resonances, and sets a benchmark for advancing nanoplasmonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14464v1-abstract-full').style.display = 'none'; document.getElementById('2111.14464v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15186">arXiv:2110.15186</a> <span> [<a href="https://arxiv.org/pdf/2110.15186">pdf</a>, <a href="https://arxiv.org/format/2110.15186">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/12/P12028">10.1088/1748-0221/16/12/P12028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The trigger and data acquisition system of the FASER experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Mansour%2C+E+A">Elham Amin Mansour</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bernlochner%2C+F">Florian Bernlochner</a>, <a href="/search/physics?searchtype=author&query=Boeckh%2C+T">Tobias Boeckh</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Brenner%2C+L">Lydia Brenner</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D">David Casper</a>, <a href="/search/physics?searchtype=author&query=Cavanagh%2C+C">Charlotte Cavanagh</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Debieux%2C+S">Stephane Debieux</a>, <a href="/search/physics?searchtype=author&query=Dmitrievsky%2C+S">Sergey Dmitrievsky</a>, <a href="/search/physics?searchtype=author&query=D%27Onofrio%2C+M">Monica D'Onofrio</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gamberini%2C+E">Enrico Gamberini</a>, <a href="/search/physics?searchtype=author&query=Galantay%2C+E+K">Edward Karl Galantay</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15186v2-abstract-short" style="display: inline;"> The FASER experiment is a new small and inexpensive experiment that is placed 480 meters downstream of the ATLAS experiment at the CERN LHC. FASER is designed to capture decays of new long-lived particles, produced outside of the ATLAS detector acceptance. These rare particles can decay in the FASER detector together with about 500-1000 Hz of other particles originating from the ATLAS interaction… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15186v2-abstract-full').style.display = 'inline'; document.getElementById('2110.15186v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15186v2-abstract-full" style="display: none;"> The FASER experiment is a new small and inexpensive experiment that is placed 480 meters downstream of the ATLAS experiment at the CERN LHC. FASER is designed to capture decays of new long-lived particles, produced outside of the ATLAS detector acceptance. These rare particles can decay in the FASER detector together with about 500-1000 Hz of other particles originating from the ATLAS interaction point. A very high efficiency trigger and data acquisition system is required to ensure that the physics events of interest will be recorded. This paper describes the trigger and data acquisition system of the FASER experiment and presents performance results of the system acquired during initial commissioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15186v2-abstract-full').style.display = 'none'; document.getElementById('2110.15186v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021_JINST_16_P12028 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10905">arXiv:2109.10905</a> <span> [<a href="https://arxiv.org/pdf/2109.10905">pdf</a>, <a href="https://arxiv.org/format/2109.10905">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2022.04.004">10.1016/j.physrep.2022.04.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Forward Physics Facility: Sites, Experiments, and Physics Potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Anchordoqui%2C+L+A">Luis A. Anchordoqui</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&query=Balazs%2C+K">Kincso Balazs</a>, <a href="/search/physics?searchtype=author&query=Batell%2C+B">Brian Batell</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Bramante%2C+J">Joseph Bramante</a>, <a href="/search/physics?searchtype=author&query=Campanelli%2C+M">Mario Campanelli</a>, <a href="/search/physics?searchtype=author&query=Carmona%2C+A">Adrian Carmona</a>, <a href="/search/physics?searchtype=author&query=Celiberto%2C+F+G">Francesco G. Celiberto</a>, <a href="/search/physics?searchtype=author&query=Chachamis%2C+G">Grigorios Chachamis</a>, <a href="/search/physics?searchtype=author&query=Citron%2C+M">Matthew Citron</a>, <a href="/search/physics?searchtype=author&query=De+Lellis%2C+G">Giovanni De Lellis</a>, <a href="/search/physics?searchtype=author&query=De+Roeck%2C+A">Albert De Roeck</a>, <a href="/search/physics?searchtype=author&query=Dembinski%2C+H">Hans Dembinski</a>, <a href="/search/physics?searchtype=author&query=Denton%2C+P+B">Peter B. Denton</a>, <a href="/search/physics?searchtype=author&query=Di+Crecsenzo%2C+A">Antonia Di Crecsenzo</a>, <a href="/search/physics?searchtype=author&query=Diwan%2C+M+V">Milind V. Diwan</a>, <a href="/search/physics?searchtype=author&query=Dougherty%2C+L">Liam Dougherty</a>, <a href="/search/physics?searchtype=author&query=Dreiner%2C+H+K">Herbi K. Dreiner</a>, <a href="/search/physics?searchtype=author&query=Du%2C+Y">Yong Du</a>, <a href="/search/physics?searchtype=author&query=Enberg%2C+R">Rikard Enberg</a>, <a href="/search/physics?searchtype=author&query=Farzan%2C+Y">Yasaman Farzan</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10905v2-abstract-short" style="display: inline;"> The Forward Physics Facility (FPF) is a proposal to create a cavern with the space and infrastructure to support a suite of far-forward experiments at the Large Hadron Collider during the High Luminosity era. Located along the beam collision axis and shielded from the interaction point by at least 100 m of concrete and rock, the FPF will house experiments that will detect particles outside the acc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10905v2-abstract-full').style.display = 'inline'; document.getElementById('2109.10905v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10905v2-abstract-full" style="display: none;"> The Forward Physics Facility (FPF) is a proposal to create a cavern with the space and infrastructure to support a suite of far-forward experiments at the Large Hadron Collider during the High Luminosity era. Located along the beam collision axis and shielded from the interaction point by at least 100 m of concrete and rock, the FPF will house experiments that will detect particles outside the acceptance of the existing large LHC experiments and will observe rare and exotic processes in an extremely low-background environment. In this work, we summarize the current status of plans for the FPF, including recent progress in civil engineering in identifying promising sites for the FPF and the experiments currently envisioned to realize the FPF's physics potential. We then review the many Standard Model and new physics topics that will be advanced by the FPF, including searches for long-lived particles, probes of dark matter and dark sectors, high-statistics studies of TeV neutrinos of all three flavors, aspects of perturbative and non-perturbative QCD, and high-energy astroparticle physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10905v2-abstract-full').style.display = 'none'; document.getElementById('2109.10905v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">revised version, accepted by Physics Reports</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-222142-2021-FORE, CERN-PBC-Notes-2021-025, DESY-21-142, FERMILAB-CONF-21-452-AE-E-ND-PPD-T, KYUSHU-RCAPP-2021-01, LU TP 21-36, PITT-PACC-2118, SMU-HEP-21-10, UCI-TR-2021-22 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rept. 968 (2022), 1-50 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09815">arXiv:2109.09815</a> <span> [<a href="https://arxiv.org/pdf/2109.09815">pdf</a>, <a href="https://arxiv.org/format/2109.09815">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac5e86">10.1088/1367-2630/ac5e86 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Few-femtosecond resolved imaging of laser-driven nanoplasma expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Peltz%2C+C">C. Peltz</a>, <a href="/search/physics?searchtype=author&query=Powell%2C+J+A">J. A. Powell</a>, <a href="/search/physics?searchtype=author&query=Rupp%2C+P">P. Rupp</a>, <a href="/search/physics?searchtype=author&query=Summers%2C+A">A Summers</a>, <a href="/search/physics?searchtype=author&query=Gorkhover%2C+T">T. Gorkhover</a>, <a href="/search/physics?searchtype=author&query=Gallei%2C+M">M. Gallei</a>, <a