CINXE.COM
(PDF) A p-adic look at the Diophantine equation x^2+11^2k=y^n | Yilmaz Simsek - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="h4k0a0XtRH3jsBiCw9TuOHoBTKbCPPcJ4iyH2wY/OTNhscYBubXvaLJye1Gfrs0a6o42+scu4yPEAl8s70dRhQ==" /> <meta name="citation_title" content="A p-adic Look at the Diophantine Equation x[sup 2]+11[sup 2k] = y[sup n]" /> <meta name="citation_publication_date" content="2009" /> <meta name="citation_journal_title" content="AIP Conference Proceedings" /> <meta name="citation_author" content="Ismail Naci Cangul" /> <meta name="citation_author" content="Gokhan Soydan" /> <meta name="citation_author" content="Yilmaz Simsek" /> <meta name="citation_author" content="Theodore E. Simos" /> <meta name="citation_author" content="George Psihoyios" /> <meta name="citation_author" content="Ch. Tsitouras" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/77100435/A_p_adic_look_at_the_Diophantine_equation_x_2_11_2k_y_n" /> <meta name="twitter:title" content="A p-adic look at the Diophantine equation x^2+11^2k=y^n" /> <meta name="twitter:description" content="We find all solutions of Diophantine equation x^2+11^2k = y^n where x>=1, y>=1, n>=3 and k is natural number. We give p-adic interpretation of this equation." /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/77100435/A_p_adic_look_at_the_Diophantine_equation_x_2_11_2k_y_n" /> <meta property="og:title" content="A p-adic look at the Diophantine equation x^2+11^2k=y^n" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="We find all solutions of Diophantine equation x^2+11^2k = y^n where x>=1, y>=1, n>=3 and k is natural number. We give p-adic interpretation of this equation." /> <meta property="article:author" content="https://independent.academia.edu/YilmazSimsek2" /> <meta name="description" content="We find all solutions of Diophantine equation x^2+11^2k = y^n where x>=1, y>=1, n>=3 and k is natural number. We give p-adic interpretation of this equation." /> <title>(PDF) A p-adic look at the Diophantine equation x^2+11^2k=y^n | Yilmaz Simsek - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/24497746/A_p_adic_Look_at_the_Diophantine_Equation_x_sup_2_11_sup_2k_y_sup_n_" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = 'aef08bf30f12268c94cf9615db4a499ebc17f891'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1733259557000); window.Aedu.timeDifference = new Date().getTime() - 1733259557000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"We find all solutions of Diophantine equation x^2+11^2k = y^n where x\u0026amp;amp;gt;=1, y\u0026amp;amp;gt;=1, n\u0026amp;amp;gt;=3 and k is natural number. We give p-adic interpretation of this equation.","author":[{"@context":"https://schema.org","@type":"Person","name":"Yilmaz Simsek"}],"contributor":[],"dateCreated":"2022-04-20","dateModified":"2022-04-20","datePublished":"2011-12-27","headline":"A p-adic look at the Diophantine equation x^2+11^2k=y^n","image":"https://attachments.academia-assets.com/84954988/thumbnails/1.jpg","inLanguage":"en","keywords":[],"publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}],"thumbnailUrl":"https://attachments.academia-assets.com/84954988/thumbnails/1.jpg","url":"https://www.academia.edu/77100435/A_p_adic_look_at_the_Diophantine_equation_x_2_11_2k_y_n"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "6790b9c8d46c017f14d90f70f6899e2c11202b1b0f78fbddebfba4330304898e", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="3Oaz4c9Xt2gM1edfQay6OANvrQbjaxE7TuQFhqrtP6A63kGLMw8cfV0XhIwd1pkak+DXWuZ5BRFoyt1xQ5VXFg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/77100435/A_p_adic_look_at_the_Diophantine_equation_x_2_11_2k_y_n" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="uCc+1PAXDvHkSyGf68v81ftWnQnzAPKwkqFHmbGYu4xeH8y+DE+l5LWJQky3sd/3a9nnVfYS5pq0j59uWODTOg==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-97865a4b41eebf6819eddc4c76d29598fe6b0336be57e9b6cde63060c39bfa02.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 146832572; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F77100435%2FA_p_adic_look_at_the_Diophantine_equation_x_2_11_2k_y_n%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F77100435%2FA_p_adic_look_at_the_Diophantine_equation_x_2_11_2k_y_n%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":84954988,"identifier":"Attachment_84954988","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":77100435,"created_at":"2022-04-20T11:12:46.602-07:00","from_world_paper_id":202603742,"updated_at":"2022-05-04T23:06:48.941-07:00","_data":{"abstract":"We find all solutions of Diophantine equation x^2+11^2k = y^n where x\u0026gt;=1, y\u0026gt;=1, n\u0026gt;=3 and k is natural number. We give p-adic interpretation of this equation.","publication_date":"2011,12,27"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"A p-adic look at the Diophantine equation