CINXE.COM

Tatsuo Kitajima - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Tatsuo Kitajima - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="gtkJGKDtpJSKFGPQfF2d71gm8EyJDzGEzbpscgipUM9oh52PVRKnOCecbK+1WmWcNDnTz7tznGsCwBmOl8i22g==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="tatsuo kitajima" /> <meta name="description" content="Tatsuo Kitajima: 7 Followers, 3 Following, 35 Research papers. Research interests: Solitons, Computational Neuroscience, and Solar Energy Conversion." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277161859,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732433891000); window.Aedu.timeDifference = new Date().getTime() - 1732433891000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/TatsuoKitajima" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":116688,"name":"Solitons","url":"https://www.academia.edu/Documents/in/Solitons"},{"id":5451,"name":"Computational Neuroscience","url":"https://www.academia.edu/Documents/in/Computational_Neuroscience"},{"id":125416,"name":"Solar Energy Conversion","url":"https://www.academia.edu/Documents/in/Solar_Energy_Conversion"},{"id":926277,"name":"Renewable Enery","url":"https://www.academia.edu/Documents/in/Renewable_Enery"},{"id":513105,"name":"Retinal Ganglion Cells","url":"https://www.academia.edu/Documents/in/Retinal_Ganglion_Cells"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/TatsuoKitajima&quot;,&quot;location&quot;:&quot;/TatsuoKitajima&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/TatsuoKitajima&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-f9d97d5c-e38e-475d-9298-b84440ab1e92"></div> <div id="ProfileCheckPaperUpdate-react-component-f9d97d5c-e38e-475d-9298-b84440ab1e92"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Tatsuo Kitajima</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Tatsuo" data-follow-user-id="46223781" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="46223781"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">7</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="46223781" href="https://www.academia.edu/Documents/in/Solitons"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/TatsuoKitajima&quot;,&quot;location&quot;:&quot;/TatsuoKitajima&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/TatsuoKitajima&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Solitons&quot;]}" data-trace="false" data-dom-id="Pill-react-component-f907b588-745a-4f94-9013-8e8c45645822"></div> <div id="Pill-react-component-f907b588-745a-4f94-9013-8e8c45645822"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="46223781" href="https://www.academia.edu/Documents/in/Computational_Neuroscience"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Computational Neuroscience&quot;]}" data-trace="false" data-dom-id="Pill-react-component-4a20e804-017b-43a0-a942-381435db3b1a"></div> <div id="Pill-react-component-4a20e804-017b-43a0-a942-381435db3b1a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="46223781" href="https://www.academia.edu/Documents/in/Solar_Energy_Conversion"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Solar Energy Conversion&quot;]}" data-trace="false" data-dom-id="Pill-react-component-e5c23d5d-9527-49da-be69-ade113ee6a91"></div> <div id="Pill-react-component-e5c23d5d-9527-49da-be69-ade113ee6a91"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="46223781" href="https://www.academia.edu/Documents/in/Renewable_Enery"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Renewable Enery&quot;]}" data-trace="false" data-dom-id="Pill-react-component-96e4f12c-58ac-494b-bac4-feaa25c780f5"></div> <div id="Pill-react-component-96e4f12c-58ac-494b-bac4-feaa25c780f5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="46223781" href="https://www.academia.edu/Documents/in/Retinal_Ganglion_Cells"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Retinal Ganglion Cells&quot;]}" data-trace="false" data-dom-id="Pill-react-component-76e51862-7ac4-4038-a000-228b688c81ac"></div> <div id="Pill-react-component-76e51862-7ac4-4038-a000-228b688c81ac"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="nav-container backbone-profile-documents-nav hidden-xs"><ul class="nav-tablist" role="tablist"><li class="nav-chip active" role="presentation"><a data-section-name="" data-toggle="tab" href="#all" role="tab">all</a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Papers" data-toggle="tab" href="#papers" role="tab" title="Papers"><span>34</span>&nbsp;<span class="ds2-5-body-sm-bold">Papers</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Conference-Presentations" data-toggle="tab" href="#conferencepresentations" role="tab" title="Conference Presentations"><span>1</span>&nbsp;<span class="ds2-5-body-sm-bold">Conference Presentations</span></a></li></ul></div><div class="divider ds-divider-16" style="margin: 0px;"></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Tatsuo Kitajima</h3></div><div class="js-work-strip profile--work_container" data-work-id="36306165"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306165/Solution_with_Modified_Perceptron_to_Tunnel_Cutting_Face_Evaluation_Problems"><img alt="Research paper thumbnail of Solution with Modified Perceptron to Tunnel Cutting Face Evaluation Problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306165/Solution_with_Modified_Perceptron_to_Tunnel_Cutting_Face_Evaluation_Problems">Solution with Modified Perceptron to Tunnel Cutting Face Evaluation Problems</a></div><div class="wp-workCard_item"><span>GEOINFORMATICS</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306165"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306165"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306165; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306165]").text(description); $(".js-view-count[data-work-id=36306165]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306165; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306165']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306165, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306165]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306165,"title":"Solution with Modified Perceptron to Tunnel Cutting Face Evaluation Problems","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"GEOINFORMATICS"},"translated_abstract":null,"internal_url":"https://www.academia.edu/36306165/Solution_with_Modified_Perceptron_to_Tunnel_Cutting_Face_Evaluation_Problems","translated_internal_url":"","created_at":"2018-04-01T19:06:34.472-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Solution_with_Modified_Perceptron_to_Tunnel_Cutting_Face_Evaluation_Problems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[{"id":5598,"name":"Geoinformatics","url":"https://www.academia.edu/Documents/in/Geoinformatics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="36306164"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306164/%E3%81%93%E3%81%86%E9%85%8D%E6%B3%95%E3%81%AB%E3%82%88%E3%82%8B%E6%9C%80%E7%B5%82%E7%8A%B6%E6%85%8B%E3%81%AB%E6%8B%98%E6%9D%9F%E3%82%92%E3%82%82%E3%81%A4%E5%88%86%E5%B8%83%E5%AE%9A%E6%95%B0%E7%B3%BB%E3%81%AE%E6%9C%80%E9%81%A9%E5%88%B6%E5%BE%A1%E8%A8%88%E7%AE%97%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0"><img alt="Research paper thumbnail of こう配法による最終状態に拘束をもつ分布定数系の最適制御計算アルゴリズム" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306164/%E3%81%93%E3%81%86%E9%85%8D%E6%B3%95%E3%81%AB%E3%82%88%E3%82%8B%E6%9C%80%E7%B5%82%E7%8A%B6%E6%85%8B%E3%81%AB%E6%8B%98%E6%9D%9F%E3%82%92%E3%82%82%E3%81%A4%E5%88%86%E5%B8%83%E5%AE%9A%E6%95%B0%E7%B3%BB%E3%81%AE%E6%9C%80%E9%81%A9%E5%88%B6%E5%BE%A1%E8%A8%88%E7%AE%97%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0">こう配法による最終状態に拘束をもつ分布定数系の最適制御計算アルゴリズム</a></div><div class="wp-workCard_item"><span>Transactions of the Society of Instrument and Control Engineers</span><span>, 1971</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306164"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306164"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306164; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306164]").text(description); $(".js-view-count[data-work-id=36306164]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306164; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306164']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306164, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306164]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306164,"title":"こう配法による最終状態に拘束をもつ分布定数系の最適制御計算アルゴリズム","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1971,"errors":{}},"publication_name":"Transactions of the Society of Instrument and Control Engineers"},"translated_abstract":null,"internal_url":"https://www.academia.edu/36306164/%E3%81%93%E3%81%86%E9%85%8D%E6%B3%95%E3%81%AB%E3%82%88%E3%82%8B%E6%9C%80%E7%B5%82%E7%8A%B6%E6%85%8B%E3%81%AB%E6%8B%98%E6%9D%9F%E3%82%92%E3%82%82%E3%81%A4%E5%88%86%E5%B8%83%E5%AE%9A%E6%95%B0%E7%B3%BB%E3%81%AE%E6%9C%80%E9%81%A9%E5%88%B6%E5%BE%A1%E8%A8%88%E7%AE%97%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0","translated_internal_url":"","created_at":"2018-04-01T19:06:33.030-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"こう配法による最終状態に拘束をもつ分布定数系の最適制御計算アルゴリズム","translated_slug":"","page_count":null,"language":"ja","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="36306163"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306163/%E5%8B%BE%E9%85%8D%E6%B3%95%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E5%8F%8E%E6%9D%9F%E3%81%AE%E6%94%B9%E5%96%84"><img alt="Research paper thumbnail of 勾配法における収束の改善" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306163/%E5%8B%BE%E9%85%8D%E6%B3%95%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E5%8F%8E%E6%9D%9F%E3%81%AE%E6%94%B9%E5%96%84">勾配法における収束の改善</a></div><div class="wp-workCard_item"><span>Transactions of the Society of Instrument and Control Engineers</span><span>, 1973</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306163"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306163"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306163; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306163]").text(description); $(".js-view-count[data-work-id=36306163]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306163; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306163']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306163, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306163]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306163,"title":"勾配法における収束の改善","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1973,"errors":{}},"publication_name":"Transactions of the Society of Instrument and Control Engineers"},"translated_abstract":null,"internal_url":"https://www.academia.edu/36306163/%E5%8B%BE%E9%85%8D%E6%B3%95%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E5%8F%8E%E6%9D%9F%E3%81%AE%E6%94%B9%E5%96%84","translated_internal_url":"","created_at":"2018-04-01T19:06:32.905-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"勾配法における収束の改善","translated_slug":"","page_count":null,"language":"ja","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="36306162"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306162/%E4%BD%9C%E7%94%A8%E7%B4%A0%E5%A4%9A%E9%A0%85%E5%BC%8F%E5%B1%95%E9%96%8B%E3%82%92%E7%94%A8%E3%81%84%E3%82%8B%E6%9C%80%E9%81%A9%E5%95%8F%E9%A1%8C%E3%81%AE%E8%A7%A3%E6%B3%95"><img alt="Research paper thumbnail of 作用素多項式展開を用いる最適問題の解法" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306162/%E4%BD%9C%E7%94%A8%E7%B4%A0%E5%A4%9A%E9%A0%85%E5%BC%8F%E5%B1%95%E9%96%8B%E3%82%92%E7%94%A8%E3%81%84%E3%82%8B%E6%9C%80%E9%81%A9%E5%95%8F%E9%A1%8C%E3%81%AE%E8%A7%A3%E6%B3%95">作用素多項式展開を用いる最適問題の解法</a></div><div class="wp-workCard_item"><span>Transactions of the Society of Instrument and Control Engineers</span><span>, 1977</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306162"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306162"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306162; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306162]").text(description); $(".js-view-count[data-work-id=36306162]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306162; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306162']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306162, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306162]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306162,"title":"作用素多項式展開を用いる最適問題の解法","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1977,"errors":{}},"publication_name":"Transactions of the Society of Instrument and Control Engineers"},"translated_abstract":null,"internal_url":"https://www.academia.edu/36306162/%E4%BD%9C%E7%94%A8%E7%B4%A0%E5%A4%9A%E9%A0%85%E5%BC%8F%E5%B1%95%E9%96%8B%E3%82%92%E7%94%A8%E3%81%84%E3%82%8B%E6%9C%80%E9%81%A9%E5%95%8F%E9%A1%8C%E3%81%AE%E8%A7%A3%E6%B3%95","translated_internal_url":"","created_at":"2018-04-01T19:06:32.768-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"作用素多項式展開を用いる最適問題の解法","translated_slug":"","page_count":null,"language":"ja","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="36306161"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306161/Hilbert_Transformer_Design_Using_CSD_FIR_Filter"><img alt="Research paper thumbnail of Hilbert Transformer Design Using CSD FIR Filter" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306161/Hilbert_Transformer_Design_Using_CSD_FIR_Filter">Hilbert Transformer Design Using CSD FIR Filter</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306161"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306161"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306161; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306161]").text(description); $(".js-view-count[data-work-id=36306161]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306161; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306161']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306161, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306161]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306161,"title":"Hilbert Transformer Design Using CSD FIR Filter","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/36306161/Hilbert_Transformer_Design_Using_CSD_FIR_Filter","translated_internal_url":"","created_at":"2018-04-01T19:06:26.983-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hilbert_Transformer_Design_Using_CSD_FIR_Filter","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="36306160"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306160/Network_dynamics_of_the_neurons_with_the_subthreshold_membrane_resonatorance"><img alt="Research paper thumbnail of Network dynamics of the neurons with the subthreshold membrane resonatorance" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306160/Network_dynamics_of_the_neurons_with_the_subthreshold_membrane_resonatorance">Network dynamics of the neurons with the subthreshold membrane resonatorance</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306160"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306160"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306160; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306160]").text(description); $(".js-view-count[data-work-id=36306160]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306160; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306160']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306160, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306160]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306160,"title":"Network dynamics of the neurons with the subthreshold membrane resonatorance","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/36306160/Network_dynamics_of_the_neurons_with_the_subthreshold_membrane_resonatorance","translated_internal_url":"","created_at":"2018-04-01T19:06:20.891-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Network_dynamics_of_the_neurons_with_the_subthreshold_membrane_resonatorance","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[{"id":8469835,"url":"http://eprints.utm.my/38285/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927858"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927858/How_balance_between_LTP_and_LTD_can_be_controlled_in_spike_timing_dependent_learning_rule"><img alt="Research paper thumbnail of How balance between LTP and LTD can be controlled in spike-timing-dependent learning rule" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927858/How_balance_between_LTP_and_LTD_can_be_controlled_in_spike_timing_dependent_learning_rule">How balance between LTP and LTD can be controlled in spike-timing-dependent learning rule</a></div><div class="wp-workCard_item"><span>2009 International Joint Conference on Neural Networks</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Spike-timing-dependent plasticity (STDP) has been suggested to play a role in developing function...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Spike-timing-dependent plasticity (STDP) has been suggested to play a role in developing functional cortical circuits. However, for STDP to contribute to the organization of synapses, the STDP learning curve should satisfy a requirement that the magnitude of long-term potentiation (LTP) is slightly smaller than that of long-term depression (LTD). In the absence of this approximate balance between LTP and LTD,</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927858"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927858"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927858; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927858]").text(description); $(".js-view-count[data-work-id=23927858]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927858; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927858']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927858, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927858]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927858,"title":"How balance between LTP and LTD can be controlled in spike-timing-dependent learning rule","translated_title":"","metadata":{"abstract":"Spike-timing-dependent plasticity (STDP) has been suggested to play a role in developing functional cortical circuits. However, for STDP to contribute to the organization of synapses, the STDP learning curve should satisfy a requirement that the magnitude of long-term potentiation (LTP) is slightly smaller than that of long-term depression (LTD). In the absence of this approximate balance between LTP and LTD,","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"2009 International Joint Conference on Neural Networks"},"translated_abstract":"Spike-timing-dependent plasticity (STDP) has been suggested to play a role in developing functional cortical circuits. However, for STDP to contribute to the organization of synapses, the STDP learning curve should satisfy a requirement that the magnitude of long-term potentiation (LTP) is slightly smaller than that of long-term depression (LTD). In the absence of this approximate balance between LTP and LTD,","internal_url":"https://www.academia.edu/23927858/How_balance_between_LTP_and_LTD_can_be_controlled_in_spike_timing_dependent_learning_rule","translated_internal_url":"","created_at":"2016-04-01T20:16:28.388-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272588,"work_id":23927858,"tagging_user_id":46223781,"tagged_user_id":215125392,"co_author_invite_id":443573,"email":"k***a@yz.yamagata-u.ac.jp","display_order":0,"name":"繁 久保田","title":"How balance between LTP and LTD can be controlled in spike-timing-dependent learning rule"}],"downloadable_attachments":[],"slug":"How_balance_between_LTP_and_LTD_can_be_controlled_in_spike_timing_dependent_learning_rule","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[{"id":4247,"name":"Long Term Potentiation","url":"https://www.academia.edu/Documents/in/Long_Term_Potentiation"},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks"},{"id":137633,"name":"Feedback","url":"https://www.academia.edu/Documents/in/Feedback"},{"id":207154,"name":"Long Term Depression","url":"https://www.academia.edu/Documents/in/Long_Term_Depression"},{"id":256048,"name":"Circuits","url":"https://www.academia.edu/Documents/in/Circuits"},{"id":394477,"name":"Time Dependent","url":"https://www.academia.edu/Documents/in/Time_Dependent"},{"id":679783,"name":"Boolean Satisfiability","url":"https://www.academia.edu/Documents/in/Boolean_Satisfiability"},{"id":966462,"name":"Spike time Dependent Plasticity","url":"https://www.academia.edu/Documents/in/Spike_time_Dependent_Plasticity"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927857"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927857/Synaptic_Cooperation_and_Competition_in_STDP_Learning_Rule"><img alt="Research paper thumbnail of Synaptic Cooperation and Competition in STDP Learning Rule" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927857/Synaptic_Cooperation_and_Competition_in_STDP_Learning_Rule">Synaptic Cooperation and Competition in STDP Learning Rule</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The correlation-based rule of plasticity has been widely believed to be involved in the organizat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The correlation-based rule of plasticity has been widely believed to be involved in the organization of functional synaptic circuits. However, recent studies have suggested that the direction of plasticity in the sensory-deprived barrel cortex can be reversed, depending on the stimulus environment, from that predicted by the correlation-based plasticity. To investigate whether spike-timing-dependent plasticity (STDP) may underlie such reversal in cortical plasticity, we study the influence of the correlation time on the synaptic cooperative and competitive mechanisms based on the input correlation. The results show that in the presence of activity-dependent feedback modification of the STDP window function, the increase in the correlation time can reverse the plasticity outcome such that for shorter correlation time, more frequently activated synapses are strengthened while, as the correlation time is sufficiently prolonged, less frequently activated synapses become strengthened.