href="/search/physics?searchtype=author&query=Halfpap%2C+I">I. Halfpap</a>, <a href="/search/physics?searchtype=author&query=Antonsson%2C+E">E. Antonsson</a>, <a href="/search/physics?searchtype=author&query=Langer%2C+B">B. Langer</a>, <a href="/search/physics?searchtype=author&query=Trallero-Herrero%2C+C">C. Trallero-Herrero</a>, <a href="/search/physics?searchtype=author&query=Graf%2C+C">C. Graf</a>, <a href="/search/physics?searchtype=author&query=Ray%2C+D">D. Ray</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Q. Liu</a>, <a href="/search/physics?searchtype=author&query=Osipov%2C+T">T. Osipov</a>, <a href="/search/physics?searchtype=author&query=Bucher%2C+M">M. Bucher</a>, <a href="/search/physics?searchtype=author&query=Ferguson%2C+K">K. Ferguson</a>, <a href="/search/physics?searchtype=author&query=M%C3%B6ller%2C+S">S. M枚ller</a>, <a href="/search/physics?searchtype=author&query=Zherebtsov%2C+S">S. Zherebtsov</a>, <a href="/search/physics?searchtype=author&query=Rolles%2C+D">D. Rolles</a>, <a href="/search/physics?searchtype=author&query=R%C3%BChl%2C+E">E. R眉hl</a>, <a href="/search/physics?searchtype=author&query=Coslovich%2C+G">G. Coslovich</a>, <a href="/search/physics?searchtype=author&query=Coffee%2C+R+N">R. N. Coffee</a>, <a href="/search/physics?searchtype=author&query=Bostedt%2C+C">C. Bostedt</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+A">A. Rudenko</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09815v2-abstract-short" style="display: inline;"> The free expansion of a planar plasma surface is a fundamental non-equilibrium process relevant for various fields but as-yet experimentally still difficult to capture. The significance of the associated spatiotemporal plasma motion ranges from astrophysics and controlled fusion to laser machining, surface high-harmonic generation, plasma mirrors, and laser-particle acceleration. Here, we show tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09815v2-abstract-full').style.display = 'inline'; document.getElementById('2109.09815v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09815v2-abstract-full" style="display: none;"> The free expansion of a planar plasma surface is a fundamental non-equilibrium process relevant for various fields but as-yet experimentally still difficult to capture. The significance of the associated spatiotemporal plasma motion ranges from astrophysics and controlled fusion to laser machining, surface high-harmonic generation, plasma mirrors, and laser-particle acceleration. Here, we show that x-ray coherent diffractive imaging can surpass existing approaches and enables the quantitative real-time analysis of the sudden free expansion of nanoplasmas. For laser-ionized SiO$_2$ nanospheres, we resolve the formation of the emerging nearly self-similar plasma profile evolution and expose the so far inaccessible shell-wise expansion dynamics including the associated startup delay and rarefaction front velocity. Our results establish time-resolved diffractive imaging as an accurate quantitative diagnostic platform for tracing and characterizing plasma expansion and indicate the possibility to resolve various laser-driven processes including shock formation and wave-breaking phenomena with unprecedented resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09815v2-abstract-full').style.display = 'none'; document.getElementById('2109.09815v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.02367">arXiv:2109.02367</a> <span> [<a href="https://arxiv.org/pdf/2109.02367">pdf</a>, <a href="https://arxiv.org/format/2109.02367">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Strong-field physics with nanospheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Seiffert%2C+L">Lennart Seiffert</a>, <a href="/search/physics?searchtype=author&query=Zherebtsov%2C+S">Sergey Zherebtsov</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a>, <a href="/search/physics?searchtype=author&query=Fennel%2C+T">Thomas Fennel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.02367v1-abstract-short" style="display: inline;"> When intense laser fields interact with nanoscale targets, strong-field physics meets plasmonic near-field enhancement and sub-wavelength localization of light. Photoemission spectra reflect the associated attosecond optical and electronic response and encode the collisional and collective dynamics of the solid. Nanospheres represent an ideal platform to explore the underlying attosecond nanophysi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02367v1-abstract-full').style.display = 'inline'; document.getElementById('2109.02367v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.02367v1-abstract-full" style="display: none;"> When intense laser fields interact with nanoscale targets, strong-field physics meets plasmonic near-field enhancement and sub-wavelength localization of light. Photoemission spectra reflect the associated attosecond optical and electronic response and encode the collisional and collective dynamics of the solid. Nanospheres represent an ideal platform to explore the underlying attosecond nanophysics because of their particularly simple geometry. This review summarizes key results from the last decade and aims to provide the essential stepping stones for students and researchers to enter this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02367v1-abstract-full').style.display = 'none'; document.getElementById('2109.02367v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.06872">arXiv:2108.06872</a> <span> [<a href="https://arxiv.org/pdf/2108.06872">pdf</a>, <a href="https://arxiv.org/format/2108.06872">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.2c00663">10.1021/acsphotonics.2c00663 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong-field control of plasmonic properties in core-shell nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Powell%2C+J">Jeffrey Powell</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jianxiong Li</a>, <a href="/search/physics?searchtype=author&query=Summers%2C+A">Adam Summers</a>, <a href="/search/physics?searchtype=author&query=Robatjazi%2C+S+J">Seyyed Javad Robatjazi</a>, <a href="/search/physics?searchtype=author&query=Davino%2C+M">Michael Davino</a>, <a href="/search/physics?searchtype=author&query=Rupp%2C+P">Philipp Rupp</a>, <a href="/search/physics?searchtype=author&query=Saydanzad%2C+E">Erfan Saydanzad</a>, <a href="/search/physics?searchtype=author&query=Sorensen%2C+C+M">Christopher M. Sorensen</a>, <a href="/search/physics?searchtype=author&query=Rolles%2C+D">Daniel Rolles</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a>, <a href="/search/physics?searchtype=author&query=Trallero-Herrero%2C+C">Carlos Trallero-Herrero</a>, <a href="/search/physics?searchtype=author&query=Thumm%2C+U">Uwe Thumm</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+A">Artem Rudenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.06872v1-abstract-short" style="display: inline;"> The strong-field control of plasmonic nanosystems opens up new perspectives for nonlinear plasmonic spectroscopy and petahertz electronics. Questions, however, remain regarding the nature of nonlinear light-matter interactions at sub-wavelength spatial and ultrafast temporal scales. Addressing this challenge, we investigated the strong-field control of the plasmonic response of Au nanoshells with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06872v1-abstract-full').style.display = 'inline'; document.getElementById('2108.06872v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.06872v1-abstract-full" style="display: none;"> The strong-field control of plasmonic nanosystems opens up new perspectives for nonlinear plasmonic spectroscopy and petahertz electronics. Questions, however, remain regarding the nature of nonlinear light-matter interactions at sub-wavelength spatial and ultrafast temporal scales. Addressing this challenge, we investigated the strong-field control of the plasmonic response of Au nanoshells with a SiO$_2$ core to an intense laser pulse. We show that the photoelectron energy spectrum from these core-shell nanoparticles displays a striking transition between the weak and strong-field regime. This observed transition agrees with the prediction of our modified Mie-theory simulation that incorporates the nonlinear dielectric nanoshell response. The demonstrated intensity-dependent optical control of the plasmonic response in prototypical core-shell nanoparticles paves the way towards ultrafast switching and opto-electronic signal modulation