CINXE.COM

Search results for: Antibody

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Antibody</title> <meta name="description" content="Search results for: Antibody"> <meta name="keywords" content="Antibody"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Antibody" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Antibody"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 278</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Antibody</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> &#039;Antibody Exception&#039; under Dispute and Waning Usage: Potential Influence on Patenting Antibodies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangjun%20Kong">Xiangjun Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongning%20Yao"> Dongning Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanjia%20Hu"> Yuanjia Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Therapeutic antibodies have become the most valuable and successful class of biopharmaceutical drugs, with a huge market potential and therapeutic advantages. Antibody patents are, accordingly, extremely important. As the technological limitation of the early stage of this field, the U. S. Patent and Trademark Offices (USPTO) have issued guidelines that suggest an exception for patents claiming a genus of antibodies that bind to a novel antigen, even in the absence of any experimental antibody production. This 'antibody exception' allowed for a broad scope on antibody claims, and led a global trend to patent antibodies without antibodies. Disputes around the pertinent patentability and written description issues remain particularly intense. Yet the validity of such patents had not been overtly challenged until Centocor v. Abbott, which restricted the broad scope of antibody patents and hit the brakes on the 'antibody exception'. The courts tend to uphold the requirement for adequate description of antibodies in the patent specifications, to avoid overreaching antibody claims. Patents following the 'antibody exception' are at risk of being found invalid for inadequately describing what they have claimed. However, the relation between the court and USPTO guidelines remains obscure, and the waning of the 'antibody exception' has led to further disputes around antibody patents. This uncertainty clearly affects patent applications, antibody innovations, and even relevant business performance. This study will give an overview of the emergence, debate, and waning usage of the 'antibody exception' in a number of enlightening cases, attempting to understand the specific concerns and the potential influence of antibody patents. We will then provide some possible strategies for antibody patenting, under the current considerations on the 'antibody exception'. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody%20exception" title="antibody exception">antibody exception</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody%20patent" title=" antibody patent"> antibody patent</a>, <a href="https://publications.waset.org/abstracts/search?q=USPTO%20%28U.%20S.%20Patent%20and%20Trademark%20Offices%29%20guidelines" title=" USPTO (U. S. Patent and Trademark Offices) guidelines"> USPTO (U. S. Patent and Trademark Offices) guidelines</a>, <a href="https://publications.waset.org/abstracts/search?q=written%20description%20requirement" title=" written description requirement"> written description requirement</a> </p> <a href="https://publications.waset.org/abstracts/93426/antibody-exception-under-dispute-and-waning-usage-potential-influence-on-patenting-antibodies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Monitoring of Humoral Immune Response of Monovalent and Combined PPR and FMD Serotype &#039;O&#039; Virus Vaccines in Goats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mudassar%20Hameed">Mudassar Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Khushi%20Muhammad"> Khushi Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Ghafoor"> Aamir Ghafoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Masood%20%20Rabbani"> Masood Rabbani</a>, <a href="https://publications.waset.org/abstracts/search?q=Momena%20Habib"> Momena Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad%20Nazir"> Jawad Nazir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative efficacy of three formulations (non-adjuvant, gel, and oil adjuvant) of monovalent and combined PPR and FMD virus vaccines was evaluated in goats. All kinds of monovalent PPRV vaccines elicited protective antibody titers at one-month post vaccination (PV) that remained so till six months PV. Monovalent non-adjuvant (NA) FMDV vaccine provoked non-protective antibody titers that declined to undetectable levels after three months. In case of combined vaccines, all of the formulations elicited protective antibody titers against PPRV in vaccinated animals which remained above that limit for six months. However, an exceptional immune response against FMDV was observed in combined NA vaccine group where antibody titers were extremely high and remained above protective level till 4 months PV in animals who received a single vaccine shot and till six months PV in booster group. Although, adjuvant or NA combined vaccines can induce protective antibody titers against both of the viruses within one month PV, but a booster vaccine shot is needed to retain protective antibody level for 6 months duration. Immune response elicited by combined vaccines is comparable or superior to the monovalent vaccines. Hence combined vaccine can be effectively used for the control and prevention of both of the diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody%20titer" title="antibody titer">antibody titer</a>, <a href="https://publications.waset.org/abstracts/search?q=protective" title=" protective"> protective</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20vaccine" title=" combined vaccine"> combined vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20adjuvant" title=" non adjuvant"> non adjuvant</a> </p> <a href="https://publications.waset.org/abstracts/83674/monitoring-of-humoral-immune-response-of-monovalent-and-combined-ppr-and-fmd-serotype-o-virus-vaccines-in-goats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> Detection of Heroin and Its Metabolites in Urine Samples: A Chemiluminescence Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonu%20Gandhi">Sonu Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Neena%20Capalash"> Neena Capalash</a>, <a href="https://publications.waset.org/abstracts/search?q=Prince%20Sharma"> Prince Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Raman%20Suri"> C. Raman Suri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sensitive chemiluminescence immunoassay (CIA) for heroin and its major metabolites is reported. The method is based on the competitive reaction of horseradish peroxidase (HRP)-labeled anti-MAM antibody and free drug in spiked urine samples. A hapten-protein conjugate was synthesized by using acidic derivative of monoacetyl morphine (MAM) coupled to carrier protein BSA and was used as an immunogen for the generation of anti-MAM (monoacetyl morphine) antibody. A high titer of antibody (1:64,0000) was obtained and the relative affinity constant (Kaff) of antibody was 3.1×107 l/mol. Under the optimal conditions, linear range and reactivity for heroin, mono acetyl morphine (MAM), morphine and codeine were 0.08, 0.09, 0.095 and 0.092 ng/mL respectively. The developed chemiluminescence inhibition assay could detect heroin and its metabolites in standard and urine samples up to 0.01 ng/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heroin" title="heroin">heroin</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=chemiluminescence%20immunoassay" title=" chemiluminescence immunoassay"> chemiluminescence immunoassay</a>, <a href="https://publications.waset.org/abstracts/search?q=horse%20radish%20peroxidase" title=" horse radish peroxidase "> horse radish peroxidase </a> </p> <a href="https://publications.waset.org/abstracts/44063/detection-of-heroin-and-its-metabolites-in-urine-samples-a-chemiluminescence-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Kashanian">F. Kashanian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Masoudi"> M. M. Masoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Akbari"> A. