CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–45 of 45 results for author: <span class="mathjax">C猫, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=C%C3%A8%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="C猫, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=C%C3%A8%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="C猫, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07674">arXiv:2502.07674</a> <span> [<a href="https://arxiv.org/pdf/2502.07674">pdf</a>, <a href="https://arxiv.org/format/2502.07674">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The hyperfine splitting in QCD mesonic screening masses at asymptotically large temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+L">Leonardo Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=Laudicina%2C+D">Davide Laudicina</a>, <a href="/search/hep-lat?searchtype=author&query=Pepe%2C+M">Michele Pepe</a>, <a href="/search/hep-lat?searchtype=author&query=Rescigno%2C+P">Pietro Rescigno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07674v1-abstract-short" style="display: inline;"> We determine the hyperfine splitting in the QCD flavour non-singlet mesonic screening masses at asymptotically large temperatures. The analytic calculation is carried out in the dimensionally-reduced effective theory where the first non-zero contribution is of $O(g^4)$ in the QCD coupling constant $g$. Apart for its own theoretical interest, this result provides instrumental information to interpr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07674v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07674v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07674v1-abstract-full" style="display: none;"> We determine the hyperfine splitting in the QCD flavour non-singlet mesonic screening masses at asymptotically large temperatures. The analytic calculation is carried out in the dimensionally-reduced effective theory where the first non-zero contribution is of $O(g^4)$ in the QCD coupling constant $g$. Apart for its own theoretical interest, this result provides instrumental information to interpret and to parameterize non-perturbative data that are being produced at very high temperatures by numerical simulations of lattice QCD. Indeed, the comparison with existing non-perturbative results shows that higher order (non-perturbative) contributions in $g$ are needed to explain the data up to the highest temperatures explored, which is of the order of the electroweak scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07674v1-abstract-full').style.display = 'none'; document.getElementById('2502.07674v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01657">arXiv:2407.01657</a> <span> [<a href="https://arxiv.org/pdf/2407.01657">pdf</a>, <a href="https://arxiv.org/format/2407.01657">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hot QCD matter around the chiral crossover: a lattice study with $O(a)$-improved Wilson fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Krasniqi%2C+A">Ardit Krasniqi</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Hudspith%2C+R+J">Renwick J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01657v1-abstract-short" style="display: inline;"> Using lattice QCD simulations with $O(a)$-improved Wilson quarks and physical up, down and strange quark masses, we investigate the properties of thermal QCD matter at the temperatures $T=\{128,154,192\}\mathrm{MeV}$ with a fixed lattice spacing $a=0.064\mathrm{fm}$ and volume $V=(6.1\text{fm})^3$. We find that the pion quasiparticle, defined as the low-energy pole in the two-point function of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01657v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01657v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01657v1-abstract-full" style="display: none;"> Using lattice QCD simulations with $O(a)$-improved Wilson quarks and physical up, down and strange quark masses, we investigate the properties of thermal QCD matter at the temperatures $T=\{128,154,192\}\mathrm{MeV}$ with a fixed lattice spacing $a=0.064\mathrm{fm}$ and volume $V=(6.1\text{fm})^3$. We find that the pion quasiparticle, defined as the low-energy pole in the two-point function of the axial charge, becomes lighter as the temperature increases and give an argument based on hydrodynamics as to why the pole becomes purely diffusive above the chiral crossover. We study the thermal modification of the isovector vector spectral function using the Backus-Gilbert method, finding an enhancement at low energies and a depletion at energies around $1\mathrm{GeV}$.The analogous study of the axial-vector channel reveals a larger enhancement at energies below $1\mathrm{GeV}$, and we show that these findings are consistent with rigorous spectral sum rules. The difference between vector and axial-vector correlators, an order parameter for chiral symmetry, turns out to be overall suppressed by more than an order of magnitude at the crossover. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01657v1-abstract-full').style.display = 'none'; document.getElementById('2407.01657v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 20 figures. arXiv admin note: text overlap with arXiv:2211.15558</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-24-055 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11895">arXiv:2401.11895</a> <span> [<a href="https://arxiv.org/pdf/2401.11895">pdf</a>, <a href="https://arxiv.org/format/2401.11895">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Hadronic vacuum polarization in the muon $g-2$: The short-distance contribution from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kuberski%2C+S">Simon Kuberski</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11895v1-abstract-short" style="display: inline;"> We present results for the short-distance window observable of the hadronic vacuum polarization contribution to the muon $g-2$, computed via the time-momentum representation (TMR) in lattice QCD. A key novelty of our calculation is the reduction of discretization effects by a suitable subtraction applied to the TMR kernel function, which cancels the leading $x_0^4$-behaviour at short distances. To… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11895v1-abstract-full').style.display = 'inline'; document.getElementById('2401.11895v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11895v1-abstract-full" style="display: none;"> We present results for the short-distance window observable of the hadronic vacuum polarization contribution to the muon $g-2$, computed via the time-momentum representation (TMR) in lattice QCD. A key novelty of our calculation is the reduction of discretization effects by a suitable subtraction applied to the TMR kernel function, which cancels the leading $x_0^4$-behaviour at short distances. To compensate for the subtraction, one must substitute a term that can be reliably computed in perturbative QCD. We apply this strategy to our data for the vector current collected on ensembles generated with $2+1$ flavours of O($a$)-improved Wilson quarks at six values of the lattice spacing and pion masses in the range $130-420\,$MeV. Our estimate at the physical point contains a full error budget and reads $(a_渭^{\rm hvp})^{\rm SD}=68.85(14)_{\rm stat}\,(42)_{\rm syst}\cdot10^{-10}$, which corresponds to a relative precision of 0.7\%. We discuss the implications of our result for the observed tensions between lattice and data-driven evaluations of the hadronic vacuum polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11895v1-abstract-full').style.display = 'none'; document.getElementById('2401.11895v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 10 figures, 9 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-24-011, CERN-TH-2024-011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05951">arXiv:2401.05951</a> <span> [<a href="https://arxiv.org/pdf/2401.05951">pdf</a>, <a href="https://arxiv.org/format/2401.05951">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The thermal photon emissivity at the QCD chiral crossover from imaginary momentum correlators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Krasniqi%2C+A">Ardit Krasniqi</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Hudspith%2C+R+J">Renwick J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05951v1-abstract-short" style="display: inline;"> The thermal photon emissivity at the QCD chiral crossover is investigated using imaginary momentum correlators. These have been measured on a newly generated $20 \times 96^3$ lattice-QCD ensemble with $\mathcal{O}(a)$-improved Wilson quarks and physical up, down and strange quark masses at a temperature $T=154$\,MeV near the pseudo-critical temperature. In order to realize the photon on-shell cond… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05951v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05951v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05951v1-abstract-full" style="display: none;"> The thermal photon emissivity at the QCD chiral crossover is investigated using imaginary momentum correlators. These have been measured on a newly generated $20 \times 96^3$ lattice-QCD ensemble with $\mathcal{O}(a)$-improved Wilson quarks and physical up, down and strange quark masses at a temperature $T=154$\,MeV near the pseudo-critical temperature. In order to realize the photon on-shell condition, the spatially transverse Euclidean correlators have to be evaluated at imaginary spatial momenta. Employing a bounding method, we present a preliminary result on the quantity $H_E(蠅_1)$, which corresponds to an energy-moment of the photon spectral function $蟽(蠅)/蠅$ defined by the weight function $1/(蠅^2+蠅_n^2)$, the $蠅_n$ being integer multiples of $2蟺T$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05951v1-abstract-full').style.display = 'none'; document.getElementById('2401.05951v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 Figures, 1 Table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09884">arXiv:2309.09884</a> <span> [<a href="https://arxiv.org/pdf/2309.09884">pdf</a>, <a href="https://arxiv.org/format/2309.09884">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Probing the photon emissivity of the quark-gluon plasma without an inverse problem in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Krasniqi%2C+A">Ardit Krasniqi</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09884v1-abstract-short" style="display: inline;"> The thermal photon emissivity of the quark-gluon plasma is determined by the in-medium spectral function of the electromagnetic current at lightlike kinematics, $蟽(蠅)$. In this work, we present the first lattice QCD results on moments of $蟽(蠅)/蠅$, defined by the weight function $1/(蠅^2+ (2蟺T n)^2)$, $n\in\mathbb{Z}$ and computed without encountering an inverse problem. We employ two dynamical flav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09884v1-abstract-full').style.display = 'inline'; document.getElementById('2309.09884v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09884v1-abstract-full" style="display: none;"> The thermal photon emissivity of the quark-gluon plasma is determined by the in-medium spectral function of the electromagnetic current at lightlike kinematics, $蟽(蠅)$. In this work, we present the first lattice QCD results on moments of $蟽(蠅)/蠅$, defined by the weight function $1/(蠅^2+ (2蟺T n)^2)$, $n\in\mathbb{Z}$ and computed without encountering an inverse problem. We employ two dynamical flavours of O($a$)-improved Wilson fermions at a temperature $T\approx 250\;$MeV and perform the continuum limit. We compare our results for the first two moments to those obtained dispersively by integrating over the spectral function computed at weak coupling by Arnold, Moore and Yaffe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09884v1-abstract-full').style.display = 'none'; document.getElementById('2309.09884v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-23-053 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15674">arXiv:2307.15674</a> <span> [<a href="https://arxiv.org/pdf/2307.15674">pdf</a>, <a href="https://arxiv.org/format/2307.15674">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2023)167">10.1007/JHEP11(2023)167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploiting stochastic locality in lattice QCD: hadronic observables and their uncertainties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&query=Fritzsch%2C+P">Patrick Fritzsch</a>, <a href="/search/hep-lat?searchtype=author&query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-lat?searchtype=author&query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&query=Rago%2C+A">Antonio Rago</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15674v2-abstract-short" style="display: inline;"> Because of the mass gap, lattice QCD simulations exhibit stochastic locality: distant regions of the lattice fluctuate independently. There is a long history of exploiting this to increase statistics by obtaining multiple spatially-separated samples from each gauge field; in the extreme case, we arrive at the master-field approach in which a single gauge field is used. Here we develop techniques f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15674v2-abstract-full').style.display = 'inline'; document.getElementById('2307.15674v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15674v2-abstract-full" style="display: none;"> Because of the mass gap, lattice QCD simulations exhibit stochastic locality: distant regions of the lattice fluctuate independently. There is a long history of exploiting this to increase statistics by obtaining multiple spatially-separated samples from each gauge field; in the extreme case, we arrive at the master-field approach in which a single gauge field is used. Here we develop techniques for studying hadronic observables using position-space correlators, which are more localized, and compare with the standard time-momentum representation. We also adapt methods for estimating the variance of an observable from autocorrelated Monte Carlo samples to the case of correlated spatially-separated samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15674v2-abstract-full').style.display = 'none'; document.getElementById('2307.15674v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 16 figures, 3 tables. v2: version accepted for publication in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-23-105 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP11(2023)167 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05156">arXiv:2301.05156</a> <span> [<a href="https://arxiv.org/pdf/2301.05156">pdf</a>, <a href="https://arxiv.org/format/2301.05156">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.430.0052">10.22323/1.430.0052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadronic observables from master-field simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&query=Fritzsch%2C+P">Patrick Fritzsch</a>, <a href="/search/hep-lat?searchtype=author&query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-lat?searchtype=author&query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&query=Rago%2C+A">Antonio Rago</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05156v1-abstract-short" style="display: inline;"> Substantial progress has been made recently in the generation of master-field ensembles. This has to be paired with efficient techniques to compute observables on gauge field configurations with a large volume. Here we present the results of the computation of hadronic observables, including hadron masses and meson decay constants, on large-volume and master-field ensembles with physical volumes o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05156v1-abstract-full').style.display = 'inline'; document.getElementById('2301.05156v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05156v1-abstract-full" style="display: none;"> Substantial progress has been made recently in the generation of master-field ensembles. This has to be paired with efficient techniques to compute observables on gauge field configurations with a large volume. Here we present the results of the computation of hadronic observables, including hadron masses and meson decay constants, on large-volume and master-field ensembles with physical volumes of up to $(18\,\mathrm{fm})^4$ and $m_蟺L$ up to $25$, simulated using $N_{\mathrm{f}}=2+1$ stabilized Wilson fermions. We obtain sub-percent determinations from single gauge configurations with the combined use of position-space techniques, volume averages and master-field error estimation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05156v1-abstract-full').style.display = 'none'; document.getElementById('2301.05156v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 2 tables, talk presented at The 39th International Symposium on Lattice Field Theory, 8th-13th August, 2022, Rheinische Friedrich-Wilhelms-Universit盲t Bonn, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-207, CERN-TH-2022-215 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2022)052 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09533">arXiv:2212.09533</a> <span> [<a href="https://arxiv.org/pdf/2212.09533">pdf</a>, <a href="https://arxiv.org/format/2212.09533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Translating topological benefits in very cold lattice simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-lat?searchtype=author&query=Hansen%2C+M">Max Hansen</a>, <a href="/search/hep-lat?searchtype=author&query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09533v1-abstract-short" style="display: inline;"> Master-field simulations offer an approach to lattice QCD in which calculations are performed on a small number of large-volume gauge-field configurations. The latter is advantageous for simulations in which the global topological charge is frozen due to a very fine lattice spacing, as the effect of this on observables is suppressed by the spacetime volume. Here we make use of the recently develop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09533v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09533v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09533v1-abstract-full" style="display: none;"> Master-field simulations offer an approach to lattice QCD in which calculations are performed on a small number of large-volume gauge-field configurations. The latter is advantageous for simulations in which the global topological charge is frozen due to a very fine lattice spacing, as the effect of this on observables is suppressed by the spacetime volume. Here we make use of the recently developed Stabilised Wilson Fermions to investigate a variation of this approach in which only the temporal direction ($T$) is taken larger than in traditional calculations. As compared to a hyper-cubic lattice geometry, this has the advantage that finite-$L$ effects can be useful, e.g. for multi-hadron observables, while compared to open boundary conditions, time-translation invariance is not lost. In this proof-of-concept contribution, we study the idea of using very cold (i.e. long-$T$) lattices to topologically "defrost" observables at fine lattice spacing. We identify the scalar-scalar meson two-point correlation function as a useful probe and present first results from $N_f=3$ ensembles with time extents up to $T=2304$ and a lattice spacing of $a=0.055\,\rm{fm}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09533v1-abstract-full').style.display = 'none'; document.getElementById('2212.09533v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 1 table, to be published in Proceedings of Science, contribution to "The 39th International Symposium on Lattice Field Theory (LATTICE 2022)"</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.05622">arXiv:2212.05622</a> <span> [<a href="https://arxiv.org/pdf/2212.05622">pdf</a>, <a href="https://arxiv.org/format/2212.05622">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Estimation of the photon production rate using imaginary momentum correlators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Krasniqi%2C+A">Ardit Krasniqi</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Ruhl%2C+S">Samuel Ruhl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.05622v1-abstract-short" style="display: inline;"> The thermal photon emission rate is determined by the spatially transverse, in-medium spectral function of the electromagnetic current. Accessing the spectral function using Euclidean data is, however, a challenging problem due to the ill-posed nature of inverting the Laplace transform. In this contribution, we present the first results on implementing the proposal of directly computing the analyt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05622v1-abstract-full').style.display = 'inline'; document.getElementById('2212.05622v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.05622v1-abstract-full" style="display: none;"> The thermal photon emission rate is determined by the spatially transverse, in-medium spectral function of the electromagnetic current. Accessing the spectral function using Euclidean data is, however, a challenging problem due to the ill-posed nature of inverting the Laplace transform. In this contribution, we present the first results on implementing the proposal of directly computing the analytic continuation of the retarded correlator at fixed, vanishing virtuality of the photon via the calculation of the appropriate Euclidean correlator at imaginary spatial momentum. We employ two dynamical O(a)-improved Wilson fermions at a temperature of 250 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05622v1-abstract-full').style.display = 'none'; document.getElementById('2212.05622v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, contribution to the 39th International Symposium on Lattice Field Theory (LATTICE2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02366">arXiv:2212.02366</a> <span> [<a href="https://arxiv.org/pdf/2212.02366">pdf</a>, <a href="https://arxiv.org/format/2212.02366">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The hadronic running of the electromagnetic coupling and electroweak mixing angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02366v1-abstract-short" style="display: inline;"> We present results for the hadronic running of the electromagnetic coupling and the weak mixing angle from simulations of lattice QCD with $N_f=2+1$ flavours of $O(a)$-improved Wilson fermions. Using two different discretisations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarisation (HVP) functions $\bar螤^{纬纬}$ and $\bar螤^{Z纬}$ fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02366v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02366v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02366v1-abstract-full" style="display: none;"> We present results for the hadronic running of the electromagnetic coupling and the weak mixing angle from simulations of lattice QCD with $N_f=2+1$ flavours of $O(a)$-improved Wilson fermions. Using two different discretisations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarisation (HVP) functions $\bar螤^{纬纬}$ and $\bar螤^{Z纬}$ for spacelike squared momenta $Q^2\leq 7$ $\mathrm{GeV}^2$. Our results are extrapolated to the physical point using ensembles at four lattice spacings, with pion masses ranging from 130 to 420 MeV. We observe a tension of up to 3.5 standard deviations between our lattice results for $螖伪_{\rm had}^{(5)}(-Q^2)$ and estimates based on the $\textit{R}$-ratio for space-like momenta in the range $Q^2=3-7\,\rm GeV^2$. To obtain an estimate for $螖伪_\mathrm{had}^{(5)}(M_Z^2)$, we employ the Euclidean split technique. The implications for comparison with global electroweak fits are assessed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02366v1-abstract-full').style.display = 'none'; document.getElementById('2212.02366v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-194, MITP-22-099 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2022)328 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17083">arXiv:2211.17083</a> <span> [<a href="https://arxiv.org/pdf/2211.17083">pdf</a>, <a href="https://arxiv.org/format/2211.17083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Intermediate window observable for the hadronic vacuum polarization contribution to the muon $g-2$ from O$(a)$ improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=Hudspith%2C+R+J">Renwick J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&query=Kuberski%2C+S">Simon Kuberski</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Paul%2C+S">Srijit Paul</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17083v1-abstract-short" style="display: inline;"> Following the publication of the new measurement of the anomalous magnetic moment of the muon, the discrepancy between experiment and the theory prediction from the $g-2$ theory initiative has increased to $4.2\,蟽$. Recent lattice QCD calculations predict values for the hadronic vacuum polarization contribution that are larger than the data-driven estimates, bringing the Standard Model prediction… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17083v1-abstract-full').style.display = 'inline'; document.getElementById('2211.17083v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17083v1-abstract-full" style="display: none;"> Following the publication of the new measurement of the anomalous magnetic moment of the muon, the discrepancy between experiment and the theory prediction from the $g-2$ theory initiative has increased to $4.2\,蟽$. Recent lattice QCD calculations predict values for the hadronic vacuum polarization contribution that are larger than the data-driven estimates, bringing the Standard Model prediction closer to the experimental measurement. Euclidean time windows in the time-momentum representation of the hadronic vacuum polarization contribution to the muon $g-2$ can help clarify the discrepancy between the phenomenological and lattice predictions. We present our calculation of the intermediate distance window contribution using $N_\mathrm{f}=2+1$ flavors of O$(a)$ improved Wilson quarks. We employ ensembles at six lattice spacings below $0.1\,$fm and pion masses down to the physical value. We present a detailed study of the continuum limit, using two discretizations of the vector current and two independent sets of improvement coefficients. Our result at the physical point displays a tension of $3.9\,蟽$ with a recent evaluation of the intermediate window based on the data-driven method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17083v1-abstract-full').style.display = 'none'; document.getElementById('2211.17083v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-102, DESY-22-193 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15558">arXiv:2211.15558</a> <span> [<a href="https://arxiv.org/pdf/2211.15558">pdf</a>, <a href="https://arxiv.org/format/2211.15558">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054509">10.1103/PhysRevD.107.