with more complex nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06872v1-abstract-full').style.display = 'none'; document.getElementById('2108.06872v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.06244">arXiv:2108.06244</a> <span> [<a href="https://arxiv.org/pdf/2108.06244">pdf</a>, <a href="https://arxiv.org/format/2108.06244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.440303">10.1364/OL.440303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient nonlinear compression of a thin-disk oscillator to 8.5 fs at 55 W average power </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Barbiero%2C+G">G. Barbiero</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&query=Gra%C3%9Fl%2C+M">M. Gra脽l</a>, <a href="/search/physics?searchtype=author&query=Gr%C3%B6bmeyer%2C+S">S. Gr枚bmeyer</a>, <a href="/search/physics?searchtype=author&query=Kimbaras%2C+D">D. Kimbaras</a>, <a href="/search/physics?searchtype=author&query=Neuhaus%2C+M">M. Neuhaus</a>, <a href="/search/physics?searchtype=author&query=Pervak%2C+V">V. Pervak</a>, <a href="/search/physics?searchtype=author&query=Nubbemeyer%2C+T">T. Nubbemeyer</a>, <a href="/search/physics?searchtype=author&query=Fattahi%2C+H">H. Fattahi</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.06244v1-abstract-short" style="display: inline;"> We demonstrate an efficient hybrid-scheme for nonlinear pulse compression of high-power thin-disk oscillator pulses to the sub-10 fs regime. The output of a home-built, 16 MHz, 84 W, 220 fs Yb:YAG thin-disk oscillator at 1030 nm is first compressed to 17 fs in two nonlinear multipass cells. In a third stage, based on multiple thin sapphire plates, further compression to 8.5 fs with 55 W output pow… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06244v1-abstract-full').style.display = 'inline'; document.getElementById('2108.06244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.06244v1-abstract-full" style="display: none;"> We demonstrate an efficient hybrid-scheme for nonlinear pulse compression of high-power thin-disk oscillator pulses to the sub-10 fs regime. The output of a home-built, 16 MHz, 84 W, 220 fs Yb:YAG thin-disk oscillator at 1030 nm is first compressed to 17 fs in two nonlinear multipass cells. In a third stage, based on multiple thin sapphire plates, further compression to 8.5 fs with 55 W output power and an overall optical efficiency of 65% is achieved. By sending the 2.5-cycle pulses into a lithium iodate crystal, we were able to generate ultra-broadband mid-infrared pulses covering the spectral range 2.4-8 $渭$m. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06244v1-abstract-full').style.display = 'none'; document.getElementById('2108.06244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00294">arXiv:2107.00294</a> <span> [<a href="https://arxiv.org/pdf/2107.00294">pdf</a>, <a href="https://arxiv.org/format/2107.00294">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Transient field-resolved reflectometry at 50-100 THz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Neuhaus%2C+M">M. Neuhaus</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%B6tz%2C+J">J. Sch枚tz</a>, <a href="/search/physics?searchtype=author&query=Aulich%2C+M">M. Aulich</a>, <a href="/search/physics?searchtype=author&query=Srivastava%2C+A">A. Srivastava</a>, <a href="/search/physics?searchtype=author&query=Kimbaras%2C+D">D. Kimbaras</a>, <a href="/search/physics?searchtype=author&query=Smejkal%2C+V">V. Smejkal</a>, <a href="/search/physics?searchtype=author&query=Pervak%2C+V">V. Pervak</a>, <a href="/search/physics?searchtype=author&query=Alharbi%2C+M">M. Alharbi</a>, <a href="/search/physics?searchtype=author&query=Azeer%2C+A+M">A. M. Azeer</a>, <a href="/search/physics?searchtype=author&query=Libisch%2C+F">F. Libisch</a>, <a href="/search/physics?searchtype=author&query=Lemell%2C+C">C. Lemell</a>, <a href="/search/physics?searchtype=author&query=Burgd%C3%B6rfer%2C+J">J. Burgd枚rfer</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00294v2-abstract-short" style="display: inline;"> Transient field-resolved spectroscopy enables studies of ultrafast dynamics in molecules, nanostructures, or solids with sub-cycle resolution, but previous work has so far concentrated on extracting the dielectric response at frequencies below 50\,THz. Here, we implemented transient field-resolved reflectometry at 50-100\,THz (3-6\,$渭$m) with MHz repetition rate employing 800\,nm few-cycle excitat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00294v2-abstract-full').style.display = 'inline'; document.getElementById('2107.00294v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00294v2-abstract-full" style="display: none;"> Transient field-resolved spectroscopy enables studies of ultrafast dynamics in molecules, nanostructures, or solids with sub-cycle resolution, but previous work has so far concentrated on extracting the dielectric response at frequencies below 50\,THz. Here, we implemented transient field-resolved reflectometry at 50-100\,THz (3-6\,$渭$m) with MHz repetition rate employing 800\,nm few-cycle excitation pulses that provide sub-10\,fs temporal resolution. The capabilities of the technique are demonstrated in studies of ultrafast photorefractive changes in the semiconductors Ge and GaAs, where the high frequency range permitted to explore the resonance-free Drude response. The extended frequency range in transient field-resolved spectroscopy can further enable studies with so far inaccessible transitions, including intramolecular vibrations in a large range of systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00294v2-abstract-full').style.display = 'none'; document.getElementById('2107.00294v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00503">arXiv:2106.00503</a> <span> [<a href="https://arxiv.org/pdf/2106.00503">pdf</a>, <a href="https://arxiv.org/format/2106.00503">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Onset of space-charge effects in strong-field photocurrents from nanometric needle tips </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sch%C3%B6tz%2C+J">J. Sch枚tz</a>, <a href="/search/physics?searchtype=author&query=Seiffert%2C+L">L. Seiffert</a>, <a href="/search/physics?searchtype=author&query=Maliakkal%2C+A">A. Maliakkal</a>, <a href="/search/physics?searchtype=author&query=Bl%C3%B6chl%2C+J">J. Bl枚chl</a>, <a href="/search/physics?searchtype=author&query=Zimin%2C+D">D. Zimin</a>, <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">P. Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Bergues%2C+B">B. Bergues</a>, <a href="/search/physics?searchtype=author&query=Hommelhoff%2C+P">P. Hommelhoff</a>, <a href="/search/physics?searchtype=author&query=Krausz%2C+F">F. Krausz</a>, <a href="/search/physics?searchtype=author&query=Fennel%2C+T">T. Fennel</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00503v1-abstract-short" style="display: inline;"> Strong-field photoemission from nanostructures and the associated temporally modulated currents play a key role in the development of ultrafast vacuum optoelectronics. Optical light fields could push their operation bandwidth into the petahertz domain. A critical aspect for their functionality in the context of applications is the role of charge interactions, including space charge effects. Here,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00503v1-abstract-full').style.display = 'inline'; document.getElementById('2106.00503v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00503v1-abstract-full" style="display: none;"> Strong-field photoemission from nanostructures and the associated temporally modulated currents play a key role in the development of ultrafast vacuum optoelectronics. Optical light fields could push their operation bandwidth into the petahertz domain. A critical aspect for their functionality in the context of applications is the role of charge interactions, including space charge effects. Here, we investigated the photoemission and photocurrents from nanometric tungsten needle tips exposed to carrier-envelope phase-controlled few-cycle laser fields. We report a characteristic step-wise increase in the intensity-rescaled cutoff energies of emitted electrons beyond a certain intensity value. By comparison with simulations, we identify this feature as the onset of charge-interaction dominated photoemission dynamics. Our results are anticipated to be relevant also for the strong-field photoemission from other nanostructures, including photoemission from plasmonic nano-bowtie