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shamloo"> A. Shamloo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Zand"> M. R. Zand</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Salehi"> S. S. Salehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe<sub>3</sub>O<sub>4</sub> nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tumor%20tissue" title="tumor tissue">tumor tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody" title=" antibody"> antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticle" title=" magnetic nanoparticle"> magnetic nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=CTCs%20capturing" title=" CTCs capturing"> CTCs capturing</a> </p> <a href="https://publications.waset.org/abstracts/67417/antibody-conjugated-nontoxic-arginine-doped-fe3o4-nanoparticles-for-magnetic-circulating-tumor-cells-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> ELISA Based hTSH Assessment Using Two Sensitive and Specific Anti-hTSH Polyclonal Antibodies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maysam%20Mard-Soltani">Maysam Mard-Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Javad%20Rasaee"> Mohamad Javad Rasaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Khalili"> Saeed Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdol%20Karim%20Sheikhi"> Abdol Karim Sheikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Hedayati"> Mehdi Hedayati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of specific antibody responses against hTSH is a cumbersome process due to the high identity between the hTSH and the other members of the glycoprotein hormone family (FSH, LH and HCG) and the high identity between the human hTSH and host animals for antibody production. Therefore, two polyclonal antibodies were purified against two recombinant proteins. Four possible ELISA tests were designed based on these antibodies. These ELISA tests were checked against hTSH and other glycoprotein hormones, and their sensitivity and specificity were assessed. Bioinformatics tools were used to analyze the immunological properties. After the immunogen region selection from hTSH protein, c terminal of B hTSH was selected and applied. Two recombinant genes, with these cut pieces (first: two repeats of C terminal of B hTSH, second: tetanous toxin+B hTSH C terminal), were designed and sub-cloned into the pET32a expression vector. Standard methods were used for protein expression, purification, and verification. Thereafter, immunizations of the white New Zealand rabbits were performed and the serums of them were used for antibody titration, purification and characterization. Then, four ELISA tests based on two antibodies were employed to assess the hTSH and other glycoprotein hormones. The results of these assessments were compared with standard amounts. The obtained results indicated that the desired antigens were successfully designed, sub-cloned, expressed, confirmed and used for <em>in vivo</em> immunization. The raised antibodies were capable of specific and sensitive hTSH detection, while the cross reactivity with the other members of the glycoprotein hormone family was minimum. Among the four designed tests, the test in which the antibody against first protein was used as capture antibody, and the antibody against second protein was used as detector antibody did not show any hook effect up to 50 miu/l. Both proteins have the ability to induce highly sensitive and specific antibody responses against the hTSH. One of the antibody combinations of these antibodies has the highest sensitivity and specificity in hTSH detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hTSH" title="hTSH">hTSH</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20expression" title=" protein expression"> protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20reactivity" title=" cross reactivity"> cross reactivity</a> </p> <a href="https://publications.waset.org/abstracts/84047/elisa-based-htsh-assessment-using-two-sensitive-and-specific-anti-htsh-polyclonal-antibodies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> A Field Study of Monochromatic Light Effects on Antibody Responses to Newcastle Disease by HI Test and the Correlation with ELISA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mehrzad%20Pahlavani">Seyed Mehrzad Pahlavani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mozaffar%20Haji%20Jafari%20Anaraki"> Mozaffar Haji Jafari Anaraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayma%20Mohammadi"> Sayma Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 34700 day-old broilers were exposed to green, blue and yellow light using a light-emitting diode system for 6 weeks to investigate the effects of light wave length on antibody responses to Newcastle disease by HI test and the correlation with ELISA. 3 poultry house broiler farms with the same conditions was selected and the lightening system of each was set according to the requirement. Blood samples were taken from 20 chicks on days 1, 24 and 46 and the Newcastle virus specific antibody was titered in serum using HI an ELISA test. On day 24, the probability value of more than 0/05 was observed in HI and ELISA tests of all groups while at the end of breeding period, the average HI serum antibody titer was more in the green light than the yellow one while the blue light was not significantly different from both. At the last titration, the green light has got the highest titer of Newcastle antibodies. There were no significant differences of Newcastle antibody titers between all groups and ages in broiler pullets in ELISA. According to the sampling and analysis of HI and ELISA serum tests, there were no significant relationships between all broiler pullets breeding in green, blue and yellow light on days 24 and 46 and the P-value was more than 0/05. It is suggested that the monochromatic light is effective on broilers immunity against Newcastle disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monochromatic%20light" title="monochromatic light">monochromatic light</a>, <a href="https://publications.waset.org/abstracts/search?q=Newcastle%20disease" title=" Newcastle disease"> Newcastle disease</a>, <a href="https://publications.waset.org/abstracts/search?q=HI%20test" title=" HI test"> HI test</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA%20test" title=" ELISA test"> ELISA test</a> </p> <a href="https://publications.waset.org/abstracts/6039/a-field-study-of-monochromatic-light-effects-on-antibody-responses-to-newcastle-disease-by-hi-test-and-the-correlation-with-elisa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Periplasmic Expression of Anti-RoxP Antibody Fragments in Escherichia Coli.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caspar%20S.%20Carson">Caspar S. Carson</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20W.%20Prather"> Gabriel W. Prather</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20E.%20Wong"> Nicholas E. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffery%20R.%20Anton"> Jeffery R. Anton</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20H.%20McCoy"> William H. McCoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cutibacterium acnes is a commensal bacterium found on human skin that has been linked to acne. C. acnes can also be an opportunistic pathogen when it infiltrates the body during surgery. This pathogen can cause dangerous infections of medical implants, such as shoulder replacements, leading to life-threatening blood infections. Compounding this issue, C. acnes resistance to many antibiotics has become an increasing problem worldwide, creating a need for special forms of treatment. C. acnes expresses the protein RoxP, and it requires this protein to colonize human skin. Though this protein is required for C. acnes skin colonization, its function is not yet understood. Inhibition of RoxP function might be an effective treatment for C. acnes infections. To develop such reagents, the McCoy Laboratory generated four unique anti-RoxP antibodies. Preliminary studies in the McCoy Lab have established that each antibody binds a distinct site on RoxP. To assess the potential of these antibodies as therapeutics, it is necessary to specifically characterize these antibody epitopes and evaluate them in assays that assess their ability to inhibit RoxP-dependent C. acnes growth. To provide material for these studies, an antibody expression construct, Fv-clasp(v2), was adapted to encode anti-RoxP antibody sequences. The author hypothesizes that this expression strategy can produce sufficient amounts of >95% pure antibody fragments for further characterization of these antibodies. Four anti-RoxP Fv-clasp(v2) expression constructs (pET vector-based) were transformed into E. coli BL21-Gold(DE3) cells and a small-scale expression and purification trial was performed for each construct to evaluate anti-RoxP Fv-clasp(v2) yield and purity. Successful expression and purification of these antibody constructs will allow for their use in structural studies, such as protein crystallography and cryogenic electron microscopy. Such studies would help to define the antibody binding sites on RoxP, which could then be leveraged in the development of certain methods to treat C. acnes infection through RoxP inhibition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20biology" title="structural biology">structural biology</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20expression" title=" protein expression"> protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=infectious%20disease" title=" infectious disease"> infectious disease</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody" title=" antibody"> antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutics" title=" therapeutics"> therapeutics</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a> </p> <a href="https://publications.waset.org/abstracts/171298/periplasmic-expression-of-anti-roxp-antibody-fragments-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Targeting Trypanosoma brucei Using Antibody Drug Conjugates against the Transferrin Receptor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camilla%20Trevor">Camilla Trevor</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20K.