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927857"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927857"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927857; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927857]").text(description); $(".js-view-count[data-work-id=23927857]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927857; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927857']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927857, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927857]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927857,"title":"Synaptic Cooperation and Competition in STDP Learning Rule","translated_title":"","metadata":{"abstract":"The correlation-based rule of plasticity has been widely believed to be involved in the organization of functional synaptic circuits. However, recent studies have suggested that the direction of plasticity in the sensory-deprived barrel cortex can be reversed, depending on the stimulus environment, from that predicted by the correlation-based plasticity. To investigate whether spike-timing-dependent plasticity (STDP) may underlie such reversal in cortical plasticity, we study the influence of the correlation time on the synaptic cooperative and competitive mechanisms based on the input correlation. The results show that in the presence of activity-dependent feedback modification of the STDP window function, the increase in the correlation time can reverse the plasticity outcome such that for shorter correlation time, more frequently activated synapses are strengthened while, as the correlation time is sufficiently prolonged, less frequently activated synapses become strengthened.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"The correlation-based rule of plasticity has been widely believed to be involved in the organization of functional synaptic circuits. However, recent studies have suggested that the direction of plasticity in the sensory-deprived barrel cortex can be reversed, depending on the stimulus environment, from that predicted by the correlation-based plasticity. To investigate whether spike-timing-dependent plasticity (STDP) may underlie such reversal in cortical plasticity, we study the influence of the correlation time on the synaptic cooperative and competitive mechanisms based on the input correlation. The results show that in the presence of activity-dependent feedback modification of the STDP window function, the increase in the correlation time can reverse the plasticity outcome such that for shorter correlation time, more frequently activated synapses are strengthened while, as the correlation time is sufficiently prolonged, less frequently activated synapses become strengthened.","internal_url":"https://www.academia.edu/23927857/Synaptic_Cooperation_and_Competition_in_STDP_Learning_Rule","translated_internal_url":"","created_at":"2016-04-01T20:16:28.271-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272584,"work_id":23927857,"tagging_user_id":46223781,"tagged_user_id":215125392,"co_author_invite_id":443573,"email":"k***a@yz.yamagata-u.ac.jp","display_order":0,"name":"繁 久保田","title":"Synaptic Cooperation and Competition in STDP Learning Rule"}],"downloadable_attachments":[],"slug":"Synaptic_Cooperation_and_Competition_in_STDP_Learning_Rule","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[{"id":194177,"name":"Cortical Plasticity","url":"https://www.academia.edu/Documents/in/Cortical_Plasticity"},{"id":432091,"name":"Barrel Cortex","url":"https://www.academia.edu/Documents/in/Barrel_Cortex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927855"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927855/Involvement_of_the_glutamate_transporter_and_the_sodium_calcium_exchanger_in_the_hypoxia_induced_increase_in_intracellular_Ca2_in_rat_hippocampal_slices"><img alt="Research paper thumbnail of Involvement of the glutamate transporter and the sodium-calcium exchanger in the hypoxia-induced increase in intracellular Ca2+ in rat hippocampal slices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927855/Involvement_of_the_glutamate_transporter_and_the_sodium_calcium_exchanger_in_the_hypoxia_induced_increase_in_intracellular_Ca2_in_rat_hippocampal_slices">Involvement of the glutamate transporter and the sodium-calcium exchanger in the hypoxia-induced increase in intracellular Ca2+ in rat hippocampal slices</a></div><div class="wp-workCard_item"><span>Brain Research</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen-glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+-Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927855"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927855"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927855; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927855]").text(description); $(".js-view-count[data-work-id=23927855]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927855; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927855']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927855, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927855]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927855,"title":"Involvement of the glutamate transporter and the sodium-calcium exchanger in the hypoxia-induced increase in intracellular Ca2+ in rat hippocampal slices","translated_title":"","metadata":{"abstract":"Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen-glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+-Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Brain Research"},"translated_abstract":"Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen-glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+-Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.","internal_url":"https://www.academia.edu/23927855/Involvement_of_the_glutamate_transporter_and_the_sodium_calcium_exchanger_in_the_hypoxia_induced_increase_in_intracellular_Ca2_in_rat_hippocampal_slices","translated_internal_url":"","created_at":"2016-04-01T20:16:28.075-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272606,"work_id":23927855,"tagging_user_id":46223781,"tagged_user_id":38403527,"co_author_invite_id":null,"email":"s***i@gmail.com","display_order":0,"name":"周 山口","title":"Involvement of the glutamate transporter and the sodium-calcium exchanger in the hypoxia-induced increase in intracellular Ca2+ in rat hippocampal slices"},{"id":18272607,"work_id":23927855,"tagging_user_id":46223781,"tagged_user_id":42265024,"co_author_invite_id":null,"email":"o***a@acls.titech.ac.jp","display_order":4194304,"name":"Hiroyuki Ogata","title":"Involvement of the glutamate transporter and the sodium-calcium exchanger in the hypoxia-induced increase in intracellular Ca2+ in rat hippocampal slices"}],"downloadable_attachments":[],"slug":"Involvement_of_the_glutamate_transporter_and_the_sodium_calcium_exchanger_in_the_hypoxia_induced_increase_in_intracellular_Ca2_in_rat_hippocampal_slices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":10990,"name":"Hypoxia","url":"https://www.academia.edu/Documents/in/Hypoxia"},{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus"},{"id":61233,"name":"Glutamate","url":"https://www.academia.edu/Documents/in/Glutamate"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":67133,"name":"Anoxia","url":"https://www.academia.edu/Documents/in/Anoxia"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":386342,"name":"Sodium","url":"https://www.academia.edu/Documents/in/Sodium"},{"id":417494,"name":"Rat","url":"https://www.academia.edu/Documents/in/Rat"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":743556,"name":"Ion Exchange","url":"https://www.academia.edu/Documents/in/Ion_Exchange"},{"id":1011273,"name":"Chelating Agents","url":"https://www.academia.edu/Documents/in/Chelating_Agents"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"},{"id":1599862,"name":"Fura","url":"https://www.academia.edu/Documents/in/Fura"},{"id":1954221,"name":"Calcium Channel Blockers","url":"https://www.academia.edu/Documents/in/Calcium_Channel_Blockers"}],"urls":[{"id":6968538,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=1596031"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927853"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927853/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes"><img alt="Research paper thumbnail of Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes" class="work-thumbnail" src="https://attachments.academia-assets.com/44314125/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927853/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes">Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes</a></div><div class="wp-workCard_item"><span>Journal of Artificial Organs the Official Journal of the Japanese Society For Artificial Organs</span><span>, Jul 8, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="90b2fe50ac4c8835fd83ead492589b3c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314125,&quot;asset_id&quot;:23927853,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314125/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927853"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927853"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927853; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927853]").text(description); $(".js-view-count[data-work-id=23927853]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927853; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927853']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927853, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "90b2fe50ac4c8835fd83ead492589b3c" } } $('.js-work-strip[data-work-id=23927853]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927853,"title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes","translated_title":"","metadata":{"grobid_abstract":"The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes were investigated by uniaxial tensile testing. Rat type I collagen-Dulbecco's modified Eagle's medium solution (each 2 ml in volume, 0.5 mg/ml collagen concentration) containing 2.0 million rat fibroblasts or cardiomyocytes were cast in a circular shape. After gelation and culture for 10 days the contracted gels were first stretched to a tensile strain of approximately 0.20 at 4.6 9 10 -3 /s strain rate, and then the strain was kept unchanged for 3 min. The tensile stress in the gels was recorded. The results were regressed against the equations of the Kelvin viscoelastic model. It was found that the two elastic coefficients in the model were 6.5 ± 1.7 and 10.2 ± 3.2 kPa, respectively, for gels with cardiomyocytes and 5.1 ± 1.6 and 4.5 ± 0.9 kPa for those with fibroblasts; the values for gels with cardiomyocytes were significantly higher than those for gels with fibroblasts. The viscous coefficient was 169.6 ± 60.7 kPa s for the cardiomyocytes and 143.6 ± 44.7 kPa s for the fibroblasts. The relaxation time constant for gels with cardiomyocytes was 19.6 ± 10.6 s, significantly smaller than for gels with fibroblasts (36.4 ± 13.3 s). This study is the first to obtain viscoelastic data for living cell-contracted collagen gels. These data show that the viscous effect has a vital effect on the mechanical behavior of the gels and cannot be neglected in the culture and function of artificial substitutes based on contracted collagen gels. Furthermore, the data may imply that viscous coefficient of the gels might be closely related to collagen density rather than to cross linking among collagen fibrils.","publication_date":{"day":8,"month":7,"year":2010,"errors":{}},"publication_name":"Journal of Artificial Organs the Official Journal of the Japanese Society For Artificial Organs","grobid_abstract_attachment_id":44314125},"translated_abstract":null,"internal_url":"https://www.academia.edu/23927853/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes","translated_internal_url":"","created_at":"2016-04-01T20:16:27.884-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272572,"work_id":23927853,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"},{"id":18272600,"work_id":23927853,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172231,"email":"k***a@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Tadashi Kosawada","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"},{"id":18272623,"work_id":23927853,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":6291456,"name":"Zhonggang Feng","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"}],"downloadable_attachments":[{"id":44314125,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314125/thumbnails/1.jpg","file_name":"s10047-010-0508-x.pdf20160401-7255-1osnpsj","download_url":"https://www.academia.edu/attachments/44314125/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Viscoelastic_characteristics_of_contract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314125/s10047-010-0508-x-libre.pdf20160401-7255-1osnpsj?1459567691=\u0026response-content-disposition=attachment%3B+filename%3DViscoelastic_characteristics_of_contract.pdf\u0026Expires=1732437491\u0026Signature=b7hLf8oEucaJXgkbEvhvNV2pMtQxP2PWWzuiVxiwqrtQ~NrHgptL9IkQed5TVRMirCknofoxJ2v1SSt93ZKAxUGLYtKvVe2wNPir6O3uWwB73pBkNotiovJ1zVP-wi6kADNRSWzS~xB6kGUdVAr1NOAC63Obc2-5PMwRfycBL0UFAo1cBfMynDz13quepugu-vQfCZd0ar8LfaU-PtSQiVMyHjXVaLNcn6EuzT8u3~-HwQuC0nC~GqDskxAUuLHqUddv5FETVfjR7Gv9Ekk2ZJBEmv-C6UG~pmFKMLwjhvzkmhUxTdcOC9~zMVm6-LC7PNh~Hc4twZUT8H7xPnv4WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314125,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314125/thumbnails/1.jpg","file_name":"s10047-010-0508-x.pdf20160401-7255-1osnpsj","download_url":"https://www.academia.edu/attachments/44314125/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Viscoelastic_characteristics_of_contract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314125/s10047-010-0508-x-libre.pdf20160401-7255-1osnpsj?1459567691=\u0026response-content-disposition=attachment%3B+filename%3DViscoelastic_characteristics_of_contract.pdf\u0026Expires=1732437491\u0026Signature=b7hLf8oEucaJXgkbEvhvNV2pMtQxP2PWWzuiVxiwqrtQ~NrHgptL9IkQed5TVRMirCknofoxJ2v1SSt93ZKAxUGLYtKvVe2wNPir6O3uWwB73pBkNotiovJ1zVP-wi6kADNRSWzS~xB6kGUdVAr1NOAC63Obc2-5PMwRfycBL0UFAo1cBfMynDz13quepugu-vQfCZd0ar8LfaU-PtSQiVMyHjXVaLNcn6EuzT8u3~-HwQuC0nC~GqDskxAUuLHqUddv5FETVfjR7Gv9Ekk2ZJBEmv-C6UG~pmFKMLwjhvzkmhUxTdcOC9~zMVm6-LC7PNh~Hc4twZUT8H7xPnv4WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":11101,"name":"Artificial Organs","url":"https://www.academia.edu/Documents/in/Artificial_Organs"},{"id":39606,"name":"Strain Rate","url":"https://www.academia.edu/Documents/in/Strain_Rate"},{"id":48904,"name":"Elasticity","url":"https://www.academia.edu/Documents/in/Elasticity"},{"id":79808,"name":"Collagen","url":"https://www.academia.edu/Documents/in/Collagen"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":284907,"name":"Gels","url":"https://www.academia.edu/Documents/in/Gels"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":954995,"name":"Human Fibroblasts","url":"https://www.academia.edu/Documents/in/Human_Fibroblasts"},{"id":973999,"name":"Tensile Strength","url":"https://www.academia.edu/Documents/in/Tensile_Strength"},{"id":1330652,"name":"Tensile Test","url":"https://www.academia.edu/Documents/in/Tensile_Test"}],"urls":[{"id":6968536,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=23172741"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927851"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927851/Design_a_novel_asymmetric_bifurcating_microfluidic_channel_for_cell_separation_by_size"><img alt="Research paper thumbnail of Design a novel asymmetric bifurcating microfluidic channel for cell separation by size" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927851/Design_a_novel_asymmetric_bifurcating_microfluidic_channel_for_cell_separation_by_size">Design a novel asymmetric bifurcating microfluidic channel for cell separation by size</a></div><div class="wp-workCard_item"><span>2015 10th Asian Control Conference (ASCC)</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927851"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927851]").text(description); $(".js-view-count[data-work-id=23927851]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927851']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927851, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927851]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927851,"title":"Design a novel asymmetric bifurcating microfluidic channel for cell separation by size","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"2015 10th Asian Control Conference (ASCC)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/23927851/Design_a_novel_asymmetric_bifurcating_microfluidic_channel_for_cell_separation_by_size","translated_internal_url":"","created_at":"2016-04-01T20:16:27.723-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272574,"work_id":23927851,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Design a novel asymmetric bifurcating microfluidic channel for cell separation by size"},{"id":18272625,"work_id":23927851,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Zhonggang Feng","title":"Design a novel asymmetric bifurcating microfluidic channel for cell separation by size"}],"downloadable_attachments":[],"slug":"Design_a_novel_asymmetric_bifurcating_microfluidic_channel_for_cell_separation_by_size","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927849"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927849/A_fibril_based_structural_constitutive_theory_reveals_the_dominant_role_of_network_characteristics_on_the_mechanical_behavior_of_fibroblast_compacted_collagen_gels"><img alt="Research paper thumbnail of A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels" class="work-thumbnail" src="https://attachments.academia-assets.com/44314130/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927849/A_fibril_based_structural_constitutive_theory_reveals_the_dominant_role_of_network_characteristics_on_the_mechanical_behavior_of_fibroblast_compacted_collagen_gels">A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels</a></div><div class="wp-workCard_item"><span>Biomaterials</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we present a general, fibril-based structural constitutive theory which accounts f...