antennas used in carrier-envelope phase-detection and for PHz-scale devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00503v1-abstract-full').style.display = 'none'; document.getElementById('2106.00503v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.10010">arXiv:2105.10010</a> <span> [<a href="https://arxiv.org/pdf/2105.10010">pdf</a>, <a href="https://arxiv.org/format/2105.10010">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-28412-7">10.1038/s41467-022-28412-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The emergence of macroscopic currents in photoconductive sampling of optical fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sch%C3%B6tz%2C+J">Johannes Sch枚tz</a>, <a href="/search/physics?searchtype=author&query=Maliakkal%2C+A">Ancyline Maliakkal</a>, <a href="/search/physics?searchtype=author&query=Bl%C3%B6chl%2C+J">Johannes Bl枚chl</a>, <a href="/search/physics?searchtype=author&query=Zimin%2C+D">Dmitry Zimin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zilong Wang</a>, <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Alharbi%2C+M">Meshaal Alharbi</a>, <a href="/search/physics?searchtype=author&query=Azzeer%2C+A+M">Abdallah M. Azzeer</a>, <a href="/search/physics?searchtype=author&query=Weidman%2C+M">Matthew Weidman</a>, <a href="/search/physics?searchtype=author&query=Yakovlev%2C+V+S">Vladislav S. Yakovlev</a>, <a href="/search/physics?searchtype=author&query=Bergues%2C+B">Boris Bergues</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.10010v1-abstract-short" style="display: inline;"> Photoconductive field sampling is a key methodology for advancing our understanding of light-matter interaction and ultrafast optoelectronic applications. For visible light the bandwidth of photoconductive sampling of fields and field-induced dynamics can be extended to the petahertz domain. Despite the growing importance of ultrafast photoconductive measurements, a rigorous model for connecting t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10010v1-abstract-full').style.display = 'inline'; document.getElementById('2105.10010v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.10010v1-abstract-full" style="display: none;"> Photoconductive field sampling is a key methodology for advancing our understanding of light-matter interaction and ultrafast optoelectronic applications. For visible light the bandwidth of photoconductive sampling of fields and field-induced dynamics can be extended to the petahertz domain. Despite the growing importance of ultrafast photoconductive measurements, a rigorous model for connecting the microscopic electron dynamics to the macroscopic external signal is lacking. This has caused conflicting interpretations about the origin of macroscopic currents. Here, we present systematic experimental studies on the macroscopic signal formation of ultrafast currents in gases. We developed a theoretical model based on the Ramo-Shockley-theorem that overcomes the previously introduced artificial separation into dipole and current contributions. Extensive numerical particle-in-cell (PIC)-type simulations based on this model permit a quantitative comparison with experimental results and help to identify the roles of electron scattering and Coulomb interactions. The results imply that most of the heuristic models utilized so far will need to be amended. Our approach can aid in the design of more sensitive and more efficient photoconductive devices. We demonstrate for the case of gases that over an order of magnitude increase in signal is achievable, paving the way towards petahertz field measurements with the highest sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10010v1-abstract-full').style.display = 'none'; document.getElementById('2105.10010v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.08854">arXiv:2105.08854</a> <span> [<a href="https://arxiv.org/pdf/2105.08854">pdf</a>, <a href="https://arxiv.org/format/2105.08854">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abj2096">10.1126/science.abj2096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Attosecond Coherent Electron Motion in Auger-Meitner Decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=Al-Haddad%2C+A">Andre Al-Haddad</a>, <a href="/search/physics?searchtype=author&query=Averbukh%2C+V">Vitali Averbukh</a>, <a href="/search/physics?searchtype=author&query=Barnard%2C+J+C+T">Jonathan C. T. Barnard</a>, <a href="/search/physics?searchtype=author&query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a>, <a href="/search/physics?searchtype=author&query=Coffee%2C+R">Ryan Coffee</a>, <a href="/search/physics?searchtype=author&query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+L">Li Fang</a>, <a href="/search/physics?searchtype=author&query=Garratt%2C+D">Douglas Garratt</a>, <a href="/search/physics?searchtype=author&query=Gatton%2C+A">Averell Gatton</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&query=Hartmann%2C+G">Gregor Hartmann</a>, <a href="/search/physics?searchtype=author&query=Haxton%2C+D">Daniel Haxton</a>, <a href="/search/physics?searchtype=author&query=Helml%2C+W">Wolfram Helml</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhirong Huang</a>, <a href="/search/physics?searchtype=author&query=LaForge%2C+A+C">Aaron C. LaForge</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andrei Kamalov</a>, <a href="/search/physics?searchtype=author&query=Knurr%2C+J">Jonas Knurr</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Ming-Fu Lin</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.08854v1-abstract-short" style="display: inline;"> In quantum systems, coherent superpositions of electronic states evolve on ultrafast timescales (few femtosecond to attosecond, 1 as = 0.001 fs = 10^{-18} s), leading to a time dependent charge density. Here we exploit the first attosecond soft x-ray pulses produced by an x-ray free-electron laser to induce a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08854v1-abstract-full').style.display = 'inline'; document.getElementById('2105.08854v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.08854v1-abstract-full" style="display: none;"> In quantum systems, coherent superpositions of electronic states evolve on ultrafast timescales (few femtosecond to attosecond, 1 as = 0.001 fs = 10^{-18} s), leading to a time dependent charge density. Here we exploit the first attosecond soft x-ray pulses produced by an x-ray free-electron laser to induce a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse we create a clock to time-resolve the electron dynamics, and demonstrate control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08854v1-abstract-full').style.display = 'none'; document.getElementById('2105.08854v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06197">arXiv:2105.06197</a> <span> [<a href="https://arxiv.org/pdf/2105.06197">pdf</a>, <a href="https://arxiv.org/format/2105.06197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.L091101">10.1103/PhysRevD.104.L091101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First neutrino interaction candidates at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Afik%2C+Y">Yoav Afik</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Arakawa%2C+J">Jason Arakawa</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bernlochner%2C+F">Florian Bernlochner</a>, <a href="/search/physics?searchtype=author&query=Boeckh%2C+T">Tobias Boeckh</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Brenner%2C+L">Lydia Brenner</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cavanagh%2C+C">Charlotte Cavanagh</a>, <a href="/search/physics?searchtype=author&query=Cerutti%2C+F">Francesco Cerutti</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=D%27Onofrio%2C+M">Monica D'Onofrio</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gibson%2C+S">Stephen Gibson</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">Sergio Gonzalez-Sevilla</a> , et al. (51 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06197v3-abstract-short" style="display: inline;"> FASER$谓$ at the CERN Large Hadron Collider (LHC) is designed to directly detect collider neutrinos for the first time and study their cross sections at TeV energies, where no such measurements currently exist. In 2018, a pilot detector employing emulsion films was installed in the far-forward region of ATLAS, 480 m from the interaction point, and collected 12.2 fb$^{-1}$ of proton-proton collision… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06197v3-abstract-full').style.display = 