CINXE.COM

Search results for: Harrane Amine

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Harrane Amine</title> <meta name="description" content="Search results for: Harrane Amine"> <meta name="keywords" content="Harrane Amine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Harrane Amine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Harrane Amine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 243</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Harrane Amine</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Synthesis of Solid Polymeric Materials by Maghnite-H⁺ as a Green Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Draoua%20Zohra">Draoua Zohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine"> Harrane Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Solid Polymeric Materials have been successfully prepared by the copolymerization of e-caprolactone (CL) and poly (ethylene glycol) (PEG) employing Maghnite-H+ at 80°C. Maghnite-H+ is a solid catalyst non-toxic. The presence of PEG chains leads to a break in the growth of PCL chains and consequently leads to the copolymer tri-block PCL-PEG-PCL. The objective of this study was to synthesize and characterize of Solid Polymeric Materials. The highly hydrophilic nature of polyethylene glycol has sparked our interest in developing a Solid Polymeric based e-caprolactone and poly (ethylene glycol). PCL and PEG are biocompatible materials. Their ring-opening copolymerization using Maghnite H+ makes to the Solid Polymeric Materials. The morphology and structure of Solid polymeric Materials were characterized by ¹H and ¹³C-NMR spectra and Gel Permeation Chromatography (GPC). This paper developed the application of Maghnite-H+ as an efficient catalyst by an easy-to-handle procedure to get solid polymeric materials. A cationic mechanism for the copolymerization reaction was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20copolymers" title="block copolymers">block copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite" title=" maghnite"> maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28e-caprolactone%29" title=" poly(e-caprolactone)"> poly(e-caprolactone)</a> </p> <a href="https://publications.waset.org/abstracts/97417/synthesis-of-solid-polymeric-materials-by-maghnite-h-as-a-green-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Synthesis and Characterization of Model Amines for Corrosion Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Vergara">John Vergara</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Palmese"> Giuseppe Palmese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fundamental studies aimed at elucidating the key contributions to corrosion performance are needed to make progress toward effective and environmentally compliant corrosion control. Epoxy/amine systems are typically employed as barrier coatings for corrosion control. However, the hardening agents used for coating applications can be very complex, making fundamental studies of water and oxygen permeability challenging to carry out. Creating model building blocks for epoxy/amine coatings is the first step in carrying out these studies. We will demonstrate the synthesis and characterization of model amine building blocks from saturated fatty acids and simple amines such as diethylenetriamine (DETA) and Bis(3-aminopropyl)amine. The structure-property relationship of thermosets made from these model amines and Diglycidyl ether of bisphenol A (DGBEA) will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20block" title="building block">building block</a>, <a href="https://publications.waset.org/abstracts/search?q=amine" title=" amine"> amine</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/19436/synthesis-and-characterization-of-model-amines-for-corrosion-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Eren">O. Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ucar"> N. Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Onen"> A. Onen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K%C4%B1z%C4%B1ldag"> N. Kızıldag</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20F.%20Vurur"> O. F. Vurur</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Demirsoy"> N. Demirsoy</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Karacan"> I. Karacan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of the concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to a decrease of diameter of nanofiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amine%20functionalized%20carbon%20nanotube" title="amine functionalized carbon nanotube">amine functionalized carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a> </p> <a href="https://publications.waset.org/abstracts/7723/effect-of-amine-functionalized-carbon-nanotubes-on-the-properties-of-cnt-pan-composite-nanofibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Ammonia and Biogenic Amine Production of Fish Spoilage Bacteria: Affected by Olive Leaf, Olive Cake and Black Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kuley">E. Kuley</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Durmu%C5%9F"> M. Durmuş</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Balikci"> E. Balikci</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ozyurt"> G. Ozyurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20U%C3%A7ar"> Y. Uçar</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Kuley"> F. Kuley</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ozogul"> F. Ozogul</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ozogul"> Y. Ozogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonia and biogenic amine production of fish spoilage bacteria in sardine infusion decarboxylase broth and antimicrobial effect of olive by products (olive leaf extract:OL, olive cake: OC and black water:BW) was monitored using HPLC method. Fish spoilage bacteria produced all biogenic amine tested, mainly histamine and serotonin. Ammonia was accumulated more than 13.60 mg/L. Histamine production was in range 37.50 mg/L by Ser. liquefaciens and 86.71 mg/L by Ent. cloacae. The highest putrescine and cadaverine production was observed by Ent. cloacae (17.80 vs. 17.69 mg/L). The presence of OL, OC and BW in the broth significantly affected biogenic amine accumulation by bacteria. The antibacterial effect of olive by products depended on bacterial strains. OL and OC resulted in significant inhibition effect on HIS accumulation by bacteria apart from Ser. liquefaciens and Prot. mirabilis. The study result revealed that usefulness of OL and OC to prevent the accumulation of this amine which may affect human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antimicrobials" title="Antimicrobials">Antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=biogenic%20amine" title=" biogenic amine"> biogenic amine</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20spoilage%20bacteria" title=" fish spoilage bacteria"> fish spoilage bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=olive-by%20products" title=" olive-by products"> olive-by products</a> </p> <a href="https://publications.waset.org/abstracts/19395/ammonia-and-biogenic-amine-production-of-fish-spoilage-bacteria-affected-by-olive-leaf-olive-cake-and-black-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Synthesis, Characterization of Pd Nanoparticle Supported on Amine-Functionalized Graphene and Its Catalytic Activity for Suzuki Coupling Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surjyakanta%20Rana">Surjyakanta Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreekantha%20B.