x^2+11^2k=y^n","broadcastable":true,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [146832572]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":84954988,"attachmentType":"pdf"}"><img alt="First page of “A p-adic look at the Diophantine equation x^2+11^2k=y^n”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/84954988/mini_magick20220426-11154-1vh8dj7.png?1650959174" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">A p-adic look at the Diophantine equation x^2+11^2k=y^n</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2"><img alt="Profile image of Yilmaz Simsek" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Yilmaz Simsek</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2011</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">4 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 77100435; const worksViewsPath = "/v0/works/views?subdomain_param=api&work_ids%5B%5D=77100435"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { const viewCountNumber = Number(viewCount); if (!viewCountNumber) { throw new Error('Failed to parse view count'); } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (viewCountBody) { viewCountBody.textContent = `${commaizedViewCount} views`; } else { throw new Error('Failed to find work views element'); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">We find all solutions of Diophantine equation x^2+11^2k = y^n where x&gt;=1, y&gt;=1, n&gt;=3 and k is natural number. We give p-adic interpretation of this equation.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":84954988,"attachmentType":"pdf","workUrl":"https://www.academia.edu/77100435/A_p_adic_look_at_the_Diophantine_equation_x_2_11_2k_y_n"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":84954988,"attachmentType":"pdf","workUrl":"https://www.academia.edu/77100435/A_p_adic_look_at_the_Diophantine_equation_x_2_11_2k_y_n"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="84954988" data-landing_url="https://www.academia.edu/77100435/A_p_adic_look_at_the_Diophantine_equation_x_2_11_2k_y_n" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="24497746" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24497746/A_p_adic_Look_at_the_Diophantine_Equation_x_sup_2_11_sup_2k_y_sup_n_">A p-adic Look at the Diophantine Equation x[sup 2]+11[sup 2k] = y[sup n]</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47214595" href="https://uludag.academia.edu/IsmailCangul">Ismail Cangul</a></div><p class="ds-related-work--metadata ds2-5-body-xs">AIP Conference Proceedings, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A p-adic Look at the Diophantine Equation x[sup 2]+11[sup 2k] = y[sup n]","attachmentId":44830002,"attachmentType":"pdf","work_url":"https://www.academia.edu/24497746/A_p_adic_Look_at_the_Diophantine_Equation_x_sup_2_11_sup_2k_y_sup_n_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/24497746/A_p_adic_Look_at_the_Diophantine_Equation_x_sup_2_11_sup_2k_y_sup_n_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="24497733" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24497733/The_Diophantine_Equation_x_2_11_m_y_n_">The Diophantine Equation x^{2}+11^{m}=y^{n}</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47214595" href="https://uludag.academia.edu/IsmailCangul">Ismail Cangul</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2011</p><p class="ds-related-work--abstract ds2-5-body-sm">The object of this paper is to give a new proof of all the solutions of the Diophantine equation x^2+11^m=y^n; in positive integers x, y with odd m>1 and n>=3.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The Diophantine Equation x^{2}+11^{m}=y^{n}","attachmentId":44829927,"attachmentType":"pdf","work_url":"https://www.academia.edu/24497733/The_Diophantine_Equation_x_2_11_m_y_n_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/24497733/The_Diophantine_Equation_x_2_11_m_y_n_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="24497714" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24497714/On_the_Diophantine_equation_x_2_2_a_3_b_11_c_y_n">On the Diophantine equation x^2+2^a.3^b.11^c=y^n</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="55429661" href="https://bilecikedu.academia.edu/IlkerInam">Ilker Inam</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="65513991" href="https://uludag.academia.edu/GokhanSoydan">Gökhan Soydan</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47214595" href="https://uludag.academia.edu/IsmailCangul">Ismail Cangul</a></div><p class="ds-related-work--abstract ds2-5-body-sm">In this note, we find all the solutions of the Diophantine equation x^2 +2^a.3^b.11^c=y^n in nonnegative integers a, b, c, x, y, n&gt;= 3 with x and y coprime.