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="17e3044e8dfd1332d3b00e92b37982ee" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314130,&quot;asset_id&quot;:23927849,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314130/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927849"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927849"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927849; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927849]").text(description); $(".js-view-count[data-work-id=23927849]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927849; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927849']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927849, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "17e3044e8dfd1332d3b00e92b37982ee" } } $('.js-work-strip[data-work-id=23927849]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927849,"title":"A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels","translated_title":"","metadata":{"abstract":"In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of...","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Biomaterials"},"translated_abstract":"In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of...","internal_url":"https://www.academia.edu/23927849/A_fibril_based_structural_constitutive_theory_reveals_the_dominant_role_of_network_characteristics_on_the_mechanical_behavior_of_fibroblast_compacted_collagen_gels","translated_internal_url":"","created_at":"2016-04-01T20:16:27.456-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272571,"work_id":23927849,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels"},{"id":18272599,"work_id":23927849,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172231,"email":"k***a@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Tadashi Kosawada","title":"A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels"},{"id":18272620,"work_id":23927849,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":6291456,"name":"Zhonggang Feng","title":"A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels"}],"downloadable_attachments":[{"id":44314130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314130/thumbnails/1.jpg","file_name":"A_fibril-based_structural_constitutive_t20160401-7189-1ebflpu.pdf","download_url":"https://www.academia.edu/attachments/44314130/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_fibril_based_structural_constitutive_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314130/A_fibril-based_structural_constitutive_t20160401-7189-1ebflpu-libre.pdf?1459567699=\u0026response-content-disposition=attachment%3B+filename%3DA_fibril_based_structural_constitutive_t.pdf\u0026Expires=1732437491\u0026Signature=SuLYnT9xEZaVTkrI7gVudtdVval28OT6R6ceg6A~CTIfoH2NNurRVqYrY-rGCzb1D0QqES051mbNLz39H6xelLb9bxCfXUYUgtjTUzP2ZG-rcvDdGWZ9-V6WvW03LC~lE-A5pnndvMEgeL8FQMbmt5l28zFeaBstFzLqqwmn51bB6ANdiBodoFInIeYAleBLM6vrB0rL94NNAXrYOpB~U4nzLLtDsK8YIX0YrnCujaFUWjtDJYCSoh0AsdOmY7wHMPW-sTOwm4IctSEqn3zey-6QdfB~m4WGcjRXWU~SfLKbcMJFTyOhK3xTI1t2H1Q449LJJeflcMG4pgOd-CHDuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_fibril_based_structural_constitutive_theory_reveals_the_dominant_role_of_network_characteristics_on_the_mechanical_behavior_of_fibroblast_compacted_collagen_gels","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314130/thumbnails/1.jpg","file_name":"A_fibril-based_structural_constitutive_t20160401-7189-1ebflpu.pdf","download_url":"https://www.academia.edu/attachments/44314130/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_fibril_based_structural_constitutive_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314130/A_fibril-based_structural_constitutive_t20160401-7189-1ebflpu-libre.pdf?1459567699=\u0026response-content-disposition=attachment%3B+filename%3DA_fibril_based_structural_constitutive_t.pdf\u0026Expires=1732437491\u0026Signature=SuLYnT9xEZaVTkrI7gVudtdVval28OT6R6ceg6A~CTIfoH2NNurRVqYrY-rGCzb1D0QqES051mbNLz39H6xelLb9bxCfXUYUgtjTUzP2ZG-rcvDdGWZ9-V6WvW03LC~lE-A5pnndvMEgeL8FQMbmt5l28zFeaBstFzLqqwmn51bB6ANdiBodoFInIeYAleBLM6vrB0rL94NNAXrYOpB~U4nzLLtDsK8YIX0YrnCujaFUWjtDJYCSoh0AsdOmY7wHMPW-sTOwm4IctSEqn3zey-6QdfB~m4WGcjRXWU~SfLKbcMJFTyOhK3xTI1t2H1Q449LJJeflcMG4pgOd-CHDuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2698,"name":"Biomaterials","url":"https://www.academia.edu/Documents/in/Biomaterials"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927848"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927848/Dynamic_Analysis_of_Circular_Engineered_Cardiac_Tissue_to_Evaluate_the_Active_Contractile_Force"><img alt="Research paper thumbnail of Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force" class="work-thumbnail" src="https://attachments.academia-assets.com/44314110/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927848/Dynamic_Analysis_of_Circular_Engineered_Cardiac_Tissue_to_Evaluate_the_Active_Contractile_Force">Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force</a></div><div class="wp-workCard_item"><span>Communications in Computer and Information Science</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7dc42510050753430636983c44824f15" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314110,&quot;asset_id&quot;:23927848,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314110/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927848"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927848"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927848; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927848]").text(description); $(".js-view-count[data-work-id=23927848]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927848; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927848']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927848, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7dc42510050753430636983c44824f15" } } $('.js-work-strip[data-work-id=23927848]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927848,"title":"Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force","translated_title":"","metadata":{"grobid_abstract":"Circular engineered cardiac tissue was fabricated by embedding rat embryonic cardiomyocytes into collagen (type I) gels. The engineered tissue was set to a specific configuration and the spontaneous beat displacement at one site of it was measured. The active contractile force of the embedded cardiomyocytes was derived from the displacement data. In this process, the engineered tissue was constitutively modeled as three components in parallel: i.e., an active contractile component representing the cardiomyocyte contraction, a pre-force component representing the effects of gel compaction during the tissue fabrication, and a Kelvin model for the passive properties of the tissue. Dynamic analysis of the beat displacement allowed solving out the active contractile force. In addition, energy coefficient was defined to evaluate the pump function of the engineered tissue. It demonstrated that this approach can detect the active contractile force as small as ~0.01 mN and can sensitively reveal the change of the active contractile force under different culture conditions. Besides being an assay to evaluate the mechanical performance of engineered cardiac tissue, this novel method is particularly suitable to be used in pharmacological response testing of stem cell-derived cardiomyocytes under three-dimensional culture attributed to its high sensitivity and feasibility for continuous and in situ measurement.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Communications in Computer and Information Science","grobid_abstract_attachment_id":44314110},"translated_abstract":null,"internal_url":"https://www.academia.edu/23927848/Dynamic_Analysis_of_Circular_Engineered_Cardiac_Tissue_to_Evaluate_the_Active_Contractile_Force","translated_internal_url":"","created_at":"2016-04-01T20:16:27.339-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272561,"work_id":23927848,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force"},{"id":18272592,"work_id":23927848,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172231,"email":"k***a@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Tadashi Kosawada","title":"Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force"},{"id":18272614,"work_id":23927848,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":6291456,"name":"Zhonggang Feng","title":"Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force"}],"downloadable_attachments":[{"id":44314110,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314110/thumbnails/1.jpg","file_name":"Dynamic_Analysis_of_Circular_Engineered_20160401-7255-2ruiu1.pdf","download_url":"https://www.academia.edu/attachments/44314110/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dynamic_Analysis_of_Circular_Engineered.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314110/Dynamic_Analysis_of_Circular_Engineered_20160401-7255-2ruiu1-libre.pdf?1459567693=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Analysis_of_Circular_Engineered.pdf\u0026Expires=1732437491\u0026Signature=LJh9cYvPA3oJ4ttqwDOwj4WQBt~kFswpTKTGB9TYs9d0zciiruxzeAGC~1DfX0nXWinh1En9VR3HM0UsiRBh-anOihGxdgptd92IbRyJFyZ04b6rGlL1zKKEJ5rxZT1xRK43~sB-sOtpW7wL-ObcWtFb~yS4nTauZNGdU6EucSR8c~JZSsyFxv2MvAvyF-j3xaphmTsgbrlGoMunSzpaZV3Jmxq2ClJMYLtfchRLPc7QA2pS9mmO83e2UFwNw26kfWGDY0uzQVsSM5GTimi-~igG6scyeQd-7QMXdpNpTghbmxDaW31OGdC3hOOO1rTYXIAElL4L34dM4nD2qTk6dg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dynamic_Analysis_of_Circular_Engineered_Cardiac_Tissue_to_Evaluate_the_Active_Contractile_Force","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314110,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314110/thumbnails/1.jpg","file_name":"Dynamic_Analysis_of_Circular_Engineered_20160401-7255-2ruiu1.pdf","download_url":"https://www.academia.edu/attachments/44314110/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dynamic_Analysis_of_Circular_Engineered.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314110/Dynamic_Analysis_of_Circular_Engineered_20160401-7255-2ruiu1-libre.pdf?1459567693=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Analysis_of_Circular_Engineered.pdf\u0026Expires=1732437491\u0026Signature=LJh9cYvPA3oJ4ttqwDOwj4WQBt~kFswpTKTGB9TYs9d0zciiruxzeAGC~1DfX0nXWinh1En9VR3HM0UsiRBh-anOihGxdgptd92IbRyJFyZ04b6rGlL1zKKEJ5rxZT1xRK43~sB-sOtpW7wL-ObcWtFb~yS4nTauZNGdU6EucSR8c~JZSsyFxv2MvAvyF-j3xaphmTsgbrlGoMunSzpaZV3Jmxq2ClJMYLtfchRLPc7QA2pS9mmO83e2UFwNw26kfWGDY0uzQVsSM5GTimi-~igG6scyeQd-7QMXdpNpTghbmxDaW31OGdC3hOOO1rTYXIAElL4L34dM4nD2qTk6dg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927846"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927846/The_mechanisms_of_fibroblast_mediated_compaction_of_collagen_gels_and_the_mechanical_niche_around_individual_fibroblasts"><img alt="Research paper thumbnail of The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts" class="work-thumbnail" src="https://attachments.academia-assets.com/44314126/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927846/The_mechanisms_of_fibroblast_mediated_compaction_of_collagen_gels_and_the_mechanical_niche_around_individual_fibroblasts">The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts</a></div><div class="wp-workCard_item"><span>Biomaterials</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound healing, cellular fate processes, and regenerative medicine. However, the underlying mechanism and the cellular mechanical niche still remain obscure. This study examines the mechanical behaviour of collagen fibrils during the process of compaction from an alternative perspective on the primary mechanical interaction, providing a new viewpoint on the behaviour of populated fibroblasts. We classify the collagen fibrils into three types - bent, stretched, and adherent - and deduce the respective equations governing the mechanical behaviour of each type; in particular, from a putative principle based on the stationary state of the instantaneous Hamiltonian of the mechanotransduction system, we originally quantify the stretching force exerted on each stretched fibrils. Via careful verification of a structural elementary model based on this classification, we demonstrate a clear physical pict...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ccdee82734abf561fbeeb9caaee8992b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314126,&quot;asset_id&quot;:23927846,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314126/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927846"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927846"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927846; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927846]").text(description); $(".js-view-count[data-work-id=23927846]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927846; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927846']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927846, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ccdee82734abf561fbeeb9caaee8992b" } } $('.js-work-strip[data-work-id=23927846]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927846,"title":"The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts","translated_title":"","metadata":{"abstract":"Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound healing, cellular fate processes, and regenerative medicine. However, the underlying mechanism and the cellular mechanical niche still remain obscure. This study examines the mechanical behaviour of collagen fibrils during the process of compaction from an alternative perspective on the primary mechanical interaction, providing a new viewpoint on the behaviour of populated fibroblasts. We classify the collagen fibrils into three types - bent, stretched, and adherent - and deduce the respective equations governing the mechanical behaviour of each type; in particular, from a putative principle based on the stationary state of the instantaneous Hamiltonian of the mechanotransduction system, we originally quantify the stretching force exerted on each stretched fibrils. Via careful verification of a structural elementary model based on this classification, we demonstrate a clear physical pict...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Biomaterials"},"translated_abstract":"Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound healing, cellular fate processes, and regenerative medicine. However, the underlying mechanism and the cellular mechanical niche still remain obscure. This study examines the mechanical behaviour of collagen fibrils during the process of compaction from an alternative perspective on the primary mechanical interaction, providing a new viewpoint on the behaviour of populated fibroblasts. We classify the collagen fibrils into three types - bent, stretched, and adherent - and deduce the respective equations governing the mechanical behaviour of each type; in particular, from a putative principle based on the stationary state of the instantaneous Hamiltonian of the mechanotransduction system, we originally quantify the stretching force exerted on each stretched fibrils. Via careful verification of a structural elementary model based on this classification, we demonstrate a clear physical pict...","internal_url":"https://www.academia.edu/23927846/The_mechanisms_of_fibroblast_mediated_compaction_of_collagen_gels_and_the_mechanical_niche_around_individual_fibroblasts","translated_internal_url":"","created_at":"2016-04-01T20:16:27.222-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272569,"work_id":23927846,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts"},{"id":18272597,"work_id":23927846,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172231,"email":"k***a@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Tadashi Kosawada","title":"The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts"},{"id":18272618,"work_id":23927846,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":6291456,"name":"Zhonggang Feng","title":"The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts"},{"id":18272629,"work_id":23927846,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172234,"email":"s***w@med.id.yamagata-u.ac.jp","display_order":7340032,"name":"Nobuyuki Shirasawa","title":"The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts"}],"downloadable_attachments":[{"id":44314126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314126/thumbnails/1.jpg","file_name":"The_mechanisms_of_fibroblast-mediated_co20160401-17457-3rxm4g.pdf","download_url":"https://www.academia.edu/attachments/44314126/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_mechanisms_of_fibroblast_mediated_co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314126/The_mechanisms_of_fibroblast-mediated_co20160401-17457-3rxm4g-libre.pdf?1459567695=\u0026response-content-disposition=attachment%3B+filename%3DThe_mechanisms_of_fibroblast_mediated_co.pdf\u0026Expires=1732437491\u0026Signature=fmvHIn4RY4zJ5IB6IxO4LFAPwOa1kbwDHSldz~vvOi17~iXktuOQ-n3VNBlwzw~6-AEkM7sjwc~iW~Z0lnAkTcmaPXqptbfGIJPAA6aZl2XUKVXRULHym3hHygskzP~apXCaTSRtBBZrmnDRqTZ9s4vXxfeujgKmmEBMnduSUhFi1YYqcx1DMLEX-wq9Zu6UYV09iLC7RT8IuIrm1ALD2aZwFDGCmNxS~W5gvZav-nCPZorAxmS2TxCftf~47oVIpGXmweWDgO~TIxzvPHpR88-~73RAUhxhHn~OHVYmcUBjqaMSuCho1FaqjFlHzYgckyeiX1uArV2d1vwb0dmScA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_mechanisms_of_fibroblast_mediated_compaction_of_collagen_gels_and_the_mechanical_niche_around_individual_fibroblasts","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314126/thumbnails/1.jpg","file_name":"The_mechanisms_of_fibroblast-mediated_co20160401-17457-3rxm4g.pdf","download_url":"https://www.academia.edu/attachments/44314126/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_mechanisms_of_fibroblast_mediated_co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314126/The_mechanisms_of_fibroblast-mediated_co20160401-17457-3rxm4g-libre.pdf?1459567695=\u0026response-content-disposition=attachment%3B+filename%3DThe_mechanisms_of_fibroblast_mediated_co.pdf\u0026Expires=1732437491\u0026Signature=fmvHIn4RY4zJ5IB6IxO4LFAPwOa1kbwDHSldz~vvOi17~iXktuOQ-n3VNBlwzw~6-AEkM7sjwc~iW~Z0lnAkTcmaPXqptbfGIJPAA6aZl2XUKVXRULHym3hHygskzP~apXCaTSRtBBZrmnDRqTZ9s4vXxfeujgKmmEBMnduSUhFi1YYqcx1DMLEX-wq9Zu6UYV09iLC7RT8IuIrm1ALD2aZwFDGCmNxS~W5gvZav-nCPZorAxmS2TxCftf~47oVIpGXmweWDgO~TIxzvPHpR88-~73RAUhxhHn~OHVYmcUBjqaMSuCho1FaqjFlHzYgckyeiX1uArV2d1vwb0dmScA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2698,"name":"Biomaterials","url":"https://www.academia.edu/Documents/in/Biomaterials"},{"id":8991,"name":"Wound Healing","url":"https://www.academia.edu/Documents/in/Wound_Healing"},{"id":10055,"name":"Cell Adhesion","url":"https://www.academia.edu/Documents/in/Cell_Adhesion"},{"id":25550,"name":"Regenerative Medicine","url":"https://www.academia.edu/Documents/in/Regenerative_Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":48904,"name":"Elasticity","url":"https://www.academia.edu/Documents/in/Elasticity"},{"id":79808,"name":"Collagen","url":"https://www.academia.edu/Documents/in/Collagen"},{"id":96893,"name":"Calibration","url":"https://www.academia.edu/Documents/in/Calibration"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":284907,"name":"Gels","url":"https://www.academia.edu/Documents/in/Gels"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":379889,"name":"Homeostasis","url":"https://www.academia.edu/Documents/in/Homeostasis"},{"id":448603,"name":"Necrosis","url":"https://www.academia.edu/Documents/in/Necrosis"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":954995,"name":"Human Fibroblasts","url":"https://www.academia.edu/Documents/in/Human_Fibroblasts"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927845"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927845/Flux_characteristics_of_cell_culture_medium_in_rectangular_microchannels"><img alt="Research paper thumbnail of Flux characteristics of cell culture medium in rectangular microchannels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927845/Flux_characteristics_of_cell_culture_medium_in_rectangular_microchannels">Flux characteristics of cell culture medium in rectangular microchannels</a></div><div class="wp-workCard_item"><span>Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Rectangular microchannels 50 μm high and 30, 40, 50, 60, or 70 μm wide were fabricated by adjusti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Rectangular microchannels 50 μm high and 30, 40, 50, 60, or 70 μm wide were fabricated by adjusting the width of a gap cut in a polyethylene sheet 50 μm thick and sandwiching the sheet between an acrylic plate and a glass plate. Flux in the microchannels was measured under three different inner surface conditions: uncoated, albumin-coated, and confluent growth of rat fibroblasts on the bottom of the microchannels. The normalized flux in microchannels with cultured fibroblasts or albumin coating was significantly larger than that in the uncoated channels. The experimental data for all microchannels deviated from that predicted by classical hydrodynamic theory. At small aspect ratio the flux in the microchannels was larger than that predicted theoretically, whereas it became smaller at large aspect ratio. The aspect ratio rather than Reynolds number is the correct property for predicting the variation of the normalized friction factor. We postulate that two counteracting effects, rota...