%20Jonnalagadda"> Sreekantha B. Jonnalagadda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthesis of well distributed Pd nanoparticles (3 – 7 nm) on organo amine-functionalized graphene is reported, which demonstrated excellent catalytic activity towards Suzuki coupling reaction. The active material was characterized by X-ray diffraction (XRD), BET surface area, X-ray photoelectron spectra (XPS), Fourier-transfer infrared spectroscopy (FTIR), Raman spectra, Scanning electron microscope (SEM), Transmittance electron microscopy (TEM) analysis and HRTEM. FT-IR revealed that the organic amine functional group was successfully grafted onto the graphene oxide surface. The formation of palladium nanoparticles was confirmed by XPS, TEM and HRTEM techniques. The catalytic activity in the coupling reaction was superb with 100% conversion and 98 % yield and also activity remained almost unaltered up to six cycles. Typically, an extremely high turnover frequency of 185,078 h-1 is observed in the C-C Suzuki coupling reaction using organo di-amine functionalized graphene as catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Di-amine" title="Di-amine">Di-amine</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd%20nanoparticle" title=" Pd nanoparticle"> Pd nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=suzuki%20coupling" title=" suzuki coupling"> suzuki coupling</a> </p> <a href="https://publications.waset.org/abstracts/31977/synthesis-characterization-of-pd-nanoparticle-supported-on-amine-functionalized-graphene-and-its-catalytic-activity-for-suzuki-coupling-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Direct In-Situ Ring Opening Polymerization of E-caprolactone to Produce Biodegradable PCL/Montmorillonite Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Harrane">Amine Harrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Belalia"> Mahmoud Belalia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade, polymer layered silicate nanocomposites have received increasing attention from scientists and industrial researchers because they generally exhibit greatly improved mechanical, thermal, barrier and flame-retardant properties at low clay content in comparison with unfilled polymers or more conventional micro composites. Poly(ε-caprolactone) (PCL)-layered silicate nanocomposites have the advantage of adding biocompatibility and biodegradability to the traditional properties of nanocomposites. They can be prepared by in situ ring-opening polymerization of ε-caprolactone using a conventional initiator to induce polymerization in the presence of an organophilic clay, such as organomodified montmorillonite. Messersmith and Giannelis used montmorillonite exchanged with protonated 12-amino dodecanoic acid and Cr3+ exchanged fluorohectorite, a synthetic mica type of silicate. Sn-based catalysts such as tin (II) octoate and dibutyltin (IV) dimethoxide have been reported to efficiently promote the polymerization of ε-caprolactone in the presence of organomodified clays. In this work, we have used an alternative method to prepare PCL/montmorillonite nanocomposites. The cationic polymerization of ε-caprolactone was initiated directly by Maghnite-TOA, organomodified montmorillonite clay, to produce nanocomposites (Scheme 1). Resulted from nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), force atomic microscopy (AFM) and thermogravimetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title="polycaprolactone">polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone%2Fclay%20nanocomposites" title=" polycaprolactone/clay nanocomposites"> polycaprolactone/clay nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradables%20nanocomposites" title=" biodegradables nanocomposites"> biodegradables nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=Maghnite" title=" Maghnite"> Maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=Insitu%20polymeriation" title=" Insitu polymeriation"> Insitu polymeriation</a> </p> <a href="https://publications.waset.org/abstracts/163797/direct-in-situ-ring-opening-polymerization-of-e-caprolactone-to-produce-biodegradable-pclmontmorillonite-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Investigation of Alfa Fibers Reinforced Epoxy-Amine Composites Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Boukerrou">Amar Boukerrou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouerdia%20Belhadj"> Ouerdia Belhadj</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Hammiche"> Dalila Hammiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Francois%20Gerard"> Jean Francois Gerard</a>, <a href="https://publications.waset.org/abstracts/search?q=Jannick%20Rumeau"> Jannick Rumeau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this study is the investigation of alfa fiber content, treated with alkali treatment, on the thermal and mechanical properties of epoxy-amine matrix-based composites. The fibers were treated with 5% of sodium hydroxide solution and varied between 10% to 30% weight fractions. The tensile, flexural, and hardness tests are carried out to investigate the mechanical properties of composites. The results show those composites’ mechanical properties are higher than the neat epoxy-amine. It was noticed that the alkali treatment is more effective in the case of the tensile and flexural modulus than the tensile and flexural strength. The decline of both the tensile and flexural behavior of all composites with the increasing of the filler content was due probably to the random dispersion of the fibers in the epoxy resin The Fourier transform infrared (FTIR) was employed to analyze the chemical structure of epoxy resin before and after curing with amine hardener. FTIR and DSC analysis confirmed that epoxy resin was completely cured with amine hardener at room temperature. SEM analysis has highlighted the microstructure of epoxy matrix and its composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alfa%20fiber" title="alfa fiber">alfa fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20treatment" title=" alkali treatment"> alkali treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/152199/investigation-of-alfa-fibers-reinforced-epoxy-amine-composites-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Chiral Amine Synthesis and Recovery by Using High Molecular Weight Amine Donors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Matassa">Claudia Matassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Hohne"> Matthias Hohne</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominic%20Ormerod"> Dominic Ormerod</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamini%20Satyawali"> Yamini Satyawali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chiral amines integrate the backbone of several active pharmaceutical ingredients (APIs) used in modern medicine for the treatment of a vast range of diseases. Despite the demand, their synthesis remains challenging. Besides a range of chemicals and enzymatical methods, chiral amine synthesis using transaminases (EC 2.6.1.W) represents a useful alternative to access this important class of compounds. Even though transaminases exhibit excellent stereo and regioselectivity and the potential for high yield, the reaction suffers from a number of challenges, including the thermodynamic equilibrium, product inhibition, and low substrate solubility. In this work, we demonstrate a membrane assisted strategy for addressing these challenges. It involves the use of high molecular weight (HMW) amine donors for the transaminase-catalyzed synthesis of 4-phenyl-2-butylamine in both aqueous and organic solvent media. In contrast to common amine donors such as alanine or isopropylamine, these large molecules, provided in excess for thermodynamic equilibrium shifting, are easily retained by commercial nanofiltration