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Diophantine equation x^2+2^a.3^b.11^c=y^n","attachmentId":44829983,"attachmentType":"pdf","work_url":"https://www.academia.edu/24497714/On_the_Diophantine_equation_x_2_2_a_3_b_11_c_y_n","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/24497714/On_the_Diophantine_equation_x_2_2_a_3_b_11_c_y_n"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="37104662" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/37104662/On_the_diophantine_equation_x2_p2k_yn">On the diophantine equation x2 + p2k = yn</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="87776801" href="https://independent.academia.edu/Istv%C3%A1nPink">Pink István</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Archiv der Mathematik, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the diophantine equation x2 + p2k = yn","attachmentId":57056058,"attachmentType":"pdf","work_url":"https://www.academia.edu/37104662/On_the_diophantine_equation_x2_p2k_yn","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/37104662/On_the_diophantine_equation_x2_p2k_yn"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="65360466" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65360466/On_and_related_Diophantine_equations">On and related Diophantine equations</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="50923566" href="https://independent.academia.edu/NikosTzanakis">Nikos Tzanakis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Number Theory, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On and related Diophantine equations","attachmentId":76991403,"attachmentType":"pdf","work_url":"https://www.academia.edu/65360466/On_and_related_Diophantine_equations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/65360466/On_and_related_Diophantine_equations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="15385522" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15385522/On_the_diophantine_equation">On the diophantine equation</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34534574" href="https://pnc.academia.edu/AlainTogb%C3%A9">Alain Togbé</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Number Theory, 2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the diophantine equation","attachmentId":43242005,"attachmentType":"pdf","work_url":"https://www.academia.edu/15385522/On_the_diophantine_equation","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/15385522/On_the_diophantine_equation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="2908634" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2908634/On_the_diophantine_equation_x_2_5_a_cdot_11_b_y_n_">On the diophantine equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="3421801" href="https://independent.academia.edu/%C4%B0smailDemirci">İsmail Demirci</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the diophantine equation $x^{2}+5^{a}\\cdot 11^{b}=y^{n}$","attachmentId":50540226,"attachmentType":"pdf","work_url":"https://www.academia.edu/2908634/On_the_diophantine_equation_x_2_5_a_cdot_11_b_y_n_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/2908634/On_the_diophantine_equation_x_2_5_a_cdot_11_b_y_n_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="32615017" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/32615017/A_study_of_Fermats_Last_Theorem_and_other_Diophantine_Equations">A study of Fermat's Last Theorem and other Diophantine Equations</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="63277192" href="https://oauife.academia.edu/OlufemiOYADARE">Olufemi OYADARE</a></div><p class="ds-related-work--abstract ds2-5-body-sm">This paper develops a framework of algebra whereby every Diophan-tine equation is made quickly accessible by a study of the corresponding row entries in an array of numbers which we call the Binomial triangle. We then apply the framework to the discussion of some notable results in the theory of numbers. Among other results, we prove a new and complete generation of all Pythagorean triples (without necessarily resorting to their production by examples), convert the collection of Bi-nomial triangles to a Noetherian ring (whose identity element is found to be the well-known Pascal triangle) and develop an easy understanding of the original Fermat's Last Theorem (F LT). The application includes the computation of the Galois groups of those polynomials coming from our outlook on F LT and an approach to the explicit realization of arithmetic groups of curves by a treatment of some Diophantine curves.