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927845"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927845"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927845; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927845]").text(description); $(".js-view-count[data-work-id=23927845]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927845; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927845']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927845, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927845]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927845,"title":"Flux characteristics of cell culture medium in rectangular microchannels","translated_title":"","metadata":{"abstract":"Rectangular microchannels 50 μm high and 30, 40, 50, 60, or 70 μm wide were fabricated by adjusting the width of a gap cut in a polyethylene sheet 50 μm thick and sandwiching the sheet between an acrylic plate and a glass plate. Flux in the microchannels was measured under three different inner surface conditions: uncoated, albumin-coated, and confluent growth of rat fibroblasts on the bottom of the microchannels. The normalized flux in microchannels with cultured fibroblasts or albumin coating was significantly larger than that in the uncoated channels. The experimental data for all microchannels deviated from that predicted by classical hydrodynamic theory. At small aspect ratio the flux in the microchannels was larger than that predicted theoretically, whereas it became smaller at large aspect ratio. The aspect ratio rather than Reynolds number is the correct property for predicting the variation of the normalized friction factor. We postulate that two counteracting effects, rota...","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs"},"translated_abstract":"Rectangular microchannels 50 μm high and 30, 40, 50, 60, or 70 μm wide were fabricated by adjusting the width of a gap cut in a polyethylene sheet 50 μm thick and sandwiching the sheet between an acrylic plate and a glass plate. Flux in the microchannels was measured under three different inner surface conditions: uncoated, albumin-coated, and confluent growth of rat fibroblasts on the bottom of the microchannels. The normalized flux in microchannels with cultured fibroblasts or albumin coating was significantly larger than that in the uncoated channels. The experimental data for all microchannels deviated from that predicted by classical hydrodynamic theory. At small aspect ratio the flux in the microchannels was larger than that predicted theoretically, whereas it became smaller at large aspect ratio. The aspect ratio rather than Reynolds number is the correct property for predicting the variation of the normalized friction factor. We postulate that two counteracting effects, rota...","internal_url":"https://www.academia.edu/23927845/Flux_characteristics_of_cell_culture_medium_in_rectangular_microchannels","translated_internal_url":"","created_at":"2016-04-01T20:16:27.064-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272559,"work_id":23927845,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Flux characteristics of cell culture medium in rectangular microchannels"},{"id":18272612,"work_id":23927845,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Zhonggang Feng","title":"Flux characteristics of cell culture medium in rectangular microchannels"}],"downloadable_attachments":[],"slug":"Flux_characteristics_of_cell_culture_medium_in_rectangular_microchannels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":11101,"name":"Artificial Organs","url":"https://www.academia.edu/Documents/in/Artificial_Organs"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":204468,"name":"Friction","url":"https://www.academia.edu/Documents/in/Friction"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":954995,"name":"Human Fibroblasts","url":"https://www.academia.edu/Documents/in/Human_Fibroblasts"},{"id":957359,"name":"Culture Media","url":"https://www.academia.edu/Documents/in/Culture_Media"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927843"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927843/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes"><img alt="Research paper thumbnail of Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes" class="work-thumbnail" src="https://attachments.academia-assets.com/44314122/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927843/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes">Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes</a></div><div class="wp-workCard_item"><span>Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes were investigated by uniaxial tensile testing. Rat type I collagen-Dulbecco&amp;#39;s modified Eagle&amp;#39;s medium solution (each 2 ml in volume, 0.5 mg/ml collagen concentration) containing 2.0 million rat fibroblasts or cardiomyocytes were cast in a circular shape. After gelation and culture for 10 days the contracted gels were first stretched to a tensile strain of approximately 0.20 at 4.6 × 10(-3)/s strain rate, and then the strain was kept unchanged for 3 min. The tensile stress in the gels was recorded. The results were regressed against the equations of the Kelvin viscoelastic model. It was found that the two elastic coefficients in the model were 6.5 ± 1.7 and 10.2 ± 3.2 kPa, respectively, for gels with cardiomyocytes and 5.1 ± 1.6 and 4.5 ± 0.9 kPa for those with fibroblasts; the values for gels with cardiomyocytes were significantly higher than those for gels with fibr...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f4f3a9109396d8a0ae312f547585fbc9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314122,&quot;asset_id&quot;:23927843,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314122/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927843"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927843"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927843; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927843]").text(description); $(".js-view-count[data-work-id=23927843]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927843; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927843']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927843, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f4f3a9109396d8a0ae312f547585fbc9" } } $('.js-work-strip[data-work-id=23927843]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927843,"title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes","translated_title":"","metadata":{"abstract":"The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes were investigated by uniaxial tensile testing. Rat type I collagen-Dulbecco\u0026#39;s modified Eagle\u0026#39;s medium solution (each 2 ml in volume, 0.5 mg/ml collagen concentration) containing 2.0 million rat fibroblasts or cardiomyocytes were cast in a circular shape. After gelation and culture for 10 days the contracted gels were first stretched to a tensile strain of approximately 0.20 at 4.6 × 10(-3)/s strain rate, and then the strain was kept unchanged for 3 min. The tensile stress in the gels was recorded. The results were regressed against the equations of the Kelvin viscoelastic model. It was found that the two elastic coefficients in the model were 6.5 ± 1.7 and 10.2 ± 3.2 kPa, respectively, for gels with cardiomyocytes and 5.1 ± 1.6 and 4.5 ± 0.9 kPa for those with fibroblasts; the values for gels with cardiomyocytes were significantly higher than those for gels with fibr...","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs"},"translated_abstract":"The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes were investigated by uniaxial tensile testing. Rat type I collagen-Dulbecco\u0026#39;s modified Eagle\u0026#39;s medium solution (each 2 ml in volume, 0.5 mg/ml collagen concentration) containing 2.0 million rat fibroblasts or cardiomyocytes were cast in a circular shape. After gelation and culture for 10 days the contracted gels were first stretched to a tensile strain of approximately 0.20 at 4.6 × 10(-3)/s strain rate, and then the strain was kept unchanged for 3 min. The tensile stress in the gels was recorded. The results were regressed against the equations of the Kelvin viscoelastic model. It was found that the two elastic coefficients in the model were 6.5 ± 1.7 and 10.2 ± 3.2 kPa, respectively, for gels with cardiomyocytes and 5.1 ± 1.6 and 4.5 ± 0.9 kPa for those with fibroblasts; the values for gels with cardiomyocytes were significantly higher than those for gels with fibr...","internal_url":"https://www.academia.edu/23927843/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes","translated_internal_url":"","created_at":"2016-04-01T20:16:26.906-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272565,"work_id":23927843,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"},{"id":18272594,"work_id":23927843,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172231,"email":"k***a@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Tadashi Kosawada","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"},{"id":18272615,"work_id":23927843,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":6291456,"name":"Zhonggang Feng","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"}],"downloadable_attachments":[{"id":44314122,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314122/thumbnails/1.jpg","file_name":"s10047-010-0508-x.pdf20160401-32123-49wifx","download_url":"https://www.academia.edu/attachments/44314122/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Viscoelastic_characteristics_of_contract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314122/s10047-010-0508-x-libre.pdf20160401-32123-49wifx?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DViscoelastic_characteristics_of_contract.pdf\u0026Expires=1732437491\u0026Signature=PFWnyU5q0ETelBynFrIf3ghHCHZMkVz7Bq79XxtfS6NreB1Mo4S-w3kcC1p7u11qXEvjFrCwK-arNmUsbhIgOdwNtSXq0E0dUwVGoDjThu4nkYAqu0SIcIKNKoizZ-nWfBpRrxwTPab4-kSVs3jkFS-WaS7CRhn1xGpAbEal59OGEKuJryb567AWdljkJyO-nZo~mffNes8ahvwTHp2uZQQUEM6z03sjKV9wsr2YzN2RewCNXeQiDEte2cOD-qIk3ZE0V1hCzbns6YjWADdIdq2RG2f1FzsVj0RcBkrDqThBsM1~T~DQjnRU3xsPZlYH655RW6GFXKqaJUVTasIDUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314122,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314122/thumbnails/1.jpg","file_name":"s10047-010-0508-x.pdf20160401-32123-49wifx","download_url":"https://www.academia.edu/attachments/44314122/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Viscoelastic_characteristics_of_contract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314122/s10047-010-0508-x-libre.pdf20160401-32123-49wifx?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DViscoelastic_characteristics_of_contract.pdf\u0026Expires=1732437491\u0026Signature=PFWnyU5q0ETelBynFrIf3ghHCHZMkVz7Bq79XxtfS6NreB1Mo4S-w3kcC1p7u11qXEvjFrCwK-arNmUsbhIgOdwNtSXq0E0dUwVGoDjThu4nkYAqu0SIcIKNKoizZ-nWfBpRrxwTPab4-kSVs3jkFS-WaS7CRhn1xGpAbEal59OGEKuJryb567AWdljkJyO-nZo~mffNes8ahvwTHp2uZQQUEM6z03sjKV9wsr2YzN2RewCNXeQiDEte2cOD-qIk3ZE0V1hCzbns6YjWADdIdq2RG2f1FzsVj0RcBkrDqThBsM1~T~DQjnRU3xsPZlYH655RW6GFXKqaJUVTasIDUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":11101,"name":"Artificial Organs","url":"https://www.academia.edu/Documents/in/Artificial_Organs"},{"id":39606,"name":"Strain Rate","url":"https://www.academia.edu/Documents/in/Strain_Rate"},{"id":48904,"name":"Elasticity","url":"https://www.academia.edu/Documents/in/Elasticity"},{"id":79808,"name":"Collagen","url":"https://www.academia.edu/Documents/in/Collagen"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":284907,"name":"Gels","url":"https://www.academia.edu/Documents/in/Gels"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":954995,"name":"Human Fibroblasts","url":"https://www.academia.edu/Documents/in/Human_Fibroblasts"},{"id":973999,"name":"Tensile Strength","url":"https://www.academia.edu/Documents/in/Tensile_Strength"},{"id":1330652,"name":"Tensile Test","url":"https://www.academia.edu/Documents/in/Tensile_Test"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927842"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927842/Comparison_of_mRNA_expression_of_transcriptional_factors_and_intercalated_disk_constituent_proteins_between_in_vivo_and_cultured_cardiomyocytes"><img alt="Research paper thumbnail of Comparison of mRNA expression of transcriptional factors and intercalated disk constituent proteins between in vivo and cultured cardiomyocytes" class="work-thumbnail" src="https://attachments.academia-assets.com/44314119/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927842/Comparison_of_mRNA_expression_of_transcriptional_factors_and_intercalated_disk_constituent_proteins_between_in_vivo_and_cultured_cardiomyocytes">Comparison of mRNA expression of transcriptional factors and intercalated disk constituent proteins between in vivo and cultured cardiomyocytes</a></div><div class="wp-workCard_item"><span>Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The weak contractile force exerted by engineered cardiac muscle is a big problem in cardiac muscl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The weak contractile force exerted by engineered cardiac muscle is a big problem in cardiac muscle tissue engineering, even though the field has made great progress over the past decade. We believe that one major reason for the weak contractile force is that the expression of genes regulating cardiomyocyte differentiation and cardiac tissue syncytium may be different for in vivo and cultured cells. In the present study, we investigated the difference of mRNA expression under in vivo and culture conditions in order to seek a target for further gene transfer treatment in the process of cardiac tissue construction. To this end, mRNA expression of four major transcriptional factors (SRF, p300, Nkx2.5, and myocardin) and two intercalated disk constituent proteins (N-cadherin and connexin43) in rat cardiomyocytes was measured by means of ratiometric reverse-transcription polymerase chain reaction. Cardiomyocytes were harvested from the hearts of 18-day (about 3 days before birth) Wistar-r...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="67dbe318718a5a0adb058511012d098d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314119,&quot;asset_id&quot;:23927842,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314119/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927842"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927842"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927842; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927842]").text(description); $(".js-view-count[data-work-id=23927842]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927842; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927842']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927842, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "67dbe318718a5a0adb058511012d098d" } } $('.js-work-strip[data-work-id=23927842]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927842,"title":"Comparison of mRNA expression of transcriptional factors and intercalated disk constituent proteins between in vivo and cultured cardiomyocytes","translated_title":"","metadata":{"abstract":"The weak contractile force exerted by engineered cardiac muscle is a big problem in cardiac muscle tissue engineering, even though the field has made great progress over the past decade. We believe that one major reason for the weak contractile force is that the expression of genes regulating cardiomyocyte differentiation and cardiac tissue syncytium may be different for in vivo and cultured cells. In the present study, we investigated the difference of mRNA expression under in vivo and culture conditions in order to seek a target for further gene transfer treatment in the process of cardiac tissue construction. To this end, mRNA expression of four major transcriptional factors (SRF, p300, Nkx2.5, and myocardin) and two intercalated disk constituent proteins (N-cadherin and connexin43) in rat cardiomyocytes was measured by means of ratiometric reverse-transcription polymerase chain reaction. Cardiomyocytes were harvested from the hearts of 18-day (about 3 days before birth) Wistar-r...","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs"},"translated_abstract":"The weak contractile force exerted by engineered cardiac muscle is a big problem in cardiac muscle tissue engineering, even though the field has made great progress over the past decade. We believe that one major reason for the weak contractile force is that the expression of genes regulating cardiomyocyte differentiation and cardiac tissue syncytium may be different for in vivo and cultured cells. In the present study, we investigated the difference of mRNA expression under in vivo and culture conditions in order to seek a target for further gene transfer treatment in the process of cardiac tissue construction. To this end, mRNA expression of four major transcriptional factors (SRF, p300, Nkx2.5, and myocardin) and two intercalated disk constituent proteins (N-cadherin and connexin43) in rat cardiomyocytes was measured by means of ratiometric reverse-transcription polymerase chain reaction. Cardiomyocytes were harvested from the hearts of 18-day (about 3 days before birth) Wistar-r...","internal_url":"https://www.academia.edu/23927842/Comparison_of_mRNA_expression_of_transcriptional_factors_and_intercalated_disk_constituent_proteins_between_in_vivo_and_cultured_cardiomyocytes","translated_internal_url":"","created_at":"2016-04-01T20:16:26.787-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272557,"work_id":23927842,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Comparison of mRNA expression of transcriptional factors and intercalated disk constituent proteins between in vivo and cultured cardiomyocytes"},{"id":18272611,"work_id":23927842,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Zhonggang Feng","title":"Comparison of mRNA expression of transcriptional factors and intercalated disk constituent proteins between in vivo and cultured cardiomyocytes"}],"downloadable_attachments":[{"id":44314119,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314119/thumbnails/1.jpg","file_name":"s10047-008-0414-7.pdf20160401-2339-gmdp8a","download_url":"https://www.academia.edu/attachments/44314119/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_mRNA_expression_of_transcr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314119/s10047-008-0414-7-libre.pdf20160401-2339-gmdp8a?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_mRNA_expression_of_transcr.pdf\u0026Expires=1732437491\u0026Signature=gAP26WDDcWcQL9j0-~fQI42b0~5J6PF3aoIaBzewVlQ2VU8ccvRZdILvxh20sxpSV-FX240marLYVZBo8Az3IMDglZGTHYlKfgQrHROD8FhO2gzQRZTPvL~jCgC2VTVZcK5-KhdIZ~-yithb312SrasGc25VGEBjkhXmBoo44l1FeomIP30Maelo~pC7jtmhbcrlr~nnkjXq457SsLFeM54viKd6Nc~NY7aN1Kbf~I7zeplY7i3exh5IoC8OtnI1S4LQQPVD0~CW3oW8pHJo3jUck3EZZkrFy9eMMOODcbUP5LxF5VjV4SVNUVoKkz79Y361BW1aJCKt2quSekXNag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comparison_of_mRNA_expression_of_transcriptional_factors_and_intercalated_disk_constituent_proteins_between_in_vivo_and_cultured_cardiomyocytes","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314119,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314119/thumbnails/1.jpg","file_name":"s10047-008-0414-7.pdf20160401-2339-gmdp8a","download_url":"https://www.academia.edu/attachments/44314119/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_mRNA_expression_of_transcr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314119/s10047-008-0414-7-libre.pdf20160401-2339-gmdp8a?