CINXE.COM

Search results for: solid

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: solid</title> <meta name="description" content="Search results for: solid"> <meta name="keywords" content="solid"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="solid" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="solid"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2225</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: solid</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2225</span> Forecasting Solid Waste Generation in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeliz%20Ekinci">Yeliz Ekinci</a>, <a href="https://publications.waset.org/abstracts/search?q=Melis%20Koyuncu"> Melis Koyuncu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecast" title="forecast">forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20generation" title=" solid waste generation"> solid waste generation</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management" title=" solid waste management"> solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/50741/forecasting-solid-waste-generation-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2224</span> A Unified Ghost Solid Method for the Elastic Solid-Solid Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian">Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ghost Solid Method (GSM) based algorithms have been extensively used for numerical calculation of wave propagation in the limit of abrupt changes in materials. In this work, we present a unified version of the GSMs that can be successfully applied to both abrupt as well as smooth changes of the material properties in a medium. The application of this method enables us to use the previously-matured numerical algorithms which were developed to be applied to homogeneous mediums, with only minor modifications. This method is developed for one-dimensional settings and its extension to multi-dimensions is briefly discussed. Various numerical experiments are presented to show the applicability of this unified GSM to wave propagation problems in sharply as well as smoothly varying mediums. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20solid" title="elastic solid">elastic solid</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20material" title=" functionally graded material"> functionally graded material</a>, <a href="https://publications.waset.org/abstracts/search?q=ghost%20solid%20method" title=" ghost solid method"> ghost solid method</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-solid%20interaction" title=" solid-solid interaction"> solid-solid interaction</a> </p> <a href="https://publications.waset.org/abstracts/25464/a-unified-ghost-solid-method-for-the-elastic-solid-solid-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2223</span> Solid-State Sodium Conductor for Solid-State Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yumei%20Wang">Yumei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyu%20Xu"> Xiaoyu Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lu"> Li Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state battery adopts solid-state electrolyte such as oxide- and composite-based solid electrolytes. With the adaption of nonflammable or less flammable solid electrolytes, the safety of solid-state batteries can be largely increased. NASICON (Na₃Zr₂Si₂PO₁₂, NZSP) is one of the sodium ion conductors that possess relatively high ionic conductivity, wide electrochemical stable range and good chemical stability. Therefore, it has received increased attention. We report the development of high-density NZSP through liquid phase sintering and its organic-inorganic composite electrolyte. Through reactive liquid phase sintering, the grain boundary conductivity can be largely enhanced while using an organic-inorganic composite electrolyte, interfacial wetting and impedance can be largely reduced hence being possible to fabricate scalable solid-state batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid-state%20electrolyte" title="solid-state electrolyte">solid-state electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20electrolyte" title=" composite electrolyte"> composite electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20performance" title=" electrochemical performance"> electrochemical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a> </p> <a href="https://publications.waset.org/abstracts/169003/solid-state-sodium-conductor-for-solid-state-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2222</span> Synthesis of Solid Polymeric Materials by Maghnite-H⁺ as a Green Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Draoua%20Zohra">Draoua Zohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine"> Harrane Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Solid Polymeric Materials have been successfully prepared by the copolymerization of e-caprolactone (CL) and poly (ethylene glycol) (PEG) employing Maghnite-H+ at 80°C. Maghnite-H+ is a solid catalyst non-toxic. The presence of PEG chains leads to a break in the growth of PCL chains and consequently leads to the copolymer tri-block PCL-PEG-PCL. The objective of this study was to synthesize and characterize of Solid Polymeric Materials. The highly hydrophilic nature of polyethylene glycol has sparked our interest in developing a Solid Polymeric based e-caprolactone and poly (ethylene glycol). PCL and PEG are biocompatible materials. Their ring-opening copolymerization using Maghnite H+ makes to the Solid Polymeric Materials. The morphology and structure of Solid polymeric Materials were characterized by ¹H and ¹³C-NMR spectra and Gel Permeation Chromatography (GPC). This paper developed the application of Maghnite-H+ as an efficient catalyst by an easy-to-handle procedure to get solid polymeric materials. A cationic mechanism for the copolymerization reaction was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20copolymers" title="block copolymers">block copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite" title=" maghnite"> maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28e-caprolactone%29" title=" poly(e-caprolactone)"> poly(e-caprolactone)</a> </p> <a href="https://publications.waset.org/abstracts/97417/synthesis-of-solid-polymeric-materials-by-maghnite-h-as-a-green-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2221</span> Municipal Solid Waste Generation Trend in the Metropolitan Cities of the Muslim World </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Fakheri%20Raof">Farzaneh Fakheri Raof</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolkhalegh%20vadian"> Abdolkhalegh vadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important environmental issues in developing countries is municipal solid waste management. In this context, knowledge of the quantity and composition of solid waste provides the basic information for the optimal management of solid waste. Many studies have been conducted to investigate the impact of economic, social and cultural factors on generation trend of solid waste, however, few of these have addressed the role of religion in the matter. The present study is a field investigation on generation trend of solid waste in Mashhad, a metropolitan city in northeastern Iran. Accordingly, the religious rituals, quantity and composition of municipal solid waste were considered as independent and dependent variables, respectively. For this purpose, the quantity of the solid waste was initially determined. Afterwards, they were classified into 12 groups using