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A study of Fermat's Last Theorem and other Diophantine Equations","attachmentId":52787831,"attachmentType":"pdf","work_url":"https://www.academia.edu/32615017/A_study_of_Fermats_Last_Theorem_and_other_Diophantine_Equations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/32615017/A_study_of_Fermats_Last_Theorem_and_other_Diophantine_Equations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="15345081" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15345081/On_the_Diophantine_equation_x2_2a11b_yn">On the Diophantine equation x2+ 2a11b= yn</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34464840" href="https://unideb.academia.edu/%C3%81kosPint%C3%A9r">Ákos Pintér</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Diophantine equation x2+ 2a11b= yn","attachmentId":43310064,"attachmentType":"pdf","work_url":"https://www.academia.edu/15345081/On_the_Diophantine_equation_x2_2a11b_yn","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/15345081/On_the_Diophantine_equation_x2_2a11b_yn"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="113386301" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113386301/Some_Diophantine_problems">Some Diophantine problems</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39341047" href="https://independent.academia.edu/GregoryChudnovsky">Gregory Chudnovsky</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Contributions to the Theory of Transcendental Numbers, 1984</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Some Diophantine problems","attachmentId":110357858,"attachmentType":"pdf","work_url":"https://www.academia.edu/113386301/Some_Diophantine_problems","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/113386301/Some_Diophantine_problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":84954988,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":84954988,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_84954988" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="117211300" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117211300/On_primitive_integer_solutions_of_the_Diophantine_equation_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_overflow_scroll_mml_msup_mml_mrow_mml_mi_t_mml_mi_mml_mrow_mml_mrow_mml_mn_2_mml_mn_mml_mrow_mml_msup_mml_mo_mml_mo_mml_mi_G_mml_mi_mml_mo_str_">On primitive integer solutions of the Diophantine equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>t</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:mi>G</mml:mi><mml:mo str...</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="48399509" href="https://independent.academia.edu/MaciejUlas">Maciej Ulas</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Number Theory, 2016</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On primitive integer solutions of the Diophantine equation \u003cmml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" altimg=\"si1.gif\" overflow=\"scroll\"\u003e\u003cmml:msup\u003e\u003cmml:mrow\u003e\u003cmml:mi\u003et\u003c/mml:mi\u003e\u003c/mml:mrow\u003e\u003cmml:mrow\u003e\u003cmml:mn\u003e2\u003c/mml:mn\u003e\u003c/mml:mrow\u003e\u003c/mml:msup\u003e\u003cmml:mo\u003e=\u003c/mml:mo\u003e\u003cmml:mi\u003eG\u003c/mml:mi\u003e\u003cmml:mo str...","attachmentId":113128240,"attachmentType":"pdf","work_url":"https://www.academia.edu/117211300/On_primitive_integer_solutions_of_the_Diophantine_equation_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_overflow_scroll_mml_msup_mml_mrow_mml_mi_t_mml_mi_mml_mrow_mml_mrow_mml_mn_2_mml_mn_mml_mrow_mml_msup_mml_mo_mml_mo_mml_mi_G_mml_mi_mml_mo_str_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/117211300/On_primitive_integer_solutions_of_the_Diophantine_equation_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_overflow_scroll_mml_msup_mml_mrow_mml_mi_t_mml_mi_mml_mrow_mml_mrow_mml_mn_2_mml_mn_mml_mrow_mml_msup_mml_mo_mml_mo_mml_mi_G_mml_mi_mml_mo_str_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="85642293" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/85642293/On_px2_q2n_yp_and_related_Diophantine_equations">On px2+q2n=yp and related Diophantine equations</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146930606" href="https://independent.academia.edu/TzanakisNikos">Nikos Tzanakis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Number Theory, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On px2+q2n=yp and related Diophantine equations","attachmentId":90277884,"attachmentType":"pdf","work_url":"https://www.academia.edu/85642293/On_px2_q2n_yp_and_related_Diophantine_equations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/85642293/On_px2_q2n_yp_and_related_Diophantine_equations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="33362672" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/33362672/Note_on_On_the_Diophantine_equation_Y_Wang_T_Wang_J_Number_Theory_131_8_2011_1486_1491_">Note on “On the Diophantine equation ” [Y. Wang, T. Wang, J. Number Theory 131 (8) (2011) 1486–1491]</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47214595" href="https://uludag.academia.edu/IsmailCangul">Ismail Cangul</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Number Theory, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Note on “On the Diophantine equation ” [Y. Wang, T. Wang, J. Number Theory 131 (8) (2011) 