%20Higgins"> Matthew K. Higgins</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Gonzalez-Munoz"> Andrea Gonzalez-Munoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Carrington"> Mark Carrington</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trypanosomiasis is a devastating disease affecting both humans and livestock in sub-Saharan Africa. The diseases are caused by infection with African trypanosomes, protozoa transmitted by tsetse flies. Treatment currently relies on the use of chemotherapeutics with ghastly side effects. Here, we describe the development of effective antibody-drug conjugates that target the T. brucei transferrin receptor. The receptor is essential for trypanosome growth in a mammalian host but there are approximately 12 variants of the transferrin receptor in the genome. Two of the most divergent variants were used to generate recombinant monoclonal immunoglobulin G using phage display and we identified cross-reactive antibodies that bind both variants using phage ELISA, fluorescence resonance energy transfer assays and surface plasmon resonance. Fluorescent antibodies were used to demonstrate uptake into trypanosomes in culture. Toxin-conjugated antibodies were effective at killing trypanosomes at sub-nanomolar concentrations. The approach of using antibody-drug conjugates has proven highly effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody-drug%20conjugates" title="antibody-drug conjugates">antibody-drug conjugates</a>, <a href="https://publications.waset.org/abstracts/search?q=phage%20display" title=" phage display"> phage display</a>, <a href="https://publications.waset.org/abstracts/search?q=transferrin%20receptor" title=" transferrin receptor"> transferrin receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=trypanosomes" title=" trypanosomes"> trypanosomes</a> </p> <a href="https://publications.waset.org/abstracts/99250/targeting-trypanosoma-brucei-using-antibody-drug-conjugates-against-the-transferrin-receptor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20A.%20Ahmed">Yasser A. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Juleen%20M%20Dickson"> Juleen M Dickson</a>, <a href="https://publications.waset.org/abstracts/search?q=Evan%20S.%20Krystofiak"> Evan S. Krystofiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20A.%20Oliver"> Julie A. Oliver</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20cell" title="cancer cell">cancer cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20culture" title=" cell culture"> cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/17858/sem-detection-of-folate-receptor-in-a-murine-breast-cancer-model-using-secondary-antibody-conjugated-gold-coated-magnetite-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">734</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> First Experimental Evidence on Feasibility of Molecular Magnetic Particle Imaging of Tumor Marker Alpha-1-Fetoprotein Using Antibody Conjugated Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kolja%20Them">Kolja Them</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyal%20Chikhaliwala"> Priyal Chikhaliwala</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudeshna%20Chandra"> Sudeshna Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The purpose of this work is to examine possibilities for noninvasive imaging and identification of tumor markers for cancer diagnosis. The proposed method uses antibody conjugated iron oxide nanoparticles and multicolor Magnetic Particle Imaging (mMPI). The method has the potential for radiation exposure free real-time estimation of local tumor marker concentrations in vivo. In this study, the method is applied to human Alpha-1-Fetoprotein. Materials and Methods: As tracer material AFP antibody-conjugated Dendrimer-Fe3O4 nanoparticles were used. The nanoparticle bioconjugates were then incubated with bovine serum albumin (BSA) to block any possible nonspecific binding sites. Parts of the resulting solution were then incubated with AFP antigen. MPI measurements were done using the preclinical MPI scanner (Bruker Biospin MRI GmbH) and the multicolor method was used for image reconstruction. Results: In multicolor MPI images the nanoparticles incubated only with BSA were clearly distinguished from nanoparticles incubated with BSA and AFP antigens. Conclusion: Tomographic imaging of human tumor marker Alpha-1-Fetoprotein is possible using AFP antibody conjugated iron oxide nanoparticles in presence of BSA. This opens interesting perspectives for cancer diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noninvasive%20imaging" title="noninvasive imaging">noninvasive imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20antigens" title=" tumor antigens"> tumor antigens</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody%20conjugated%20iron%20oxide%20nanoparticles" title=" antibody conjugated iron oxide nanoparticles"> antibody conjugated iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=multicolor%20magnetic%20particle%20imaging" title=" multicolor magnetic particle imaging"> multicolor magnetic particle imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20diagnosis" title=" cancer diagnosis"> cancer diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/73134/first-experimental-evidence-on-feasibility-of-molecular-magnetic-particle-imaging-of-tumor-marker-alpha-1-fetoprotein-using-antibody-conjugated-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Deciphering the Gut Microbiome&#039;s Role in Early-Life Immune Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Huo">Xia Huo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children are more vulnerable to environmental toxicants compared to adults, and their developing immune system is among the most sensitive targets regarding toxicity of environmental toxicants. Studies have found that exposure to environmental toxicants is associated with impaired immune function in children, but only a few studies have focused on the relationship between environmental toxicant exposure and vaccine antibody potency and immunoglobulin (Ig) levels in children. These studies investigated the associations of exposure to polychlorinated biphenyls (PCBs), perfluorinated compounds (PFCs), heavy metals (Pb, Cd, As, Hg) and PM2.5 with the serum-specific antibody concentrations and Ig levels against different vaccines, such as anti-Hib, tetanus, diphtheria toxoid, and analyze the possible mechanisms underlying exposure-related alterations of antibody titers and Ig levels against different vaccines. Results suggest that exposure to these toxicants is generally associated with decreased potency of antibodies produced from childhood immunizations and an overall deficiency in the protection the vaccines provide. Toxicant exposure is associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Age, sex, nutritional status, and co-exposure may influence the effects of toxicants on the immune function in children. Epidemiological evidence suggests that exposure-induced changes to humoral immunerelated tissue/cells/molecules response to vaccines may have predominant roles in the inverse associations between antibody responsiveness to vaccines and environmental toxicants. These results help us to conduct better immunization policies for children under environmental toxicant burden. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20toxicants" title="environmental toxicants">environmental toxicants</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotoxicity" title=" immunotoxicity"> immunotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination"> vaccination</a>, <a href="https://publications.waset.org/abstracts/search?q=antibodies" title=" antibodies"> antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=children%27s%20health" title=" children&#039;s health"> children&#039;s health</a> </p> <a href="https://publications.waset.org/abstracts/184614/deciphering-the-gut-microbiomes-role-in-early-life-immune-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Development of Gold Nanoparticles-Antibody System for the Selective Photothermal Destruction of Multidrug Resistant Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teodora%20Mocan">Teodora Mocan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Mocan"> Lucian Mocan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornel%20Iancu"> Cornel Iancu</a>, <a href="https://publications.waset.org/abstracts/search?q=Flaviu%20A.