the relevant standard methods. The results showed that the production rate of the municipal solid waste was 1,507 tons per day. Composing 65.2% of the whole; the organic materials constitute the largest share of the total municipal solid waste in Mashhad. The obtained results also revealed that there is a positive relationship between waste generation and the months of religious ceremonies so that the greatest amount of waste generated in the city was reported from Ramadan (as a religious month) in a way that it was significantly different from other months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mashhad" title="Mashhad">Mashhad</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=religious%20months" title=" religious months"> religious months</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20composition" title=" waste composition"> waste composition</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20waste" title=" organic waste"> organic waste</a> </p> <a href="https://publications.waset.org/abstracts/30335/municipal-solid-waste-generation-trend-in-the-metropolitan-cities-of-the-muslim-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2220</span> Simulation and Experimental of Solid Mixing of Free Flowing Material Using Solid Works in V-Blender</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Bouhaouche">Amina Bouhaouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Kaoua"> Zineb Kaoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Lila%20Lahreche"> Lila Lahreche</a>, <a href="https://publications.waset.org/abstracts/search?q=Sid%20Ali%20Kaoua"> Sid Ali Kaoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Daoud"> Kamel Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to present a novel approach for analyzing the solid dispersion and mixing performance by a numerical simulation method using solid works software of a monodisperse particles for a large span of time reached 20 minutes. To assure the viability of a numerical simulation, an experimental study of a binary mixture of monodiperse particles taken as free flowing material in a V blender was developed on the basis of relative standard deviation curves, and the arrangement of the particles in the vessel. The experimental results were discussed and compared to the numerical simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-cohesive%20material" title="non-cohesive material">non-cohesive material</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20mixing" title=" solid mixing"> solid mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20works" title=" solid works"> solid works</a>, <a href="https://publications.waset.org/abstracts/search?q=v-blender" title=" v-blender"> v-blender</a> </p> <a href="https://publications.waset.org/abstracts/38632/simulation-and-experimental-of-solid-mixing-of-free-flowing-material-using-solid-works-in-v-blender" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2219</span> Management of Municipal Solid Waste in Baghdad, Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayad%20Sleibi%20Mustafa">Ayad Sleibi Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdulkadhim%20Mohsin"> Ahmed Abdulkadhim Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Layth%20Noori%20Ali"> Layth Noori Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deterioration of solid waste management in Baghdad city is considered as a great challenge in terms of human health and environment. Baghdad city is divided into thirteen districts which are distributed on both Tigris River banks. The west bank is Al-Karkh and the east bank is Al-Rusafa. Municipal Solid Waste Management is one of the most complicated problems facing the environment in Iraq. Population growth led to increase waste production and more load of the waste to the limited capacity infrastructure. The problems of municipal solid waste become more serious after the war in 2003. More waste is disposed in underground landfills in Baghdad with little or no concern for both human health and environment. The results showed that the total annually predicted solid waste is increasing for the period 2015-2030. Municipal solid waste in 2030 will be 6,427,773 tons in Baghdad city according to the population growth rate of 2.4%. This increase is estimated to be approximately 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title="municipal solid waste">municipal solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20composition%20and%20characteristics" title=" solid waste composition and characteristics"> solid waste composition and characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=Baghdad%20city" title=" Baghdad city"> Baghdad city</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health" title=" human health"> human health</a> </p> <a href="https://publications.waset.org/abstracts/73797/management-of-municipal-solid-waste-in-baghdad-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2218</span> Stabilizing of Lithium-Solid-Electrolyte Interfaces by Atomic Layer Deposition Prepared Nano-Interlayers for a Model All-Solid-State Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rainer%20Goetz">Rainer Goetz</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ahaliabadeh"> Zahra Ahaliabadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Princess%20S.%20Llanos"> Princess S. Llanos</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaksandr%20S.%20Bandarenka"> Aliaksandr S. Bandarenka</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanja%20Kallio"> Tanja Kallio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to understand the electrochemistry of all-solid-state batteries (ASSBs), the use of electrochemical equivalent circuits with a physical meaning is essential. A model battery is needed whose characterization is independent of the influence of the complex battery assembly. Lithium-Ion Conducting Glass-Ceramic (LICGC), a model solid electrolyte, is chosen for its stability in the air, but on the other hand, it is also well-known for its instability against metallic lithium upon direct contact. Hence, as a first step towards a model ASSB, the interface between lithium and the solid electrolyte (SE) is stabilized with thin (5 nm and 10 nm) coatings of titanium oxide (TO) and lithium titanium oxide (LTO). Impedance data shows that both materials are able to protect the SE surface from rapid degradation due to reducing lithium and, therefore, can serve as a protective interlayer on the anode side of a model ASSB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-solid-state%20battery" title="all-solid-state battery">all-solid-state battery</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20anode" title=" lithium anode"> lithium anode</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20electrolytes" title=" solid electrolytes"> solid electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=interlayers" title=" interlayers"> interlayers</a> </p> <a href="https://publications.waset.org/abstracts/163463/stabilizing-of-lithium-solid-electrolyte-interfaces-by-atomic-layer-deposition-prepared-nano-interlayers-for-a-model-all-solid-state-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2217</span> Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 3: Volume Reduction and Stabilization of Solid Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masaumi%20Nakahara">Masaumi Nakahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sou%20Watanabe"> Sou Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromichi%20Ogi"> Hiromichi Ogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsuhiro%20Shibata"> Atsuhiro Shibata</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazunori%20Nomura"> Kazunori Nomura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the Japan Atomic Energy Agency, three types of experimental research, advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology, have been carried out at the Chemical Processing Facility. The facility has generated high level radioactive liquid and solid wastes in hot cells. The high level radioactive solid waste is divided into three main categories, a flammable waste, a non-flammable waste, and a solid reagent waste. A plastic product is categorized into the flammable waste and molten with a heating mantle. The non-flammable waste is cut with a band saw machine for reducing the volume. Among the solid reagent waste, a used adsorbent after the experiments is heated, and an extractant is decomposed for its stabilization. All high level radioactive solid wastes in the hot cells are packed in a high level radioactive solid waste can. The high level radioactive solid waste can is transported to the 2nd High Active Solid Waste Storage in the Tokai Reprocessing Plant in the Japan Atomic Energy Agency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20level%20radioactive%20solid%20waste" title="high level radioactive solid waste">high level radioactive solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20reactor%20fuel%20reprocessing" title=" advanced reactor fuel reprocessing"> advanced reactor fuel reprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20waste%20disposal" title=" radioactive waste disposal"> radioactive waste disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel%20cycle%20technology" title=" nuclear fuel cycle technology"> nuclear fuel cycle technology</a> </p> <a href="https://publications.waset.org/abstracts/104543/waste-management-in-a-hot-laboratory-of-japan-atomic-energy-agency-3-volume-reduction-and-stabilization-of-solid-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2216</span> Unpacking Public Value Destruction through Solid Waste Management in Developing Countries: A Critical Study of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zubair%20Ahmad">Zubair Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Esposito"> Paolo Esposito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management of solid waste from its collection to disposal is a widespread issue all around the world. This is a stinging issue in the rural and urban areas of the developing and developed states of the world. The mismanagement in Pakistan in the context of solid waste is required to be recognized because it is not only affecting the health of the public but also affecting the health of the environment. Therefore, this study conducts qualitative research methodology and conducted interviews in Lahore, Karachi, Quetta, Peshawar and Islamabad’s solid waste management’s officials and waste pickers, for analyzing uses Grounded theory for the lens of thematic analysis to highlight how public value is being destroyed by the mismanagement of solid waste in Pakistan. This study critically examines the effects of corruption, mismanagement, lawlessness, lack of accountability, budgetary issues, and improper methods for the disposal of solid waste as the major factors that are destroying public value. Recognizing and addressing these factors is essential to improving the system of solid waste management in developing countries <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management" title="solid waste management">solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20value%20destruction" title=" public value destruction"> public value destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=accountability" title=" accountability"> accountability</a>, <a href="https://publications.waset.org/abstracts/search?q=grounded%20theory" title=" grounded theory"> grounded theory</a> </p> <a href="https://publications.waset.org/abstracts/188066/unpacking-public-value-destruction-through-solid-waste-management-in-developing-countries-a-critical-study-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2215</span> Granule Morphology of Zirconia Powder with Solid Content on Two-Fluid Spray Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeongdo%20Jeong">Hyeongdo Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Kook%20Lee"> Jong Kook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Granule morphology and microstructure were affected by slurry viscosity, chemical composition, particle size and spray drying process. In this study, we investigated granule morphology of zirconia powder with solid content on two-fluid spray drying. Zirconia granules after spray drying show sphere-like shapes with a diameter of 40-70 μm at low solid contents (30 or 40 wt%) and specific surface area of 5.1-5.6 m²/g. But a donut-like shape with a few cracks were observed on zirconia granules prepared from the slurry of high solid content (50 wt %), green compacts after cold isostatic pressing under the pressure of 200 MPa have the density of 2.1-2.2 g/cm³ and homogeneous fracture surface by complete destruction of granules. After the sintering at 1500 °C for 2 h, all specimens have relative density of 96.2-98.3 %. With increasing a solid content from 30 to 50 wt%, grain size increased from 0.3 to 0.6 μm, but relative density was inversely decreased from 98.3 to 96.2 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zirconia" title="zirconia">zirconia</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20content" title=" solid content"> solid content</a>, <a href="https://publications.waset.org/abstracts/search?q=granulation" title=" granulation"> granulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a> </p> <a href="https://publications.waset.org/abstracts/88232/granule-morphology-of-zirconia-powder-with-solid-content-on-two-fluid-spray-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2214</span> When the Poor Do Not Matter: Environmental Justice and Solid Waste Management in Kinshasa, the Democratic Republic of Congo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Kubanza">N. S. Kubanza</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Simatele"> D. Simatele</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Das"> D. K. Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to understand the urban environmental problems in Kinshasa and the consequences of these for the poor. This paper particularly examines the concept of environmental injustice in solid waste management in Kinshasa, the capital of the Democratic Republic of Congo (DRC). The urban low-income communities in Kinshasa face multiple consequences of poor solid waste management associated with unhealthy living conditions. These situations stemmed from overcrowding, poor sanitary, accumulation of solid waste, resulting in the prevalence of water and air borne diseases. Using a mix of reviewed archival records, scholarly literature, a semi-structured interview conducted with the local community members and qualitative surveys among stakeholders; it was found that solid waste management challenge in Kinshasa is not only an environmental and health risk issues, but also, a problem that generates socio-spatial disparities in the distribution of the solid waste burden. It is argued in the paper that the urban poor areas in Kinshasa are often hardest affected by irregularities of waste collection. They lack sanitary storage capacities and have undermined organizational capacity for collective action within