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_mRNA_expression_of_transcr.pdf\u0026Expires=1732437491\u0026Signature=gAP26WDDcWcQL9j0-~fQI42b0~5J6PF3aoIaBzewVlQ2VU8ccvRZdILvxh20sxpSV-FX240marLYVZBo8Az3IMDglZGTHYlKfgQrHROD8FhO2gzQRZTPvL~jCgC2VTVZcK5-KhdIZ~-yithb312SrasGc25VGEBjkhXmBoo44l1FeomIP30Maelo~pC7jtmhbcrlr~nnkjXq457SsLFeM54viKd6Nc~NY7aN1Kbf~I7zeplY7i3exh5IoC8OtnI1S4LQQPVD0~CW3oW8pHJo3jUck3EZZkrFy9eMMOODcbUP5LxF5VjV4SVNUVoKkz79Y361BW1aJCKt2quSekXNag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":4338,"name":"Gene regulation","url":"https://www.academia.edu/Documents/in/Gene_regulation"},{"id":11101,"name":"Artificial Organs","url":"https://www.academia.edu/Documents/in/Artificial_Organs"},{"id":23323,"name":"Transcription Factors","url":"https://www.academia.edu/Documents/in/Transcription_Factors"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":213901,"name":"Transcription Factor","url":"https://www.academia.edu/Documents/in/Transcription_Factor"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":725539,"name":"Connexin","url":"https://www.academia.edu/Documents/in/Connexin"},{"id":1027717,"name":"Embryos","url":"https://www.academia.edu/Documents/in/Embryos"},{"id":1187634,"name":"P","url":"https://www.academia.edu/Documents/in/P"},{"id":1458592,"name":"Serum response factor","url":"https://www.academia.edu/Documents/in/Serum_response_factor"},{"id":1706341,"name":"Gene Transfer","url":"https://www.academia.edu/Documents/in/Gene_Transfer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927840"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927840/Construction_of_fibroblast_collagen_gels_with_orientated_fibrils_induced_by_static_or_dynamic_stress_toward_the_fabrication_of_small_tendon_grafts"><img alt="Research paper thumbnail of Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts" class="work-thumbnail" src="https://attachments.academia-assets.com/44314116/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927840/Construction_of_fibroblast_collagen_gels_with_orientated_fibrils_induced_by_static_or_dynamic_stress_toward_the_fabrication_of_small_tendon_grafts">Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts</a></div><div class="wp-workCard_item"><span>Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">As a step toward the fabrication of small tendon grafts, fibroblast-collagen gels were constructe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">As a step toward the fabrication of small tendon grafts, fibroblast-collagen gels were constructed with orientated fibrils induced by static or dynamic loading. Three groups of gel samples, each consisting of 1.0 x 10(6) fibroblasts and 2 mg type I collagen, were fabricated: freely contracted gels formed the control group; contraction-directed gels made up the static group (the gel contraction was directed perpendicular to an axis made by two anchors buried in the gels so that the constraint stress exerted by the two anchors was imposed on the gel); and for the dynamic group, a specific loading pattern (free contraction followed by cyclic stretching using a tensile bioreactor) was employed. Mechanical properties were evaluated by means of the uniaxial tension test. The gels of the static group had an ultimate stress of 350 +/- 43.6 kPa and a material modulus of 548.8 +/- 61.6 kPa, which were almost 5.2 times and 15.6 times, respectively, greater than those of the controls. The dynam...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7c39fd64abb9605b2f9d9c57ba29f764" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314116,&quot;asset_id&quot;:23927840,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314116/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927840"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927840"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927840; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927840]").text(description); $(".js-view-count[data-work-id=23927840]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927840; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927840']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927840, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7c39fd64abb9605b2f9d9c57ba29f764" } } $('.js-work-strip[data-work-id=23927840]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927840,"title":"Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts","translated_title":"","metadata":{"abstract":"As a step toward the fabrication of small tendon grafts, fibroblast-collagen gels were constructed with orientated fibrils induced by static or dynamic loading. Three groups of gel samples, each consisting of 1.0 x 10(6) fibroblasts and 2 mg type I collagen, were fabricated: freely contracted gels formed the control group; contraction-directed gels made up the static group (the gel contraction was directed perpendicular to an axis made by two anchors buried in the gels so that the constraint stress exerted by the two anchors was imposed on the gel); and for the dynamic group, a specific loading pattern (free contraction followed by cyclic stretching using a tensile bioreactor) was employed. Mechanical properties were evaluated by means of the uniaxial tension test. The gels of the static group had an ultimate stress of 350 +/- 43.6 kPa and a material modulus of 548.8 +/- 61.6 kPa, which were almost 5.2 times and 15.6 times, respectively, greater than those of the controls. The dynam...","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs"},"translated_abstract":"As a step toward the fabrication of small tendon grafts, fibroblast-collagen gels were constructed with orientated fibrils induced by static or dynamic loading. Three groups of gel samples, each consisting of 1.0 x 10(6) fibroblasts and 2 mg type I collagen, were fabricated: freely contracted gels formed the control group; contraction-directed gels made up the static group (the gel contraction was directed perpendicular to an axis made by two anchors buried in the gels so that the constraint stress exerted by the two anchors was imposed on the gel); and for the dynamic group, a specific loading pattern (free contraction followed by cyclic stretching using a tensile bioreactor) was employed. Mechanical properties were evaluated by means of the uniaxial tension test. The gels of the static group had an ultimate stress of 350 +/- 43.6 kPa and a material modulus of 548.8 +/- 61.6 kPa, which were almost 5.2 times and 15.6 times, respectively, greater than those of the controls. The dynam...","internal_url":"https://www.academia.edu/23927840/Construction_of_fibroblast_collagen_gels_with_orientated_fibrils_induced_by_static_or_dynamic_stress_toward_the_fabrication_of_small_tendon_grafts","translated_internal_url":"","created_at":"2016-04-01T20:16:26.663-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272555,"work_id":23927840,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts"},{"id":18272609,"work_id":23927840,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Zhonggang Feng","title":"Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts"},{"id":18272630,"work_id":23927840,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172235,"email":"y***t@jim.dendai.ac.jp","display_order":6291456,"name":"Yu Tateishi","title":"Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts"}],"downloadable_attachments":[{"id":44314116,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314116/thumbnails/1.jpg","file_name":"s10047-006-0354-z.pdf20160401-17457-gdh013","download_url":"https://www.academia.edu/attachments/44314116/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Construction_of_fibroblast_collagen_gels.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314116/s10047-006-0354-z-libre.pdf20160401-17457-gdh013?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DConstruction_of_fibroblast_collagen_gels.pdf\u0026Expires=1732437491\u0026Signature=NHzfGrYO3iwbXDFy7pXek6weTKUdbYaJ1FORXPrX9D2RoG3fUkworiSUidOd~QnZZQBNazELomCVVmbvoaOh9a113lW2fz8AldlwoT1X9LQRkvH6ONFecmabemhBAFf2wIK-3K0kG9m4GrTMlKwfmMou-SYHVIQiiGtLSzFRBS412SkRH~-DQL1pKlv3e-~52LsDVCwX6c2j9k4VCLw9wiHb5Ikm9zvx~ezYTzQxE4gQ8v2vW4K2Y63xpLaP8O15TKoDGZufIx66qHHt6CSq0QZnfM3L74ImBugmOuCd2mGe35eaBCa4YvqYfggVcBZlR64-Y5l7~V1xk2EqNW9MpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Construction_of_fibroblast_collagen_gels_with_orientated_fibrils_induced_by_static_or_dynamic_stress_toward_the_fabrication_of_small_tendon_grafts","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314116,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314116/thumbnails/1.jpg","file_name":"s10047-006-0354-z.pdf20160401-17457-gdh013","download_url":"https://www.academia.edu/attachments/44314116/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Construction_of_fibroblast_collagen_gels.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314116/s10047-006-0354-z-libre.pdf20160401-17457-gdh013?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DConstruction_of_fibroblast_collagen_gels.pdf\u0026Expires=1732437491\u0026Signature=NHzfGrYO3iwbXDFy7pXek6weTKUdbYaJ1FORXPrX9D2RoG3fUkworiSUidOd~QnZZQBNazELomCVVmbvoaOh9a113lW2fz8AldlwoT1X9LQRkvH6ONFecmabemhBAFf2wIK-3K0kG9m4GrTMlKwfmMou-SYHVIQiiGtLSzFRBS412SkRH~-DQL1pKlv3e-~52LsDVCwX6c2j9k4VCLw9wiHb5Ikm9zvx~ezYTzQxE4gQ8v2vW4K2Y63xpLaP8O15TKoDGZufIx66qHHt6CSq0QZnfM3L74ImBugmOuCd2mGe35eaBCa4YvqYfggVcBZlR64-Y5l7~V1xk2EqNW9MpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":11101,"name":"Artificial Organs","url":"https://www.academia.edu/Documents/in/Artificial_Organs"},{"id":53328,"name":"Cellular mechanotransduction","url":"https://www.academia.edu/Documents/in/Cellular_mechanotransduction"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":284907,"name":"Gels","url":"https://www.academia.edu/Documents/in/Gels"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":501201,"name":"Bioreactors","url":"https://www.academia.edu/Documents/in/Bioreactors"},{"id":646015,"name":"Dynamic Loading","url":"https://www.academia.edu/Documents/in/Dynamic_Loading"},{"id":954995,"name":"Human Fibroblasts","url":"https://www.academia.edu/Documents/in/Human_Fibroblasts"},{"id":973999,"name":"Tensile Strength","url":"https://www.academia.edu/Documents/in/Tensile_Strength"},{"id":1157201,"name":"Tendons","url":"https://www.academia.edu/Documents/in/Tendons"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927839"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927839/Contribution_of_voltage_dependent_ion_channels_to_subthreshold_resonance"><img alt="Research paper thumbnail of Contribution of voltage-dependent ion channels to subthreshold resonance" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927839/Contribution_of_voltage_dependent_ion_channels_to_subthreshold_resonance">Contribution of voltage-dependent ion channels to subthreshold resonance</a></div><div class="wp-workCard_item"><span>2013 9th Asian Control Conference (ASCC)</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927839"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927839"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927839; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927839]").text(description); $(".js-view-count[data-work-id=23927839]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927839; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927839']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927839, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927839]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927839,"title":"Contribution of voltage-dependent ion channels to subthreshold resonance","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"2013 9th Asian Control Conference (ASCC)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/23927839/Contribution_of_voltage_dependent_ion_channels_to_subthreshold_resonance","translated_internal_url":"","created_at":"2016-04-01T20:16:26.541-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272621,"work_id":23927839,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":0,"name":"Zhonggang Feng","title":"Contribution of voltage-dependent ion channels to subthreshold resonance"}],"downloadable_attachments":[],"slug":"Contribution_of_voltage_dependent_ion_channels_to_subthreshold_resonance","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927837"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927837/Contribution_of_NaP_Channels_to_the_Property_of_Subthreshold_Resonance_Oscillation"><img alt="Research paper thumbnail of Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927837/Contribution_of_NaP_Channels_to_the_Property_of_Subthreshold_Resonance_Oscillation">Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/TatsuoKitajima">Tatsuo Kitajima</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/ShahrumBinAbdullah">Shahrum Bin Abdullah</a></span></div><div class="wp-workCard_item"><span>Communications in Computer and Information Science</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Subthreshold resonance oscillations are observed in many excitatory/inhibitory neurons i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Subthreshold resonance oscillations are observed in many excitatory/inhibitory neurons in our brain. Although they have been thought to play an important role in behavioral or perceptual states in animals, detail properties of these phenomena have not been clarified, yet. It is necessary to understand first these oscillatory features to clarify the contribution of these rhythmic oscillations to higher brain function, such as short-term memory, the working memory, long-term potentiation and long-term depression. Among various voltage-dependent channels thought to be involved in the generation of these oscillations, hyperpolarization-activated potassium channel (h channel) and persistent inactivating sodium channel (NaP) are considered, because these two voltage-dependent channels are closely related to the sustained oscillatory activity observed in Entorhinal cortex and other Neocortex regions. This feature article considers a compartmental neuron model with an h-channel and a NaP-channel. The NaP-channel contribution to the property of subthreshold resonance oscillation is examined by computer simulation of this neuron model.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927837"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927837"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927837; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927837]").text(description); $(".js-view-count[data-work-id=23927837]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927837; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927837']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927837, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927837]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927837,"title":"Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation","translated_title":"","metadata":{"abstract":"ABSTRACT Subthreshold resonance oscillations are observed in many excitatory/inhibitory neurons in our brain. Although they have been thought to play an important role in behavioral or perceptual states in animals, detail properties of these phenomena have not been clarified, yet. It is necessary to understand first these oscillatory features to clarify the contribution of these rhythmic oscillations to higher brain function, such as short-term memory, the working memory, long-term potentiation and long-term depression. Among various voltage-dependent channels thought to be involved in the generation of these oscillations, hyperpolarization-activated potassium channel (h channel) and persistent inactivating sodium channel (NaP) are considered, because these two voltage-dependent channels are closely related to the sustained oscillatory activity observed in Entorhinal cortex and other Neocortex regions. This feature article considers a compartmental neuron model with an h-channel and a NaP-channel. The NaP-channel contribution to the property of subthreshold resonance oscillation is examined by computer simulation of this neuron model.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Communications in Computer and Information Science"},"translated_abstract":"ABSTRACT Subthreshold resonance oscillations are observed in many excitatory/inhibitory neurons in our brain. Although they have been thought to play an important role in behavioral or perceptual states in animals, detail properties of these phenomena have not been clarified, yet. It is necessary to understand first these oscillatory features to clarify the contribution of these rhythmic oscillations to higher brain function, such as short-term memory, the working memory, long-term potentiation and long-term depression. Among various voltage-dependent channels thought to be involved in the generation of these oscillations, hyperpolarization-activated potassium channel (h channel) and persistent inactivating sodium channel (NaP) are considered, because these two voltage-dependent channels are closely related to the sustained oscillatory activity observed in Entorhinal cortex and other Neocortex regions. This feature article considers a compartmental neuron model with an h-channel and a NaP-channel. The NaP-channel contribution to the property of subthreshold resonance oscillation is examined by computer simulation of this neuron model.","internal_url":"https://www.academia.edu/23927837/Contribution_of_NaP_Channels_to_the_Property_of_Subthreshold_Resonance_Oscillation","translated_internal_url":"","created_at":"2016-04-01T20:16:26.409-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272549,"work_id":23927837,"tagging_user_id":46223781,"tagged_user_id":3231063,"co_author_invite_id":null,"email":"b***g@yahoo.com","affiliation":"Universiti Teknologi Malaysia - UTM","display_order":0,"name":"Babak Ghaffari","title":"Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation"},{"id":18272551,"work_id":23927837,"tagging_user_id":46223781,"tagged_user_id":8204519,"co_author_invite_id":null,"email":"m***d@yahoo.com","affiliation":"Universiti Teknologi Malaysia - UTM","display_order":4194304,"name":"mojgan kouhnavard","title":"Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation"},{"id":18272553,"work_id":23927837,"tagging_user_id":46223781,"tagged_user_id":46241574,"co_author_invite_id":4172224,"email":"s***m@utm.my","display_order":6291456,"name":"Shahrum Bin Abdullah","title":"Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation"}],"downloadable_attachments":[],"slug":"Contribution_of_NaP_Channels_to_the_Property_of_Subthreshold_Resonance_Oscillation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4953402" id="papers"><div class="js-work-strip profile--work_container" data-work-id="36306165"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306165/Solution_with_Modified_Perceptron_to_Tunnel_Cutting_Face_Evaluation_Problems"><img alt="Research paper thumbnail of Solution with Modified Perceptron to Tunnel Cutting Face Evaluation Problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306165/Solution_with_Modified_Perceptron_to_Tunnel_Cutting_Face_Evaluation_Problems">Solution with Modified Perceptron to Tunnel Cutting Face Evaluation Problems</a></div><div class="wp-workCard_item"><span>GEOINFORMATICS</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306165"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306165"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306165; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306165]").text(description); $(".js-view-count[data-work-id=36306165]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306165; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306165']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306165, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306165]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306165,"title":"Solution