%20Tabaran"> Flaviu A. Tabaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartos%20Dana"> Bartos Dana</a>, <a href="https://publications.waset.org/abstracts/search?q=Matea%20Cristian"> Matea Cristian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antimicrobial resistance, which threatens the efficacy of the existing antibiotics represents a worldwide public health issue. At the current time, vancomycin is the only responsive treatment although has significant cytotoxicity, is partially effective and it is poorly retained by infected tissues. From a clinical point of view, attractive alternative approaches for treating such Meticillin-Resistant Staphylococcus Aureus (MRSA) strains would be using agents that cause physical damage to the bacteria. Modular nanopharmaceuticals systems are being designed to address all of these multifunctional capabilities for the ideal bacterial treatment, with the ability to mix and match appropriate functions. Here we present a novel method of selective laser photothermal ablation of MRSA bacteria mediated by gold nanoparticles bound to PBP antibody against PBP protein located on the MRSA surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MRSA" title="MRSA">MRSA</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody" title=" antibody"> antibody</a> </p> <a href="https://publications.waset.org/abstracts/84089/development-of-gold-nanoparticles-antibody-system-for-the-selective-photothermal-destruction-of-multidrug-resistant-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> In silico and in vitro Investigation of the Role of Acinetobacter baumannii in the Pathogenesis of Multiple Sclerosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kieren%20Luellman">Kieren Luellman</a>, <a href="https://publications.waset.org/abstracts/search?q=Makenzi%20Rockwell"> Makenzi Rockwell</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Callegari"> Eduardo Callegari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nichole%20Haag"> Nichole Haag</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Wu"> Chun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple sclerosis (MS) is an autoimmune disorder that damages the myelin sheath of neurons in the central nervous system. The presence of Acinetobacter bacteria and anti-Acinetobacter antibodies in MS patients has led to the hypothesis that the bacteria may contribute to MS pathogenesis. In this study, the protein sequences of Acinetobacter baumannii were compared to five peptides from three mammalian myelin proteins, i.e., Proteolipid Protein (PLP): PLP 139-151, PLP 178-191, Myelin Basic Protein (MBP): MBP 84-104 and Myelin Oligodendrocyte Glycoprotein (MOG): MOG 35-55 and MOG 92-106 respectively, known to induce experimental autoimmune encephalomyelitis (EAE), a condition similar to MS. We found 11 hits (i.e., with five or more amino acid sequence similarity) in Acinetobacter baumannii, which are identical or similar to PLP139-151, 32 hits to PLP178-191, 35 to MBP 84-104, 41 hits to MOG 35-55 and 26 hits to MOG92-106. In addition, Western blotting was used to assess possible interaction between the bacterial proteins and human anti-MBP, anti-MOG, and anti-PLP antibodies produced in rabbits, corresponding to MBP 84-104, MOG 35-55, and PLP 139-151, respectively. We found that both human Polyclonal anti-MOG antibody and anti-PLP antibody recognized a protein or more proteins of the same molecular mass of around 25 kDa. in Acinetobacter baumannii. The results suggested that this/these protein(s) might potentially serve as antigen(s) to induce anti-MOG antibody and anti-PLP antibody production in mammalian B cells. The proteomic study identified 433 hits, among which the sequence of Acinetobacter baumannii protein 491 subunit A matches a previously published enzyme Acinetobacter 3-Oxoadipate CoA-Transferase, in which a fragment of its peptide was observed to recognize MS patient serum via ELISA method. Our findings might pave the road to understanding one of the pathogenesis mechanisms of MS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenesis" title=" pathogenesis"> pathogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Acinetobacter%20baumannii" title=" Acinetobacter baumannii"> Acinetobacter baumannii</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody%20recognition" title=" antibody recognition"> antibody recognition</a> </p> <a href="https://publications.waset.org/abstracts/165107/in-silico-and-in-vitro-investigation-of-the-role-of-acinetobacter-baumannii-in-the-pathogenesis-of-multiple-sclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Neutralizing Antibody Response against Inactivated FMDV Type O/IRN/2010 Vaccine by Electron Beam in BALB/C Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Motamedi%20Sedeh">F. Motamedi Sedeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Chahardoli"> Sh. Chahardoli</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mahravani"> H. Mahravani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Harzandi"> N. Harzandi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sotoodeh"> M. Sotoodeh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Shafaei"> S. K. Shafaei </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foot-and-mouth disease virus (FMDV) is the most economically important disease of livestock. The aim of the study is inactivation of FMD virus type O/IRN/2010 by electron beam without antigenic changes as electron radio vaccine. The BALB/C mice were divided into three groups, each group containing five mice. Three groups of mice were inoculated with conventional vaccine and electron beam irradiated vaccine FMDV type O/IRN/2010 subcutaneously three weeks interval, the final group as negative control. The sera were separated from the blood samples of mice 14 days after last vaccination and tested for the presence of antibodies against FMDV type O/IRN/2010 by serum neutralization test. The Serum Neutralization Test (SNT) was carried out and antibody titration was calculated according to the Kraber protocol. The results of the SNT in three groups of mice showed the titration of neutralizing antibody in the vaccinated mice groups; electron radio vaccine and conventional vaccine were significantly higher than negative control group (P<0.05). Therefore, the radio vaccine is a good candidate to immunize animals against FMDV type O/IRN/2010. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FMDV%20type%20O%2FIRN%2F2010" title="FMDV type O/IRN/2010">FMDV type O/IRN/2010</a>, <a href="https://publications.waset.org/abstracts/search?q=neutralizing%20antibody%20response" title=" neutralizing antibody response"> neutralizing antibody response</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20beam" title=" electron beam"> electron beam</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20vaccine" title=" radio vaccine"> radio vaccine</a> </p> <a href="https://publications.waset.org/abstracts/11949/neutralizing-antibody-response-against-inactivated-fmdv-type-oirn2010-vaccine-by-electron-beam-in-balbc-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Anti-Phosphorylcholine T Cell Dependent Antibody</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman">M. M. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Liu"> A. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Frostegard"> A. Frostegard</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Frostegard"> J. Frostegard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human immune system plays an essential role in cardiovascular disease (CVD) and atherosclerosis. Our earlier studies showed that major immunocompetent cells including T cells are activated by phosphorylcholine epitope. Further, we have determined for the first time in a clinical cohort that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with the development of atherosclerosis and thus a low risk of cardiovascular diseases. It is still unknown whether activated T cells play a role in anti-PC production. Here we aim to clarify the role of T cells in anti-PC production. B cell alone, or with CD3 T, CD4 T or with CD8 T cells were cultured in polystyrene plates to examine anti-PC IgM production. In addition to mixed B cell with CD3 T cell culture, B cells with CD3 T cells were also cultured in transwell co-culture plates. Further, B cells alone and mixed B cell with CD3 T cell cultures with or without anti-HLA 2 antibody were cultured for 6 days. Anti-PC IgM was detected by ELISA in independent experiments. More than 8 fold higher levels of anti-PC IgM were detected by ELISA in mixed B cell with CD3 T cell cultures in comparison to B cells alone. After the co-culture of B and CD3 T cells in transwell plates, there were no increased antibody levels indicating that B and T cells need to interact to augment anti-PC IgM production. Furthermore, anti-PC IgM was abolished by anti-HLA 2 blocking antibody in mixed B and CD3 T cells culture. In addition, the lack of increased anti-PC IgM in mixed B with CD8 T cells culture and the increased levels of anti-PC in mixed B with CD4 T cells culture support the role of helper T cell for the anti-PC IgM production. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC IgM is a protection marker for atherosclerosis development. Understanding the mechanism involved in the anti-PC IgM regulation could play an important role in strategies to raise anti-PC IgM. Studies suggest that anti-PC is T-cell independent antibody, but our study shows the major role of T cell in anti-PC IgM production. Activation of helper T cells by immunization could be a possible mechanism for raising anti-PC levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-PC" title="anti-PC">anti-PC</a>, <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title=" atherosclerosis"> atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=aardiovascular%20diseases" title=" aardiovascular diseases"> aardiovascular diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorylcholine" title=" phosphorylcholine"> phosphorylcholine</a> </p> <a href="https://publications.waset.org/abstracts/33407/anti-phosphorylcholine-t-cell-dependent-antibody" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Ultra-Fast pH-Gradient Ion Exchange Chromatography for the Separation of Monoclonal Antibody Charge Variants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20van%20Ling">Robert van Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Schwahn"> Alexander Schwahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanhua%20Lin"> Shanhua Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Cook"> Ken Cook</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Steiner"> Frank Steiner</a>, <a href="https://publications.waset.org/abstracts/search?q=Rowan%20Moore"> Rowan Moore</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20de%20Pra"> Mauro de Pra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Demonstration of fast high resolution charge variant analysis for monoclonal antibody (mAb) therapeutics within 5 minutes. Methods: Three commercially available mAbs were used for all experiments. The charge variants of therapeutic mAbs (Bevacizumab, Cetuximab, Infliximab, and Trastuzumab) are analyzed on a strong cation exchange column with a linear pH gradient separation method. The linear gradient from pH 5.6 to pH 10.2 is generated over time by running a linear pump gradient from 100% Thermo Scientific™ CX-1 pH Gradient Buffer A (pH 5.6) to 100% CX-1 pH Gradient Buffer B (pH 10.2), using the Thermo Scientific™ Vanquish™ UHPLC system. Results: The pH gradient method is generally applicable to monoclonal antibody charge variant analysis. In conjunction with state-of-the-art column and UHPLC technology, ultra fast high-resolution separations are consistently achieved in under 5 minutes for all mAbs analyzed. Conclusion: The linear pH gradient method is a platform method for mAb charge variant analysis. The linear pH gradient method can be easily optimized to improve separations and shorten cycle times. Ultra-fast charge variant separation is facilitated with UHPLC that complements, and in some instances outperforms CE approaches in terms of both resolution and throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20variants" title="charge variants">charge variants</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange%20chromatography" title=" ion exchange chromatography"> ion exchange chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclonal%20antibody" title=" monoclonal antibody"> monoclonal antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=UHPLC" title=" UHPLC"> UHPLC</a> </p> <a href="https://publications.waset.org/abstracts/63884/ultra-fast-ph-gradient-ion-exchange-chromatography-for-the-separation-of-monoclonal-antibody-charge-variants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> The Incidence of Acetylcholine Receptor Antibody Positive Myasthenia Gravis in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mombaur%20Busisiwe">Mombaur Busisiwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lesosky%20Maia"> Lesosky Maia</a>, <a href="https://publications.waset.org/abstracts/search?q=Liebenberg%20Lisa"> Liebenberg Lisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Heckmann%20Jeannine"> Heckmann Jeannine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: To assess age- and gender-specific incidence rates (IR) of acetylcholine receptor (AChR)-antibody positive myasthenia gravis (MG) in South Africa, and geographical variation in incidence. Methods: IRs were calculated from positive AChR antibody laboratory data between 2011 and 2012, using 2011 population census data. Results:890 individuals were seropositive, for an annual IR of 8.5 per million. Age-standardized IR for early- (< 50) and late-onset (≥ 50) MG were 4.1 and 24 per million, respectively, and for juveniles, 4.3 per million. The IR between provinces ranged from 1 to 19 per million. Conclusions: In this Southern hemisphere African population, the overall IR and peak IR (in older men) for seropositive MG is comparable to that in Europe and North America, arguing against environmental factors. However, IRs may be higher among children with African genetic ancestry. Geographical variation in incidence underscores the importance of outreach programs for regions with limited resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incidence%20rates%20%28IR%29" title="incidence rates (IR)">incidence rates (IR)</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylcholine%20receptor%20%28AChR%29" title=" acetylcholine receptor (AChR)"> acetylcholine receptor (AChR)</a>, <a href="https://publications.waset.org/abstracts/search?q=myasthenia%20gravis%20%28MG%29" title=" myasthenia gravis (MG)"> myasthenia gravis (MG)</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/24078/the-incidence-of-acetylcholine-receptor-antibody-positive-myasthenia-gravis-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Development of a New Characterization Method to Analyse Cypermethrin Penetration in Wood Material by Immunolabelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Tapin-Lingua">Sandra Tapin-Lingua</a>, <a href="https://publications.waset.org/abstracts/search?q=Katia%20Ruel"> Katia Ruel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Paul%20Joseleau"> Jean-Paul Joseleau</a>, <a href="https://publications.waset.org/abstracts/search?q=Daouia%20Messaoudi"> Daouia Messaoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Fahy"> Olivier Fahy</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Petit-Conil"> Michel Petit-Conil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preservative efficacy of organic biocides is strongly related to their capacity of penetration and retention within wood tissues. The specific detection of the pyrethroid insecticide is currently obtained after extraction followed by chemical analysis by chromatography techniques. However visualizing the insecticide molecule within the wood structure requires specific probes together with microscopy techniques. Therefore, the aim of the present work was to apply a new methodology based on antibody-antigen recognition and electronic microscopy to visualize directly pyrethroids in the wood material. A polyclonal antibody directed against cypermethrin was developed and implement it on Pinus sylvestris wood samples coated with technical cypermethrin. The antibody was tested on impregnated wood and the specific recognition of the insecticide was visualized in transmission electron microscopy (TEM). The immunogold-TEM assay evidenced the capacity of the synthetic biocide to penetrate in the wood. The depth of penetration was measured on sections taken at increasing distances from the coated surface of the wood. Such results correlated with chemical analyzes carried out by GC-ECD after extraction. In addition, the immuno-TEM investigation allowed visualizing, for the first time at the ultrastructure scale of resolution, that cypermethrin was able to diffuse within the secondary wood cell walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cypermethrin" title="cypermethrin">cypermethrin</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide" title=" insecticide"> insecticide</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20penetration" title=" wood penetration"> wood penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20retention" title=" wood retention"> wood retention</a>, <a href="https://publications.waset.org/abstracts/search?q=immuno-transmission%20electron%20microscopy" title=" immuno-transmission electron microscopy"> immuno-transmission electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=polyclonal%20antibody" title=" polyclonal antibody"> polyclonal antibody</a> </p> <a href="https://publications.waset.org/abstracts/36690/development-of-a-new-characterization-method-to-analyse-cypermethrin-penetration-in-wood-material-by-immunolabelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Longitudinal Profile of Antibody Response to SARS-CoV-2 in Patients with Covid-19 in a Setting from Sub–Saharan Africa: A Prospective Longitudinal Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teklay%20Gebrecherkos">Teklay Gebrecherkos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Serological testing for SARS-CoV-2 plays an important role in epidemiological studies, in aiding the diagnosis of COVID-19 and assess vaccine responses. Little is known about the dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. Methods: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune assays (LFIAs) and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. Results: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in the positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increase in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly from 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested within a median time of 11 (IQR: 9–15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6–11) vs. 15 (IQR: 13–21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibodies at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. Conclusions: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of serum assays before implementation. Factors associated with failure to seroconvert need further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody" title=" antibody"> antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20diagnostic%20tests" title=" rapid diagnostic tests"> rapid diagnostic tests</a>, <a href="https://publications.waset.org/abstracts/search?q=ethiopia" title=" ethiopia"> ethiopia</a> </p> <a href="https://publications.waset.org/abstracts/170079/longitudinal-profile-of-antibody-response-to-sars-cov-2-in-patients-with-covid-19-in-a-setting-from-sub-saharan-africa-a-prospective-longitudinal-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Antibody