membranes; thus a selective permeation of the desired smaller product amine is possible. The enzymatic transamination in aqueous media, combined with selective product removal shifted the equilibrium enhancing substrate conversion by an additional 25% compared to the control reaction. Along with very efficient amine product removal, there was undesirable loss of ketone substrate and low product concentration was achieved. The system was therefore further improved by performing the reaction in organic solvent (n-heptane). Coupling the reaction system with membrane-assisted product removal resulted in a highly concentrated and relatively pure ( > 97%) product solution. Moreover, a product yield of 60% was reached, compared to 15% without product removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amine%20donor" title="amine donor">amine donor</a>, <a href="https://publications.waset.org/abstracts/search?q=chiral%20amines" title=" chiral amines"> chiral amines</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20product%20removal" title=" in situ product removal"> in situ product removal</a>, <a href="https://publications.waset.org/abstracts/search?q=transamination" title=" transamination"> transamination</a> </p> <a href="https://publications.waset.org/abstracts/110355/chiral-amine-synthesis-and-recovery-by-using-high-molecular-weight-amine-donors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Synthesis of Amine Functionalized MOF-74 for Carbon Dioxide Capture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Murshid">Ghulam Murshid</a>, <a href="https://publications.waset.org/abstracts/search?q=Samil%20Ullah"> Samil Ullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scientific studies suggested that the incremented greenhouse gas concentration in the atmosphere, particularly of carbon dioxide (CO2) is one of the major factors in global warming. The concentration of CO2 in our climate has crossed the milestone level of 400 parts per million (ppm) hence breaking the record of human history. A report by 49 researchers from 10 countries said, 'Global CO2 emissions from burning fossil fuels will rise to a record 36 billion metric tons (39.683 billion tons) this year.' Main contributors of CO2 in to the atmosphere are usage of fossil fuel, transportation sector and power generation plants. Among all available technologies, which include; absorption via chemicals, membrane separation, cryogenic and adsorption are in practice around the globe. Adsorption of CO2 using metal organic frameworks (MOF) is getting interest of researcher around the globe. In the current work, MOF-74 as well as modified MOF-74 with a sterically hindered amine (AMP) was synthesized and characterized. The modification was carried out using a sterically hindered amine in order to study the effect on its adsorption capacity. Resulting samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analyser (TGA) and Brunauer-Emmett-Teller (BET). The FTIR results clearly confirmed the formation of MOF-74 structure and the presence of AMP. FESEM and TEM revealed the topography and morphology of the both MOF-74 and amine modified MOF. BET isotherm result shows that due to the addition of AMP in to the structure, significant enhancement of CO2 adsorption was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorbents" title="adsorbents">adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=amine" title=" amine"> amine</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming "> global warming </a> </p> <a href="https://publications.waset.org/abstracts/34976/synthesis-of-amine-functionalized-mof-74-for-carbon-dioxide-capture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Biogas Separation, Alcohol Amine Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingxiao%20Liang">Jingxiao Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Rooneyman"> David Rooneyman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biogas, which is a valuable renewable energy source, can be produced by anaerobic fermentation of agricultural waste, manure, municipal waste, plant material, sewage, green waste, or food waste. It is composed of methane (CH4) and carbon dioxide (CO2) but also contains significant quantities of undesirable compounds such as hydrogen sulfide (H2S), ammonia (NH3), and siloxanes. Since typical raw biogas contains 25–45% CO2, The requirements for biogas quality depend on its further application. Before biogas is being used more efficiently, CO2 should be removed. One of the existing options for biogas separation technologies is based on chemical absorbents, in particular, mono-, di- and tri-alcohol amine solutions. Such amine solutions have been applied as highly efficient CO2 capturing agents. The benchmark in this experiment is N-methyldiethanolamine (MDEA) with piperazine (PZ) as an activator, from CO2 absorption Isotherm curve, optimization conditions are collected, such as activator percentage, temperature etc. This experiment makes new alcohol amines, which could have the same CO2 absorbing ability as activated MDEA, using glycidol as one of reactant, the result is quite satisfying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=MDEA" title=" MDEA"> MDEA</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/34283/biogas-separation-alcohol-amine-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Flowsheet Development, Simulation and Optimization of Carbon-Di-Oxide Removal System at Natural Gas Reserves by Aspen–Hysys Process Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ruhul%20Amin">Mohammad Ruhul Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusrat%20Jahan"> Nusrat Jahan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas is a cleaner fuel compared to the others. But it needs some treatment before it is in a state to be used. So natural gas purification is an integral part of any process where natural gas is used as raw material or fuel. There are several impurities in natural gas that have to be removed before use. CO2 is one of the major contaminants. In this project we have removed CO2 by amine process by using MEA solution. We have built up the whole amine process for removing CO2 in Aspen Hysys and simulated the process. At the end of simulation we have got very satisfactory results by using MEA solution for the removal of CO2. Simulation result shows that amine absorption process enables to reduce CO2 content from NG by 58%. HYSYS optimizer allowed us to get a perfect optimized plant. After optimization the profit of existing plant is increased by 2.34 %.Simulation and optimization by Aspen-HYSYS simulator makes available us to enormous information which will help us to further research in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspen%E2%80%93Hysys" title="Aspen–Hysys">Aspen–Hysys</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20removal" title=" CO2 removal"> CO2 removal</a>, <a href="https://publications.waset.org/abstracts/search?q=flowsheet%20development" title=" flowsheet development"> flowsheet development</a>, <a href="https://publications.waset.org/abstracts/search?q=MEA%20solution" title=" MEA solution"> MEA solution</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20optimization" title=" natural gas optimization"> natural gas optimization</a> </p> <a href="https://publications.waset.org/abstracts/28865/flowsheet-development-simulation-and-optimization-of-carbon-di-oxide-removal-system-at-natural-gas-reserves-by-aspen-hysys-process-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Kugler">Szymon Kugler</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Kowalczyk"> Krzysztof Kowalczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20Spychaj"> Tadeusz Spychaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based%20cardanol" title="bio-based cardanol">bio-based cardanol</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20coatings" title=" epoxy coatings"> epoxy coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=tolylbiguanide" title=" tolylbiguanide"> tolylbiguanide</a> </p> <a href="https://publications.waset.org/abstracts/74761/amine-hardeners-with-carbon-nanotubes-dispersing-ability-for-epoxy-coating-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Molecular Dynamic Simulation of CO2 Absorption into Mixed Aqueous Solutions MDEA/PZ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Harun">N. Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Masiren"> E. E. Masiren</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20H.%20W.%20Ibrahim"> W. H. W. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Adam"> F. Adam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amine absorption process is an approach for mitigation of CO2 from flue gas that produces from power plant. This process is the most common system used in chemical and oil industries for gas purification to remove acid gases. On the challenges of this process is high energy requirement for solvent regeneration to release CO2. In the past few years, mixed alkanolamines have received increasing attention. In most cases, the mixtures contain N-methyldiethanolamine (MDEA) as the base amine with the addition of one or two more reactive amines such as PZ. The reason for the application of such blend amine is to take advantage of high reaction rate of CO2 with the activator combined with the advantages of the low heat of regeneration of MDEA. Several experimental and simulation studies have been undertaken to understand this process using blend MDEA/PZ solvent. Despite those studies, the mechanism of CO2 absorption into the aqueous MDEA is not well understood and available knowledge within the open literature is limited. The aim of this study is to investigate the intermolecular interaction of the blend MDEA/PZ using Molecular Dynamics (MD) simulation. MD simulation was run under condition 313K and 1 atm using NVE ensemble at 200ps and NVT ensemble at 1ns. The results were interpreted in term of Radial Distribution Function (RDF) analysis through two system of interest i.e binary and tertiary. The binary system will explain the interaction between amine and water molecule while tertiary system used to determine the interaction between the amine and CO2 molecule. For the binary system, it was observed that the –OH group of MDEA is more attracted to water molecule compared to –NH group of MDEA. The –OH group of MDEA can form the hydrogen bond with water that will assist the solubility of MDEA in water. The intermolecular interaction probability of –OH and –NH group of MDEA with CO2 in blended MDEA/PZ is higher than using single MDEA. This findings show that PZ molecule act as an activator to promote the intermolecular interaction between MDEA and CO2.Thus, blend of MDEA with PZ is expecting to increase the absorption rate of CO2 and reduce the heat regeneration requirement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amine%20absorption%20process" title="amine absorption process">amine absorption process</a>, <a href="https://publications.waset.org/abstracts/search?q=blend%20MDEA%2FPZ" title=" blend MDEA/PZ"> blend MDEA/PZ</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title=" CO2 capture"> CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamic%20simulation" title=" molecular dynamic simulation"> molecular dynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20distribution%20function" title=" radial distribution function"> radial distribution function</a> </p> <a href="https://publications.waset.org/abstracts/47014/molecular-dynamic-simulation-of-co2-absorption-into-mixed-aqueous-solutions-mdeapz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Preparation and Characterization of AlkylAmines’ Surface Functionalized Activated Carbons for Dye Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20M.%20AL-Mashaikhi">Said M. AL-Mashaikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Said%20I.%20El-Shafey"> El-Said I. El-Shafey</a>, <a href="https://publications.waset.org/abstracts/search?q=Fakhreldin%20O.%20Suliman"> Fakhreldin O. Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Al-Busafi"> Saleh Al-Busafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon (AC) was prepared from date palm leaflets via NaOH activation. AC was oxidized using nitric acid, producing oxidized activated carbon (OAC). OAC was surface functionalized using different amine surfactants, including methylamine (ONM), ethylamine (ONE), and diethylamine (ONDE) using the amide coupling process. Produced carbons were surface characterized for surface area and porosity, X-ray diffraction, SEM, FTIR, and TGA. AC surface area (580 m²/g) has shown a decrease in oxidation to 260 m²/g for OAC. On amine functionalization, the surface area has further decreased to 218, 108, and 20 m²/g on functionalization with methylamine, ethylamine, and diethylamine, respectively. FTIR and TGA showed that the nature of amine functionalization of AC is chemical. Methylene blue sorption was tested on these carbons in terms of kinetics and equilibrium. Sorption was found faster on amine-functionalized carbons than both AC and OAC, and this is due to hydrophobic interaction with the alkyl groups immobilized with data following pseudo second-order reaction. On the other hand, AC showed the slowest adsorption kinetic process due to the diffusion in the porous structure of AC. Sorption equilibrium data was found to follow the Langmuir sorption isotherm with maximum sorption found on ONE. Regardless of its lower surface area than activated carbon, ethylamine functionalized AC showed better performance than AC in terms of kinetics and equilibrium for dye removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20interaction" title=" hydrophobic interaction"> hydrophobic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/136863/preparation-and-characterization-of-alkylamines-surface-functionalized-activated-carbons-for-dye-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> The Impact of the Cell-Free Solution of Lactic Acid Bacteria on Cadaverine Production by Listeria monocytogenes and Staphylococcus aureus in Lysine-Decarboxylase Broth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20%C3%96zogul">Fatih Özogul</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurten%20Toy"> Nurten Toy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yesim%20%C3%96zogul"> Yesim Özogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influences of cell-free solutions (CFSs) of lactic acid bacteria (LAB) on cadaverine and other biogenic amine production by Listeria monocytogenes and Staphylococcus aureus were investigated in lysine decarboxylase broth (LDB) using HPLC. Cell-free solutions were prepared from Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides subsp. cremoris, Pediococcus acidophilus and Streptococcus thermophiles. Two different concentrations that were 50% and 25% CFS and the control without CFSs were prepared. Significant variations on biogenic amine production were observed in the presence of L. monocytogenes and S. aureus (P<0.05). The role of CFS on biogenic amine production by foodborne pathogens varied depending on strains and specific amine. Cadaverine formation in control by L. monocytogenes and S. aureus were 500.9 and 948.1 mg/L, respectively while the CFSs of LAB induced 4-fold lower cadaverine production by L. monocytogenes and 7-fold lower cadaverine production by S. aureus. CFSs resulted