with Modified Perceptron to Tunnel Cutting Face Evaluation Problems","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"GEOINFORMATICS"},"translated_abstract":null,"internal_url":"https://www.academia.edu/36306165/Solution_with_Modified_Perceptron_to_Tunnel_Cutting_Face_Evaluation_Problems","translated_internal_url":"","created_at":"2018-04-01T19:06:34.472-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Solution_with_Modified_Perceptron_to_Tunnel_Cutting_Face_Evaluation_Problems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[{"id":5598,"name":"Geoinformatics","url":"https://www.academia.edu/Documents/in/Geoinformatics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="36306164"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306164/%E3%81%93%E3%81%86%E9%85%8D%E6%B3%95%E3%81%AB%E3%82%88%E3%82%8B%E6%9C%80%E7%B5%82%E7%8A%B6%E6%85%8B%E3%81%AB%E6%8B%98%E6%9D%9F%E3%82%92%E3%82%82%E3%81%A4%E5%88%86%E5%B8%83%E5%AE%9A%E6%95%B0%E7%B3%BB%E3%81%AE%E6%9C%80%E9%81%A9%E5%88%B6%E5%BE%A1%E8%A8%88%E7%AE%97%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0"><img alt="Research paper thumbnail of こう配法による最終状態に拘束をもつ分布定数系の最適制御計算アルゴリズム" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306164/%E3%81%93%E3%81%86%E9%85%8D%E6%B3%95%E3%81%AB%E3%82%88%E3%82%8B%E6%9C%80%E7%B5%82%E7%8A%B6%E6%85%8B%E3%81%AB%E6%8B%98%E6%9D%9F%E3%82%92%E3%82%82%E3%81%A4%E5%88%86%E5%B8%83%E5%AE%9A%E6%95%B0%E7%B3%BB%E3%81%AE%E6%9C%80%E9%81%A9%E5%88%B6%E5%BE%A1%E8%A8%88%E7%AE%97%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0">こう配法による最終状態に拘束をもつ分布定数系の最適制御計算アルゴリズム</a></div><div class="wp-workCard_item"><span>Transactions of the Society of Instrument and Control Engineers</span><span>, 1971</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306164"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306164"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306164; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306164]").text(description); $(".js-view-count[data-work-id=36306164]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306164; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306164']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306164, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306164]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306164,"title":"こう配法による最終状態に拘束をもつ分布定数系の最適制御計算アルゴリズム","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1971,"errors":{}},"publication_name":"Transactions of the Society of Instrument and Control Engineers"},"translated_abstract":null,"internal_url":"https://www.academia.edu/36306164/%E3%81%93%E3%81%86%E9%85%8D%E6%B3%95%E3%81%AB%E3%82%88%E3%82%8B%E6%9C%80%E7%B5%82%E7%8A%B6%E6%85%8B%E3%81%AB%E6%8B%98%E6%9D%9F%E3%82%92%E3%82%82%E3%81%A4%E5%88%86%E5%B8%83%E5%AE%9A%E6%95%B0%E7%B3%BB%E3%81%AE%E6%9C%80%E9%81%A9%E5%88%B6%E5%BE%A1%E8%A8%88%E7%AE%97%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0","translated_internal_url":"","created_at":"2018-04-01T19:06:33.030-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"こう配法による最終状態に拘束をもつ分布定数系の最適制御計算アルゴリズム","translated_slug":"","page_count":null,"language":"ja","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="36306163"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306163/%E5%8B%BE%E9%85%8D%E6%B3%95%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E5%8F%8E%E6%9D%9F%E3%81%AE%E6%94%B9%E5%96%84"><img alt="Research paper thumbnail of 勾配法における収束の改善" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306163/%E5%8B%BE%E9%85%8D%E6%B3%95%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E5%8F%8E%E6%9D%9F%E3%81%AE%E6%94%B9%E5%96%84">勾配法における収束の改善</a></div><div class="wp-workCard_item"><span>Transactions of the Society of Instrument and Control Engineers</span><span>, 1973</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306163"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306163"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306163; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306163]").text(description); $(".js-view-count[data-work-id=36306163]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306163; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306163']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306163, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306163]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306163,"title":"勾配法における収束の改善","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1973,"errors":{}},"publication_name":"Transactions of the Society of Instrument and Control Engineers"},"translated_abstract":null,"internal_url":"https://www.academia.edu/36306163/%E5%8B%BE%E9%85%8D%E6%B3%95%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E5%8F%8E%E6%9D%9F%E3%81%AE%E6%94%B9%E5%96%84","translated_internal_url":"","created_at":"2018-04-01T19:06:32.905-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"勾配法における収束の改善","translated_slug":"","page_count":null,"language":"ja","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="36306162"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306162/%E4%BD%9C%E7%94%A8%E7%B4%A0%E5%A4%9A%E9%A0%85%E5%BC%8F%E5%B1%95%E9%96%8B%E3%82%92%E7%94%A8%E3%81%84%E3%82%8B%E6%9C%80%E9%81%A9%E5%95%8F%E9%A1%8C%E3%81%AE%E8%A7%A3%E6%B3%95"><img alt="Research paper thumbnail of 作用素多項式展開を用いる最適問題の解法" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306162/%E4%BD%9C%E7%94%A8%E7%B4%A0%E5%A4%9A%E9%A0%85%E5%BC%8F%E5%B1%95%E9%96%8B%E3%82%92%E7%94%A8%E3%81%84%E3%82%8B%E6%9C%80%E9%81%A9%E5%95%8F%E9%A1%8C%E3%81%AE%E8%A7%A3%E6%B3%95">作用素多項式展開を用いる最適問題の解法</a></div><div class="wp-workCard_item"><span>Transactions of the Society of Instrument and Control Engineers</span><span>, 1977</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306162"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306162"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306162; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306162]").text(description); $(".js-view-count[data-work-id=36306162]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306162; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306162']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306162, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306162]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306162,"title":"作用素多項式展開を用いる最適問題の解法","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1977,"errors":{}},"publication_name":"Transactions of the Society of Instrument and Control Engineers"},"translated_abstract":null,"internal_url":"https://www.academia.edu/36306162/%E4%BD%9C%E7%94%A8%E7%B4%A0%E5%A4%9A%E9%A0%85%E5%BC%8F%E5%B1%95%E9%96%8B%E3%82%92%E7%94%A8%E3%81%84%E3%82%8B%E6%9C%80%E9%81%A9%E5%95%8F%E9%A1%8C%E3%81%AE%E8%A7%A3%E6%B3%95","translated_internal_url":"","created_at":"2018-04-01T19:06:32.768-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"作用素多項式展開を用いる最適問題の解法","translated_slug":"","page_count":null,"language":"ja","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="36306161"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306161/Hilbert_Transformer_Design_Using_CSD_FIR_Filter"><img alt="Research paper thumbnail of Hilbert Transformer Design Using CSD FIR Filter" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306161/Hilbert_Transformer_Design_Using_CSD_FIR_Filter">Hilbert Transformer Design Using CSD FIR Filter</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306161"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306161"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306161; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306161]").text(description); $(".js-view-count[data-work-id=36306161]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306161; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306161']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306161, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306161]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306161,"title":"Hilbert Transformer Design Using CSD FIR Filter","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/36306161/Hilbert_Transformer_Design_Using_CSD_FIR_Filter","translated_internal_url":"","created_at":"2018-04-01T19:06:26.983-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hilbert_Transformer_Design_Using_CSD_FIR_Filter","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="36306160"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/36306160/Network_dynamics_of_the_neurons_with_the_subthreshold_membrane_resonatorance"><img alt="Research paper thumbnail of Network dynamics of the neurons with the subthreshold membrane resonatorance" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/36306160/Network_dynamics_of_the_neurons_with_the_subthreshold_membrane_resonatorance">Network dynamics of the neurons with the subthreshold membrane resonatorance</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="36306160"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="36306160"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36306160; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36306160]").text(description); $(".js-view-count[data-work-id=36306160]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36306160; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='36306160']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 36306160, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=36306160]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":36306160,"title":"Network dynamics of the neurons with the subthreshold membrane resonatorance","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/36306160/Network_dynamics_of_the_neurons_with_the_subthreshold_membrane_resonatorance","translated_internal_url":"","created_at":"2018-04-01T19:06:20.891-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Network_dynamics_of_the_neurons_with_the_subthreshold_membrane_resonatorance","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[{"id":8469835,"url":"http://eprints.utm.my/38285/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927858"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927858/How_balance_between_LTP_and_LTD_can_be_controlled_in_spike_timing_dependent_learning_rule"><img alt="Research paper thumbnail of How balance between LTP and LTD can be controlled in spike-timing-dependent learning rule" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927858/How_balance_between_LTP_and_LTD_can_be_controlled_in_spike_timing_dependent_learning_rule">How balance between LTP and LTD can be controlled in spike-timing-dependent learning rule</a></div><div class="wp-workCard_item"><span>2009 International Joint Conference on Neural Networks</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Spike-timing-dependent plasticity (STDP) has been suggested to play a role in developing function...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Spike-timing-dependent plasticity (STDP) has been suggested to play a role in developing functional cortical circuits. However, for STDP to contribute to the organization of synapses, the STDP learning curve should satisfy a requirement that the magnitude of long-term potentiation (LTP) is slightly smaller than that of long-term depression (LTD). In the absence of this approximate balance between LTP and LTD,</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927858"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927858"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927858; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927858]").text(description); $(".js-view-count[data-work-id=23927858]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927858; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927858']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927858, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927858]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927858,"title":"How balance between LTP and LTD can be controlled in spike-timing-dependent learning rule","translated_title":"","metadata":{"abstract":"Spike-timing-dependent plasticity (STDP) has been suggested to play a role in developing functional cortical circuits. However, for STDP to contribute to the organization of synapses, the STDP learning curve should satisfy a requirement that the magnitude of long-term potentiation (LTP) is slightly smaller than that of long-term depression (LTD). In the absence of this approximate balance between LTP and LTD,","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"2009 International Joint Conference on Neural Networks"},"translated_abstract":"Spike-timing-dependent plasticity (STDP) has been suggested to play a role in developing functional cortical circuits. However, for STDP to contribute to the organization of synapses, the STDP learning curve should satisfy a requirement that the magnitude of long-term potentiation (LTP) is slightly smaller than that of long-term depression (LTD). In the absence of this approximate balance between LTP and LTD,","internal_url":"https://www.academia.edu/23927858/How_balance_between_LTP_and_LTD_can_be_controlled_in_spike_timing_dependent_learning_rule","translated_internal_url":"","created_at":"2016-04-01T20:16:28.388-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272588,"work_id":23927858,"tagging_user_id":46223781,"tagged_user_id":215125392,"co_author_invite_id":443573,"email":"k***a@yz.yamagata-u.ac.jp","display_order":0,"name":"繁 久保田","title":"How balance between LTP and LTD can be controlled in spike-timing-dependent learning rule"}],"downloadable_attachments":[],"slug":"How_balance_between_LTP_and_LTD_can_be_controlled_in_spike_timing_dependent_learning_rule","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[{"id":4247,"name":"Long Term Potentiation","url":"https://www.academia.edu/Documents/in/Long_Term_Potentiation"},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks"},{"id":137633,"name":"Feedback","url":"https://www.academia.edu/Documents/in/Feedback"},{"id":207154,"name":"Long Term Depression","url":"https://www.academia.edu/Documents/in/Long_Term_Depression"},{"id":256048,"name":"Circuits","url":"https://www.academia.edu/Documents/in/Circuits"},{"id":394477,"name":"Time Dependent","url":"https://www.academia.edu/Documents/in/Time_Dependent"},{"id":679783,"name":"Boolean Satisfiability","url":"https://www.academia.edu/Documents/in/Boolean_Satisfiability"},{"id":966462,"name":"Spike time Dependent Plasticity","url":"https://www.academia.edu/Documents/in/Spike_time_Dependent_Plasticity"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927857"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927857/Synaptic_Cooperation_and_Competition_in_STDP_Learning_Rule"><img alt="Research paper thumbnail of Synaptic Cooperation and Competition in STDP Learning Rule" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927857/Synaptic_Cooperation_and_Competition_in_STDP_Learning_Rule">Synaptic Cooperation and Competition in STDP Learning Rule</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The correlation-based rule of plasticity has been widely believed to be involved in the organizat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The correlation-based rule of plasticity has been widely believed to be involved in the organization of functional synaptic circuits. However, recent studies have suggested that the direction of plasticity in the sensory-deprived barrel cortex can be reversed, depending on the stimulus environment, from that predicted by the correlation-based plasticity. To investigate whether spike-timing-dependent plasticity (STDP) may underlie such reversal in cortical plasticity, we study the influence of the correlation time on the synaptic cooperative and competitive mechanisms based on the input correlation. The results show that in the presence of activity-dependent feedback modification of the STDP window function, the increase in the correlation time can reverse the plasticity outcome such that for shorter correlation time, more frequently activated synapses are strengthened while, as the correlation time is sufficiently prolonged, less frequently activated synapses become strengthened.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927857"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927857"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927857; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927857]").text(description); $(".js-view-count[data-work-id=23927857]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927857; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927857']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927857, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927857]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927857,"title":"Synaptic Cooperation and Competition in STDP Learning Rule","translated_title":"","metadata":{"abstract":"The correlation-based rule of plasticity has been widely believed to be involved in the organization of functional synaptic circuits. However, recent studies have suggested that the direction of plasticity in the sensory-deprived barrel cortex can be reversed, depending on the stimulus environment, from that predicted by the correlation-based plasticity. To investigate whether spike-timing-dependent plasticity (STDP) may underlie such reversal in cortical plasticity, we study the influence of the correlation time on the synaptic cooperative and competitive mechanisms based on the input correlation. The results show that in the presence of activity-dependent feedback modification of the STDP window function, the increase in the correlation time can reverse the plasticity outcome such that for shorter correlation time, more frequently activated synapses are strengthened while, as the correlation time is sufficiently prolonged, less frequently activated synapses become strengthened.