Reactivity of Synthetic Peptides Belonging to Proteins Encoded by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions of Differences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Salim%20Mustafa">Abu Salim Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comparisons of mycobacterial genomes have identified several <em>Mycobacterium tuberculosis</em>-specific genomic regions that are absent in other mycobacteria and are known as regions of differences. Due to <em>M. tuberculosis</em>-specificity, the peptides encoded by these regions could be useful in the specific diagnosis of tuberculosis. To explore this possibility, overlapping synthetic peptides corresponding to 39 proteins predicted to be encoded by genes present in regions of differences were tested for antibody-reactivity with sera from tuberculosis patients and healthy subjects. The results identified four immunodominant peptides corresponding to four different proteins, with three of the peptides showing significantly stronger antibody reactivity and rate of positivity with sera from tuberculosis patients than healthy subjects. The fourth peptide was recognized equally well by the sera of tuberculosis patients as well as healthy subjects. Predication of antibody epitopes by bioinformatics analyses using ABCpred server predicted multiple linear epitopes in each peptide. Furthermore, peptide sequence analysis for sequence identity using BLAST suggested <em>M. tuberculosis</em>-specificity for the three peptides that had preferential reactivity with sera from tuberculosis patients, but the peptide with equal reactivity with sera of TB patients and healthy subjects showed significant identity with sequences present in nob-tuberculous mycobacteria. The three identified <em>M. tuberculosis</em>-specific immunodominant peptides may be useful in the serological diagnosis of tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genomic%20regions%20of%20differences" title="genomic regions of differences">genomic regions of differences</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycobacterium%20tuberculossis" title=" Mycobacterium tuberculossis"> Mycobacterium tuberculossis</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=serodiagnosis" title=" serodiagnosis"> serodiagnosis</a> </p> <a href="https://publications.waset.org/abstracts/83354/antibody-reactivity-of-synthetic-peptides-belonging-to-proteins-encoded-by-genes-located-in-mycobacterium-tuberculosis-specific-genomic-regions-of-differences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> The Prevalence of Blood-Borne Viral Infections among Autopsy Cases in Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20Al-Abdallat">Emad Al-Abdallat</a>, <a href="https://publications.waset.org/abstracts/search?q=Faris%20G.%20Bakri"> Faris G. Bakri</a>, <a href="https://publications.waset.org/abstracts/search?q=Azmi%20Mahafza"> Azmi Mahafza</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayyan%20Al%20Ali"> Rayyan Al Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidaa%20Ababneh"> Nidaa Ababneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Idhair"> Ahmed Idhair </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Morgues are high-risk areas for the spread of infection from the cadavers to the staff during the postmortem examination. Infection can spread from corpses to workers by the airborne route, by direct contact, or from needle and sharp object injuries. Objective: Knowledge about the prevalence of these infections among autopsies is prudent to appreciate any risk of transmission and to further enforce safety measures. Method: A total of 242 autopsies were tested. Age ranged from 3 days to 94 years (median 75.5 years, mean 45.3 (21.9 ± SD)). There were 172 (71%) males. Results: The cause of death was considered natural in 137 (56.6%) cases, accidental in 89 (36.8%), homicidal in 9 (3.7%), suicidal in 4 (1.7%), and unknown in 3 (1.2%). Hepatitis B surface antigen was positive in 5 (2.1%) cases. Hepatitis C virus antibody was detected in 5 (2.1%) cases and the hepatitis C virus polymerase chain reaction was positive in 2 of them (0.8%). HIV antibody was not detected in any of the cases. Conclusions: Autopsies can be associated with exposure to blood borne viruses. Autopsies performed during the study period were tested for hepatitis B surface antigen, hepatitis C virus antibody, and human immunodeficiency virus antibody. Positive tests were subsequently confirmed by polymerase chain reaction. There is low prevalence of infections with these viruses in our autopsy cases. However, the risk of transmission remains a threat. Healthcare workers in the forensic departments should adhere to standard precautions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autopsy" title="autopsy">autopsy</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20B%20virus" title=" hepatitis B virus"> hepatitis B virus</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20C%20virus" title=" hepatitis C virus"> hepatitis C virus</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20immunodeficiency%20virus" title=" human immunodeficiency virus"> human immunodeficiency virus</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/52932/the-prevalence-of-blood-borne-viral-infections-among-autopsy-cases-in-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Evaluation of Antibody Titer Produced in Layer Chicken after Vaccination with an Experimental Ornitobacterium rhinotracheal Vaccine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Mehrabanpour">Mohammad Javad Mehrabanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hosein%20Hosseini"> Mohammad Hosein Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shirazi"> Ali Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorsa%20Mehrabanpour"> Dorsa Mehrabanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Respiratory infections are the most important diseases that affect poultry. Ornithobacterium rhinotracheale is a bacterium that causes respiratory infections including alveolar inflation and pneumonia in birds. The aim of this study was to evaluated antibody titer against Ornitobacterium rhinotracheal in layer chicken sera after vaccination with an experimental ORT vaccine that produced in Razi Vaccine and Serum Research Institute. Cultured bacteria were inactivated by formalin, and controlled tests were conducted on it. The obtained antigens were formulated using Montanide oil and were homogenized using homogenizer. Eighty SPF chickens were kept until the age of 14 days under existing standards for temperature, humidity, and light. At the age of 14 days, chickens were divided into 3 groups. The first group included 50 chickens injected with prepared ORT vaccine, the second group, as control group, included 15 chickens injected with sterile PBS to get stress of infection and the third group included 15 chickens with no injection performed to them. All 3 groups were kept in separate cages at same room. Blood samples were regularly taken from the chickens every week for serum separation and evaluation of antibody titer. During the fifth week post vaccination, booster vaccine was injected into the chickens of vaccinated group. The chickens were inspected every day in terms of mortality as well as any injection site reactions. Three weeks after the booster injection, blood samples were taken from all chickens of all groups, and sera were isolated. The sera of immunized (vaccinated) SPF chickens with ORT vaccine as well as that of SPF chickens in the control groups were reviewed according to the recommendations of ELISA kit manufacturer to examine the chicken’s humeral immune response to the studied vaccine. Potency, stability and sterility tests were also performed on the above mentioned vaccine. Results obtained indicate high antibody titer in sera of chickens vaccinated with experimental ORT vaccine as compared with the control groups that emphasize the ability of experimentally prepared ORT vaccine to stimulate humoral immune response of chicken. After the second injection, antibody titer increased and remained almost stable up to 9 weeks after the injection. ORT vaccine can cause potency in chickens and can protect them against disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody" title="antibody">antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20chicken" title=" layer chicken"> layer chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=Ornithobactrium%20rhinotracitis" title=" Ornithobactrium rhinotracitis"> Ornithobactrium rhinotracitis</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine" title=" vaccine"> vaccine</a> </p> <a href="https://publications.waset.org/abstracts/75131/evaluation-of-antibody-titer-produced-in-layer-chicken-after-vaccination-with-an-experimental-ornitobacterium-rhinotracheal-vaccine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Effects of Propolis on Immunomodulatory and Antibody Production in Broilers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsiang%20Yu">Yu-Hsiang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The immunomodulatory effect of propolis has been widely investigated in the past decade. However, the beneficial effects in broilers are still poorly understood. The aim of this study was to evaluate the effect of propolis added in drinking water on