in strong decreases in cadaverine and putrescine production by L. monocytogenes and S. aureus, although remarkable increases were observed for histamine, spermidine, spermine, serotonin, dopamine, tyramine, and agmatine, in the presence of LAB in lysine decarboxylase broth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-free%20solution" title="cell-free solution">cell-free solution</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=cadaverine" title=" cadaverine"> cadaverine</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20borne-pathogen" title=" food borne-pathogen"> food borne-pathogen</a> </p> <a href="https://publications.waset.org/abstracts/19420/the-impact-of-the-cell-free-solution-of-lactic-acid-bacteria-on-cadaverine-production-by-listeria-monocytogenes-and-staphylococcus-aureus-in-lysine-decarboxylase-broth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Cranioplasty with Custom Implant Realized Using 3D Printing Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trad%20Khodja%20Rafik">Trad Khodja Rafik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahtout%20Amine"> Mahtout Amine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghoul%20Rachid"> Ghoul Rachid</a>, <a href="https://publications.waset.org/abstracts/search?q=Benbouali%20Amine"> Benbouali Amine</a>, <a href="https://publications.waset.org/abstracts/search?q=Boulahlib%20Amine"> Boulahlib Amine</a>, <a href="https://publications.waset.org/abstracts/search?q=Hariza%20Abdelmalik"> Hariza Abdelmalik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cranioplasty with custom implant realized using 3D printing technology. Cranioplasty is a surgical act that aims restoring cranial bone losses in order to protect the brain from external aggressions and to improve the patient aesthetic appearance. This objective can be achieved with taking advantage of the current technological development in computer science and biomechanics. The objective of this paper it to present an approach for the realization of high precision biocompatible cranial implants using new 3D printing technologies at the lowest cost. The proposed method is to reproduce the missing part of the skull by referring to its healthy contralateral part. Once the model is validated by the neurosurgeons, a mold is 3D printed for the production of a biocompatible implant in Poly-Methyl-Methacrylate (PMMA) acrylic cement. Using this procedure four patients underwent this procedure with excellent aesthetic results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cranioplasty" title="cranioplasty">cranioplasty</a>, <a href="https://publications.waset.org/abstracts/search?q=cranial%20bone%20loss" title=" cranial bone loss"> cranial bone loss</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20technology" title="3D printing technology">3D printing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=custom-made%20implants" title=" custom-made implants"> custom-made implants</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a> </p> <a href="https://publications.waset.org/abstracts/153512/cranioplasty-with-custom-implant-realized-using-3d-printing-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mao-Sheng%20Su">Mao-Sheng Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhanamoorthi%20Nachimuthu"> Santhanamoorthi Nachimuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Chiang%20Jiang"> Jyh-Chiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MOFs" title=" MOFs"> MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20capture" title=" CO₂ capture"> CO₂ capture</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a> </p> <a href="https://publications.waset.org/abstracts/192123/dft-insights-into-co2-capture-mechanisms-and-kinetics-in-diamine-appended-grafted-mg2-dobpdc-metal-organic-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Antimicrobial Functions of Some Spice Extracts Such as Sumac, Cumin, Black Pepper and Red Pepper on the Growth of Common Food-Borne Pathogens and Their Biogenic Amine Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20%C3%96zogul">Fatih Özogul</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmeray%20Kuley%20Boga"> Esmeray Kuley Boga</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Kuley"> Ferhat Kuley</a>, <a href="https://publications.waset.org/abstracts/search?q=Yesim%20%C3%96zogul"> Yesim Özogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of diethyl ether extract of spices (sumac, cumin, black pepper and red pepper) on growth of Staphylococcus aureus, Salmonella Paratyphi A, Klebsiella pneumoniae, Enterococcus faecalis, Camplylobacter jejuni, Aeromonas hydrophila, Pseudomonas aeruginosa and Yersinia enterocolitica and their biogenic amine production were investigated in tyrosine decarboxylase broth. Sumac extract generally had the highest activity to inhibit bacterial growth compared to other extracts, although antimicrobial effect of extracts used varied depending on bacterial strains. Sumac extract resulted in 3.34 and 2.54 log reduction for Y. enterocolitica and Camp. jejuni growth, whilst red pepper extract induced 0.65, 0.41 and 0.34 log reduction for growth of Y. enterocolitica, S. Paratyphi A and Staph. aureus, respectively. Spice extracts significantly inhibited ammonia production by bacteria (P < 0.05). Eleven and nine fold reduction on ammonia production by S. Paratyphi A and Staph. aureus were observed in the presence of sumac extract. Dopamine, agmatine, tyramine, serotonin and TMA were main amines produced by bacteria. Tyramine production by food-borne-pathogens was more than 10 mg/L, whereas histamine accumulated below 52 mg/L. The effect of spice extracts on biogenic amine production varied depending on amino acid decarboxylase broth, spice type, bacterial strains and specific amine, although cumin extract generally increased biogenic amine production by bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobials" title="antimicrobials">antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=biogenic%20amines" title=" biogenic amines"> biogenic amines</a>, <a href="https://publications.waset.org/abstracts/search?q=food-borne%20pathogens" title=" food-borne pathogens"> food-borne pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=spice%20extracts" title=" spice extracts"> spice extracts</a> </p> <a href="https://publications.waset.org/abstracts/72668/antimicrobial-functions-of-some-spice-extracts-such-as-sumac-cumin-black-pepper-and-red-pepper-on-the-growth-of-common-food-borne-pathogens-and-their-biogenic-amine-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Characterization of Self-Assembly Behavior of 1-Dodecylamine Molecules on Au (111) Surface </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wan-Tzu%20%20Yen">Wan-Tzu Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chen%20%20Luo"> Yu-Chen Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ping%20%20Liu"> I-Ping Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Hsuan%20%20Yeh"> Po-Hsuan Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Hsun%20%20Fu"> Sheng-Hsun Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuh-Lang%20%20Lee"> Yuh-Lang Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-assembled characteristics and adsorption performance of 1-dodecylamine molecules on gold (Au) (111) surfaces were characterized via cyclic voltammetry (CV), surface-enhanced infrared absorption spectroscopy (SEIRAS) and scanning tunneling microscopy (STM). The present study focused on the formation of 1-dodecylamine (DDA) on a gold surface with respect to the ex-situ arrangement of an adlayer on the Au(111) surface, and phase transition at potential dynamics carried out by EC-STM. This study reveals that alkyl