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"The correlation-based rule of plasticity has been widely believed to be involved in the organization of functional synaptic circuits. However, recent studies have suggested that the direction of plasticity in the sensory-deprived barrel cortex can be reversed, depending on the stimulus environment, from that predicted by the correlation-based plasticity. To investigate whether spike-timing-dependent plasticity (STDP) may underlie such reversal in cortical plasticity, we study the influence of the correlation time on the synaptic cooperative and competitive mechanisms based on the input correlation. The results show that in the presence of activity-dependent feedback modification of the STDP window function, the increase in the correlation time can reverse the plasticity outcome such that for shorter correlation time, more frequently activated synapses are strengthened while, as the correlation time is sufficiently prolonged, less frequently activated synapses become strengthened.","internal_url":"https://www.academia.edu/23927857/Synaptic_Cooperation_and_Competition_in_STDP_Learning_Rule","translated_internal_url":"","created_at":"2016-04-01T20:16:28.271-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272584,"work_id":23927857,"tagging_user_id":46223781,"tagged_user_id":215125392,"co_author_invite_id":443573,"email":"k***a@yz.yamagata-u.ac.jp","display_order":0,"name":"繁 久保田","title":"Synaptic Cooperation and Competition in STDP Learning Rule"}],"downloadable_attachments":[],"slug":"Synaptic_Cooperation_and_Competition_in_STDP_Learning_Rule","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[{"id":194177,"name":"Cortical Plasticity","url":"https://www.academia.edu/Documents/in/Cortical_Plasticity"},{"id":432091,"name":"Barrel Cortex","url":"https://www.academia.edu/Documents/in/Barrel_Cortex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927855"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927855/Involvement_of_the_glutamate_transporter_and_the_sodium_calcium_exchanger_in_the_hypoxia_induced_increase_in_intracellular_Ca2_in_rat_hippocampal_slices"><img alt="Research paper thumbnail of Involvement of the glutamate transporter and the sodium-calcium exchanger in the hypoxia-induced increase in intracellular Ca2+ in rat hippocampal slices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927855/Involvement_of_the_glutamate_transporter_and_the_sodium_calcium_exchanger_in_the_hypoxia_induced_increase_in_intracellular_Ca2_in_rat_hippocampal_slices">Involvement of the glutamate transporter and the sodium-calcium exchanger in the hypoxia-induced increase in intracellular Ca2+ in rat hippocampal slices</a></div><div class="wp-workCard_item"><span>Brain Research</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen-glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+-Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927855"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927855"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927855; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927855]").text(description); $(".js-view-count[data-work-id=23927855]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927855; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927855']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927855, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927855]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927855,"title":"Involvement of the glutamate transporter and the sodium-calcium exchanger in the hypoxia-induced increase in intracellular Ca2+ in rat hippocampal slices","translated_title":"","metadata":{"abstract":"Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen-glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+-Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Brain Research"},"translated_abstract":"Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen-glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+-Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.","internal_url":"https://www.academia.edu/23927855/Involvement_of_the_glutamate_transporter_and_the_sodium_calcium_exchanger_in_the_hypoxia_induced_increase_in_intracellular_Ca2_in_rat_hippocampal_slices","translated_internal_url":"","created_at":"2016-04-01T20:16:28.075-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272606,"work_id":23927855,"tagging_user_id":46223781,"tagged_user_id":38403527,"co_author_invite_id":null,"email":"s***i@gmail.com","display_order":0,"name":"周 山口","title":"Involvement of the glutamate transporter and the sodium-calcium exchanger in the hypoxia-induced increase in intracellular Ca2+ in rat hippocampal slices"},{"id":18272607,"work_id":23927855,"tagging_user_id":46223781,"tagged_user_id":42265024,"co_author_invite_id":null,"email":"o***a@acls.titech.ac.jp","display_order":4194304,"name":"Hiroyuki Ogata","title":"Involvement of the glutamate transporter and the sodium-calcium exchanger in the hypoxia-induced increase in intracellular Ca2+ in rat hippocampal slices"}],"downloadable_attachments":[],"slug":"Involvement_of_the_glutamate_transporter_and_the_sodium_calcium_exchanger_in_the_hypoxia_induced_increase_in_intracellular_Ca2_in_rat_hippocampal_slices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":10990,"name":"Hypoxia","url":"https://www.academia.edu/Documents/in/Hypoxia"},{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus"},{"id":61233,"name":"Glutamate","url":"https://www.academia.edu/Documents/in/Glutamate"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":67133,"name":"Anoxia","url":"https://www.academia.edu/Documents/in/Anoxia"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":386342,"name":"Sodium","url":"https://www.academia.edu/Documents/in/Sodium"},{"id":417494,"name":"Rat","url":"https://www.academia.edu/Documents/in/Rat"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":743556,"name":"Ion Exchange","url":"https://www.academia.edu/Documents/in/Ion_Exchange"},{"id":1011273,"name":"Chelating Agents","url":"https://www.academia.edu/Documents/in/Chelating_Agents"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"},{"id":1599862,"name":"Fura","url":"https://www.academia.edu/Documents/in/Fura"},{"id":1954221,"name":"Calcium Channel Blockers","url":"https://www.academia.edu/Documents/in/Calcium_Channel_Blockers"}],"urls":[{"id":6968538,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=1596031"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927853"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927853/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes"><img alt="Research paper thumbnail of Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes" class="work-thumbnail" src="https://attachments.academia-assets.com/44314125/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927853/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes">Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes</a></div><div class="wp-workCard_item"><span>Journal of Artificial Organs the Official Journal of the Japanese Society For Artificial Organs</span><span>, Jul 8, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="90b2fe50ac4c8835fd83ead492589b3c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314125,&quot;asset_id&quot;:23927853,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314125/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927853"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927853"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927853; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927853]").text(description); $(".js-view-count[data-work-id=23927853]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927853; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927853']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927853, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "90b2fe50ac4c8835fd83ead492589b3c" } } $('.js-work-strip[data-work-id=23927853]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927853,"title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes","translated_title":"","metadata":{"grobid_abstract":"The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes were investigated by uniaxial tensile testing. Rat type I collagen-Dulbecco's modified Eagle's medium solution (each 2 ml in volume, 0.5 mg/ml collagen concentration) containing 2.0 million rat fibroblasts or cardiomyocytes were cast in a circular shape. After gelation and culture for 10 days the contracted gels were first stretched to a tensile strain of approximately 0.20 at 4.6 9 10 -3 /s strain rate, and then the strain was kept unchanged for 3 min. The tensile stress in the gels was recorded. The results were regressed against the equations of the Kelvin viscoelastic model. It was found that the two elastic coefficients in the model were 6.5 ± 1.7 and 10.2 ± 3.2 kPa, respectively, for gels with cardiomyocytes and 5.1 ± 1.6 and 4.5 ± 0.9 kPa for those with fibroblasts; the values for gels with cardiomyocytes were significantly higher than those for gels with fibroblasts. The viscous coefficient was 169.6 ± 60.7 kPa s for the cardiomyocytes and 143.6 ± 44.7 kPa s for the fibroblasts. The relaxation time constant for gels with cardiomyocytes was 19.6 ± 10.6 s, significantly smaller than for gels with fibroblasts (36.4 ± 13.3 s). This study is the first to obtain viscoelastic data for living cell-contracted collagen gels. These data show that the viscous effect has a vital effect on the mechanical behavior of the gels and cannot be neglected in the culture and function of artificial substitutes based on contracted collagen gels. Furthermore, the data may imply that viscous coefficient of the gels might be closely related to collagen density rather than to cross linking among collagen fibrils.","publication_date":{"day":8,"month":7,"year":2010,"errors":{}},"publication_name":"Journal of Artificial Organs the Official Journal of the Japanese Society For Artificial Organs","grobid_abstract_attachment_id":44314125},"translated_abstract":null,"internal_url":"https://www.academia.edu/23927853/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes","translated_internal_url":"","created_at":"2016-04-01T20:16:27.884-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272572,"work_id":23927853,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"},{"id":18272600,"work_id":23927853,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172231,"email":"k***a@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Tadashi Kosawada","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"},{"id":18272623,"work_id":23927853,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":6291456,"name":"Zhonggang Feng","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"}],"downloadable_attachments":[{"id":44314125,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314125/thumbnails/1.jpg","file_name":"s10047-010-0508-x.pdf20160401-7255-1osnpsj","download_url":"https://www.academia.edu/attachments/44314125/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Viscoelastic_characteristics_of_contract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314125/s10047-010-0508-x-libre.pdf20160401-7255-1osnpsj?1459567691=\u0026response-content-disposition=attachment%3B+filename%3DViscoelastic_characteristics_of_contract.pdf\u0026Expires=1732437491\u0026Signature=b7hLf8oEucaJXgkbEvhvNV2pMtQxP2PWWzuiVxiwqrtQ~NrHgptL9IkQed5TVRMirCknofoxJ2v1SSt93ZKAxUGLYtKvVe2wNPir6O3uWwB73pBkNotiovJ1zVP-wi6kADNRSWzS~xB6kGUdVAr1NOAC63Obc2-5PMwRfycBL0UFAo1cBfMynDz13quepugu-vQfCZd0ar8LfaU-PtSQiVMyHjXVaLNcn6EuzT8u3~-HwQuC0nC~GqDskxAUuLHqUddv5FETVfjR7Gv9Ekk2ZJBEmv-C6UG~pmFKMLwjhvzkmhUxTdcOC9~zMVm6-LC7PNh~Hc4twZUT8H7xPnv4WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314125,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314125/thumbnails/1.jpg","file_name":"s10047-010-0508-x.pdf20160401-7255-1osnpsj","download_url":"https://www.academia.edu/attachments/44314125/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Viscoelastic_characteristics_of_contract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314125/s10047-010-0508-x-libre.pdf20160401-7255-1osnpsj?1459567691=\u0026response-content-disposition=attachment%3B+filename%3DViscoelastic_characteristics_of_contract.pdf\u0026Expires=1732437491\u0026Signature=b7hLf8oEucaJXgkbEvhvNV2pMtQxP2PWWzuiVxiwqrtQ~NrHgptL9IkQed5TVRMirCknofoxJ2v1SSt93ZKAxUGLYtKvVe2wNPir6O3uWwB73pBkNotiovJ1zVP-wi6kADNRSWzS~xB6kGUdVAr1NOAC63Obc2-5PMwRfycBL0UFAo1cBfMynDz13quepugu-vQfCZd0ar8LfaU-PtSQiVMyHjXVaLNcn6EuzT8u3~-HwQuC0nC~GqDskxAUuLHqUddv5FETVfjR7Gv9Ekk2ZJBEmv-C6UG~pmFKMLwjhvzkmhUxTdcOC9~zMVm6-LC7PNh~Hc4twZUT8H7xPnv4WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":11101,"name":"Artificial Organs","url":"https://www.academia.edu/Documents/in/Artificial_Organs"},{"id":39606,"name":"Strain Rate","url":"https://www.academia.edu/Documents/in/Strain_Rate"},{"id":48904,"name":"Elasticity","url":"https://www.academia.edu/Documents/in/Elasticity"},{"id":79808,"name":"Collagen","url":"https://www.academia.edu/Documents/in/Collagen"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":284907,"name":"Gels","url":"https://www.academia.edu/Documents/in/Gels"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":954995,"name":"Human Fibroblasts","url":"https://www.academia.edu/Documents/in/Human_Fibroblasts"},{"id":973999,"name":"Tensile Strength","url":"https://www.academia.edu/Documents/in/Tensile_Strength"},{"id":1330652,"name":"Tensile Test","url":"https://www.academia.edu/Documents/in/Tensile_Test"}],"urls":[{"id":6968536,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=23172741"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927851"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927851/Design_a_novel_asymmetric_bifurcating_microfluidic_channel_for_cell_separation_by_size"><img alt="Research paper thumbnail of Design a novel asymmetric bifurcating microfluidic channel for cell separation by size" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927851/Design_a_novel_asymmetric_bifurcating_microfluidic_channel_for_cell_separation_by_size">Design a novel asymmetric bifurcating microfluidic channel for cell separation by size</a></div><div class="wp-workCard_item"><span>2015 10th Asian Control Conference (ASCC)</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927851"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927851]").text(description); $(".js-view-count[data-work-id=23927851]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927851']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927851, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927851]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927851,"title":"Design a novel asymmetric bifurcating microfluidic channel for cell separation by size","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"2015 10th Asian Control Conference (ASCC)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/23927851/Design_a_novel_asymmetric_bifurcating_microfluidic_channel_for_cell_separation_by_size","translated_internal_url":"","created_at":"2016-04-01T20:16:27.723-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272574,"work_id":23927851,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Design a novel asymmetric bifurcating microfluidic channel for cell separation by size"},{"id":18272625,"work_id":23927851,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Zhonggang Feng","title":"Design a novel asymmetric bifurcating microfluidic channel for cell separation by size"}],"downloadable_attachments":[],"slug":"Design_a_novel_asymmetric_bifurcating_microfluidic_channel_for_cell_separation_by_size","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927849"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927849/A_fibril_based_structural_constitutive_theory_reveals_the_dominant_role_of_network_characteristics_on_the_mechanical_behavior_of_fibroblast_compacted_collagen_gels"><img alt="Research paper thumbnail of A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels" class="work-thumbnail" src="https://attachments.academia-assets.com/44314130/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927849/A_fibril_based_structural_constitutive_theory_reveals_the_dominant_role_of_network_characteristics_on_the_mechanical_behavior_of_fibroblast_compacted_collagen_gels">A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels</a></div><div class="wp-workCard_item"><span>Biomaterials</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we present a general, fibril-based structural constitutive theory which accounts f...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="17e3044e8dfd1332d3b00e92b37982ee" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314130,&quot;asset_id&quot;:23927849,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314130/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927849"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927849"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927849; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927849]").text(description); $(".js-view-count[data-work-id=23927849]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927849; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927849']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927849, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "17e3044e8dfd1332d3b00e92b37982ee" } } $('.js-work-strip[data-work-id=23927849]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927849,"title":"A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels","translated_title":"","metadata":{"abstract":"In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of...","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Biomaterials"},"translated_abstract":"In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of...","internal_url":"https://www.academia.edu/23927849/A_fibril_based_structural_constitutive_theory_reveals_the_dominant_role_of_network_characteristics_on_the_mechanical_behavior_of_fibroblast_compacted_collagen_gels","translated_internal_url":"","created_at":"2016-04-01T20:16:27.456-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272571,"work_id":23927849,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels"},{"id":18272599,"work_id":23927849,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172231,"email":"k***a@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Tadashi Kosawada","title":"A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels"},{"id":18272620,"work_id":23927849,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":6291456,"name":"Zhonggang Feng","title":"A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels"}],"downloadable_attachments":[{"id":44314130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314130/thumbnails/1.jpg","file_name":"A_fibril-based_structural_constitutive_t20160401-7189-1ebflpu.pdf","download_url":"https://www.academia.edu/attachments/44314130/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_fibril_based_structural_constitutive_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314130/A_fibril-based_structural_constitutive_t20160401-7189-1ebflpu-libre.pdf?1459567699=\u0026response-content-disposition=attachment%3B+filename%3DA_fibril_based_structural_constitutive_t.pdf\u0026Expires=1732437491\u0026Signature=SuLYnT9xEZaVTkrI7gVudtdVval28OT6R6ceg6A~CTIfoH2NNurRVqYrY-rGCzb1D0QqES051mbNLz39H6xelLb9bxCfXUYUgtjTUzP2ZG-rcvDdGWZ9-V6WvW03LC~lE-A5pnndvMEgeL8FQMbmt5l28zFeaBstFzLqqwmn51bB6ANdiBodoFInIeYAleBLM6vrB0rL94NNAXrYOpB~U4nzLLtDsK8YIX0YrnCujaFUWjtDJYCSoh0AsdOmY7wHMPW-sTOwm4IctSEqn3zey-6QdfB~m4WGcjRXWU~SfLKbcMJFTyOhK3xTI1t2H1Q449LJJeflcMG4pgOd-CHDuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_fibril_based_structural_constitutive_theory_reveals_the_dominant_role_of_network_characteristics_on_the_mechanical_behavior_of_fibroblast_compacted_collagen_gels","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314130/thumbnails/1.jpg","file_name":"A_fibril-based_structural_constitutive_t20160401-7189-1ebflpu.pdf","download_url":"https://www.academia.edu/attachments/44314130/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_fibril_based_structural_constitutive_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314130/A_fibril-based_structural_constitutive_t20160401-7189-1ebflpu-libre.pdf?1459567699=\u0026response-content-disposition=attachment%3B+filename%3DA_fibril_based_structural_constitutive_t.pdf\u0026Expires=1732437491\u0026Signature=SuLYnT9xEZaVTkrI7gVudtdVval28OT6R6ceg6A~CTIfoH2NNurRVqYrY-rGCzb1D0QqES051mbNLz39H6xelLb9bxCfXUYUgtjTUzP2ZG-rcvDdGWZ9-V6WvW03LC~lE-A5pnndvMEgeL8FQMbmt5l28zFeaBstFzLqqwmn51bB6ANdiBodoFInIeYAleBLM6vrB0rL94NNAXrYOpB~U4nzLLtDsK8YIX0YrnCujaFUWjtDJYCSoh0AsdOmY7wHMPW-sTOwm4IctSEqn3zey-6QdfB~m4WGcjRXWU~SfLKbcMJFTyOhK3xTI1t2H1Q449LJJeflcMG4pgOd-CHDuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2698,"name":"Biomaterials","url":"https://www.academia.edu/Documents/in/Biomaterials"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927848"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927848/Dynamic_Analysis_of_Circular_Engineered_Cardiac_Tissue_to_Evaluate_the_Active_Contractile_Force"><img alt="Research paper thumbnail of Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force" class="work-thumbnail" src="https://attachments.academia-assets.com/44314110/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927848/Dynamic_Analysis_of_Circular_Engineered_Cardiac_Tissue_to_Evaluate_the_Active_Contractile_Force">Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force</a></div><div class="wp-workCard_item"><span>Communications in Computer and Information Science</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7dc42510050753430636983c44824f15" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314110,&quot;asset_id&quot;:23927848,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314110/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927848"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927848"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927848; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927848]").text(description); $(".js-view-count[data-work-id=23927848]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927848; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927848']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927848, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7dc42510050753430636983c44824f15" } } $('.js-work-strip[data-work-id=23927848]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927848,"title":"Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force","translated_title":"","metadata":{"grobid_abstract":"Circular engineered cardiac tissue was fabricated by embedding rat embryonic cardiomyocytes into collagen (type I) gels. The engineered tissue was set to a specific configuration and the spontaneous beat displacement at one site of it was measured. The active contractile force of the embedded cardiomyocytes was derived from the displacement data. In this process, the engineered tissue was constitutively modeled as three components in parallel: i.e., an active contractile component representing the cardiomyocyte contraction, a pre-force component representing the effects of gel compaction during the tissue fabrication, and a Kelvin model for the passive properties of the tissue. Dynamic analysis of the beat displacement allowed solving out the active contractile force. In addition, energy coefficient was defined to evaluate the pump function of the engineered tissue. It demonstrated that this approach can detect the active contractile force as small as ~0.01 mN and can sensitively reveal the change of the active contractile force under different culture conditions. Besides being an assay to evaluate the mechanical performance of engineered cardiac tissue, this novel method is particularly suitable to be used in pharmacological response testing of stem cell-derived cardiomyocytes under three-dimensional culture attributed to its high sensitivity and feasibility for continuous and in situ measurement.