1486–1491]","attachmentId":53419875,"attachmentType":"pdf","work_url":"https://www.academia.edu/33362672/Note_on_On_the_Diophantine_equation_Y_Wang_T_Wang_J_Number_Theory_131_8_2011_1486_1491_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/33362672/Note_on_On_the_Diophantine_equation_Y_Wang_T_Wang_J_Number_Theory_131_8_2011_1486_1491_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="3589123" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/3589123/The_Diophantine_Equation_x_n_y_m_c_x_k_y_l_n_m_k_l_c_natural_numbers">The Diophantine Equation x^n+y^m=c(x^k)(y^l), n,m,k,l,c natural numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="3216991" href="https://independent.academia.edu/KonstantineZelator">Konstantine Zelator</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The Diophantine Equation x^n+y^m=c(x^k)(y^l), n,m,k,l,c natural numbers","attachmentId":38591511,"attachmentType":"pdf","work_url":"https://www.academia.edu/3589123/The_Diophantine_Equation_x_n_y_m_c_x_k_y_l_n_m_k_l_c_natural_numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/3589123/The_Diophantine_Equation_x_n_y_m_c_x_k_y_l_n_m_k_l_c_natural_numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="37104665" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/37104665/On_the_diophantine_equation_x_2_5_k17_l_y_n_">On the diophantine equation $x^2+5^k17^l=y^n$</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="87776801" href="https://independent.academia.edu/Istv%C3%A1nPink">Pink István</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Communications in Mathematics, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the diophantine equation $x^2+5^k17^l=y^n$","attachmentId":57056049,"attachmentType":"pdf","work_url":"https://www.academia.edu/37104665/On_the_diophantine_equation_x_2_5_k17_l_y_n_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/37104665/On_the_diophantine_equation_x_2_5_k17_l_y_n_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="15345107" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15345107/On_the_Diophantine_equation_1k_2k_xk_yn">On the Diophantine equation 1k + 2k + ⋯ + xk = yn</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34464840" href="https://unideb.academia.edu/%C3%81kosPint%C3%A9r">Ákos Pintér</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Compositio Mathematica, 2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Diophantine equation 1k + 2k + ⋯ + xk = yn","attachmentId":43310090,"attachmentType":"pdf","work_url":"https://www.academia.edu/15345107/On_the_Diophantine_equation_1k_2k_xk_yn","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/15345107/On_the_Diophantine_equation_1k_2k_xk_yn"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="75258725" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/75258725/A_note_on_the_high_power_diophantine_equations">A note on the high power diophantine equations</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="59253435" href="https://independent.academia.edu/farzaliizadi">farzali izadi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings - Mathematical Sciences</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A note on the high power diophantine equations","attachmentId":83099937,"attachmentType":"pdf","work_url":"https://www.academia.edu/75258725/A_note_on_the_high_power_diophantine_equations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/75258725/A_note_on_the_high_power_diophantine_equations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="15385530" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15385530/On_the_exponential_Diophantine_equation_x_2_2_a_p_b_y_n_x_2_2_a_p_b_y_n">On the exponential Diophantine equation $$x^{2}+2^{a}p^{b}=y^{n}$$ x 2 + 2 a p b = y n</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34575312" href="https://independent.academia.edu/HuilinZhu">Huilin Zhu</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34534574" href="https://pnc.academia.edu/AlainTogb%C3%A9">Alain Togbé</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Periodica Mathematica Hungarica, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the exponential Diophantine equation $$x^{2}+2^{a}p^{b}=y^{n}$$ x 2 + 2 a p b = y n","attachmentId":43242003,"attachmentType":"pdf","work_url":"https://www.academia.edu/15385530/On_the_exponential_Diophantine_equation_x_2_2_a_p_b_y_n_x_2_2_a_p_b_y_n","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/15385530/On_the_exponential_Diophantine_equation_x_2_2_a_p_b_y_n_x_2_2_a_p_b_y_n"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="8951636" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/8951636/On_The_Binary_Quadratic_Diophantine_Equation">On The Binary Quadratic Diophantine Equation</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2753825" href="https://ijesrt.academia.edu/ijesrt">Ijesrt Journal</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On The Binary Quadratic Diophantine