amine molecules were formed an adsorption pattern with highly regular “lie down shape” on Au(111) surface, even in an extreme acid system (pH = 1). Acidic electrolyte (HClO₄) could protonate the surface of alkyl amine of a monolayer of the gold surface when potential shifts to negative. The quite stability of 1-dodecylamine on the gold surface maintained the monolayer across the potential window (0.1-0.8V). This transform model was confirmed by EC-STM. In addition, amine-modified Au(111) electrode adlayer used to examine how to affect an electron transfer across an interface using [Fe(CN)₆]³⁻/[Fe(CN)₆]⁴⁻ redox pair containing 0.1 M HClO₄ solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title="cyclic voltammetry">cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=dodecylamine" title=" dodecylamine"> dodecylamine</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20%28Au%29%28111%29" title=" gold (Au)(111)"> gold (Au)(111)</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20tunneling%20microscopy" title=" scanning tunneling microscopy"> scanning tunneling microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembled%20monolayer" title=" self-assembled monolayer"> self-assembled monolayer</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-enhanced%20infrared%20absorption%20spectroscopy" title=" surface-enhanced infrared absorption spectroscopy"> surface-enhanced infrared absorption spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/118860/characterization-of-self-assembly-behavior-of-1-dodecylamine-molecules-on-au-111-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Split-Flow Method to Reduce Duty Required in Amine Gas Sweetening Units </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Sofiane%20Berrouk">Abdallah Sofiane Berrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Dara%20Satyadileep"> Dara Satyadileep</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the feasibility of retrofitting a middle-east based commercial amine sweetening unit with a split-flow scheme which involves withdrawing a portion of partially stripped semi-lean solvent from the stripping column and re-injecting it in the absorption column to reduce the overall energy consumption of the unit. This method is comprehensively explored by performing parametric analysis of the split fraction of the semi-lean solvent using a kinetics based process simulator ProMax V 3.2. Re-boiler duty, condenser duty, solvent cooling and pumping loads are analysed as functions of a split fraction of the semi-lean solvent from the stripper. It is shown that the proposed method significantly reduces the overall energy consumption of the unit resulting in an annual savings of 325,000 USD. The thorough economic analysis is performed using Aspen Economic Evaluation V 8.4 to reveal that the retrofit scheme pays back the capital cost in less than eight years and is highly recommended for any commercial plant having suitable provisions for solvent inlet/withdrawal on the columns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=split%20flow" title="split flow">split flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine" title=" Amine"> Amine</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20processing" title=" gas processing"> gas processing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/48530/split-flow-method-to-reduce-duty-required-in-amine-gas-sweetening-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Synthesis and Characterization of Poly (N-(Pyridin-2-Ylmethylidene)Pyridin-2-Amine: Thermal and Conductivity Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuray%20Y%C4%B1lmaz%20Baran">Nuray Yılmaz Baran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conjugated Schiff base polymers which are also called as polyazomethines are promising materials for various applications due to their good thermal resistance semiconductive, liquid crystal, fiber forming, nonlinear optical outstanding photo- and electroluminescence and antimicrobial properties. In recent years, polyazomethines have attracted intense attention of researchers especially due to optoelectronic properties which have made its usage possible in organic light emitting diodes (OLEDs), solar cells (SCs), organic field effect transistors (OFETs), and photorefractive holographic materials (PRHMs). In this study, N-(pyridin-2-ylmethylidene)pyridin-2-amine Schiff base was synthesized from condensation reaction of 2-aminopyridine with 2-pyridine carbaldehyde. Polymerization of Schiff base was achieved by polycondensation reaction using NaOCl oxidant in methanol medium at various time and temperatures. The synthesized Schiff base monomer and polymer (Poly(N-(pyridin-2-ylmethylidene)pyridin-2-amine)) was characterized by UV-vis, FT-IR, 1H-NMR, XRD techniques. Molecular weight distribution and the surface morphology of the polymer was determined by GPC and SEM-EDAX techniques. Thermal behaviour of the monomer and polymer was investigated by TG/DTG, DTA and DSC techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyazomethines" title="polyazomethines">polyazomethines</a>, <a href="https://publications.waset.org/abstracts/search?q=polycondensation%20reaction" title=" polycondensation reaction"> polycondensation reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Schiff%20base%20polymers" title=" Schiff base polymers"> Schiff base polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/53205/synthesis-and-characterization-of-poly-n-pyridin-2-ylmethylidenepyridin-2-amine-thermal-and-conductivity-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Keto-Enol Tautomerism of Salicylideneaniline Substituted</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rihana%20Hadjeb">Rihana Hadjeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Barkat"> Djamel Barkat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schiff bases derived from o-hydroxybenzaldehyde has attracted a great interest not only for its promising applications towards linear and non-linear optical properties, biological activity and technological applications but also used as model compounds for the theory of hydrogen bonding. Due to its intramolecular hydrogen bonding, depending on the position of proton in the hydrogen bond o-hydroxy salicylidene Schiff bases exhibit two tautomeric forms, enol-imine (E-form) and keto-enamine (K-form) both in solution and in crystalline state. A zwitterionic structure also appears due to a proton transfer in enol – imine and keto – amine tautomer. These classes of compounds also exhibit thermochromic and photochromic behavior. We undertook in this study the synthesis of ten compounds of hydroxy Schiff bases from the condensation of salicylic aldehyde and aniline substituted in the ortho, meta and para by the methyl, chloro and nitro groups. To study the keto-enol equilibrium of the compounds; UV-VIS spectra were studied in different polarity solvents. The compounds were in tautomeric equilibrium (enol imine O–H•••N, keto-amine O•••H–N forms). For some derivatives of salicylideneanilines the keto-amine form was observed in both ethanol and dioxane. IR results showed that all Schiff bases studied favor the enol-imine form over the keto form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salicylideneaniline" title="salicylideneaniline">salicylideneaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=tautomerism" title=" tautomerism"> tautomerism</a>, <a href="https://publications.waset.org/abstracts/search?q=keto-enol%20equilibrium" title=" keto-enol equilibrium"> keto-enol equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-VIS%20spectroscopy" title=" UV-VIS spectroscopy"> UV-VIS spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20effect" title=" solvent