'inline'; document.getElementById('2105.06197v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06197v3-abstract-full" style="display: none;"> FASER$谓$ at the CERN Large Hadron Collider (LHC) is designed to directly detect collider neutrinos for the first time and study their cross sections at TeV energies, where no such measurements currently exist. In 2018, a pilot detector employing emulsion films was installed in the far-forward region of ATLAS, 480 m from the interaction point, and collected 12.2 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of 13 TeV. We describe the analysis of this pilot run data and the observation of the first neutrino interaction candidates at the LHC. This milestone paves the way for high-energy neutrino measurements at current and future colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06197v3-abstract-full').style.display = 'none'; document.getElementById('2105.06197v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Auxiliary materials are available at https://faser.web.cern.ch/fasernu-first-neutrino-interaction-candidates</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08927">arXiv:2101.08927</a> <span> [<a href="https://arxiv.org/pdf/2101.08927">pdf</a>, <a href="https://arxiv.org/format/2101.08927">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.420602">10.1364/OE.420602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-shot Dispersion Sampling for Optical Pulse Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Korobenko%2C+A">A. Korobenko</a>, <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">P. Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%B6tz%2C+J">J. Sch枚tz</a>, <a href="/search/physics?searchtype=author&query=Naumov%2C+A+Y">A. Yu. Naumov</a>, <a href="/search/physics?searchtype=author&query=Villeneuve%2C+D+M">D. M. Villeneuve</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Staudte%2C+A">A. Staudte</a>, <a href="/search/physics?searchtype=author&query=Corkum%2C+P+B">P. B. Corkum</a>, <a href="/search/physics?searchtype=author&query=Bergues%2C+B">B. Bergues</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08927v1-abstract-short" style="display: inline;"> We present a novel approach to single-shot characterization of the spectral phase of broadband laser pulses. Our method is inexpensive, insensitive to alignment and combines the simplicity and robustness of the dispersion scan technique, that does not require spatio-temporal pulse overlap, with the advantages of single-shot pulse characterization methods such as single-shot frequency-resolved opti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08927v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08927v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08927v1-abstract-full" style="display: none;"> We present a novel approach to single-shot characterization of the spectral phase of broadband laser pulses. Our method is inexpensive, insensitive to alignment and combines the simplicity and robustness of the dispersion scan technique, that does not require spatio-temporal pulse overlap, with the advantages of single-shot pulse characterization methods such as single-shot frequency-resolved optical gating at a real-time reconstruction rate of several Hz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08927v1-abstract-full').style.display = 'none'; document.getElementById('2101.08927v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.15450">arXiv:2007.15450</a> <span> [<a href="https://arxiv.org/pdf/2007.15450">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/ab859c">10.1088/1361-6455/ab859c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suppression of individual peaks in two-colour high harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mitra%2C+S">Sambit Mitra</a>, <a href="/search/physics?searchtype=author&query=Biswas%2C+S">Shubhadeep Biswas</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%B6tz%2C+J">Johannes Sch枚tz</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=F%C3%B6rg%2C+B">Benjamin F枚rg</a>, <a href="/search/physics?searchtype=author&query=Kavuri%2C+G+A">Gautam Aditya Kavuri</a>, <a href="/search/physics?searchtype=author&query=Burger%2C+C">Christian Burger</a>, <a href="/search/physics?searchtype=author&query=Okell%2C+W">William Okell</a>, <a href="/search/physics?searchtype=author&query=H%C3%B6gner%2C+M">Maximilian H枚gner</a>, <a href="/search/physics?searchtype=author&query=Pupeza%2C+I">Ioachim Pupeza</a>, <a href="/search/physics?searchtype=author&query=Pervak%2C+V">Vladimir Pervak</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Wnuk%2C+P">Pawel Wnuk</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F Kling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.15450v1-abstract-short" style="display: inline;"> This work investigates the suppression of individual harmonics, simultaneously affecting specific even and odd orders in the high-harmonic spectra generated by strongly tailored, two-colour, multi-cycle laser pulses in neon. The resulting spectra are systematically studied as a function of the electric-field shape in a symmetry-broken ($蠅$-$2蠅$) and symmetry-preserved ($蠅$-$3蠅$) configuration. The… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.15450v1-abstract-full').style.display = 'inline'; document.getElementById('2007.15450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.15450v1-abstract-full" style="display: none;"> This work investigates the suppression of individual harmonics, simultaneously affecting specific even and odd orders in the high-harmonic spectra generated by strongly tailored, two-colour, multi-cycle laser pulses in neon. The resulting spectra are systematically studied as a function of the electric-field shape in a symmetry-broken ($蠅$-$2蠅$) and symmetry-preserved ($蠅$-$3蠅$) configuration. The peak suppression is reproduced by macroscopic strong-field approximation calculations and is found to be unique to symmetry-broken fields ($蠅$-$2蠅$). Additionally, semi-classical calculations further corroborate the observation and reveal their underlying mechanism, where a nontrivial spectral interference between subsequent asymmetric half-cycles is found to be responsible for the suppression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.15450v1-abstract-full').style.display = 'none'; document.getElementById('2007.15450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys. 53 no. 13, 134004 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10952">arXiv:2005.10952</a> <span> [<a href="https://arxiv.org/pdf/2005.10952">pdf</a>, <a href="https://arxiv.org/format/2005.10952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Femtosecond streaking in ambient air </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Korobenko%2C+A">A. Korobenko</a>, <a href="/search/physics?searchtype=author&query=Johnston%2C+K">K. Johnston</a>, <a href="/search/physics?searchtype=author&query=Kubullek%2C+M">M. Kubullek</a>, <a href="/search/physics?searchtype=author&query=Arissian%2C+L">L. Arissian</a>, <a href="/search/physics?searchtype=author&query=Dube%2C+Z">Z. Dube</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">T. Wang</a>, <a href="/search/physics?searchtype=author&query=K%C3%BCbel%2C+M">M. K眉bel</a>, <a href="/search/physics?searchtype=author&query=Naumov%2C+A+Y">A. Yu. Naumov</a>, <a href="/search/physics?searchtype=author&query=Villeneuve%2C+D+M">D. M. Villeneuve</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Corkum%2C+P+B">P. B. Corkum</a>, <a href="/search/physics?searchtype=author&query=Staudte%2C+A">A. Staudte</a>, <a href="/search/physics?searchtype=author&query=Bergues%2C+B">B. Bergues</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10952v1-abstract-short" style="display: inline;"> We demonstrate a novel method to measure the temporal evolution of electric fields with optical frequencies. Our technique is based on the detection of transient currents in air plasma. These directional currents result from sub-cycle ionization of air with a short pump pulse, and the steering of the released electrons with the pulse to be sampled. We assess the validity of our approach by compari… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10952v1-abstract-full').style.display = 'inline'; document.getElementById('2005.10952v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10952v1-abstract-full" style="display: none;"> We demonstrate a novel method to measure the temporal evolution of electric fields with optical frequencies. Our technique is based on