Equation","attachmentId":35270771,"attachmentType":"pdf","work_url":"https://www.academia.edu/8951636/On_The_Binary_Quadratic_Diophantine_Equation","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/8951636/On_The_Binary_Quadratic_Diophantine_Equation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="70070770" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/70070770/A_Short_Review_on_p_Adic_Numbers">A Short Review on p-Adic Numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="66417031" href="https://independent.academia.edu/MutlayDogan">Mutlay Dogan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Eurasian Journal of Science and Engineering</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Short Review on p-Adic Numbers","attachmentId":79943525,"attachmentType":"pdf","work_url":"https://www.academia.edu/70070770/A_Short_Review_on_p_Adic_Numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/70070770/A_Short_Review_on_p_Adic_Numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="84774358" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/84774358/Diophantine_Equations_An_Introduction">Diophantine Equations An Introduction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="140341488" href="https://independent.academia.edu/DinakarRamakrishnan">Dinakar Ramakrishnan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Diophantine Equations An Introduction","attachmentId":89681559,"attachmentType":"pdf","work_url":"https://www.academia.edu/84774358/Diophantine_Equations_An_Introduction","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/84774358/Diophantine_Equations_An_Introduction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="6793280" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/6793280/A_METHOD_TO_SOLVE_THE_DIOPHANTINE_EQUATION">A METHOD TO SOLVE THE DIOPHANTINE EQUATION</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4976797" href="https://unm.academia.edu/FlorentinSmarandache">Florentin Smarandache</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A METHOD TO SOLVE THE DIOPHANTINE EQUATION","attachmentId":33496151,"attachmentType":"pdf","work_url":"https://www.academia.edu/6793280/A_METHOD_TO_SOLVE_THE_DIOPHANTINE_EQUATION","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/6793280/A_METHOD_TO_SOLVE_THE_DIOPHANTINE_EQUATION"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="72966776" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/72966776/Grechyn_Diophantine_equations_pdf">Grechyn_Diophantine equations.pdf</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="62685947" href="https://independent.academia.edu/VGrechyn">Viktor Grechyn</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Grechyn_Diophantine equations.pdf","attachmentId":81677279,"attachmentType":"pdf","work_url":"https://www.academia.edu/72966776/Grechyn_Diophantine_equations_pdf","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/72966776/Grechyn_Diophantine_equations_pdf"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="122245291" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/122245291/On_the_Solutions_of_Some_Mersenne_Prime_Involved_Diophantine_Equations">On the Solutions of Some Mersenne Prime-Involved Diophantine Equations</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="104659125" href="https://donmarianomarcosmemorial.academia.edu/WilliamGayoJr">William S . Gayo Jr.</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Mathematics and Computer Science, 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Solutions of Some Mersenne Prime-Involved Diophantine Equations","attachmentId":116952407,"attachmentType":"pdf","work_url":"https://www.academia.edu/122245291/On_the_Solutions_of_Some_Mersenne_Prime_Involved_Diophantine_Equations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/122245291/On_the_Solutions_of_Some_Mersenne_Prime_Involved_Diophantine_Equations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="113665007" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113665007/On_the_Diophantine_Equation_cx_2_p_2m_4y_n_">On the Diophantine Equation $$cx^2+p^{2m}=4y^n$$</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="204065167" href="https://hri.academia.edu/AzizulHoque">Azizul Hoque</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="300993618" href="https://independent.academia.edu/SrinivasKotyada">Srinivas Kotyada</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Results in Mathematics, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Diophantine Equation $$cx^2+p^{2m}=4y^n$$","attachmentId":110567113,"attachmentType":"pdf","work_url":"https://www.academia.edu/113665007/On_the_Diophantine_Equation_cx_2_p_2m_4y_n_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/113665007/On_the_Diophantine_Equation_cx_2_p_2m_4y_n_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="96693020" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/96693020/ON_THE_DIOPHANTINE_EQUATION_p_x_p_1_y_z_2">ON THE DIOPHANTINE EQUATION