effect"> solvent effect</a> </p> <a href="https://publications.waset.org/abstracts/15613/keto-enol-tautomerism-of-salicylideneaniline-substituted" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Selective Extraction Separation of Vanadium and Chromium in the Leaching/Aqueous Solution with Trioctylamine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohua%20Jing">Xiaohua Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient extraction for separation of V and Cr in the leaching/aqueous solution is essential to the reuse of V and Cr in the V-Cr slag. Trioctylamine, a common tertiary amine extractant, with some good characters (e.g., weak base, insoluble in water and good stability) different from N1923, was investigated in this paper. The separation factor of Cr and V can be reached to 230.71 when initial pH of the aqueous solution is 0.5, so trioctylamine can be used for extracting Cr from the leaching/aqueous solution contained V and Cr. The highest extraction percentages of Cr and V were 98.73% and 90.22% when the initial pH values were 0.5 and 1.5, respectively. Via FT-IR spectra of loaded organic phase and trioctylamine, the hydrogen bond association mechanism of extracting V and Cr was investigated, which was the same with the way of extracting the two metals with primary amine N1923. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=selective%20extraction" title="selective extraction">selective extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=trioctylamine" title=" trioctylamine"> trioctylamine</a>, <a href="https://publications.waset.org/abstracts/search?q=V%20and%20Cr" title=" V and Cr"> V and Cr</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bond%20association" title=" hydrogen bond association"> hydrogen bond association</a> </p> <a href="https://publications.waset.org/abstracts/63024/selective-extraction-separation-of-vanadium-and-chromium-in-the-leachingaqueous-solution-with-trioctylamine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: Study of Regeneration Heat Duty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Esmaeili">Arash Esmaeili</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhibang%20Liu"> Zhibang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xiang"> Yang Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Yun"> Jimmy Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Shao"> Lei Shao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high-pressure carbon dioxide (CO₂) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO₂ concentration, CO₂ loading, reboiler power supply, and regeneration heat duty to choose the most efficient solution in terms of CO₂ removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on the electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that piperazine, in addition to the mixture of piperazine and monoethanolamine (MEA), demands the highest regeneration heat duty compared with other studied single and blended amine solutions, respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of the process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO₂ content in the outlet gas, rich-CO₂ loading, and regeneration heat duty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=amine%20solutions" title=" amine solutions"> amine solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=aspen%20HYSYS" title=" aspen HYSYS"> aspen HYSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20loading" title=" CO₂ loading"> CO₂ loading</a>, <a href="https://publications.waset.org/abstracts/search?q=piperazine" title=" piperazine"> piperazine</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration%20heat%20duty" title=" regeneration heat duty"> regeneration heat duty</a> </p> <a href="https://publications.waset.org/abstracts/128137/simulation-and-assessment-of-carbon-dioxide-separation-by-piperazine-blended-solutions-using-e-nrtl-and-peng-robinson-models-study-of-regeneration-heat-duty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Effects of Residence Time on Selective Absorption of Hydrogen Suphide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dara%20Satyadileep">Dara Satyadileep</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20S.%20Berrouk"> Abdallah S. Berrouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective absorption of Hydrogen Sulphide (H2S) using methyldiethanol amine (MDEA) has become a point of interest as means of minimizing capital and operating costs of gas sweetening plants. This paper discusses the prominence of optimum design of column internals to best achieve H2S selectivity using MDEA. To this end, a kinetics-based process simulation model has been developed for a commercial gas sweetening unit. Trends of sweet gas H2S & CO2 contents as function of fraction active area (and hence residence time) have been explained through analysis of interdependent heat and mass transfer phenomena. Guidelines for column internals design in order to achieve desired degree of H2S selectivity are provided. Also the effectiveness of various operating conditions in achieving H2S selectivity for an industrial absorber with fixed internals is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sweetening" title="gas sweetening">gas sweetening</a>, <a href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity" title=" H2S selectivity"> H2S selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=methyldiethanol%20amine" title=" methyldiethanol amine"> methyldiethanol amine</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20simulation" title=" process simulation"> process simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/21361/effects-of-residence-time-on-selective-absorption-of-hydrogen-suphide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Syntheses of Biobased Hybrid Poly(epoxy-hydroxyurethane) Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrien%20Cornille">Adrien Cornille</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Caillol"> Sylvain Caillol</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Boutevon"> Bernard Boutevon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of polyurethanes began in 1937 at I. G. Farbenindustrie where Bayer with coworkers discovered the addition polymerization reaction between diisocyanates and diols. Since their discovery, the demand in PU has continued to increase and it will attain in 2016 a production of 18 million tons. However, isocyanates compounds are harmful to human and environment. Methylene diphenyl 4,4’-diisocyanate (MDI) and toluene diisocyanate (TDI), the most widely used isocyanates in PU industry, are classified as CMR (Carcinogen, Mutagen, and Reprotoxic). In order to design isocyanate-free materials, an interesting alternative is the use of Polyhydroxyurethanes (PHUs) by reaction between cyclic carbonate and polyfunctional amines. The main problem concerning PHUs synthesis relates to the low reactivity of carbonate/amine reaction. To solve this issue, many studies in the literature have been conducted to design PHU from more reactive cyclic-carbonates, bearing electro-withdrawing substituent or by using six-membered, seven-membered or thio-cyclic carbonate. The main drawback of all these systems remains the low molar masses obtained for the synthesized PHUs, which hinders their use for material applications. Therefore, we developed another strategy to afford new hybrid PHU with high conversion. This very innovative two-step approach consists in the first step in the synthesis of aminotelechelic PHU oligomers with different chain length from bis-cyclic carbonate with different excess of primary amine functions. In the second step, these aminotelechelic PHU oligomers