immunomodulatory and antibody production in broiler. Total of 48 chicks were randomly allocated into four groups with 12 broilers per group. All birds were intranasal inoculated with Newcastle Disease vaccine at 4 and 14 days old of age. Four groups, including control without any treatment, groups of A, B and F [3 days of anterior (A), 3 days of posterior (P) and 6 days of full (F)] were supplied the propolis at 300 ppm in drinking water when vaccination was performed, respectively. Our results showed that no significant difference was found in growth performance, antibody production and immune organ index among groups. However, propolis treatments in broilers significantly reduced IL-4 expression in spleen at 14 days-old of age and bursa at 28 days-old of age compared with control group. The expression of IFN-gamma in spleen (A, P and F group) and bursal (F group) were elevated compared with control group at 28 days-old of age. In conclusion, our results indicated that propolis-treated birds could bear the capability for immunomodulatory effects by change Th1 subset cytokine expression in vaccination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propolis" title="propolis">propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=immunomodulatory" title=" immunomodulatory"> immunomodulatory</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination"> vaccination</a> </p> <a href="https://publications.waset.org/abstracts/50806/effects-of-propolis-on-immunomodulatory-and-antibody-production-in-broilers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Engineering of Reagentless Fluorescence Biosensors Based on Single-Chain Antibody Fragments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20%20Fercher">Christian Fercher</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaul%20Islam"> Jiaul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20R.%20Corrie"> Simon R. Corrie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescence-based immunodiagnostics are an emerging field in biosensor development and exhibit several advantages over traditional detection methods. While various affinity biosensors have been developed to generate a fluorescence signal upon sensing varying concentrations of analytes, reagentless, reversible, and continuous monitoring of complex biological samples remains challenging. Here, we aimed to genetically engineer biosensors based on single-chain antibody fragments (scFv) that are site-specifically labeled with environmentally sensitive fluorescent unnatural amino acids (UAA). A rational design approach resulted in quantifiable analyte-dependent changes in peak fluorescence emission wavelength and enabled antigen detection in vitro. Incorporation of a polarity indicator within the topological neighborhood of the antigen-binding interface generated a titratable wavelength blueshift with nanomolar detection limits. In order to ensure continuous analyte monitoring, scFv candidates with fast binding and dissociation kinetics were selected from a genetic library employing a high-throughput phage display and affinity screening approach. Initial rankings were further refined towards rapid dissociation kinetics using bio-layer interferometry (BLI) and surface plasmon resonance (SPR). The most promising candidates were expressed, purified to homogeneity, and tested for their potential to detect biomarkers in a continuous microfluidic-based assay. Variations of dissociation kinetics within an order of magnitude were achieved without compromising the specificity of the antibody fragments. This approach is generally applicable to numerous antibody/antigen combinations and currently awaits integration in a wide range of assay platforms for one-step protein quantification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody%20engineering" title="antibody engineering">antibody engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=phage%20display" title=" phage display"> phage display</a>, <a href="https://publications.waset.org/abstracts/search?q=unnatural%20amino%20acids" title=" unnatural amino acids "> unnatural amino acids </a> </p> <a href="https://publications.waset.org/abstracts/111501/engineering-of-reagentless-fluorescence-biosensors-based-on-single-chain-antibody-fragments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Development and Evaluation of Novel Diagnostic Methods for Infectious Rhinotracheitis of Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenxiao%20Liu">Wenxiao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Zhang"> Kun Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongqing%20Li"> Yongqing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bovine herpesvirus 1, a member of the genus Variellovirus of the subfamily Alphaherpesvirinae, has caused severe economic cost to the bovine industry. In this study, BoHV-1 glycerol protein gD was expressed in insect cells, and the purified gD was immunized in the Balb/C mice to generate monoclonal antibodies. Based on hybridoma cell fusion techniques, 20 monoclonal antibodies against Bovine herpesvirus 1 have been obtained. Further, mAb 3F8 with neutralizing activity and gD were applied to develop a blocking enzyme-linked immunosorbent assay (Elisa) for detecting neutralizing antibodies against BoHV-1, which shows a significant correlation between the blocking Elisa and VNT. The sensitivity and specificity of the test were estimated to be 94.59% and 93.42%, respectively. Furthermore, antibody pairing tests revealed that mAb 1B6 conjugated to fluorescence microspheres was used as the capture antibody, and mAb 3F9 was used as the detectable antibody to establish the immunochromatographic assay (ICS). The ICS was conducted to detect BoHV-1 in bovine samples with high sensitivity, specificity, and good stability. Clinical sample testing revealed that the results of ICS and real-time PCR have a coincidence rate of 95.42%. Our research confirmed that the ICS is a rapid and reliable method for the diagnosis of BoHV-1. In conclusion, our results lay a solid foundation for the prevention and control of BoHV-1 infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20disease" title="bovine disease">bovine disease</a>, <a href="https://publications.waset.org/abstracts/search?q=BoHV-1" title=" BoHV-1"> BoHV-1</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=ICS%20assay" title=" ICS assay"> ICS assay</a> </p> <a href="https://publications.waset.org/abstracts/181179/development-and-evaluation-of-novel-diagnostic-methods-for-infectious-rhinotracheitis-of-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> HLA-G, a Neglected Immunosuppressive Checkpoint for Breast Cancer Immunotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xian-Peng%20Jiang">Xian-Peng Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20C.%20Baucom"> Catherine C. Baucom</a>, <a href="https://publications.waset.org/abstracts/search?q=Toby%20Jiang"> Toby Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20L.%20Elliott"> Robert L. Elliott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HLA-G binds to the inhibitory receptors of uterine NK cells and plays an important role in protection of fetal cells from maternal NK lysis. HLA-G also mediates tumor escape, but the immunosuppressive role is often neglected. These studies have focused on the examination of HLA-G expression in human breast carcinoma and HLA-G immunosuppressive role in NK cytolysis. We examined HLA-G expression in breast cell lines by real time PCR, ELISA and immunofluorescent staining. We treated the breast cancer cell lines with anti-human HLA-G antibody or progesterone. Then, NK cytolysis was measured by using MTT assay. We find that breast carcinoma cell lines increase the expression of HLA-G mRNA and protein, compared to normal cells. Blocking HLA-G of the breast cancer cells by the antibody increases NK cytolysis. Progesterone upregulates HLA-G mRNA and protein of human breast cancer cell lines. The increased HLA-G expression suppresses NK cytolysis. In summary, human breast carcinoma overexpress HLA-G immunosuppressive molecules. Blocking HLA-G protein by antibody improves NK cytolysis. In contrast, upregulation of HLA-G expression by progesterone impairs NK cytolytic function. Thus, HLA-G is a new immunosuppressive checkpoint and potential cancer immunotherapeutic target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HLA-G" title="HLA-G">HLA-G</a>, <a href="https://publications.waset.org/abstracts/search?q=Breast%20carcinoma" title=" Breast carcinoma"> Breast carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=NK%20cells" title=" NK cells"> NK cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Immunosuppressive%20checkpoint" title=" Immunosuppressive checkpoint"> Immunosuppressive checkpoint</a> </p> <a href="https://publications.waset.org/abstracts/161283/hla-g-a-neglected-immunosuppressive-checkpoint-for-breast-cancer-immunotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Displaying of GnRH Peptides on Bacteriophage T7 and Its Immunogenicity in Mice Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hai%20Xu">Hai Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiwei%20Wang"> Yiwei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xi%20Bao"> Xi Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bihua%20Deng"> Bihua Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengcheng%20Li"> Pengcheng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Lu"> Yu Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> T7 