solid waste management. In view of these observations, this paper explores mechanisms and stakeholders’ engagement necessary to lessen environmental injustice in solid waste management (SWM) in Kinshasa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20justice" title="environmental justice">environmental justice</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management" title=" solid waste management"> solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20environmental%20problems" title=" urban environmental problems"> urban environmental problems</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20poor" title=" urban poor"> urban poor</a> </p> <a href="https://publications.waset.org/abstracts/46653/when-the-poor-do-not-matter-environmental-justice-and-solid-waste-management-in-kinshasa-the-democratic-republic-of-congo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2213</span> Preliminary Study on the Removal of Solid Uranium Compound in Nuclear Fuel Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bai%20Zhiwei">Bai Zhiwei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Shuxia"> Zhang Shuxia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> By sealing constraint, the system of nuclear fuel production penetrates a trace of air in during its service. The vapor in the air can react with material in the system and generate solid uranium compounds. These solid uranium compounds continue to accumulate and attached to the production equipment and pipeline of system, which not only affects the operation reliability of production equipment and give off radiation hazard as well after system retired. Therefore, it is necessary to select a reasonable method to remove it. Through the analysis of physicochemical properties of solid uranium compounds, halogenated fluoride compounds are selected as a cleaning agent, which can remove solid uranium compounds effectively. This paper studied the related chemical reaction under the condition of static test and results show that the selection of high fluoride halogen compounds can be removed solid uranium compounds completely. The study on the influence of reaction pressure with the reaction rate discovered a phenomenon that the higher the pressure, the faster the reaction rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoride%20halogen%20compound" title="fluoride halogen compound">fluoride halogen compound</a>, <a href="https://publications.waset.org/abstracts/search?q=remove" title=" remove"> remove</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20uranium%20compound" title=" solid uranium compound"> solid uranium compound</a> </p> <a href="https://publications.waset.org/abstracts/49109/preliminary-study-on-the-removal-of-solid-uranium-compound-in-nuclear-fuel-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2212</span> Characterization of Coastal Solid Waste: Basis for the Development of Waste Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnold%20I.%20Malag">Arnold I. Malag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study wants to establish the data on the characteristics of coastal solid waste in main Island of Masbate as a model for technology interventions. The research utilized the Google Maps to measure the coastal length and Fishbowl Method for area identification. The solid wastes gathered were classified as residual, non-biodegradable, recyclable wastes, and special wastes, based on the waste analysis and characterization manual of Philippine Environmental Governance Project. The wastes were evaluated by weight in kg., dimension in cm., and characteristics as floating or non-floating. Based on the dimension of coastal solid waste, the biodegradable, recyclable, residual and special waste have the average of 40.95 cm., 16.25 cm., 31.37 cm., and 0.725cm. respectively. The waste in the coastal areas is dominated by biodegradable, followed by residual, then recyclable and special wastes with the data of 0.566 kg/m, 0.533 kg/m, 0.114 kg/m and .0007 kg/m respectively. The 97.15% of solid wastes collected is characterized as “floating”, where in the sources are the nearest rivers and waterways and/or the nearest populated areas adjacent to the island. This accumulation of solid wastes can be minimized and controlled by utilizing a floating equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title="solid waste">solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20waste" title=" coastal waste"> coastal waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20characterization" title=" waste characterization"> waste characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20collector" title=" waste collector"> waste collector</a> </p> <a href="https://publications.waset.org/abstracts/161892/characterization-of-coastal-solid-waste-basis-for-the-development-of-waste-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2211</span> Preparation, Characterization and Ionic Conductivity of (1‒x) (CdI2‒Ag2CrO4)‒(x) Al2O3 Composite Solid Electrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafiuddin">Rafiuddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite solid electrolyte of the salt and oxide type is an effective approach to improve the ionic conductivity in low and intermediate temperature regions. The conductivity enhancement in the composites occurs via interfaces. Because of their high ionic conduction, composite electrolytes have wide applications in different electrochemical devices such as solid-state batteries, solid oxide fuel cells, and electrochemical cells. In this work, a series of novel (1‒x) (CdI2‒Ag2CrO4)‒xAl2O3 composite solid electrolytes has been synthesized. The prepared materials were characterized by X‒ray diffraction, differential thermal analysis, and AC impedance spectroscopy. The impedance spectra show single semicircle representing the simultaneous contribution of grain and grain boundary. The conductivity increased with the increase of Al2O3 content and shows the maximum conductivity (σ= 0.0012 S cm‒1) for 30% of Al2O3 content at 30 ℃. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20solid%20electrolyte" title="composite solid electrolyte">composite solid electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Impedance%20spectroscopy" title=" Impedance spectroscopy"> Impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20conductivity" title=" ionic conductivity"> ionic conductivity</a> </p> <a href="https://publications.waset.org/abstracts/39782/preparation-characterization-and-ionic-conductivity-of-1x-cdi2ag2cro4x-al2o3-composite-solid-electrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2210</span> Analysis of the Impacts and Challenges of Conventional Solid Waste Management in Urban Centers of Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Abdu%20Usman">Haruna Abdu Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mohammed%20Umar"> J. Mohammed Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20M.