were used in formulation with biobased epoxy monomers (from cashew nut shell liquid and tannins) to synthesize hybrid polyepoxyurethane polymers. These materials were then characterized by thermal and mechanical analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title="polyurethane">polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhydroxyurethane" title=" polyhydroxyurethane"> polyhydroxyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=aminotelechelic%20NIPU%20oligomers" title=" aminotelechelic NIPU oligomers"> aminotelechelic NIPU oligomers</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonates" title=" carbonates"> carbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=amine" title=" amine"> amine</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxyurethane%20polymers" title=" epoxyurethane polymers"> epoxyurethane polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20polymers" title=" hybrid polymers"> hybrid polymers</a> </p> <a href="https://publications.waset.org/abstracts/40036/syntheses-of-biobased-hybrid-polyepoxy-hydroxyurethane-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Removal of Per- and Polyfluoroalkyl Substances (PFASs) Contaminants from the Aqueous Phase Using Chitosan Beads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahim%20Shahrokhi">Rahim Shahrokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Junboum%20Park"> Junboum Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Per- and Polyfluoroalkyl Substances (PFASs) are environmentally persistent halogenated hydrocarbons that have been widely used in many industrial and commercial applications. Recently, contaminating the soil and groundwater due to the ubiquity of PFAS in environments has raised great concern. Adsorption technology is one of the most promising methods for PFAS removal. Chitosan is a biopolymer substance with abundant amine and hydroxyl functional groups, which render it a good adsorbent. This study has tried to enhance the adsorption capacity of chitosan by grafting more amine functional groups on its surface for the removal of two long (PFOA and PFOS) and two short-chain (PFBA, PFBS) PFAS substances from the aqueous phase. A series of batch adsorption tests have been performed to evaluate the adsorption capacity of the used sorbent. Also, the sorbent was analyzed by SEM, FT-IR, zeta potential, and XRD tests. The results demonstrated that both chitosan beads have good potential for adsorbing short and long-chain PFAS from the aqueous phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PFAS" title="PFAS">PFAS</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan%20beads" title=" chitosan beads"> chitosan beads</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=grafted%20chitosan" title=" grafted chitosan"> grafted chitosan</a> </p> <a href="https://publications.waset.org/abstracts/177561/removal-of-per-and-polyfluoroalkyl-substances-pfass-contaminants-from-the-aqueous-phase-using-chitosan-beads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Esmaeili">Arash Esmaeili</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhibang%20Liu"> Zhibang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xiang"> Yang Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Yun"> Jimmy Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Shao"> Lei Shao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high pressure carbon dioxide (CO<sub>2</sub>) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO<sub>2</sub> concentration, absorption efficiency and CO<sub>2</sub> loading to choose the most proper solution in terms of CO<sub>2 </sub>capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO<sub>2</sub> absorption with high reactivity based on the simulated operational conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=amine%20solutions" title=" amine solutions"> amine solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspen%20HYSYS" title=" Aspen HYSYS"> Aspen HYSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/127187/assessment-of-carbon-dioxide-separation-by-amine-solutions-using-electrolyte-non-random-two-liquid-and-peng-robinson-models-carbon-dioxide-absorption-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Statistical Optimization of Distribution Coefficient for Reactive Extraction of Lactic Acid Using Tri-n-octyl Amine in Oleyl Alcohol and n-Hexane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Thakur">Avinash Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar"> Parmjit S. Panesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manohar%20Singh"> Manohar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution coefficient, KD for the reactive extraction of lactic acid from aqueous solutions of lactic acid using 10-30% (v/v) tri-n-octyl amine (extractant) dissolved in n-hexane (inert diluent) and 20% (v/v) oleyl alcohol (modifier) was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined interactive effect of seven independent variables, viz lactic acid concentration (cl), pH, TOA concentration in organic phase (ψ), treat ratio (φ), temperature (T), agitation speed (ω) and batch agitation time (τ) on distribution coefficient of lactic acid. The regression analysis recommended that the quadratic model is significant (R2 and adjusted R2 are 98.72 % and 98.69 % respectively) for analysis. A numerical optimization had resulted in maximum lactic acid distribution coefficient (KD) of 3.16 at the optimized values for test variables, cl, pH, ψ, φ, T, ω and τ as 0.15 [M], 3.0, 22.75% (v/v), 1.0 (v/v), 26°C, 145 rpm and 23 min respectively. A good agreement between the predicted and experimentally obtained values for distribution coefficient using the optimized conditions was exhibited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Distribution%20coefficient" title="Distribution coefficient">Distribution coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=tri-n-octylamine" title=" tri-n-octylamine"> tri-n-octylamine</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid" title=" lactic acid"> lactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/29876/statistical-optimization-of-distribution-coefficient-for-reactive-extraction-of-lactic-acid-using-tri-n-octyl-amine-in-oleyl-alcohol-and-n-hexane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Alzate-Carvajal">Natalia Alzate-Carvajal</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20A.%20Acevedo-Guzman"> Diego A. Acevedo-Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Meza-Laguna"> Victor Meza-Laguna</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20H.%20Farias"> Mario H. Farias</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20A.%20Perez-Rey"> Luis A. Perez-Rey</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Abarca-Morales"> Edgar Abarca-Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20A.%20Garcia-Ramirez"> Victor A. Garcia-Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Basiuk"> Vladimir A. Basiuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20V.%20Basiuk"> Elena V. Basiuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amines" title="amines">amines</a>, <a href="https://publications.waset.org/abstracts/search?q=covalent%20functionalization" title=" covalent functionalization"> covalent functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-phase" title=" gas-phase"> gas-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide%20paper" title=" graphene oxide paper"> graphene oxide paper</a> </p> <a href="https://publications.waset.org/abstracts/91820/gas-phase-nondestructive-and-environmentally-friendly-covalent-functionalization-of-graphene-oxide-paper-with-amines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10