phage could be used as a perfect vector for peptides expression and haptens presentation. T7-3GnRH recombinant phage was constructed by inserting three copies of Gonadotrophin Releasing Hormone (GnRH) gene into the multiple cloning site of T7 Select 415-1b phage genome. The positive T7-3GnRH phage was selected by using polymerase chain reaction amplification, and the p10B-3GnRH fusion protein was verified by SDS-PAGE and Western-blotting assay. T7-3GnRH vaccine was made and immunized with 10<sup>10</sup> pfu in 0.2 ml per dose in mice. Blood samples were collected at an interval in weeks, and anti-GnRH antibody and testosterone concentrations were detected by ELISA and radioimmunoassay, respectively. The results show that T7-3GnRH phage particles confer a high immunogenicity to the GnRH-derived epitope. Moreover, the T7-3GnRH vaccine induced higher level of anti-GnRH antibody than ImproVac<sup>&reg;</sup>. However, the testosterone concentrations in both immunized groups were at a similar level, and the testis developments were significantly inhibited compared to controls. These findings demonstrated that the anti-GnRH antibody could neutralize the endogenous GnRH to down regulate testosterone level and limit testis development, highlighting the potential value of T7-3GnRH in the immunocastration vaccine research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gonadotrophin%20Releasing%20Hormone%20%28GnRH%29" title="Gonadotrophin Releasing Hormone (GnRH)">Gonadotrophin Releasing Hormone (GnRH)</a>, <a href="https://publications.waset.org/abstracts/search?q=Immunocastration" title=" Immunocastration"> Immunocastration</a>, <a href="https://publications.waset.org/abstracts/search?q=T7%20phage" title=" T7 phage"> T7 phage</a>, <a href="https://publications.waset.org/abstracts/search?q=Phage%20vaccine" title=" Phage vaccine"> Phage vaccine</a> </p> <a href="https://publications.waset.org/abstracts/70756/displaying-of-gnrh-peptides-on-bacteriophage-t7-and-its-immunogenicity-in-mice-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Quality Based Approach for Efficient Biologics Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kaminagayoshi">Takashi Kaminagayoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve the manufacturing efficiency of biologics, such as antibody drugs, a quality engineering framework was designed. Within this framework, critical steps and parameters in the manufacturing process were studied. Identification of these critical steps and critical parameters allows a deeper understanding of manufacturing capabilities, and suggests to process development department process control standards based on actual manufacturing capabilities as part of a PDCA (plan-do-check-act) cycle. This cycle can be applied to each manufacturing process so that it can be standardized, reducing the time needed to establish each new process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody%20drugs" title="antibody drugs">antibody drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=biologics" title=" biologics"> biologics</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20efficiency" title=" manufacturing efficiency"> manufacturing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=PDCA%20cycle" title=" PDCA cycle"> PDCA cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20engineering" title=" quality engineering"> quality engineering</a> </p> <a href="https://publications.waset.org/abstracts/42626/quality-based-approach-for-efficient-biologics-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Association of Major Histocompatibility Complex Alleles with Antibody Response to Newcastle Vaccine in Chicken</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Esmailnejad">Atefeh Esmailnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholam%20Reza%20Nikbakht%20Brujeni"> Gholam Reza Nikbakht Brujeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major histocompatibility complex (MHC) is the best-characterized genetic region associated with susceptibility and/or resistance to a wide range of infectious diseases, autoimmune diseases and immune responses to vaccines. It has been demonstrated that there is an association between the MHC and resistance to Marek disease, Newcastle disease, Rous sarcoma tumor, Avian leucosis, Fowl cholera, Salmonellosis and Pasteurellosis in chicken. The present study evaluated the MHC polymorphism and its association with antibody response to Newcastle (ND) vaccine in Iranian native chickens. The MHC polymorphism was investigated using LEI0258 microsatellite locus by PCR-based fragment analysis. LEI0258 microsatellite marker is a genetic indicator for MHC, which is located on microchromosome 16 and strongly associated with serologically defined MHC haplotypes. Antibody titer against ND vaccine was measured by Haemaglutination Inhibition (HI) assay. Statistical analysis was performed using SPSS software (version 21). Total of 13 LEI0258 microsatellite alleles were identified in 72 samples which indicated a high genetic diversity in the population. The association study revealed a significant influence of MHC alleles on immune responses to Newcastle vaccine. 311 and 313 bp alleles were significantly associated with elevated immune responses to Newcastle vaccine (p<0.05). These results would be applicable in designing and improving the populations under selective breeding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken" title="chicken">chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=LEI0258" title=" LEI0258"> LEI0258</a>, <a href="https://publications.waset.org/abstracts/search?q=MHC" title=" MHC"> MHC</a>, <a href="https://publications.waset.org/abstracts/search?q=Newcastle%20vaccine" title=" Newcastle vaccine"> Newcastle vaccine</a> </p> <a href="https://publications.waset.org/abstracts/67912/association-of-major-histocompatibility-complex-alleles-with-antibody-response-to-newcastle-vaccine-in-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Using Surface Entropy Reduction to Improve the Crystallization Properties of a Recombinant Antibody Fragment RNA Crystallization Chaperone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christina%20Roman">Christina Roman</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Koirala"> Deepak Koirala</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20A.%20Piccirilli"> Joseph A. Piccirilli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phage displaying synthetic Fab libraries have been used to obtain Fabs that bind to specific RNA targets with high affinity and specificity. These Fabs have been demonstrated to facilitate RNA crystallization. However, the antibody framework used in the construction of these phage display libraries contains numerous bulky, flexible, and charged residues, which facilitate solubility and hinder aggregation. These residues can interfere with crystallization due to the entropic cost associated with burying them within crystal contacts. To systematically reduce the surface entropy of the Fabs and improve their crystallization properties, a protein engineering strategy termed surface entropy reduction (SER) is being applied to the Fab framework. In this approach, high entropy residues are mutated to smaller ones such as alanine or serine. Focusing initially on Fab BL3-6, which binds an RNA AAACA pentaloop with 20nM affinity, the SER P server (http://services.mbi.ucla.edu/SER/) was used and analysis was performed on existing RNA-Fab BL3-6 co-crystal structures. From this analysis twelve surface entropy reduced mutants were designed. These SER mutants were expressed and are now being measured for their crystallization and diffraction performance with various RNA targets. So far, one mutant has generated 3.02 angstrom diffraction with the yjdF riboswitch RNA. Ultimately, the most productive mutations will be combined into a new Fab framework to be used in a optimized phage displayed Fab library. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody%20fragment" title="antibody fragment">antibody fragment</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallography" title=" crystallography"> crystallography</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA" title=" RNA"> RNA</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20entropy%20reduction" title=" surface entropy reduction"> surface entropy reduction</a> </p> <a href="https://publications.waset.org/abstracts/104332/using-surface-entropy-reduction-to-improve-the-crystallization-properties-of-a-recombinant-antibody-fragment-rna-crystallization-chaperone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Antibody&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Antibody&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Antibody&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Antibody&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Antibody&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Antibody&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Antibody&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Antibody&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Antibody&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Antibody&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10