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Aspects of chiral symmetry in QCD at T = 128 MeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Krasniqi%2C+A">Ardit Krasniqi</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15558v1-abstract-short" style="display: inline;"> We investigate several aspects of chiral symmetry in QCD at a temperature of $T = 128\,\text{MeV}$. The study is based on a $24\times 96^3$ lattice-QCD ensemble with O($a$)-improved Wilson quarks and physical up, down and strange quark masses. The pion quasiparticle turns out to be significantly lighter than the zero-temperature pion mass, even though the corresponding static correlation length is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15558v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15558v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15558v1-abstract-full" style="display: none;"> We investigate several aspects of chiral symmetry in QCD at a temperature of $T = 128\,\text{MeV}$. The study is based on a $24\times 96^3$ lattice-QCD ensemble with O($a$)-improved Wilson quarks and physical up, down and strange quark masses. The pion quasiparticle turns out to be significantly lighter than the zero-temperature pion mass, even though the corresponding static correlation length is shorter. We perform a quantitative comparison of our findings to predictions of chiral perturbation theory. Among several order parameters for chiral symmetry restoration, we compute the difference of the vector- and axial-vector time-dependent correlators and find it to be reduced by a factor $\sim2/3$ as compared to its vacuum counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15558v1-abstract-full').style.display = 'none'; document.getElementById('2211.15558v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 9 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-098 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11401">arXiv:2211.11401</a> <span> [<a href="https://arxiv.org/pdf/2211.11401">pdf</a>, <a href="https://arxiv.org/format/2211.11401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The hadronic running of the electroweak couplings from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11401v2-abstract-short" style="display: inline;"> The energy dependency (running) of the strength of electromagnetic interactions $伪$ plays an important role in precision tests of the Standard Model. The running of the former to the $Z$ pole is an input quantity for global electroweak fits, while the running of the mixing angle is susceptible to the effects of Beyond Standard Model physics, particularly at low energies. We present a computation o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11401v2-abstract-full').style.display = 'inline'; document.getElementById('2211.11401v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11401v2-abstract-full" style="display: none;"> The energy dependency (running) of the strength of electromagnetic interactions $伪$ plays an important role in precision tests of the Standard Model. The running of the former to the $Z$ pole is an input quantity for global electroweak fits, while the running of the mixing angle is susceptible to the effects of Beyond Standard Model physics, particularly at low energies. We present a computation of the hadronic vacuum polarization (HVP) contribution to the running of these electroweak couplings at the non-perturbative level in lattice QCD, in the space-like regime up to $Q^2$ momentum transfers of $7\,\mathrm{GeV}^2$. This quantity is also closely related to the HVP contribution to the muon $g-2$. We observe a tension of up to $3.5$ standard deviation between our lattice results for $螖伪^{(5)}_{\mathrm{had}}(-Q^2)$ and estimates based on the $R$-ratio for $Q^2$ in the $3$ to $7\,\mathrm{GeV}^2$ range. The tension is, however, strongly diminished when translating our result to the $Z$ pole, by employing the Euclidean split technique and perturbative QCD, which yields $螖伪^{(5)}_{\mathrm{had}}(M_Z^2)=0.027\,73(15)$. This value agrees with results based on the $R$-ratio within the quoted uncertainties, and can be used as an alternative to the latter in global electroweak fits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11401v2-abstract-full').style.display = 'none'; document.getElementById('2211.11401v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures, v2: accepted version with minor changes, talk presented at the 41st International Conference on High Energy physics - ICHEP2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-183 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(ICHEP2022)823 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06582">arXiv:2206.06582</a> <span> [<a href="https://arxiv.org/pdf/2206.06582">pdf</a>, <a href="https://arxiv.org/format/2206.06582">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.114502">10.1103/PhysRevD.106.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Window observable for the hadronic vacuum polarization contribution to the muon $g-2$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=Hudspith%2C+R+J">Renwick J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&query=Kuberski%2C+S">Simon Kuberski</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Paul%2C+S">Srijit Paul</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06582v2-abstract-short" style="display: inline;"> Euclidean time windows in the integral representation of the hadronic vacuum polarization contribution to the muon $g-2$ serve to test the consistency of lattice calculations and may help in tracing the origins of a potential tension between lattice and data-driven evaluations. In this paper, we present results for the intermediate time window observable computed using O($a$) improved Wilson fermi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06582v2-abstract-full').style.display = 'inline'; document.getElementById('2206.06582v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06582v2-abstract-full" style="display: none;"> Euclidean time windows in the integral representation of the hadronic vacuum polarization contribution to the muon $g-2$ serve to test the consistency of lattice calculations and may help in tracing the origins of a potential tension between lattice and data-driven evaluations. In this paper, we present results for the intermediate time window observable computed using O($a$) improved Wilson fermions at six values of the lattice spacings below 0.1\,fm and pion masses down to the physical value. Using two different sets of improvement coefficients in the definitions of the local and conserved vector currents, we perform a detailed scaling study which results in a fully controlled extrapolation to the continuum limit without any additional treatment of the data, except for the inclusion of finite-volume corrections. To determine the latter, we use a combination of the method of Hansen and Patella and the Meyer-Lellouch-L眉scher procedure employing the Gounaris-Sakurai parameterization for the pion form factor. We correct our results for isospin-breaking effects via the perturbative expansion of QCD+QED around the isosymmetric theory. Our result at the physical point is $a_渭^{\mathrm{win}}=(237.30\pm0.79_{\rm stat}\pm1.22_{\rm syst})\times10^{-10}$, where the systematic error includes an estimate of the uncertainty due to the quenched charm quark in our calculation. Our result displays a tension of 3.9$蟽$ with a recent evaluation of $a_渭^{\mathrm{win}}$ based on the data-driven method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06582v2-abstract-full').style.display = 'none'; document.getElementById('2206.06582v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 9 figures, 10 tables; version accepted for publication: extended discussion of finite-volume corrections. Results and conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-038, CERN-TH-2022-098, DESY-22-105 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 114502 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02821">arXiv:2205.02821</a> <span> [<a href="https://arxiv.org/pdf/2205.02821">pdf</a>, <a href="https://arxiv.org/format/2205.02821">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.054501">10.1103/PhysRevD.106.054501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon emissivity of the quark-gluon plasma: a lattice QCD analysis of the transverse channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Krasniqi%2C+A">Ardit Krasniqi</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02821v1-abstract-short" style="display: inline;"> We present results for the thermal photon emissivity of the quark-gluon plasma derived from spatially transverse vector correlators computed in lattice QCD at a temperature of 250 MeV. The analysis of the spectral functions, performed at fixed spatial momentum, is based on continuum-extrapolated correlators obtained with two flavours of dynamical Wilson fermions. We compare the next-to-leading ord… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02821v1-abstract-full').style.display = 'inline'; document.getElementById('2205.02821v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02821v1-abstract-full" style="display: none;"> We present results for the thermal photon emissivity of the quark-gluon plasma derived from spatially transverse vector correlators computed in lattice QCD at a temperature of 250 MeV. The analysis of the spectral functions, performed at fixed spatial momentum, is based on continuum-extrapolated correlators obtained with two flavours of dynamical Wilson fermions. We compare the next-to-leading order perturbative QCD correlators, as well as the ${\cal N}=4$ supersymmetric Yang-Mills correlators at infinite coupling, to the correlators from lattice QCD and find them to lie within $\sim10\%$ of each other. We then refine the comparison, performing it at the level of filtered spectral functions obtained model-independently via the Backus-Gilbert method. Motivated by these studies, for frequencies $蠅\lesssim2.5\,$GeV we use fit ans盲tze to the spectral functions that perform well when applied to mock data generated from the NLO QCD or from the strongly-coupled SYM spectral functions, while the high-frequency part, $蠅\gtrsim 2.5\,$GeV, is matched to NLO QCD. We compare our results for the photon emissivity to our previous analysis of a different vector channel at the same temperature. We obtain the most stringent constraint at photon momenta around $k\simeq0.8\,$GeV, for which we find a differential photon emission rate per unit volume of $d螕_纬/d^3k = (伪_{\rm em}/(\exp(k/T)-1))\times (2.2 \pm 0.8 ) \times 10^{-3}\,{\rm GeV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02821v1-abstract-full').style.display = 'none'; document.getElementById('2205.02821v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 13 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-032, CERN-TH-2022-070 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15810">arXiv:2203.15810</a> <span> [<a href="https://arxiv.org/pdf/2203.15810">pdf</a>, <a href="https://arxiv.org/format/2203.15810">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Prospects for precise predictions of $a_渭$ in the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-lat?searchtype=author&query=Davier%2C+M">M. Davier</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&query=Hoferichter%2C+M">M. Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Mibe%2C+T">T. Mibe</a>, <a href="/search/hep-lat?searchtype=author&query=Roberts%2C+B+L">B. L. Roberts</a>, <a href="/search/hep-lat?searchtype=author&query=Teubner%2C+T">T. Teubner</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">H. Wittig</a>, <a href="/search/hep-lat?searchtype=author&query=Ananthanarayan%2C+B">B. Ananthanarayan</a>, <a href="/search/hep-lat?searchtype=author&query=Bashir%2C+A">A. Bashir</a>, <a href="/search/hep-lat?searchtype=author&query=Bijnens%2C+J">J. Bijnens</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">P. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bray-Ali%2C+N">N. Bray-Ali</a>, <a href="/search/hep-lat?searchtype=author&query=Caprini%2C+I">I. Caprini</a>, <a href="/search/hep-lat?searchtype=author&query=Calame%2C+C+M+C">C. M. Carloni Calame</a>, <a href="/search/hep-lat?searchtype=author&query=Cat%C3%A0%2C+O">O. Cat脿</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Charles%2C+J">J. Charles</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Curciarello%2C+F">F. Curciarello</a>, <a href="/search/hep-lat?searchtype=author&query=Danilkin%2C+I">I. Danilkin</a>, <a href="/search/hep-lat?searchtype=author&query=Das%2C+D">D. Das</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15810v1-abstract-short" style="display: inline;"> We discuss the prospects for improving the precision on the hadronic corrections to the anomalous magnetic moment of the muon, and the plans of the Muon $g-2$ Theory Initiative to update the Standard Model prediction. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15810v1-abstract-full" style="display: none;"> We discuss the prospects for improving the precision on the hadronic corrections to the anomalous magnetic moment of the muon, and the plans of the Muon $g-2$ Theory Initiative to update the Standard Model prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15810v1-abstract-full').style.display = 'none'; document.getElementById('2203.15810v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the US Community Study on the Future of Particle Physics (Snowmass 2021)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-236-T, LTH 1303, MITP-22-030 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08676">arXiv:2203.08676</a> <span> [<a href="https://arxiv.org/pdf/2203.08676">pdf</a>, <a href="https://arxiv.org/format/2203.08676">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2022)220">10.1007/JHEP08(2022)220 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-lat?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08676v2-abstract-short" style="display: inline;"> We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with $N_{\mathrm{f}}=2+1$ flavors of $\mathcal{O}(a)$ improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarization (HVP) functions $\bar螤^{纬纬}$ and $\bar螤^{纬Z}$ for Euclidean squared momen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08676v2-abstract-full').style.display = 'inline'; document.getElementById('2203.08676v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08676v2-abstract-full" style="display: none;"> We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with $N_{\mathrm{f}}=2+1$ flavors of $\mathcal{O}(a)$ improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarization (HVP) functions $\bar螤^{纬纬}$ and $\bar螤^{纬Z}$ for Euclidean squared momenta $Q^2\leq 7\,\mathrm{GeV}^2$. Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the $\mathrm{SU}(3)$-flavor-suppressed HVP function $\bar螤^{08}$ that enters the running of $\sin^2胃_{\mathrm{W}}$. Our results for $\bar螤^{纬纬}$, $\bar螤^{纬Z}$ and $\bar螤^{08}$ are presented in terms of rational functions for continuous values of $Q^2$ below $7 \,\mathrm{GeV}^2$. We observe a tension of up to $3.5$ standard deviation between our lattice results for $螖伪^{(5)}_{\mathrm{had}}(-Q^2)$ and estimates based on the $R$-ratio for space-like momenta in the range $3$--$7\,\mathrm{GeV}^2$. The tension is, however, strongly diminished when translating our result to the $Z$ pole, by employing the Euclidean split technique and perturbative QCD, which yields $螖伪^{(5)}_{\mathrm{had}}(M_Z^2)=0.027\,73(15)$ and agrees with results based on the $R$-ratio within the quoted uncertainties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08676v2-abstract-full').style.display = 'none'; document.getElementById('2203.08676v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">63 pages, 17 figures, 11 tables. v2: version accepted for publication in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-019, CERN-TH-2022-035, DESY-22-050 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP08(2022)220 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06696">arXiv:2112.06696</a> <span> [<a href="https://arxiv.org/pdf/2112.06696">pdf</a>, <a href="https://arxiv.org/format/2112.06696">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Scale Setting for CLS 2+1 Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Stra%C3%9Fberger%2C+B">Ben Stra脽berger</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Collins%2C+S">Sara Collins</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=Korcyl%2C+P">Piotr Korcyl</a>, <a href="/search/hep-lat?searchtype=author&query=Korzec%2C+T">Tomasz Korzec</a>, <a href="/search/hep-lat?searchtype=author&query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+S">Stefan Schaefer</a>, <a href="/search/hep-lat?searchtype=author&query=S%C3%B6ldner%2C+W">Wolfgang S枚ldner</a>, <a href="/search/hep-lat?searchtype=author&query=Sommer%2C+R">Rainer Sommer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06696v1-abstract-short" style="display: inline;"> We present an update of the scale setting for $N_f=2+1$ flavor QCD using gradient flow scales and pseudo-scalar decay constants. We analyze the latest ensembles with $2+1$ flavors of non-perturbatively improved Wilson fermions generated by CLS for improved precision. Special care is taken to correct for mistuning by measuring directly the mass derivatives of the various observables. We determine… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06696v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06696v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06696v1-abstract-full" style="display: none;"> We present an update of the scale setting for $N_f=2+1$ flavor QCD using gradient flow scales and pseudo-scalar decay constants. We analyze the latest ensembles with $2+1$ flavors of non-perturbatively improved Wilson fermions generated by CLS for improved precision. Special care is taken to correct for mistuning by measuring directly the mass derivatives of the various observables. We determine $t_0$ with input taken from a combination of leptonic decay rates of the Pion and the Kaon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06696v1-abstract-full').style.display = 'none'; document.getElementById('2112.06696v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, The 38th International Symposium on Lattice Field Theory, LATTICE2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-21-175, WUB/21-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00563">arXiv:2112.00563</a> <span> [<a href="https://arxiv.org/pdf/2112.00563">pdf</a>, <a href="https://arxiv.org/format/2112.00563">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Estimating the thermal photon production rate using lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Krasniqi%2C+A">Ardit Krasniqi</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Toniato%2C+A">Arianna Toniato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00563v1-abstract-short" style="display: inline;"> We present results for the photon emission rate determined from the transverse channel vector correlator at fixed spatial momentum using two flavors of dynamical Wilson fermions at $T\sim$250 MeV. We estimate the transverse channel spectral function using the continuum extrapolated correlator by applying various fit ans盲tze with a smooth matching to the NLO perturbative result. We confront our est… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00563v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00563v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00563v1-abstract-full" style="display: none;"> We present results for the photon emission rate determined from the transverse channel vector correlator at fixed spatial momentum using two flavors of dynamical Wilson fermions at $T\sim$250 MeV. We estimate the transverse channel spectral function using the continuum extrapolated correlator by applying various fit ans盲tze with a smooth matching to the NLO perturbative result. We confront our estimate based on this channel with the latest results of our collaboration based on the difference of the transverse and longitudinal channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00563v1-abstract-full').style.display = 'none'; document.getElementById('2112.00563v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021, Zoom/Gather@MIT</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-171 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2021)172 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00450">arXiv:2112.00450</a> <span> [<a href="https://arxiv.org/pdf/2112.00450">pdf</a>, <a href="https://arxiv.org/format/2112.00450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Deep inelastic scattering off quark-gluon plasma and its photon emissivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Toniato%2C+A">Arianna Toniato</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00450v1-abstract-short" style="display: inline;"> The photon emissivity of quark-gluon plasma probes the interactions in the medium and differs qualitatively between a weakly coupled and a strongly coupled plasma in the soft-photon regime. The photon emissivity is given by the product of kinematic factors and a spectral function associated with the two-point correlator of the electromagnetic current at lightlike kinematics. A certain Euclidean co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00450v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00450v1-abstract-full" style="display: none;"> The photon emissivity of quark-gluon plasma probes the interactions in the medium and differs qualitatively between a weakly coupled and a strongly coupled plasma in the soft-photon regime. The photon emissivity is given by the product of kinematic factors and a spectral function associated with the two-point correlator of the electromagnetic current at lightlike kinematics. A certain Euclidean correlator at imaginary spatial momentum can be calculated in lattice QCD and is given by an integral over the relevant spectral function at lightlike kinematics. I present a first exploratory lattice calculation of this correlator. Secondly, I show how Euclidean correlators at imaginary spatial momenta can also be used to probe the regime of deep inelastic scattering off quark-gluon plasma, which reveals its parton distribution function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00450v1-abstract-full').style.display = 'none'; document.getElementById('2112.00450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-167 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11544">arXiv:2111.11544</a> <span> [<a href="https://arxiv.org/pdf/2111.11544">pdf</a>, <a href="https://arxiv.org/format/2111.11544">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Master-field simulations of QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Fritzsch%2C+P">P. Fritzsch</a>, <a href="/search/hep-lat?searchtype=author&query=Bulava%2C+J">J. Bulava</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Francis%2C+A">A. Francis</a>, <a href="/search/hep-lat?searchtype=author&query=L%C3%BCscher%2C+M">M. L眉scher</a>, <a href="/search/hep-lat?searchtype=author&query=Rago%2C+A">A. Rago</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11544v1-abstract-short" style="display: inline;"> We report on the first master-field simulations of QCD with 2+1 dynamical quark flavours using non-perturbatively improved stabilised Wilson fermions. Our simulations are performed at a lattice spacing of 0.094 fm with 96 and 192 points in each direction. On both lattices, the pion and kaon masses are equal to 270 and 450 MeV, respectively, and $m_蟺L$ thus reaches an unprecedented value of 25 on t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11544v1-abstract-full').style.display = 'inline'; document.getElementById('2111.11544v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11544v1-abstract-full" style="display: none;"> We report on the first master-field simulations of QCD with 2+1 dynamical quark flavours using non-perturbatively improved stabilised Wilson fermions. Our simulations are performed at a lattice spacing of 0.094 fm with 96 and 192 points in each direction. On both lattices, the pion and kaon masses are equal to 270 and 450 MeV, respectively, and $m_蟺L$ thus reaches an unprecedented value of 25 on the larger lattice. This setup matches a single point on a chiral trajectory with fixed trace of the quark mass matrix and allows for comparisons to standard large-scale simulations. We present our algorithmic setup and performance measures, and report about our experience in thermalising large master-field lattices with fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11544v1-abstract-full').style.display = 'none'; document.getElementById('2111.11544v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures, 2 tables, talk presented at The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-198 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.07948">arXiv:2111.07948</a> <span> [<a href="https://arxiv.org/pdf/2111.07948">pdf</a>, <a href="https://arxiv.org/format/2111.07948">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Vacuum correlators at short distances from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Toniato%2C+A">Arianna Toniato</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.07948v1-abstract-short" style="display: inline;"> We propose a method to help control cutoff effects in the short-distance contribution to integrated correlation functions, such as the hadronic vacuum polarization (HVP), using the corresponding screening correlators computed at finite temperature. The strategy is investigated with Wilson fermions at leading order, which reveals a logarithmically-enhanced lattice artifact in the short-distance con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07948v1-abstract-full').style.display = 'inline'; document.getElementById('2111.07948v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.07948v1-abstract-full" style="display: none;"> We propose a method to help control cutoff effects in the short-distance contribution to integrated correlation functions, such as the hadronic vacuum polarization (HVP), using the corresponding screening correlators computed at finite temperature. The strategy is investigated with Wilson fermions at leading order, which reveals a logarithmically-enhanced lattice artifact in the short-distance contribution, whose coefficient is determined at this order. We then perform a numerical study with $N_\mathrm{f}=2$ O($a$)-improved Wilson fermions and a temperature $T\approx250~\mathrm{MeV}$, with lattice spacings down to $a\approx0.03~\mathrm{fm}$, which suggests good control can be achieved on the short-distance contribution to the HVP and the Adler function at large virtuality. Finally, we put forward a scheme to compute the complete HVP function at arbitrarily large virtualities using a step-scaling in the temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07948v1-abstract-full').style.display = 'none'; document.getElementById('2111.07948v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures. Talk given at the 38th International Symposium on Lattice Field Theory (LATTICE2021)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-189 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2021)572 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15375">arXiv:2110.15375</a> <span> [<a href="https://arxiv.org/pdf/2110.15375">pdf</a>, <a href="https://arxiv.org/format/2110.15375">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0383">10.22323/1.396.0383 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Approaching the master-field: Hadronic observables in large volumes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&query=Fritzsch%2C+P">Patrick Fritzsch</a>, <a href="/search/hep-lat?searchtype=author&query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-lat?searchtype=author&query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&query=Rago%2C+A">Antonio Rago</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15375v1-abstract-short" style="display: inline;"> The master-field approach to lattice QCD envisions performing calculations on a small number of large-volume gauge-field configurations. Substantial progress has been made recently in the generation of such fields, and this must be joined with measurement strategies that take advantage of the large volume. In these proceedings, we describe how to compute simple hadronic quantities efficiently and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15375v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15375v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15375v1-abstract-full" style="display: none;"> The master-field approach to lattice QCD envisions performing calculations on a small number of large-volume gauge-field configurations. Substantial progress has been made recently in the generation of such fields, and this must be joined with measurement strategies that take advantage of the large volume. In these proceedings, we describe how to compute simple hadronic quantities efficiently and estimate their errors in the master-field approach, i.e. by studying cross-correlations of observables on a single configuration. We discuss the scaling of the uncertainty with the volume and compare extractions based on momentum-projected and position-space two-point functions. The latter show promising results, already at intermediate volumes, but come with additional technical complexities such as a more complicated manifestation of boundary effects, which we also address. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15375v1-abstract-full').style.display = 'none'; document.getElementById('2110.15375v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures, talk presented at The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-164 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2021)383 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04537">arXiv:2109.04537</a> <span> [<a href="https://arxiv.org/pdf/2109.04537">pdf</a>, <a href="https://arxiv.org/format/2109.04537">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The hadronic contribution to the running of the electromagnetic coupling and electroweak mixing angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04537v2-abstract-short" style="display: inline;"> As present and future experiments, on both the energy and precision frontiers, look to identify new physics beyond the Standard Model, we require more precise determinations of fundamental quantities, like the QED and electroweak couplings at various momenta. These can be obtained either entirely from experimental measurements, or from one such measurement at a particular virtuality combined with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04537v2-abstract-full').style.display = 'inline'; document.getElementById('2109.04537v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04537v2-abstract-full" style="display: none;"> As present and future experiments, on both the energy and precision frontiers, look to identify new physics beyond the Standard Model, we require more precise determinations of fundamental quantities, like the QED and electroweak couplings at various momenta. These can be obtained either entirely from experimental measurements, or from one such measurement at a particular virtuality combined with the couplings' virtuality dependence computed within the SM. Thus, a precise, entirely theoretical determination of the running couplings is highly desirable, even more since the preliminary results of the E989 experiment in Fermilab were published. We give results for the hadronic contribution to the QED running coupling $伪(Q^2)$ and weak mixing angle $\sin^2胃_W(Q^2)$ in the space-like energy region $(0, 7]~\text{GeV}^2$ with a total relative uncertainty of $2\%$ at energies $Q^2 \ll 1~\text{GeV}^2$, and $1\%$ at $Q^2 > 1~\text{GeV}^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04537v2-abstract-full').style.display = 'none'; document.getElementById('2109.04537v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, talk presented at the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-126, DESY-21-137, MITP/21-038 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2021)423 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15293">arXiv:2106.15293</a> <span> [<a href="https://arxiv.org/pdf/2106.15293">pdf</a>, <a href="https://arxiv.org/format/2106.15293">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2021)215">10.1007/JHEP12(2021)215 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vacuum correlators at short distances from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Toniato%2C+A">Arianna Toniato</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15293v1-abstract-short" style="display: inline;"> Non-perturbatively computing the hadronic vacuum polarization at large photon virtualities and making contact with perturbation theory enables a precision determination of the electromagnetic coupling at the $Z$ pole, which enters global electroweak fits. In order to achieve this goal ab initio using lattice QCD, one faces the challenge that, at the short distances which dominate the observable, d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15293v1-abstract-full').style.display = 'inline'; document.getElementById('2106.15293v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15293v1-abstract-full" style="display: none;"> Non-perturbatively computing the hadronic vacuum polarization at large photon virtualities and making contact with perturbation theory enables a precision determination of the electromagnetic coupling at the $Z$ pole, which enters global electroweak fits. In order to achieve this goal ab initio using lattice QCD, one faces the challenge that, at the short distances which dominate the observable, discretization errors are hard to control. Here we address challenges of this type with the help of static screening correlators in the high-temperature phase of QCD, yet without incurring any bias. The idea is motivated by the observations that (a) the cost of high-temperature simulations is typically much lower than their vacuum counterpart, and (b) at distances $x_3$ far below the inverse temperature $1/T$, the operator-product expansion guarantees the thermal correlator of two local currents to deviate from the vacuum correlator by a relative amount that is power-suppressed in $(x_3\:T)$. The method is first investigated in lattice perturbation theory, where we point out the appearance of an O$(a^2 \log(1/a))$ lattice artifact in the vacuum polarization with a prefactor that we calculate. It is then applied to non-perturbative lattice QCD data with two dynamical flavors of quarks. Our lattice spacings range down to 0.049 fm for the vacuum simulations and down to 0.033 fm for the simulations performed at a temperature of 250 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15293v1-abstract-full').style.display = 'none'; document.getElementById('2106.15293v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 8 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/21-032, CERN-TH-2021-100 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07522">arXiv:2012.07522</a> <span> [<a href="https://arxiv.org/pdf/2012.07522">pdf</a>, <a href="https://arxiv.org/format/2012.07522">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Deep inelastic scattering on the quark-gluon plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Toniato%2C+A">Arianna Toniato</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07522v1-abstract-short" style="display: inline;"> We provide an interpretation of the structure functions of a thermal medium such as the quark-gluon plasma in terms of the scattering of an incoming electron on the medium via the exchange of a spacelike photon. We then focus on the deep-inelastic scattering (DIS) regime, and formulate the corresponding moment sum rules obeyed by the structure functions. Accordingly, these moments are given by the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07522v1-abstract-full').style.display = 'inline'; document.getElementById('2012.07522v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07522v1-abstract-full" style="display: none;"> We provide an interpretation of the structure functions of a thermal medium such as the quark-gluon plasma in terms of the scattering of an incoming electron on the medium via the exchange of a spacelike photon. We then focus on the deep-inelastic scattering (DIS) regime, and formulate the corresponding moment sum rules obeyed by the structure functions. Accordingly, these moments are given by the thermal expectation value of twist-two operators, which is computable from first principles in lattice QCD for the first few moments. We also show how lattice QCD calculations can be used to probe how large the photon virtuality needs to be in order for the Bjorken scaling of structure functions to set in. Finally, we provide the parton-model interpretation of the structure functions in the Bjorken limit and test its consistency. As in DIS on the proton, the kinematic variable $x$ is proportional to the longitudinal momentum carried by the partons, however $x$ ranges from zero to infinity. Choosing the parton momentum parametrization to be $ x T u$ where $u$ is the fluid four-velocity and $T$ its temperature in the rest frame, the parton distribution function for a plasma of non-interacting quarks is proportional to $ x \log(1+e^{-x/2}) $. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07522v1-abstract-full').style.display = 'none'; document.getElementById('2012.07522v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/20-075, CERN-TH-2020-206 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.04822">arXiv:2006.04822</a> <span> [<a href="https://arxiv.org/pdf/2006.04822">pdf</a>, <a href="https://arxiv.org/format/2006.04822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2020.07.006">10.1016/j.physrep.2020.07.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The anomalous magnetic moment of the muon in the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Aoyama%2C+T">T. Aoyama</a>, <a href="/search/hep-lat?searchtype=author&query=Asmussen%2C+N">N. Asmussen</a>, <a href="/search/hep-lat?searchtype=author&query=Benayoun%2C+M">M. Benayoun</a>, <a href="/search/hep-lat?searchtype=author&query=Bijnens%2C+J">J. Bijnens</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=Caprini%2C+I">I. Caprini</a>, <a href="/search/hep-lat?searchtype=author&query=Calame%2C+C+M+C">C. M. Carloni Calame</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-lat?searchtype=author&query=Curciarello%2C+F">F. Curciarello</a>, <a href="/search/hep-lat?searchtype=author&query=Czy%C5%BC%2C+H">H. Czy偶</a>, <a href="/search/hep-lat?searchtype=author&query=Danilkin%2C+I">I. Danilkin</a>, <a href="/search/hep-lat?searchtype=author&query=Davier%2C+M">M. Davier</a>, <a href="/search/hep-lat?searchtype=author&query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/hep-lat?searchtype=author&query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-lat?searchtype=author&query=Eidelman%2C+S+I">S. I. Eidelman</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">A. G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+D">D. Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=Golterman%2C+M">M. Golterman</a>, <a href="/search/hep-lat?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hagelstein%2C+F">F. Hagelstein</a>, <a href="/search/hep-lat?searchtype=author&query=Hayakawa%2C+M">M. Hayakawa</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.04822v2-abstract-short" style="display: inline;"> We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $伪$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(伪^5)$ with negligible numerical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04822v2-abstract-full').style.display = 'inline'; document.getElementById('2006.04822v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.04822v2-abstract-full" style="display: none;"> We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $伪$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(伪^5)$ with negligible numerical uncertainty. The electroweak contribution is suppressed by $(m_渭/M_W)^2$ and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at $\mathcal{O}(伪^2)$ and is due to hadronic vacuum polarization, whereas at $\mathcal{O}(伪^3)$ the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads $a_渭^\text{SM}=116\,591\,810(43)\times 10^{-11}$ and is smaller than the Brookhaven measurement by 3.7$蟽$. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future-which are also discussed here-make this quantity one of the most promising places to look for evidence of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04822v2-abstract-full').style.display = 'none'; document.getElementById('2006.04822v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">196 pages, 103 figures, version published in Phys. Rept., bib files for the citation references are available from: https://muon-gm2-theory.illinois.edu</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-207-T, INT-PUB-20-021, KEK Preprint 2020-5, MITP/20-028, CERN-TH-2020-075, IFT-UAM/CSIC-20-74, LMU-ASC 18/20, LTH 1234, LU TP 20-20, MAN/HEP/2020/003, PSI-PR-20-06, UWThPh 2020-14, ZU-TH 18/20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rept. 887 (2020) 1-166 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.03368">arXiv:2001.03368</a> <span> [<a href="https://arxiv.org/pdf/2001.03368">pdf</a>, <a href="https://arxiv.org/format/2001.03368">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.091501">10.1103/PhysRevD.102.091501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The rate of photon production in the quark-gluon plasma from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Steinberg%2C+A">Aman Steinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Toniato%2C+A">Arianna Toniato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.03368v1-abstract-short" style="display: inline;"> We calculate the thermal rate of real-photon production in the quark-gluon plasma at a temperature of $T=254$ MeV using lattice QCD. The calculation is based on the difference between the spatially transverse and longitudinal parts of the polarization tensor, which has the advantage of falling off rapidly at large frequencies. We obtain this linear combination in the time-momentum representation f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.03368v1-abstract-full').style.display = 'inline'; document.getElementById('2001.03368v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.03368v1-abstract-full" style="display: none;"> We calculate the thermal rate of real-photon production in the quark-gluon plasma at a temperature of $T=254$ MeV using lattice QCD. The calculation is based on the difference between the spatially transverse and longitudinal parts of the polarization tensor, which has the advantage of falling off rapidly at large frequencies. We obtain this linear combination in the time-momentum representation from lattice QCD with two flavors of quarks in the continuum limit with a precision of about two parts per mille. Applying a theoretically motivated fit ansatz for the associated spectral function, we obtain values for the photon rate that are in line with QCD weak-coupling calculations; for photon momenta $ 1.0\leq k[{\rm GeV}]\leq 1.4$, our non-perturbative results constrain the rate to be no larger than twice the weak-coupling prediction. We also provide a physics interpretation of the electromagnetic spectral functions valid for all frequencies and momenta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.03368v1-abstract-full').style.display = 'none'; document.getElementById('2001.03368v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, one table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2020-004, MITP/20-001 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 091501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01950">arXiv:1912.01950</a> <span> [<a href="https://arxiv.org/pdf/1912.01950">pdf</a>, <a href="https://arxiv.org/format/1912.01950">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202023401016">10.1051/epjconf/202023401016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the hadronic leading order contribution to the muon $g-2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">H. Wittig</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">A. G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">G. von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=H%C3%B6rz%2C+B">B. H枚rz</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">K. Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Mohler%2C+D">D. Mohler</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">K. Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">A. Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Jos%C3%A9%2C+T+S">T. San Jos茅</a>, <a href="/search/hep-lat?searchtype=author&query=Wilhelm%2C+J">J. Wilhelm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01950v1-abstract-short" style="display: inline;"> The persistent discrepancy of about 3.5 standard deviations between the experimental measurement and the Standard Model prediction for the muon anomalous magnetic moment, $a_渭$, is one of the most promising hints for the possible existence of new physics. Here we report on our lattice QCD calculation of the hadronic vacuum polarisation contribution $a_渭^{\rm hvp}$, based on gauge ensembles with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01950v1-abstract-full').style.display = 'inline'; document.getElementById('1912.01950v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01950v1-abstract-full" style="display: none;"> The persistent discrepancy of about 3.5 standard deviations between the experimental measurement and the Standard Model prediction for the muon anomalous magnetic moment, $a_渭$, is one of the most promising hints for the possible existence of new physics. Here we report on our lattice QCD calculation of the hadronic vacuum polarisation contribution $a_渭^{\rm hvp}$, based on gauge ensembles with $N_f=2+1$ flavours of O($a$) improved Wilson quarks. We address the conceptual and numerical challenges that one encounters along the way to a sub-percent determination of the hadronic vacuum polarisation contribution. The current status of lattice calculations of $a_渭^{\rm hvp}$ is presented by performing a detailed comparison with the results from other groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01950v1-abstract-full').style.display = 'none'; document.getElementById('1912.01950v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, Invited talk at "Flavour changing and conserving processes", Capri, Italy, 29-31 August 2019</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-084 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.00292">arXiv:1912.00292</a> <span> [<a href="https://arxiv.org/pdf/1912.00292">pdf</a>, <a href="https://arxiv.org/format/1912.00292">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD estimate of the quark-gluon plasma photon emission rate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Steinberg%2C+A">Aman Steinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Toniato%2C+A">Arianna Toniato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.00292v1-abstract-short" style="display: inline;"> We present a computation of the photon emission rate of the quark-gluon plasma from two-flavor lattice QCD at a temperature of 254 MeV, which follows up on the work presented in [1]. We perform a continuum extrapolation of the vector-current correlator, and consider a linear combination of the Lorentz indices corresponding to a UV-finite spectral function. To extract the spectral function from the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00292v1-abstract-full').style.display = 'inline'; document.getElementById('1912.00292v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.00292v1-abstract-full" style="display: none;"> We present a computation of the photon emission rate of the quark-gluon plasma from two-flavor lattice QCD at a temperature of 254 MeV, which follows up on the work presented in [1]. We perform a continuum extrapolation of the vector-current correlator, and consider a linear combination of the Lorentz indices corresponding to a UV-finite spectral function. To extract the spectral function from the lattice correlators, an ill-posed inverse problem, we model the spectral function with a Pad茅 ansatz. We further constrain our analysis by simultaneously fitting data with different momenta. We present results for a multi-momentum fit including the three smallest momenta available from our lattice analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00292v1-abstract-full').style.display = 'none'; document.getElementById('1912.00292v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Contribution to the 37th International Symposium on Lattice Field Theory - Lattice2019, 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-082 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04733">arXiv:1911.04733</a> <span> [<a href="https://arxiv.org/pdf/1911.04733">pdf</a>, <a href="https://arxiv.org/format/1911.04733">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The leading hadronic vacuum polarization contribution to the muon anomalous magnetic moment using $N_f=2+1$ O($a$) improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H">Harvey Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04733v1-abstract-short" style="display: inline;"> We present a lattice calculation of the leading hadronic contribution to the anomalous magnetic moment of the muon. This work is based on a subset of the CLS ensembles with $N_f = 2+1$ dynamical quarks and a quenched charm quark. Noise reduction techniques are used to improve significantly the statistical precision of the dominant light quark contribution. The main source of systematic error comes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04733v1-abstract-full').style.display = 'inline'; document.getElementById('1911.04733v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04733v1-abstract-full" style="display: none;"> We present a lattice calculation of the leading hadronic contribution to the anomalous magnetic moment of the muon. This work is based on a subset of the CLS ensembles with $N_f = 2+1$ dynamical quarks and a quenched charm quark. Noise reduction techniques are used to improve significantly the statistical precision of the dominant light quark contribution. The main source of systematic error comes from finite size effects which are estimated using the formalism described in Ref. [7] and based on our knowledge of the timelike pion form factor. The strange and charm quark contributions are under control and an estimate of the quark-disconnected contribution is included. Isospin breaking effects will be studied in a future publication but are included in the systematic error using an estimate based on published lattice results. Our final result, $a_渭^{\rm hvp} = (720.0\pm 12.4 \pm 6.8)\times 10^{-10}$, has a precision of about 2%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04733v1-abstract-full').style.display = 'none'; document.getElementById('1911.04733v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages. Contribution to the 37th International Symposium on Lattice Field Theory (LATTICE2019), 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-075,DESY 19-196 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09525">arXiv:1910.09525</a> <span> [<a href="https://arxiv.org/pdf/1910.09525">pdf</a>, <a href="https://arxiv.org/format/1910.09525">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.363.0010">10.22323/1.363.0010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The hadronic contribution to the running of the electromagnetic coupling and the electroweak mixing angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09525v2-abstract-short" style="display: inline;"> The electromagnetic coupling $伪$ and the electroweak mixing angle $胃_{\mathrm{W}}$ are parameters of the Standard Model (SM) that enter precision SM tests and play a fundamental r么le in beyond SM physics searches. Their values are energy dependent, and non-perturbative hadronic contributions are the main source of uncertainty to the theoretical knowledge of the running with energy. We present a la… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09525v2-abstract-full').style.display = 'inline'; document.getElementById('1910.09525v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09525v2-abstract-full" style="display: none;"> The electromagnetic coupling $伪$ and the electroweak mixing angle $胃_{\mathrm{W}}$ are parameters of the Standard Model (SM) that enter precision SM tests and play a fundamental r么le in beyond SM physics searches. Their values are energy dependent, and non-perturbative hadronic contributions are the main source of uncertainty to the theoretical knowledge of the running with energy. We present a lattice study of the leading hadronic contribution to the running of $伪$ and $\sin^2胃_{\mathrm{W}}$. The former is related to the hadronic vacuum polarization (HVP) function of electromagnetic currents, and the latter to the HVP mixing of the electromagnetic current with the vector part of the weak neutral currents. We use the time-momentum representation (TMR) method to compute the HVP on the lattice, estimating both connected and disconnected contributions on $N_{\mathrm{f}}=2+1$ non-perturbatively $O(a)$-improved Wilson fermions ensembles from the Coordinated Lattice Simulations (CLS) initiative. The use of different lattice spacings and quark masses allows us to reliably extrapolate the results to the physical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09525v2-abstract-full').style.display = 'none'; document.getElementById('1910.09525v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, v2: corrected the charm contribution in Figure 2 and Table 2, talk presented at the 37th International Symposium on Lattice Field Theory, 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-064, DESY 19-179 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2019)010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.03120">arXiv:1904.03120</a> <span> [<a href="https://arxiv.org/pdf/1904.03120">pdf</a>, <a href="https://arxiv.org/format/1904.03120">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.014510">10.1103/PhysRevD.100.014510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The leading hadronic contribution to $(g-2)_渭$ from lattice QCD with $N_{\rm f}=2+1$ flavours of O($a$) improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.03120v1-abstract-short" style="display: inline;"> The comparison of the theoretical and experimental determinations of the anomalous magnetic moment of the muon $(g-2)_渭$ constitutes one of the strongest tests of the Standard Model at low energies. In this article, we compute the leading hadronic contribution to $(g-2)_渭$ using lattice QCD simulations employing Wilson quarks. Gauge field ensembles at four different lattice spacings and several va… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03120v1-abstract-full').style.display = 'inline'; document.getElementById('1904.03120v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.03120v1-abstract-full" style="display: none;"> The comparison of the theoretical and experimental determinations of the anomalous magnetic moment of the muon $(g-2)_渭$ constitutes one of the strongest tests of the Standard Model at low energies. In this article, we compute the leading hadronic contribution to $(g-2)_渭$ using lattice QCD simulations employing Wilson quarks. Gauge field ensembles at four different lattice spacings and several values of the pion mass down to its physical value are used. We apply the O($a$) improvement programme with two discretizations of the vector current to better constrain the approach to the continuum limit. The electromagnetic current correlators are computed in the time-momentum representation. In addition, we perform auxiliary calculations of the pion form factor at timelike momenta in order to better constrain the tail of the isovector correlator and to correct its dominant finite-size effect. For the numerically dominant light-quark contribution, we have rescaled the lepton mass by the pion decay constant computed on each lattice ensemble. We perform a combined chiral and continuum extrapolation to the physical point, and our final result is $ a_渭^{\rm hvp}=(720.0\pm12.4_{\rm stat}\,\pm9.9_{\rm syst})\cdot10^{-10}$. It contains the contributions of quark-disconnected diagrams, and the systematic error has been enlarged to account for the missing isospin-breaking effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03120v1-abstract-full').style.display = 'none'; document.getElementById('1904.03120v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-021 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 014510 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02384">arXiv:1904.02384</a> <span> [<a href="https://arxiv.org/pdf/1904.02384">pdf</a>, <a href="https://arxiv.org/format/1904.02384">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Testing the strength of the $\text{U}_A(1)$ anomaly at the chiral phase transition in two-flavour QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Philipsen%2C+O">Owe Philipsen</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02384v1-abstract-short" style="display: inline;"> We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $\mathcal{O}(a)$-improved Wilson quarks. Particular emphasis lies on the pattern of chiral symmetry restoration, which we probe