%20Bashir"> U. M. Bashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid waste management continued to be the biggest threat to the sustainability of urban centers of developing countries. Most streets corners of these urban centers are characterized by heaps of uncollected wastes at drains, public spaces and road sides destroying the aesthetic qualities and environmental ecosystems of these cities. Also, harboring disease vectors and rodents putting the health of the populace at risk, thus posing a serious challenge to the municipalities who are in most cases responsible for the solid waste management in these cities. The typical or commonest method adapted by these agencies in dealing with the solid waste management is the conventional approach; focusing mainly on waste collection ,treatment(composting and incineration)and disposal giving little consideration to the 3RS, of waste reduce, re-used and recycled. The resultant consequence being huge budget spending in solid waste management as high as 80% but little collection rate as low as 50%. This paper attempt to analyze the impacts and effects of the conventional solid waste management practices on the stakeholders in solid waste management; the municipal authorities, the communities, formal and informal waste managers, the NGOs and CBOs and suggests appropriate measures that would lessen the effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20waste%20management" title="conventional waste management">conventional waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20stakeholders" title=" waste stakeholders"> waste stakeholders</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20countries" title=" developing countries "> developing countries </a> </p> <a href="https://publications.waset.org/abstracts/17586/analysis-of-the-impacts-and-challenges-of-conventional-solid-waste-management-in-urban-centers-of-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2209</span> A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Ayala-Hernandez">Arturo Ayala-Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Humberto%20Hijar"> Humberto Hijar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Multiparticle%20Collision%20Dynamics" title="Multiparticle Collision Dynamics">Multiparticle Collision Dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-solid" title=" fluid-solid"> fluid-solid</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20conditions" title=" boundary conditions"> boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/17569/a-numerical-study-of-force-based-boundary-conditions-in-multiparticle-collision-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2208</span> Synthesis, Structure and Functional Characteristics of Solid Electrolytes Based on Lanthanum Niobates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Morozova">Maria V. Morozova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20V.%20Emelyanova"> Yulia V. Emelyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20A.%20Levina"> Anastasia A. Levina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20S.%20Buyanova"> Elena S. Buyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoya%20A.%20Mikhaylovskaya"> Zoya A. Mikhaylovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20A.%20Petrova"> Sofia A. Petrova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solid solutions of lanthanum niobates substituted by yttrium, bismuth and tungsten were synthesized. The structure of the solid solutions is either LaNbO4-based monoclinic or BiNbO4-based triclinic. The series where niobium is substituted by tungsten on B site reveals phase-modulated structure. The values of cell parameters decrease with increasing the dopant concentration for all samples except the tungsten series although the latter show higher total conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title="impedance spectroscopy">impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=LaNbO4" title=" LaNbO4"> LaNbO4</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanum%20ortho-niobates" title=" lanthanum ortho-niobates"> lanthanum ortho-niobates</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20electrolyte" title=" solid electrolyte"> solid electrolyte</a> </p> <a href="https://publications.waset.org/abstracts/38426/synthesis-structure-and-functional-characteristics-of-solid-electrolytes-based-on-lanthanum-niobates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2207</span> Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Iscan">Fatih Iscan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceren%20Yagci"> Ceren Yagci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economical, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economical factors for site selection of landfill areas and using GIS for an decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/TURKEY city, Güzelyurt district practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a> </p> <a href="https://publications.waset.org/abstracts/27996/selection-of-solid-waste-landfill-site-using-geographical-information-system-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2206</span> Level of Knowledge, Attitude, Perceived Behavior Control, Subjective Norm and Behavior of Household Solid Waste towards Zero Waste Management among Malaysian Consumer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Zuroni">M. J. Zuroni</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Syuhaily"> O. Syuhaily</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Afida%20Mastura"> M. A. Afida Mastura</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Roslina"> M. S. Roslina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Nurul%20Aini"> A. K. Nurul Aini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of country development has caused an increase of solid waste. The increase in population causes of excess usage thus effecting the sustainable environment. Zero waste management involves maximizing practices of recycling and minimizing residual waste. This paper seeks to analyze the relationship between knowledge, attitude, perceived behavior control, subjective norm and behavior of household solid waste towards household solid waste management among urban households in 8 states that have been implemented and enforced regulations under the Solid Waste Management and Public Cleansing Act 2007 (Act 672) in Malaysia. A total of respondents are 605 and we used a purposive sampling for location and simple sampling for sample size. Data collected by using self-administered questionnaire and were analyzed using SPSS software. The Pearson Correlation Test is to examine the relationship between four variables. Results show that knowledge scores are high because they have an awareness of the importance of managing solid waste. For attitude, perceived behavior control, subjective norm and behavioral scores at a moderate level in solid waste management activities. The findings show that there is a significant relationship between knowledge and behavior of household solid waste (r = 0.136 **, p = 0.001), there is a significant relationship between attitude and behavior (r = 0.238 **, p = 0.000), there is a significant relationship between perceived behavior control and behavior (r = 0.516 **, p = 0.000) and there is a significant relationship between subjective norm and behavior (r = 0.494 **, p = 0.000). The conclusion is that there is a relationship between knowledge, attitude, perceived behavior control and subjective norm toward the behavior of household solid waste management. Therefore, in the findings of the study, all parties including the government should work together to enhance the knowledge, attitude, perceived behavior control and behavior of household solid waste management in other states that have not implemented and enforced regulations under the Solid Waste and Public Cleansing Management Act 2007 (Act 672). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management" title="solid waste management">solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude" title=" attitude"> attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=perceived%20behavior%20control" title=" perceived behavior control"> perceived behavior control</a>, <a href="https://publications.waset.org/abstracts/search?q=subjective%20norm" title=" subjective norm"> subjective norm</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a> </p> <a href="https://publications.waset.org/abstracts/87991/level-of-knowledge-attitude-perceived-behavior-control-subjective-norm-and-behavior-of-household-solid-waste-towards-zero-waste-management-among-malaysian-consumer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2205</span> Study on Municipal Solid Waste Management to Protect Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar">Rajesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The largest issue in the current situation is managing solid waste since it pollutes the ecosystem. When considering how to manage waste, even the disposal of mixed waste is a challenge. The Saksham Yuva Project, which is managed by the Haryana government, highlights the consequences and drivers of managing the solid waste of urban areas in the municipal committee pundri in the present study. The overall goal of the Saksham Yuva project is to mobilise the public and educate them about the dangers associated with garbage management. There has been a 20% reduction in waste, according to the study's impacts, and the cost of waste management has also gone down. Further, the study also reported the alternative use of wastes in revenue generation by generating Khaad for agricultural purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management" title="solid waste management">solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=people%20awareness" title=" people awareness"> people awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20and%20wet%20waste%20disposal" title=" dry and wet waste disposal"> dry and wet waste disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20recover%20facility" title=" material recover facility"> material recover facility</a> </p> <a href="https://publications.waset.org/abstracts/165594/study-on-municipal-solid-waste-management-to-protect-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2204</span> Effect of Aging Treatment on Tensile Properties of AZ91D Mg Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju%20Hyun%20Won">Ju Hyun Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment, could be performed at temperatures from 400 to 450 °C. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420 °C and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y, however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200 °C for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 °C for 10 hrs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg%20alloy" title="Mg alloy">Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ91D" title=" AZ91D"> AZ91D</a>, <a href="https://publications.waset.org/abstracts/search?q=nonflammable%20alloy" title=" nonflammable alloy"> nonflammable alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20equilibrium" title=" phase equilibrium"> phase equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20aging" title=" peak aging"> peak aging</a> </p> <a href="https://publications.waset.org/abstracts/34978/effect-of-aging-treatment-on-tensile-properties-of-az91d-mg-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2203</span> Solubility Enhancement of Poorly Soluble Anticancer Drug, Docetaxel Using a Novel Polymer, Soluplus via Solid Dispersion Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adinarayana%20Gorajana">Adinarayana Gorajana</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Srikanth%20Meka"> Venkata Srikanth Meka</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Garg"> Sanjay Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Lim%20Sue%20May"> Lim Sue May</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to evaluate and enhance the solubility of poorly soluble drug, docetaxel through solid dispersion (SD) technique prepared using freeze drying method. Docetaxel solid dispersions were formulated with Soluplus in different weight ratios. Freeze drying method was used to prepare the solid dispersions. Solubility of the solid dispersions were evaluated respectively and the optimized of drug-solubilizers ratio systems were characterized with different analytical methods like Differential scanning calorimeter (DSC), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to confirm the formation of complexes between drug and solubilizers. The solubility data revealed an overall improvement in solubility for all SD formulations. The ternary combination 1:5:2 gave the highest increase in solubility that is approximately 3 folds from the pure drug, suggesting the optimum drug-solubilizers ratio system. This data corresponds with the DSC and SEM analyses, which demonstrates presence of drug in amorphous state and the dispersion in the solubilizers in molecular level. The solubility of the poorly soluble drug, docetaxel was enhanced through preparation of solid dispersion formulations employing freeze drying method. Solid dispersion with multiple carrier system shows better solubility compared to single carrier system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=docetaxel" title="docetaxel">docetaxel</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title=" freeze drying"> freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=soluplus" title=" soluplus"> soluplus</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20dispersion%20technique" title=" solid dispersion technique"> solid dispersion technique</a> </p> <a href="https://publications.waset.org/abstracts/17833/solubility-enhancement-of-poorly-soluble-anticancer-drug-docetaxel-using-a-novel-polymer-soluplus-via-solid-dispersion-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2202</span> Design of Collection and Transportation System of Municipal Solid Waste in Meshkinshahr City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Fataei">Ebrahim Fataei</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ali%20Hosseini"> Seyed Ali Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Arabi"> Zahra Arabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20farhadi"> Habib farhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Aalipour%20Erdi"> Mehdi Aalipour Erdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seiied%20Taghi%20Seiied%20Safavian"> Seiied Taghi Seiied Safavian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid waste production is an integral part of human life and management of waste require full scientific approach and essential planning. The allocation of most management cost to collection and transportation and also the necessity of operational efficiency in this system, by limiting time consumption, and on the other hand optimum collection system and transportation is the base of waste design and management. This study was done to optimize the exits collection and transportation system of solid waste in Meshkinshahr city. So based on the analyzed data of municipal solid waste components in seven zones of Meshkinshahr city, and GIS software, applied to design storage place based on origin recycling and a route to collect and transport. It was attempted to represent an appropriate model to store, collect and transport municipal solid waste. The result shows that GIS can be applied to locate the waste container and determine a waste collection direction in an appropriate way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste%20management" title="municipal solid waste management">municipal solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimizing" title=" optimizing"> optimizing</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/34326/design-of-collection-and-transportation-system-of-municipal-solid-waste-in-meshkinshahr-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2201</span> Solid Dispersions of Cefixime Using β-Cyclodextrin: Characterization and in vitro Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagasamy%20Venkatesh%20Dhandapani">Nagasamy Venkatesh Dhandapani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amged%20Awad%20El-Gied"> Amged Awad El-Gied</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cefixime, a BCS class II drug, is insoluble in water but freely soluble in acetone and in alcohol. The aqueous solubility of cefixime in water is poor and exhibits exceptionally slow and intrinsic dissolution rate. In the present study, cefixime and &beta;-Cyclodextrin (&beta;-CD) solid dispersions were prepared with a view to study the effect and influence of &beta;-CD on the solubility and dissolution rate of this poorly aqueous soluble drug. Phase solubility profile revealed that the solubility of cefixime was increased in the presence of &beta;-CD and was classified as A<sub>L</sub>-type. Effect of variable, such as drug:carrier ratio, was studied. Physical characterization of the solid dispersion was characterized by Fourier transform infrared spectroscopy (FT-IR) and Differential scanning calorimetry (DSC). These studies revealed that a distinct loss of drug crystallinity in the solid molecular dispersions is ostensibly accounting for enhancement of dissolution rate in distilled water. The drug release from the prepared solid dispersion exhibited a first order kinetics. Solid dispersions of cefixime showed a 6.77 times fold increase in dissolution rate over the pure drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-cyclodextrin" title="β-cyclodextrin">β-cyclodextrin</a>, <a href="https://publications.waset.org/abstracts/search?q=cefixime" title=" cefixime"> cefixime</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Kneading%20method" title=" Kneading method"> Kneading method</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20dispersions" title=" solid dispersions"> solid dispersions</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20kinetics" title=" release kinetics"> release kinetics</a> </p> <a href="https://publications.waset.org/abstracts/58364/solid-dispersions-of-cefixime-using-v-cyclodextrin-characterization-and-in-vitro-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2200</span> Preparation of Li Ion Conductive Ceramics via Liquid Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kotobuki">M. Kotobuki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Koishi"> M. Koishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Li1.5Al0.5Ti1.5 (PO4)3(LATP) has received much attention as a solid electrolyte for lithium batteries. In this study, the LATP solid electrolyte is prepared by the co-precipitation method using Li3PO4 as a Li source. The LATP is successfully prepared and the Li ion conductivities of bulk (inner crystal) and total (inner crystal and grain boundary) are 1.1 × 10-3 and 1.1 × 10-4 S cm-1, respectively. These values are comparable to the reported values, in which Li2C2O4 is used as the Li source. It is conclude that the LATP solid electrolyte can be prepared by the co-precipitation method using Li3PO4 as the Li source and this procedure has an advantage in mass production over previous procedure using Li2C2O4 because Li3PO4 is lower price reagent compared with Li2C2O4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-precipitation%20method" title="co-precipitation method">co-precipitation method</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20battery" title=" lithium battery"> lithium battery</a>, <a href="https://publications.waset.org/abstracts/search?q=NASICON-type%20electrolyte" title=" NASICON-type electrolyte"> NASICON-type electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20electrolyte" title=" solid electrolyte"> solid electrolyte</a> </p> <a href="https://publications.waset.org/abstracts/13119/preparation-of-li-ion-conductive-ceramics-via-liquid-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2199</span> Solid Waste Management Challenges and Possible Solution in Kabul City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Haider%20Haidaree">Ghulam Haider Haidaree</a>, <a href="https://publications.waset.org/abstracts/search?q=Nsenda%20Lukumwena"> Nsenda Lukumwena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most developing nations face energy production and supply problems. This is also the case of Afghanistan whose generating capacity does not meet its energy demand. This is due in part to high security and risk caused by war which deters foreign investments and insufficient internal revenue. To address the issue above, this paper would like to suggest an alternative and affordable way to deal with the energy problem. That is by converting Solid Waste to energy. As a result, this approach tackles the municipal solid waste issue (potential cause of several diseases), contributes to the improvement of the quality of life, local economy, and so on. While addressing the solid waste problem in general, this paper samples specifically one municipality which is District-12, one of the 22 districts of Kabul city. Using geographic information system (GIS) technology, District-12 is divided into nine different zones whose municipal solid waste is respectively collected, processed, and converted into electricity and distributed to the closest area. It is important to mention that GIS has been used to estimate the amount of electricity to be distributed and to optimally position the production plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20problem" title="energy problem">energy problem</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation%20of%20electricity" title=" estimation of electricity"> estimation of electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20zones" title=" GIS zones"> GIS zones</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management%20system" title=" solid waste management system"> solid waste management system</a> </p> <a href="https://publications.waset.org/abstracts/65289/solid-waste-management-challenges-and-possible-solution-in-kabul-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2198</span> Solid Waste Generation, Composition and Potentiality of Waste to Resource Recovery in Narayanganj City Corporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Jisan%20Ahmed">Md. Jisan Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Taher"> M. A. Taher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the cities in Bangladesh that is developing the fastest is Narayanganj City Corporation. In 2011, the municipality of Narayanganj was transformed into a city corporation, with 27 wards combining Kadamrasul Municipality, Siddhirganj Municipality, and Narayanganj Town. It is also one of Bangladesh's most important industrial centers in Bangladesh. Narayanganj City Corporation (NCC), which has had high development growth, is also generating more solid waste on a high per-capita basis. Because of the increasing rate of population expansion, business activity, industrial development, and fast urbanization, NCC is today creating more waste than ever before. The enormous amount of solid garbage produced in NCC is currently causing air pollution, soil contamination, water pollution, drainage system