the detection of transient currents in air plasma. These directional currents result from sub-cycle ionization of air with a short pump pulse, and the steering of the released electrons with the pulse to be sampled. We assess the validity of our approach by comparing it with different state-of-the-art laser-pulse characterization techniques. Notably, our method works in ambient air and facilitates a direct measurement of the field waveform, which can be viewed in real time on an oscilloscope in the exact same way as a radio frequency signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10952v1-abstract-full').style.display = 'none'; document.getElementById('2005.10952v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.03073">arXiv:2001.03073</a> <span> [<a href="https://arxiv.org/pdf/2001.03073">pdf</a>, <a href="https://arxiv.org/format/2001.03073">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Technical Proposal: FASERnu </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Andreini%2C+M">Marco Andreini</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bertone%2C+C">Caterina Bertone</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Buckley%2C+A">Andy Buckley</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cerutti%2C+F">Francesco Cerutti</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Danzeca%2C+S">Salvatore Danzeca</a>, <a href="/search/physics?searchtype=author&query=Dougherty%2C+L">Liam Dougherty</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Denton%2C+P+B">Peter B. Denton</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gall%2C+J">Jonathan Gall</a>, <a href="/search/physics?searchtype=author&query=Galon%2C+I">Iftah Galon</a>, <a href="/search/physics?searchtype=author&query=Gibson%2C+S">Stephen Gibson</a> , et al. (47 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.03073v1-abstract-short" style="display: inline;"> FASERnu is a proposed small and inexpensive emulsion detector designed to detect collider neutrinos for the first time and study their properties. FASERnu will be located directly in front of FASER, 480 m from the ATLAS interaction point along the beam collision axis in the unused service tunnel TI12. From 2021-23 during Run 3 of the 14 TeV LHC, roughly 1,300 electron neutrinos, 20,000 muon neutri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.03073v1-abstract-full').style.display = 'inline'; document.getElementById('2001.03073v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.03073v1-abstract-full" style="display: none;"> FASERnu is a proposed small and inexpensive emulsion detector designed to detect collider neutrinos for the first time and study their properties. FASERnu will be located directly in front of FASER, 480 m from the ATLAS interaction point along the beam collision axis in the unused service tunnel TI12. From 2021-23 during Run 3 of the 14 TeV LHC, roughly 1,300 electron neutrinos, 20,000 muon neutrinos, and 20 tau neutrinos will interact in FASERnu with TeV-scale energies. With the ability to observe these interactions, reconstruct their energies, and distinguish flavors, FASERnu will probe the production, propagation, and interactions of neutrinos at the highest human-made energies ever recorded. The FASERnu detector will be composed of 1000 emulsion layers interleaved with tungsten plates. The total volume of the emulsion and tungsten is 25cm x 25cm x 1.35m, and the tungsten target mass is 1.2 tonnes. From 2021-23, 7 sets of emulsion layers will be installed, with replacement roughly every 20-50 1/fb in planned Technical Stops. In this document, we summarize FASERnu's physics goals and discuss the estimates of neutrino flux and interaction rates. We then describe the FASERnu detector in detail, including plans for assembly, transport, installation, and emulsion replacement, and procedures for emulsion readout and analyzing the data. We close with cost estimates for the detector components and infrastructure work and a timeline for the experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.03073v1-abstract-full').style.display = 'none'; document.getElementById('2001.03073v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 25 figures; submitted to the CERN LHCC on 28 October 2019</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-LHCC-2019-017, LHCC-P-015, UCI-TR-2019-25 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.08574">arXiv:1912.08574</a> <span> [<a href="https://arxiv.org/pdf/1912.08574">pdf</a>, <a href="https://arxiv.org/format/1912.08574">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.9b01188">10.1021/acsphotonics.9b01188 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perspective on petahertz electronics and attosecond nanoscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schoetz%2C+J">J. Schoetz</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.08574v1-abstract-short" style="display: inline;"> The field of attosecond nanophysics, combining the research areas of attosecond physics with nanoscale physics, has experienced a considerable rise in recent years both experimentally and theoretically. Its foundation rests on the sub-cycle manipulation and sampling of the coupled electron and near-field dynamics on the nanoscale. Attosecond nanophysics not only addresses questions of strong funda… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08574v1-abstract-full').style.display = 'inline'; document.getElementById('1912.08574v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.08574v1-abstract-full" style="display: none;"> The field of attosecond nanophysics, combining the research areas of attosecond physics with nanoscale physics, has experienced a considerable rise in recent years both experimentally and theoretically. Its foundation rests on the sub-cycle manipulation and sampling of the coupled electron and near-field dynamics on the nanoscale. Attosecond nanophysics not only addresses questions of strong fundamental interest in strong-field light-matter interactions at the nanoscale, but also could eventually lead to a considerable number of applications in ultrafast, petahertz-scale electronics, and ultrafast metrology for microscopy or nanoscopy. In this perspective, we outline the current frontiers, challenges, and future directions in the field, with particular emphasis on the development of petahertz electronics and attosecond nanoscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08574v1-abstract-full').style.display = 'none'; document.getElementById('1912.08574v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in ACS Photonics, copyright American Chemical Society after peer review. The final edited and published work is available as ACS Photonics 6, 12, 3057-3069 (2019)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics 6, 12, 3057-3069 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07918">arXiv:1912.07918</a> <span> [<a href="https://arxiv.org/pdf/1912.07918">pdf</a>, <a href="https://arxiv.org/format/1912.07918">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.10.041011">10.1103/PhysRevX.10.041011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase-matching mechanism for high-harmonic generation in the overdriven regime driven by few-cycle laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sch%C3%B6tz%2C+J">J. Sch枚tz</a>, <a href="/search/physics?searchtype=author&query=F%C3%B6rg%2C+B">B. F枚rg</a>, <a href="/search/physics?searchtype=author&query=Schweinberger%2C+W">W. Schweinberger</a>, <a href="/search/physics?searchtype=author&query=Liontos%2C+I">I. Liontos</a>, <a href="/search/physics?searchtype=author&query=Masood%2C+H+A">H. A. Masood</a>, <a href="/search/physics?searchtype=author&query=Kamal%2C+A+M">A. M. Kamal</a>, <a href="/search/physics?searchtype=author&query=Jakubeit%2C+C">C. Jakubeit</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+N+G">N. G. Kling</a>, <a href="/search/physics?searchtype=author&query=Paasch-Colberg%2C+T">T. Paasch-Colberg</a>, <a href="/search/physics?searchtype=author&query=H%C3%B6gner%2C+M">M. H枚gner</a>, <a href="/search/physics?searchtype=author&query=Pupeza%2C+I">I. Pupeza</a>, <a href="/search/physics?searchtype=author&query=Alharbi%2C+M">M. Alharbi</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Azzeer%2C+A+M">A. M. Azzeer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07918v1-abstract-short" style="display: inline;"> Isolated attosecond pulses (IAPs) produced through laser-driven high-harmonic generation (HHG) hold promise for unprecedented insight into biological