via the static screening correlators. On $32^3$ volumes we observe that the screening masses in transverse iso-vector vector and axial-vector channels become degenerate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02384v1-abstract-full').style.display = 'inline'; document.getElementById('1904.02384v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02384v1-abstract-full" style="display: none;"> We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $\mathcal{O}(a)$-improved Wilson quarks. Particular emphasis lies on the pattern of chiral symmetry restoration, which we probe via the static screening correlators. On $32^3$ volumes we observe that the screening masses in transverse iso-vector vector and axial-vector channels become degenerate at the transition temperature. The splitting between the screening masses in iso-vector scalar and pseudoscalar channels is strongly reduced compared to the splitting at zero temperature and is actually consistent with zero within uncertainties. In this proceedings article we extend our studies to matrix elements and iso-singlet correlation functions. Furthermore, we present results on larger volumes, including first results at the physical pion mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02384v1-abstract-full').style.display = 'none'; document.getElementById('1904.02384v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, invited contribution to the 9th International Workshop on Chiral Dynamics, Sept. 17-21, 2018, Duke University, Durham, NC, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08669">arXiv:1811.08669</a> <span> [<a href="https://arxiv.org/pdf/1811.08669">pdf</a>, <a href="https://arxiv.org/format/1811.08669">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.334.0137">10.22323/1.334.0137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The leading hadronic contribution to the running of the Weinberg angle using covariant coordinate-space methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08669v1-abstract-short" style="display: inline;"> We present a preliminary study of the leading hadronic contribution to the running of the Weinberg angle $胃_{\mathrm{W}}$. The running is extracted from the correlation function of the electromagnetic current with the vector part of the weak neutral current using both the standard time-momentum representation method and the Lorentz-covariant coordinate-space method recently introduced by Meyer. Bo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08669v1-abstract-full').style.display = 'inline'; document.getElementById('1811.08669v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08669v1-abstract-full" style="display: none;"> We present a preliminary study of the leading hadronic contribution to the running of the Weinberg angle $胃_{\mathrm{W}}$. The running is extracted from the correlation function of the electromagnetic current with the vector part of the weak neutral current using both the standard time-momentum representation method and the Lorentz-covariant coordinate-space method recently introduced by Meyer. Both connected and disconnected contributions have been computed on $N_{\mathrm{f}}=2+1$ non-perturbatively $O(a)$-improved Wilson fermions configurations from the CLS initiative. Similar covariant coordinate-space methods can be used to compute the leading hadronic contribution to the anomalous magnetic moment of the muon $(g-2)_渭$ and to the running of the QED coupling $伪$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08669v1-abstract-full').style.display = 'none'; document.getElementById('1811.08669v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, talk presented at The 36th Annual International Symposium on Lattice Field Theory, July 22-28, 2018, East Lansing, MI, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/18-098 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2018)137 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.01592">arXiv:1711.01592</a> <span> [<a href="https://arxiv.org/pdf/1711.01592">pdf</a>, <a href="https://arxiv.org/format/1711.01592">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817511005">10.1051/epjconf/201817511005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local multiboson factorization of the quark determinant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+L">Leonardo Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+S">Stefan Schaefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.01592v1-abstract-short" style="display: inline;"> We discuss the recently proposed multiboson domain-decomposed factorization of the gauge-field dependence of the fermion determinant in lattice QCD. In particular, we focus on the case of a lattice divided in an arbitrary number of thick time slices. As a consequence, multiple space-time regions can be updated independently. This allows to address the exponential degradation of the signal-to-noise… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.01592v1-abstract-full').style.display = 'inline'; document.getElementById('1711.01592v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.01592v1-abstract-full" style="display: none;"> We discuss the recently proposed multiboson domain-decomposed factorization of the gauge-field dependence of the fermion determinant in lattice QCD. In particular, we focus on the case of a lattice divided in an arbitrary number of thick time slices. As a consequence, multiple space-time regions can be updated independently. This allows to address the exponential degradation of the signal-to-noise ration of correlation functions with multilevel Monte Carlo sampling. We show numerical evidence of the effectiveness of a two-level integration for pseudoscalar propagators with momentum and for vector propagators, in a two active regions setup. These results are relevant to lattice computation of the hadronic contributions to the anomalous magnetic moment of the muon and to heavy meson decay form factors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.01592v1-abstract-full').style.display = 'none'; document.getElementById('1711.01592v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> HIM-2017-06, CERN-TH-2017-221, DESY-17-167 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Web Conf. 175 (2018) 11005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09212">arXiv:1710.09212</a> <span> [<a href="https://arxiv.org/pdf/1710.09212">pdf</a>, <a href="https://arxiv.org/format/1710.09212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817501003">10.1051/epjconf/201817501003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-boson block factorization of fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+L">Leonardo Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+S">Stefan Schaefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09212v2-abstract-short" style="display: inline;"> The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g-2, and the form factors of semile… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09212v2-abstract-full').style.display = 'inline'; document.getElementById('1710.09212v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09212v2-abstract-full" style="display: none;"> The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g-2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the gauge field and in the auxiliary boson fields. Once combined with the corresponding factorization of the quark propagator, it paves the way for multi-level Monte Carlo integration in the presence of fermions opening new perspectives in lattice QCD. Exploratory results on the impact on the above mentioned observables will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09212v2-abstract-full').style.display = 'none'; document.getElementById('1710.09212v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures, Proceedings of the plenary talk given a 35th International Symposium on Lattice Field Theory (Lattice2017) - Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2017-195, DESY 17-170, HIM-2017-07 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.06424">arXiv:1612.06424</a> <span> [<a href="https://arxiv.org/pdf/1612.06424">pdf</a>, <a href="https://arxiv.org/format/1612.06424">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Domain decomposition and multilevel integration for fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+L">Leonardo Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+S">Stefan Schaefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.06424v2-abstract-short" style="display: inline;"> The numerical computation of many hadronic correlation functions is exceedingly difficult due to the exponentially decreasing signal-to-noise ratio with the distance between source and sink. Multilevel integration methods, using independent updates of separate regions in space-time, are known to be able to solve such problems but have so far been available only for pure gauge theory. We present fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06424v2-abstract-full').style.display = 'inline'; document.getElementById('1612.06424v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.06424v2-abstract-full" style="display: none;"> The numerical computation of many hadronic correlation functions is exceedingly difficult due to the exponentially decreasing signal-to-noise ratio with the distance between source and sink. Multilevel integration methods, using independent updates of separate regions in space-time, are known to be able to solve such problems but have so far been available only for pure gauge theory. We present first steps into the direction of making such integration schemes amenable to theories with fermions, by factorizing a given observable via an approximated domain decomposition of the quark propagator. This allows for multilevel integration of the (large) factorized contribution to the observable, while its (small) correction can be computed in the standard way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06424v2-abstract-full').style.display = 'none'; document.getElementById('1612.06424v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, v2: published version, talk presented at the 34th annual International Symposium on Lattice Field Theory, 24-30 July 2016, University of Southampton, UK</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 16-246 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2016)263 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.08797">arXiv:1610.08797</a> <span> [<a href="https://arxiv.org/pdf/1610.08797">pdf</a>, <a href="https://arxiv.org/format/1610.08797">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The large $N$ limit of the topological susceptibility of Yang-Mills gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Vera%2C+M+G">Miguel Garc铆a Vera</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+L">Leonardo Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+S">Stefan Schaefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.08797v1-abstract-short" style="display: inline;"> We present a precise computation of the topological susceptibility $蠂_{_\mathrm{YM}}$ of SU$(N)$ Yang-Mills theory in the large $N$ limit. The computation is done on the lattice, using high-statistics Monte Carlo simulations with $N=3, 4, 5, 6$ and three different lattice spacings. Two major improvements make it possible to go to finer lattice spacing and larger $N$ compared to previous works. Fir… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08797v1-abstract-full').style.display = 'inline'; document.getElementById('1610.08797v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.08797v1-abstract-full" style="display: none;"> We present a precise computation of the topological susceptibility $蠂_{_\mathrm{YM}}$ of SU$(N)$ Yang-Mills theory in the large $N$ limit. The computation is done on the lattice, using high-statistics Monte Carlo simulations with $N=3, 4, 5, 6$ and three different lattice spacings. Two major improvements make it possible to go to finer lattice spacing and larger $N$ compared to previous works. First, the topological charge is implemented through the gradient flow definition; and second, open boundary conditions in the time direction are employed in order to avoid the freezing of the topological charge. The results allow us to extrapolate the dimensionless quantity $t_0^2蠂_{_\mathrm{YM}}$ to the continuum and large $N$ limits with confidence. The accuracy of the final result represents a new quality in the verification of large $N$ scaling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08797v1-abstract-full').style.display = 'none'; document.getElementById('1610.08797v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Presented at the 34th International Symposium on Lattice Field Theory, 24-30 July 2016, University of Southampton, UK</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 16-205 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.02419">arXiv:1609.02419</a> <span> [<a href="https://arxiv.org/pdf/1609.02419">pdf</a>, <a href="https://arxiv.org/format/1609.02419">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.034503">10.1103/PhysRevD.95.034503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A local factorization of the fermion determinant in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+L">Leonardo Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+S">Stefan Schaefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.02419v2-abstract-short" style="display: inline;"> We introduce a factorization of the fermion determinant in lattice QCD with Wilson-type fermions that leads to a bosonic action which is local in the block fields. The interaction among gauge fields on distant blocks is mediated by multiboson fields located on the boundaries of the blocks. The resultant multiboson domain-decomposed hybrid Monte Carlo passes extensive numerical tests carried out by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02419v2-abstract-full').style.display = 'inline'; document.getElementById('1609.02419v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.02419v2-abstract-full" style="display: none;"> We introduce a factorization of the