blockages, and an unpleasant urban environment. The study aimed to find out the amount of solid waste produced per day in NCC by exploring the waste composition and potentiality of resource recovery from the produced solid waste. This study considered household surveys, polythene bag surveys, questionnaire surveys in commercial and industrial sectors, KIIs, FGDs, and lab tests to identify the total amount of waste generated in NCC with waste composition and potentiality for energy recovery from the generated waste. This study has explored that NCC is producing about 922 tons of solid waste per day from households, commercial activities, and industrial sectors where the existing waste collection rate by NCC authority is only about 50% of total generated waste. This study has also explored that about 75% of daily-produced solid waste is perishable with comparatively high moisture content whereas 18 % and 7% are non-perishable and hazardous. It is also explored that there is no resource recovery plant for solid waste management in NCC. On the other hand, this study has explored that the calorific value of the produced solid waste favors resource recovery like waste to electricity. The generated solid waste composition is also in favor of waste-to-biogas, and waste-to-compost fertilizer production. This study has advocated that initiatives need to develop a solid waste management plant in NCC for resource recovery from solid waste. This research may provide a quick overview of the rate of solid waste generation, its composition, and the potential for resource recovery from solid waste in Bangladesh's metropolitan regions. It can also provide information and knowledge to other trash departments in different cities and municipalities in Bangladesh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title="solid waste">solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20composition" title=" waste composition"> waste composition</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20solid%20waste" title=" resource recovery from solid waste"> resource recovery from solid waste</a> </p> <a href="https://publications.waset.org/abstracts/192179/solid-waste-generation-composition-and-potentiality-of-waste-to-resource-recovery-in-narayanganj-city-corporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2197</span> Analysis of Solid Waste Management Practices and the Implications for Human Health and the Environment: A Case Study of Kayamandi Informal Settlement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Iyobosa%20Asemota">Peter Iyobosa Asemota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study on solid waste management practices addressed aspects of environmental and health impacts resulting from poor management of solid waste. The study was occasioned by the observed rate and volume of illegal and indiscriminate dumping of solid waste materials especially in informal settlements. The main focus of this study was to establish the impact of waste management practices on human health and the environment. The study, therefore, presents a critical analysis of the state of solid waste management in the study area and the implications for human health and the environment. The study was carried out in Kayamandi informal settlement within Stellenbosch municipality. The sustainable management of solid waste is very important in order to minimize the environmental and public health risks associated with improper solid waste management. There is no denying the fact that the problems of waste management will become critical as time goes on because of improper and inefficient waste management practices. Towns and cities exhibit the burdens of waste management which is a characteristics feature of most African cities. The study critically assess the implementation of waste management practices by the residents of the informal settlement; identify the factors affecting management issues in the operation of solid waste management system by the municipality; identify factors militating against the implementation of waste management policies and legislation. Furthermore, a waste assessment study was carried out to assess the generation; composition of the waste stream and also determine the attitudes and behavior of the residents with regard to waste management practices. Findings from the study revealed that Kayamandi is not different from other informal settlements with regards to waste management. People are of the opinion that solid waste management is the sole responsibility of municipal authorities and as such, the government should be responsible for bearing the cost of solid waste management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20composition" title=" waste composition"> waste composition</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20stream" title=" waste stream"> waste stream</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20categories" title=" waste categories"> waste categories</a>, <a href="https://publications.waset.org/abstracts/search?q=sanitary%20landfill" title=" sanitary landfill"> sanitary landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20collection" title=" waste collection"> waste collection</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20solid%20waste%20management" title=" integrated solid waste management "> integrated solid waste management </a> </p> <a href="https://publications.waset.org/abstracts/20014/analysis-of-solid-waste-management-practices-and-the-implications-for-human-health-and-the-environment-a-case-study-of-kayamandi-informal-settlement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">695</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2196</span> Optimization of Maritime Platform Transport Problem of Solid, Special and Dangerous Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ocotl%C3%A1n%20D%C3%ADaz-Parra">Ocotlán Díaz-Parra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20A.%20Ruiz-Vanoye"> Jorge A. Ruiz-Vanoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20Fuentes-Penna"> Alejandro Fuentes-Penna</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Bernabe-Loranca"> Beatriz Bernabe-Loranca</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Ambrocio-Cruz"> Patricia Ambrocio-Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20J.%20Hern%C3%A1ndez-Flores"> José J. Hernández-Flores</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Maritime Platform Transport Problem of Solid, Special and Dangerous Waste consist of to minimize the monetary value of carry different types of waste from one location to another location using ships. We offer a novel mathematical, the characterization of the problem and the use CPLEX to find the optimal values to solve the Solid, Special and Hazardous Waste Transportation Problem of offshore platforms instances of Mexican state-owned petroleum company (PEMEX). The set of instances used are WTPLib real instances and the tool CPLEX solver to solve the MPTPSSDW problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20platform" title="oil platform">oil platform</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20problem" title=" transport problem"> transport problem</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a> </p> <a href="https://publications.waset.org/abstracts/42738/optimization-of-maritime-platform-transport-problem-of-solid-special-and-dangerous-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=74">74</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solid&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10