p^x+(p+1)^y=z^2</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="248154453" href="https://independent.academia.edu/AlongkotSuvarnamani">Alongkot Suvarnamani</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Pure and Apllied Mathematics, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"ON THE DIOPHANTINE EQUATION p^x+(p+1)^y=z^2","attachmentId":98520884,"attachmentType":"pdf","work_url":"https://www.academia.edu/96693020/ON_THE_DIOPHANTINE_EQUATION_p_x_p_1_y_z_2","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/96693020/ON_THE_DIOPHANTINE_EQUATION_p_x_p_1_y_z_2"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="83872240" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/83872240/Some_p_adic_Differential_Equations">Some p-adic Differential Equations</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4124733" href="https://univie.academia.edu/MauricedeGosson">Maurice de Gosson</a></div><p class="ds-related-work--metadata ds2-5-body-xs">P-Adic Functional Analysis, 2001</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Some p-adic Differential Equations","attachmentId":89079441,"attachmentType":"pdf","work_url":"https://www.academia.edu/83872240/Some_p_adic_Differential_Equations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/83872240/Some_p_adic_Differential_Equations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="72029262" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/72029262/On_the_Diophantine_Equation_q_2_n_x_p_y_z_2_where_q_is_any_Prime_Number_and_p_is_an_Odd_Prime_Number">On the Diophantine Equation {(q^2 )^n }^x+p^y= z^2 where q is any Prime Number and p is an Odd Prime Number</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="151946064" href="https://independent.academia.edu/suryaprakashgautam">surya prakash gautam</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Annals of Pure and Applied Mathematics</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Diophantine Equation {(q^2 )^n }^x+p^y= z^2 where q is any Prime Number and p is an Odd Prime Number","attachmentId":81125728,"attachmentType":"pdf","work_url":"https://www.academia.edu/72029262/On_the_Diophantine_Equation_q_2_n_x_p_y_z_2_where_q_is_any_Prime_Number_and_p_is_an_Odd_Prime_Number","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/72029262/On_the_Diophantine_Equation_q_2_n_x_p_y_z_2_where_q_is_any_Prime_Number_and_p_is_an_Odd_Prime_Number"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="77008956" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/77008956/Some_Aspects_of_Quadratic_Diophantine_Equations">Some Aspects of Quadratic Diophantine Equations</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="104754462" href="https://tribhuvan.academia.edu/BalTamang">Bal Tamang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Scientific and Innovative Mathematical Research, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Some Aspects of Quadratic Diophantine Equations","attachmentId":84521865,"attachmentType":"pdf","work_url":"https://www.academia.edu/77008956/Some_Aspects_of_Quadratic_Diophantine_Equations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/77008956/Some_Aspects_of_Quadratic_Diophantine_Equations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="101620930" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/101620930/Diophantine_Quotients_and_Remainders_with_Applications_to_Fermat_and_Pythagorean_Equations">Diophantine Quotients and Remainders with Applications to Fermat and Pythagorean Equations</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="168086698" href="https://independent.academia.edu/ProsperKIMOU">Prosper KIMOU</a></div><p class="ds-related-work--metadata ds2-5-body-xs">American Journal of Computational Mathematics, 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Diophantine Quotients and Remainders with Applications to Fermat and Pythagorean Equations","attachmentId":102148595,"attachmentType":"pdf","work_url":"https://www.academia.edu/101620930/Diophantine_Quotients_and_Remainders_with_Applications_to_Fermat_and_Pythagorean_Equations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/101620930/Diophantine_Quotients_and_Remainders_with_Applications_to_Fermat_and_Pythagorean_Equations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="194130" href="https://www.academia.edu/Documents/in/PARTIAL_DIFFERENTIAL_EQUATION">PARTIAL DIFFERENTIAL EQUATION</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="506482" href="https://www.academia.edu/Documents/in/Function_approximation">Function approximation</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="939537" href="https://www.academia.edu/Documents/in/Boundary_Value_Problem">Boundary Value Problem</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="3641544" href="https://www.academia.edu/Documents/in/Diophantine_Equation">Diophantine Equation</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>