fermion determinant in lattice QCD with Wilson-type fermions that leads to a bosonic action which is local in the block fields. The interaction among gauge fields on distant blocks is mediated by multiboson fields located on the boundaries of the blocks. The resultant multiboson domain-decomposed hybrid Monte Carlo passes extensive numerical tests carried out by measuring standard gluonic observables. The combination of the determinant factorization and of the one of the propagator, that we put forward recently, paves the way for multilevel Monte Carlo integration in the presence of fermions. We test this possibility by computing the disconnected correlator of two flavor-diagonal pseudoscalar densities, and we observe a significant increase of the signal-to-noise ratio due to a two-level integration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02419v2-abstract-full').style.display = 'none'; document.getElementById('1609.02419v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures. Minor text modifications in Section 2. Appendix E simplified. Final version to appear on PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-16-178 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 034503 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.05939">arXiv:1607.05939</a> <span> [<a href="https://arxiv.org/pdf/1607.05939">pdf</a>, <a href="https://arxiv.org/format/1607.05939">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2016.09.029">10.1016/j.physletb.2016.09.029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The topological susceptibility in the large-N limit of SU(N) Yang-Mills theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Vera%2C+M+G">Miguel Garc铆a Vera</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+L">Leonardo Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+S">Stefan Schaefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.05939v1-abstract-short" style="display: inline;"> We compute the topological susceptibility of the SU(N) Yang-Mills theory in the large-N limit with a percent level accuracy. This is achieved by measuring the gradient-flow definition of the susceptibility at three values of the lattice spacing for N=3,4,5,6. Thanks to this coverage of parameter space, we can extrapolate the results to the large-N and continuum limits with confidence. Open boundar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05939v1-abstract-full').style.display = 'inline'; document.getElementById('1607.05939v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.05939v1-abstract-full" style="display: none;"> We compute the topological susceptibility of the SU(N) Yang-Mills theory in the large-N limit with a percent level accuracy. This is achieved by measuring the gradient-flow definition of the susceptibility at three values of the lattice spacing for N=3,4,5,6. Thanks to this coverage of parameter space, we can extrapolate the results to the large-N and continuum limits with confidence. Open boundary conditions are instrumental to make simulations feasible on the finer lattices at the larger N. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05939v1-abstract-full').style.display = 'none'; document.getElementById('1607.05939v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 16-131 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B762 (2016) 232-236 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.04587">arXiv:1601.04587</a> <span> [<a href="https://arxiv.org/pdf/1601.04587">pdf</a>, <a href="https://arxiv.org/format/1601.04587">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.094507">10.1103/PhysRevD.93.094507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Domain decomposition, multi-level integration and exponential noise reduction in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+L">Leonardo Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+S">Stefan Schaefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.04587v1-abstract-short" style="display: inline;"> We explore the possibility of computing fermionic correlators on the lattice by combining a domain decomposition with a multi-level integration scheme. The quark propagator is expanded in series of terms with a well defined hierarchical structure. The higher the order of a term, the (exponentially) smaller its magnitude, the less local is its dependence on the gauge field. Once inserted in a Wick… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04587v1-abstract-full').style.display = 'inline'; document.getElementById('1601.04587v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.04587v1-abstract-full" style="display: none;"> We explore the possibility of computing fermionic correlators on the lattice by combining a domain decomposition with a multi-level integration scheme. The quark propagator is expanded in series of terms with a well defined hierarchical structure. The higher the order of a term, the (exponentially) smaller its magnitude, the less local is its dependence on the gauge field. Once inserted in a Wick contraction, the gauge-field dependence of the terms in the resulting series can be factorized so that it is suitable for multi-level Monte Carlo integration. We test the strategy in quenched QCD by computing the disconnected correlator of two flavor-diagonal pseudoscalar densities, and a nucleon two-point function. In either cases we observe a significant exponential increase of the signal-to-noise ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04587v1-abstract-full').style.display = 'none'; document.getElementById('1601.04587v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-16-007 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 094507 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.08826">arXiv:1510.08826</a> <span> [<a href="https://arxiv.org/pdf/1510.08826">pdf</a>, <a href="https://arxiv.org/format/1510.08826">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.251.0318">10.22323/1.251.0318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Gaussianity of the topological charge distribution in $\mathrm{SU}(3)$ Yang-Mills theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.08826v1-abstract-short" style="display: inline;"> In Yang-Mills theory, the cumulants of the na茂ve lattice discretization of the topological charge evolved with the Yang-Mills gradient flow coincide, in the continuum limit, with those of the universal definition. We sketch in these proceedings the main points of the proof. By implementing the gradient-flow definition in numerical simulations, we report the results of a precise computation of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.08826v1-abstract-full').style.display = 'inline'; document.getElementById('1510.08826v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.08826v1-abstract-full" style="display: none;"> In Yang-Mills theory, the cumulants of the na茂ve lattice discretization of the topological charge evolved with the Yang-Mills gradient flow coincide, in the continuum limit, with those of the universal definition. We sketch in these proceedings the main points of the proof. By implementing the gradient-flow definition in numerical simulations, we report the results of a precise computation of the second and the fourth cumulant of the $\mathrm{SU}(3)$ Yang-Mills theory topological charge distribution, in order to measure the deviation from Gaussianity. A range of high-statistics Monte Carlo simulations with different lattice volumes and spacings is used to extrapolate the results to the continuum limit with confidence by keeping finite-volume effects negligible with respect to the statistical errors. Our best result for the topological susceptibility is $t_0^2蠂=6.67(7)\times 10^{-4}$, while for the ratio between the fourth and the second cumulant we obtain $R=0.233(45)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.08826v1-abstract-full').style.display = 'none'; document.getElementById('1510.08826v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, talk presented at the 33rd International Symposium on Lattice Field Theory - Lattice 2015, July 14-18, 2015, Kobe International Conference Center, Kobe, Japan</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE 2015)318 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.06052">arXiv:1506.06052</a> <span> [<a href="https://arxiv.org/pdf/1506.06052">pdf</a>, <a href="https://arxiv.org/format/1506.06052">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.074502">10.1103/PhysRevD.92.074502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Gaussianities in the topological charge distribution of the SU(3) Yang--Mills theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Consonni%2C+C">Cristian Consonni</a>, <a href="/search/hep-lat?searchtype=author&query=Engel%2C+G+P">Georg P. Engel</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+L">Leonardo Giusti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.06052v2-abstract-short" style="display: inline;"> We study the topological charge distribution of the SU(3) Yang--Mills theory with high precision in order to be able to detect deviations from Gaussianity. The computation is carried out on the lattice with high statistics Monte Carlo simulations by implementing a naive discretization of the topological charge evolved with the Yang--Mills gradient flow. This definition is far less demanding than t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06052v2-abstract-full').style.display = 'inline'; document.getElementById('1506.06052v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.06052v2-abstract-full" style="display: none;"> We study the topological charge distribution of the SU(3) Yang--Mills theory with high precision in order to be able to detect deviations from Gaussianity. The computation is carried out on the lattice with high statistics Monte Carlo simulations by implementing a naive discretization of the topological charge evolved with the Yang--Mills gradient flow. This definition is far less demanding than the one suggested from Neuberger's fermions and, as shown in this paper, in the continuum limit its cumulants coincide with those of the universal definition appearing in the chiral Ward identities. Thanks to the range of lattice volumes and spacings considered, we can extrapolate the results for the second and fourth cumulant of the topological charge distribution to the continuum limit with confidence by keeping finite volume effects negligible with respect to the statistical errors. Our best results for the topological susceptibility is t_0^2*chi=6.67(7)*10^-4, where t_0 is a standard reference scale, while for the ratio of the forth cumulant over the second we obtain R=0.233(45). The latter is compatible with the expectations from the large Nc expansion, while it rules out the theta-behavior of the vacuum energy predicted by the dilute instanton model. Its large distance from 1 implies that, in the ensemble of gauge configurations that dominate the path integral, the fluctuations of the topological charge are of quantum non-perturbative nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06052v2-abstract-full').style.display = 'none'; document.getElementById('1506.06052v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 8 figures, version to appear on PRD. Text in section 2 and 3 modified, numbers in physical units slightly changed. No major theoretical and numerical conclusions changed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 074502 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.8358">arXiv:1410.8358</a> <span> [<a href="https://arxiv.org/pdf/1410.8358">pdf</a>, <a href="https://arxiv.org/format/1410.8358">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Testing the Witten-Veneziano mechanism with the Yang-Mills gradient flow on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Consonni%2C+C">Cristian Consonni</a>, <a href="/search/hep-lat?searchtype=author&query=Engel%2C+G+P">Georg P. Engel</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+L">Leonardo Giusti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.8358v1-abstract-short" style="display: inline;"> We present a precise computation of the topological charge distribution in the $SU(3)$ Yang-Mills theory. It is carried out on the lattice with high statistics Monte Carlo simulations by employing the clover discretization of the field strength tensor combined with the Yang-Mills gradient flow. The flow equations are integrated numerically by a fourth-order structure-preserving Runge-Kutta method.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8358v1-abstract-full').style.display = 'inline'; document.getElementById('1410.8358v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.8358v1-abstract-full" style="display: none;"> We present a precise computation of the topological charge distribution in the $SU(3)$ Yang-Mills theory. It is carried out on the lattice with high statistics Monte Carlo simulations by employing the clover discretization of the field strength tensor combined with the Yang-Mills gradient flow. The flow equations are integrated numerically by a fourth-order structure-preserving Runge-Kutta method. We have performed simulations at four lattice spacings and several lattice sizes to remove with confidence the systematic errors in the second (topological susceptibility $蠂_t^\text{YM}$) and the fourth cumulant of the distribution. In the continuum we obtain the preliminary results $t_0^2蠂_t^\text{YM}=6.53(8)\times 10^{-4}$ and the ratio between the fourth and the second cumulant $R=0.233(45)$. Our results disfavour the $胃$-behaviour of the vacuum energy predicted by dilute instanton models, while they are compatible with the expectation from the large-$N_c$ expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8358v1-abstract-full').style.display = 'none'; document.getElementById('1410.8358v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, talk presented at the 32nd International Symposium on Lattice Field Theory - Lattice 2014, June 23-28, 2014, Columbia University New York, NY</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2014)353 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>