processes via attosecond x-ray diffraction with tabletop sources. However, efficient scaling of HHG towards x-ray energies has been hampered by ionization-induced plasma generation impeding the coherent buildup of high-harmonic radiation. Recently, i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07918v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07918v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07918v1-abstract-full" style="display: none;"> Isolated attosecond pulses (IAPs) produced through laser-driven high-harmonic generation (HHG) hold promise for unprecedented insight into biological processes via attosecond x-ray diffraction with tabletop sources. However, efficient scaling of HHG towards x-ray energies has been hampered by ionization-induced plasma generation impeding the coherent buildup of high-harmonic radiation. Recently, it has been shown that these limitations can be overcome in the so-called 'overdriven regime' where ionization loss and plasma dispersion strongly modify the driving laser pulse over small distances, albeit without demonstrating IAPs. Here, we report on experiments comparing the generation of IAPs in argon and neon at 80 eV via attosecond streaking measurements. Contrasting our experimental results with numerical simulations, we conclude that IAPs in argon are generated through ionization-induced transient phase-matching gating effective over distances on the order of 100 $渭$m. We show that the decay of the intensity and blue-shift due to plasma defocussing are crucial for allowing phase-matching close to the XUV cutoff at high plasma densities. We perform simulations for different gases and wavelengths and show that the mechanism is important for the phase-matching of long-wavelength, tightly-focused laser beams in high-pressure gas targets, which are currently being employed for scaling isolated attosecond pulse generation to x-ray photon energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07918v1-abstract-full').style.display = 'none'; document.getElementById('1912.07918v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 10, 041011 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07441">arXiv:1909.07441</a> <span> [<a href="https://arxiv.org/pdf/1909.07441">pdf</a>, <a href="https://arxiv.org/format/1909.07441">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C9CP03951A">10.1039/C9CP03951A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Attosecond Transient Absorption Spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&query=Champenois%2C+E+G">Elio G. Champenois</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=Ratner%2C+D">Daniel Ratner</a>, <a href="/search/physics?searchtype=author&query=Lane%2C+T">TJ Lane</a>, <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">Philipp Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Al-Haddad%2C+A">Andre Al-Haddad</a>, <a href="/search/physics?searchtype=author&query=Averbukh%2C+V">Vitali Averbukh</a>, <a href="/search/physics?searchtype=author&query=Barnard%2C+T">Toby Barnard</a>, <a href="/search/physics?searchtype=author&query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a>, <a href="/search/physics?searchtype=author&query=Coffee%2C+R">Ryan Coffee</a>, <a href="/search/physics?searchtype=author&query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+L">Li Fang</a>, <a href="/search/physics?searchtype=author&query=Garratt%2C+D">Douglas Garratt</a>, <a href="/search/physics?searchtype=author&query=Gatton%2C+A">Averell Gatton</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&query=Hartmann%2C+G">Gregor Hartmann</a>, <a href="/search/physics?searchtype=author&query=Haxton%2C+D">Daniel Haxton</a>, <a href="/search/physics?searchtype=author&query=Helml%2C+W">Wolfram Helml</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhirong Huang</a>, <a href="/search/physics?searchtype=author&query=LaForge%2C+A">Aaron LaForge</a>, <a href="/search/physics?searchtype=author&query=Kamalov%2C+A">Andrei Kamalov</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07441v1-abstract-short" style="display: inline;"> The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the result… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07441v1-abstract-full').style.display = 'inline'; document.getElementById('1909.07441v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07441v1-abstract-full" style="display: none;"> The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07441v1-abstract-full').style.display = 'none'; document.getElementById('1909.07441v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.07481">arXiv:1908.07481</a> <span> [<a href="https://arxiv.org/pdf/1908.07481">pdf</a>, <a href="https://arxiv.org/format/1908.07481">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.7.000035">10.1364/OPTICA.7.000035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-shot carrier-envelope-phase measurement in ambient air </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kubullek%2C+M">M. Kubullek</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&query=von+der+Brelje%2C+K">K. von der Brelje</a>, <a href="/search/physics?searchtype=author&query=Zimin%2C+D">D. Zimin</a>, <a href="/search/physics?searchtype=author&query=Rosenberger%2C+P">P. Rosenberger</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%B6tz%2C+J">J. Sch枚tz</a>, <a href="/search/physics?searchtype=author&query=Neuhaus%2C+M">M. Neuhaus</a>, <a href="/search/physics?searchtype=author&query=Sederberg%2C+S">S. Sederberg</a>, <a href="/search/physics?searchtype=author&query=Staudte%2C+A">A. Staudte</a>, <a href="/search/physics?searchtype=author&query=Karpowicz%2C+N">N. Karpowicz</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Bergues%2C+B">B. Bergues</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.07481v1-abstract-short" style="display: inline;"> The ability to measure and control the carrier envelope phase (CEP) of few-cycle laser pulses is of paramount importance for both frequency metrology and attosecond science. Here, we present a phase meter relying on the CEP-dependent photocurrents induced by circularly polarized few-cycle pulses focused between electrodes in ambient air. The new device facilitates compact single-shot, CEP measurem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07481v1-abstract-full').style.display = 'inline'; document.getElementById('1908.07481v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.07481v1-abstract-full" style="display: none;"> The ability to measure and control the carrier envelope phase (CEP) of few-cycle laser pulses is of paramount importance for both frequency metrology and attosecond science. Here, we present a phase meter relying on the CEP-dependent photocurrents induced by circularly polarized few-cycle pulses focused between electrodes in ambient air. The new device facilitates compact single-shot, CEP measurements under ambient conditions and promises CEP tagging at repetition rates orders of magnitude higher than most conventional CEP detection schemes as well as straightforward implementation at longer wavelengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07481v1-abstract-full').style.display = 'none'; document.getElementById('1908.07481v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica 7, 35-39 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.02310">arXiv:1908.02310</a> <span> [<a href="https://arxiv.org/pdf/1908.02310">pdf</a>, <a href="https://arxiv.org/format/1908.02310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-7631-5">10.1140/epjc/s10052-020-7631-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Denton%2C+P+B">Peter B. Denton</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Galon%2C+I">Iftah Galon</a>, <a href="/search/physics?searchtype=author&query=Gibson%2C+S">Stephen Gibson</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">Sergio Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Hsu%2C+S">Shih-Chieh Hsu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Z">Zhen Hu</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">Giuseppe Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Jakobsen%2C+S">Sune Jakobsen</a>, <a href="/search/physics?searchtype=author&query=Jansky%2C+R">Roland Jansky</a>, <a href="/search/physics?searchtype=author&query=Kajomovitz%2C+E">Enrique Kajomovitz</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+F">Felix Kling</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.02310v2-abstract-short" style="display: inline;"> Neutrinos are copiously produced at particle colliders, but no collider neutrino has ever been detected. Colliders, and particularly hadron colliders, produce both neutrinos and anti-neutrinos of all flavors at very high energies, and they are therefore highly complementary to those from other sources. FASER, the recently approved Forward Search Experiment at the Large Hadron Collider, is ideally… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02310v2-abstract-full').style.display = 'inline'; document.getElementById('1908.02310v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.02310v2-abstract-full" style="display: none;"> Neutrinos are copiously produced at particle colliders, but no collider neutrino has ever been detected. Colliders, and particularly hadron colliders, produce both neutrinos and anti-neutrinos of all flavors at very high energies, and they are therefore highly complementary to those from other sources. FASER, the recently approved Forward Search Experiment at the Large Hadron Collider, is ideally located to provide the first detection and study of collider neutrinos. We investigate the prospects for neutrino studies of a proposed component of FASER, FASER$谓$, a 25cm x 25cm x 1.35m emulsion detector to be placed directly in front of the FASER spectrometer in tunnel TI12. FASER$谓$ consists of 1000 layers of emulsion films interleaved with 1-mm-thick tungsten plates, with a total tungsten target mass of 1.2 tons. We estimate the neutrino fluxes and interaction rates at FASER$谓$, describe the FASER$谓$ detector, and analyze the characteristics of the signals and primary backgrounds. For an integrated luminosity of 150 fb$^{-1}$ to be collected during Run 3 of the 14 TeV Large Hadron Collider from 2021-23, and assuming standard model cross sections, approximately 1300 electron neutrinos, 20,000 muon neutrinos, and 20 tau neutrinos will interact in FASER$谓$, with mean energies of 600 GeV to 1 TeV, depending on the flavor. With such rates and energies, FASER will measure neutrino cross sections at energies where they are currently unconstrained, will bound models of forward particle production, and could open a new window on physics beyond the standard model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02310v2-abstract-full').style.display = 'none'; document.getElementById('1908.02310v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version published in EPJ C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2019-160, KYUSHU-RCAPP-2019-003, SLAC-PUB-17460, UCI-TR-2019-19 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J. C80 (2020) no.1, 61 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.10621">arXiv:1907.10621</a> <span> [<a href="https://arxiv.org/pdf/1907.10621">pdf</a>, <a href="https://arxiv.org/format/1907.10621">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> MadMiner: Machine learning-based inference for particle physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brehmer%2C+J">Johann Brehmer</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+F">Felix Kling</a>, <a href="/search/physics?searchtype=author&query=Espejo%2C+I">Irina Espejo</a>, <a href="/search/physics?searchtype=author&query=Cranmer%2C+K">Kyle Cranmer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.10621v2-abstract-short" style="display: inline;"> Precision measurements at the LHC often require analyzing high-dimensional event data for subtle kinematic signatures, which is challenging for established analysis methods. Recently, a powerful family of multivariate inference techniques that leverage both matrix element information and machine learning has been developed. This approach neither requires the reduction of high-dimensional data to s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10621v2-abstract-full').style.display = 'inline'; document.getElementById('1907.10621v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.10621v2-abstract-full" style="display: none;"> Precision measurements at the LHC often require analyzing high-dimensional event data for subtle kinematic signatures, which is challenging for established analysis methods. Recently, a powerful family of multivariate inference techniques that leverage both matrix element information and machine learning has been developed. This approach neither requires the reduction of high-dimensional data to summary statistics nor any simplifications to the underlying physics or detector response. In this paper we introduce MadMiner, a Python module that streamlines the steps involved in this procedure. Wrapping around MadGraph5_aMC and Pythia 8, it supports almost any physics process and model. To aid phenomenological studies, the tool also wraps around Delphes 3, though it is extendable to a full Geant4-based detector simulation. We demonstrate the use of MadMiner in an example analysis of dimension-six operators in ttH production, finding that the new techniques substantially increase the sensitivity to new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10621v2-abstract-full').style.display = 'none'; document.getElementById('1907.10621v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MadMiner is available at https://github.com/diana-hep/madminer . v2: improved text, fixed typos, better colors, added references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.09580">arXiv:1907.09580</a> <span> [<a href="https://arxiv.org/pdf/1907.09580">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.27.027124">10.1364/OE.27.027124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay of pulse duration, peak intensity, and particle size in laser-driven electron emission from silica nanospheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Powell%2C+J+A">Jeffrey A. Powell</a>, <a href="/search/physics?searchtype=author&query=Summers%2C+A+M">Adam M. Summers</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qingcao Liu</a>, <a href="/search/physics?searchtype=author&query=Robatjazi%2C+S+J">Seyyed Javad Robatjazi</a>, <a href="/search/physics?searchtype=author&query=Rupp%2C+P">Philipp Rupp</a>, <a href="/search/physics?searchtype=author&query=Stierle%2C+J">Johannes Stierle</a>, <a href="/search/physics?searchtype=author&query=Trallero-herrero%2C+C+A">Carlos A. Trallero-herrero</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F. Kling</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+A">Artem Rudenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.09580v1-abstract-short" style="display: inline;"> We present the results of a systematic study of photoelectron emission from gasphase dielectric nanoparticles (SiO2) irradiated by intense 25 fs, 780 nm linearly polarized laser pulses as a function of particle size (20 nm to 750 nm in diameter) and laser intensity. We also introduce an experimental technique to reduce the effects of focal volume averaging. The highest photoelectron energies show… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09580v1-abstract-full').style.display = 'inline'; document.getElementById('1907.09580v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.09580v1-abstract-full" style="display: none;"> We present the results of a systematic study of photoelectron emission from gasphase dielectric nanoparticles (SiO2) irradiated by intense 25 fs, 780 nm linearly polarized laser pulses as a function of particle size (20 nm to 750 nm in diameter) and laser intensity. We also introduce an experimental technique to reduce the effects of focal volume averaging. The highest photoelectron energies show a strong size dependence, increasing by a factor of six over the range of particles sizes studied at a fixed intensity. For smaller particle sizes (up to 200 nm), our findings agree well with earlier results obtained with few-cycle, ~4 fs pulses. For large nanoparticles, which exhibit stronger near-field localization due to field-propagation effects, we observe the emission of much more energetic electrons, reaching energies up to ~200 times the ponderomotive energy. This strong deviation in maximum photoelectron energy is attributed to the increase in ionization and charge interaction for many-cycle pulses at similar intensities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09580v1-abstract-full').style.display = 'none'; document.getElementById('1907.09580v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Kling%2C+F&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Kling%2C+F&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Kling%2C+F&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>