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Communications in Computer and Information Science","grobid_abstract_attachment_id":44314110},"translated_abstract":null,"internal_url":"https://www.academia.edu/23927848/Dynamic_Analysis_of_Circular_Engineered_Cardiac_Tissue_to_Evaluate_the_Active_Contractile_Force","translated_internal_url":"","created_at":"2016-04-01T20:16:27.339-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272561,"work_id":23927848,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force"},{"id":18272592,"work_id":23927848,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172231,"email":"k***a@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Tadashi Kosawada","title":"Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force"},{"id":18272614,"work_id":23927848,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":6291456,"name":"Zhonggang Feng","title":"Dynamic Analysis of Circular Engineered Cardiac Tissue to Evaluate the Active Contractile Force"}],"downloadable_attachments":[{"id":44314110,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314110/thumbnails/1.jpg","file_name":"Dynamic_Analysis_of_Circular_Engineered_20160401-7255-2ruiu1.pdf","download_url":"https://www.academia.edu/attachments/44314110/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dynamic_Analysis_of_Circular_Engineered.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314110/Dynamic_Analysis_of_Circular_Engineered_20160401-7255-2ruiu1-libre.pdf?1459567693=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Analysis_of_Circular_Engineered.pdf\u0026Expires=1732437491\u0026Signature=LJh9cYvPA3oJ4ttqwDOwj4WQBt~kFswpTKTGB9TYs9d0zciiruxzeAGC~1DfX0nXWinh1En9VR3HM0UsiRBh-anOihGxdgptd92IbRyJFyZ04b6rGlL1zKKEJ5rxZT1xRK43~sB-sOtpW7wL-ObcWtFb~yS4nTauZNGdU6EucSR8c~JZSsyFxv2MvAvyF-j3xaphmTsgbrlGoMunSzpaZV3Jmxq2ClJMYLtfchRLPc7QA2pS9mmO83e2UFwNw26kfWGDY0uzQVsSM5GTimi-~igG6scyeQd-7QMXdpNpTghbmxDaW31OGdC3hOOO1rTYXIAElL4L34dM4nD2qTk6dg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dynamic_Analysis_of_Circular_Engineered_Cardiac_Tissue_to_Evaluate_the_Active_Contractile_Force","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314110,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314110/thumbnails/1.jpg","file_name":"Dynamic_Analysis_of_Circular_Engineered_20160401-7255-2ruiu1.pdf","download_url":"https://www.academia.edu/attachments/44314110/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dynamic_Analysis_of_Circular_Engineered.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314110/Dynamic_Analysis_of_Circular_Engineered_20160401-7255-2ruiu1-libre.pdf?1459567693=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Analysis_of_Circular_Engineered.pdf\u0026Expires=1732437491\u0026Signature=LJh9cYvPA3oJ4ttqwDOwj4WQBt~kFswpTKTGB9TYs9d0zciiruxzeAGC~1DfX0nXWinh1En9VR3HM0UsiRBh-anOihGxdgptd92IbRyJFyZ04b6rGlL1zKKEJ5rxZT1xRK43~sB-sOtpW7wL-ObcWtFb~yS4nTauZNGdU6EucSR8c~JZSsyFxv2MvAvyF-j3xaphmTsgbrlGoMunSzpaZV3Jmxq2ClJMYLtfchRLPc7QA2pS9mmO83e2UFwNw26kfWGDY0uzQVsSM5GTimi-~igG6scyeQd-7QMXdpNpTghbmxDaW31OGdC3hOOO1rTYXIAElL4L34dM4nD2qTk6dg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927846"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927846/The_mechanisms_of_fibroblast_mediated_compaction_of_collagen_gels_and_the_mechanical_niche_around_individual_fibroblasts"><img alt="Research paper thumbnail of The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts" class="work-thumbnail" src="https://attachments.academia-assets.com/44314126/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927846/The_mechanisms_of_fibroblast_mediated_compaction_of_collagen_gels_and_the_mechanical_niche_around_individual_fibroblasts">The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts</a></div><div class="wp-workCard_item"><span>Biomaterials</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound healing, cellular fate processes, and regenerative medicine. However, the underlying mechanism and the cellular mechanical niche still remain obscure. This study examines the mechanical behaviour of collagen fibrils during the process of compaction from an alternative perspective on the primary mechanical interaction, providing a new viewpoint on the behaviour of populated fibroblasts. We classify the collagen fibrils into three types - bent, stretched, and adherent - and deduce the respective equations governing the mechanical behaviour of each type; in particular, from a putative principle based on the stationary state of the instantaneous Hamiltonian of the mechanotransduction system, we originally quantify the stretching force exerted on each stretched fibrils. Via careful verification of a structural elementary model based on this classification, we demonstrate a clear physical pict...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ccdee82734abf561fbeeb9caaee8992b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314126,&quot;asset_id&quot;:23927846,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314126/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927846"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927846"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927846; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927846]").text(description); $(".js-view-count[data-work-id=23927846]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927846; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927846']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927846, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ccdee82734abf561fbeeb9caaee8992b" } } $('.js-work-strip[data-work-id=23927846]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927846,"title":"The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts","translated_title":"","metadata":{"abstract":"Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound healing, cellular fate processes, and regenerative medicine. However, the underlying mechanism and the cellular mechanical niche still remain obscure. This study examines the mechanical behaviour of collagen fibrils during the process of compaction from an alternative perspective on the primary mechanical interaction, providing a new viewpoint on the behaviour of populated fibroblasts. We classify the collagen fibrils into three types - bent, stretched, and adherent - and deduce the respective equations governing the mechanical behaviour of each type; in particular, from a putative principle based on the stationary state of the instantaneous Hamiltonian of the mechanotransduction system, we originally quantify the stretching force exerted on each stretched fibrils. Via careful verification of a structural elementary model based on this classification, we demonstrate a clear physical pict...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Biomaterials"},"translated_abstract":"Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound healing, cellular fate processes, and regenerative medicine. However, the underlying mechanism and the cellular mechanical niche still remain obscure. This study examines the mechanical behaviour of collagen fibrils during the process of compaction from an alternative perspective on the primary mechanical interaction, providing a new viewpoint on the behaviour of populated fibroblasts. We classify the collagen fibrils into three types - bent, stretched, and adherent - and deduce the respective equations governing the mechanical behaviour of each type; in particular, from a putative principle based on the stationary state of the instantaneous Hamiltonian of the mechanotransduction system, we originally quantify the stretching force exerted on each stretched fibrils. Via careful verification of a structural elementary model based on this classification, we demonstrate a clear physical pict...","internal_url":"https://www.academia.edu/23927846/The_mechanisms_of_fibroblast_mediated_compaction_of_collagen_gels_and_the_mechanical_niche_around_individual_fibroblasts","translated_internal_url":"","created_at":"2016-04-01T20:16:27.222-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272569,"work_id":23927846,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts"},{"id":18272597,"work_id":23927846,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172231,"email":"k***a@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Tadashi Kosawada","title":"The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts"},{"id":18272618,"work_id":23927846,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":6291456,"name":"Zhonggang Feng","title":"The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts"},{"id":18272629,"work_id":23927846,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172234,"email":"s***w@med.id.yamagata-u.ac.jp","display_order":7340032,"name":"Nobuyuki Shirasawa","title":"The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts"}],"downloadable_attachments":[{"id":44314126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314126/thumbnails/1.jpg","file_name":"The_mechanisms_of_fibroblast-mediated_co20160401-17457-3rxm4g.pdf","download_url":"https://www.academia.edu/attachments/44314126/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_mechanisms_of_fibroblast_mediated_co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314126/The_mechanisms_of_fibroblast-mediated_co20160401-17457-3rxm4g-libre.pdf?1459567695=\u0026response-content-disposition=attachment%3B+filename%3DThe_mechanisms_of_fibroblast_mediated_co.pdf\u0026Expires=1732437491\u0026Signature=fmvHIn4RY4zJ5IB6IxO4LFAPwOa1kbwDHSldz~vvOi17~iXktuOQ-n3VNBlwzw~6-AEkM7sjwc~iW~Z0lnAkTcmaPXqptbfGIJPAA6aZl2XUKVXRULHym3hHygskzP~apXCaTSRtBBZrmnDRqTZ9s4vXxfeujgKmmEBMnduSUhFi1YYqcx1DMLEX-wq9Zu6UYV09iLC7RT8IuIrm1ALD2aZwFDGCmNxS~W5gvZav-nCPZorAxmS2TxCftf~47oVIpGXmweWDgO~TIxzvPHpR88-~73RAUhxhHn~OHVYmcUBjqaMSuCho1FaqjFlHzYgckyeiX1uArV2d1vwb0dmScA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_mechanisms_of_fibroblast_mediated_compaction_of_collagen_gels_and_the_mechanical_niche_around_individual_fibroblasts","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314126/thumbnails/1.jpg","file_name":"The_mechanisms_of_fibroblast-mediated_co20160401-17457-3rxm4g.pdf","download_url":"https://www.academia.edu/attachments/44314126/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_mechanisms_of_fibroblast_mediated_co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314126/The_mechanisms_of_fibroblast-mediated_co20160401-17457-3rxm4g-libre.pdf?1459567695=\u0026response-content-disposition=attachment%3B+filename%3DThe_mechanisms_of_fibroblast_mediated_co.pdf\u0026Expires=1732437491\u0026Signature=fmvHIn4RY4zJ5IB6IxO4LFAPwOa1kbwDHSldz~vvOi17~iXktuOQ-n3VNBlwzw~6-AEkM7sjwc~iW~Z0lnAkTcmaPXqptbfGIJPAA6aZl2XUKVXRULHym3hHygskzP~apXCaTSRtBBZrmnDRqTZ9s4vXxfeujgKmmEBMnduSUhFi1YYqcx1DMLEX-wq9Zu6UYV09iLC7RT8IuIrm1ALD2aZwFDGCmNxS~W5gvZav-nCPZorAxmS2TxCftf~47oVIpGXmweWDgO~TIxzvPHpR88-~73RAUhxhHn~OHVYmcUBjqaMSuCho1FaqjFlHzYgckyeiX1uArV2d1vwb0dmScA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2698,"name":"Biomaterials","url":"https://www.academia.edu/Documents/in/Biomaterials"},{"id":8991,"name":"Wound Healing","url":"https://www.academia.edu/Documents/in/Wound_Healing"},{"id":10055,"name":"Cell Adhesion","url":"https://www.academia.edu/Documents/in/Cell_Adhesion"},{"id":25550,"name":"Regenerative Medicine","url":"https://www.academia.edu/Documents/in/Regenerative_Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":48904,"name":"Elasticity","url":"https://www.academia.edu/Documents/in/Elasticity"},{"id":79808,"name":"Collagen","url":"https://www.academia.edu/Documents/in/Collagen"},{"id":96893,"name":"Calibration","url":"https://www.academia.edu/Documents/in/Calibration"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":284907,"name":"Gels","url":"https://www.academia.edu/Documents/in/Gels"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":379889,"name":"Homeostasis","url":"https://www.academia.edu/Documents/in/Homeostasis"},{"id":448603,"name":"Necrosis","url":"https://www.academia.edu/Documents/in/Necrosis"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":954995,"name":"Human Fibroblasts","url":"https://www.academia.edu/Documents/in/Human_Fibroblasts"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927845"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927845/Flux_characteristics_of_cell_culture_medium_in_rectangular_microchannels"><img alt="Research paper thumbnail of Flux characteristics of cell culture medium in rectangular microchannels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927845/Flux_characteristics_of_cell_culture_medium_in_rectangular_microchannels">Flux characteristics of cell culture medium in rectangular microchannels</a></div><div class="wp-workCard_item"><span>Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Rectangular microchannels 50 μm high and 30, 40, 50, 60, or 70 μm wide were fabricated by adjusti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Rectangular microchannels 50 μm high and 30, 40, 50, 60, or 70 μm wide were fabricated by adjusting the width of a gap cut in a polyethylene sheet 50 μm thick and sandwiching the sheet between an acrylic plate and a glass plate. Flux in the microchannels was measured under three different inner surface conditions: uncoated, albumin-coated, and confluent growth of rat fibroblasts on the bottom of the microchannels. The normalized flux in microchannels with cultured fibroblasts or albumin coating was significantly larger than that in the uncoated channels. The experimental data for all microchannels deviated from that predicted by classical hydrodynamic theory. At small aspect ratio the flux in the microchannels was larger than that predicted theoretically, whereas it became smaller at large aspect ratio. The aspect ratio rather than Reynolds number is the correct property for predicting the variation of the normalized friction factor. We postulate that two counteracting effects, rota...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927845"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927845"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927845; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927845]").text(description); $(".js-view-count[data-work-id=23927845]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927845; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927845']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927845, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927845]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927845,"title":"Flux characteristics of cell culture medium in rectangular microchannels","translated_title":"","metadata":{"abstract":"Rectangular microchannels 50 μm high and 30, 40, 50, 60, or 70 μm wide were fabricated by adjusting the width of a gap cut in a polyethylene sheet 50 μm thick and sandwiching the sheet between an acrylic plate and a glass plate. Flux in the microchannels was measured under three different inner surface conditions: uncoated, albumin-coated, and confluent growth of rat fibroblasts on the bottom of the microchannels. The normalized flux in microchannels with cultured fibroblasts or albumin coating was significantly larger than that in the uncoated channels. The experimental data for all microchannels deviated from that predicted by classical hydrodynamic theory. At small aspect ratio the flux in the microchannels was larger than that predicted theoretically, whereas it became smaller at large aspect ratio. The aspect ratio rather than Reynolds number is the correct property for predicting the variation of the normalized friction factor. We postulate that two counteracting effects, rota...","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs"},"translated_abstract":"Rectangular microchannels 50 μm high and 30, 40, 50, 60, or 70 μm wide were fabricated by adjusting the width of a gap cut in a polyethylene sheet 50 μm thick and sandwiching the sheet between an acrylic plate and a glass plate. Flux in the microchannels was measured under three different inner surface conditions: uncoated, albumin-coated, and confluent growth of rat fibroblasts on the bottom of the microchannels. The normalized flux in microchannels with cultured fibroblasts or albumin coating was significantly larger than that in the uncoated channels. The experimental data for all microchannels deviated from that predicted by classical hydrodynamic theory. At small aspect ratio the flux in the microchannels was larger than that predicted theoretically, whereas it became smaller at large aspect ratio. The aspect ratio rather than Reynolds number is the correct property for predicting the variation of the normalized friction factor. We postulate that two counteracting effects, rota...","internal_url":"https://www.academia.edu/23927845/Flux_characteristics_of_cell_culture_medium_in_rectangular_microchannels","translated_internal_url":"","created_at":"2016-04-01T20:16:27.064-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272559,"work_id":23927845,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Flux characteristics of cell culture medium in rectangular microchannels"},{"id":18272612,"work_id":23927845,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Zhonggang Feng","title":"Flux characteristics of cell culture medium in rectangular microchannels"}],"downloadable_attachments":[],"slug":"Flux_characteristics_of_cell_culture_medium_in_rectangular_microchannels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":11101,"name":"Artificial Organs","url":"https://www.academia.edu/Documents/in/Artificial_Organs"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":204468,"name":"Friction","url":"https://www.academia.edu/Documents/in/Friction"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":954995,"name":"Human Fibroblasts","url":"https://www.academia.edu/Documents/in/Human_Fibroblasts"},{"id":957359,"name":"Culture Media","url":"https://www.academia.edu/Documents/in/Culture_Media"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927843"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927843/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes"><img alt="Research paper thumbnail of Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes" class="work-thumbnail" src="https://attachments.academia-assets.com/44314122/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927843/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes">Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes</a></div><div class="wp-workCard_item"><span>Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes were investigated by uniaxial tensile testing. Rat type I collagen-Dulbecco&amp;#39;s modified Eagle&amp;#39;s medium solution (each 2 ml in volume, 0.5 mg/ml collagen concentration) containing 2.0 million rat fibroblasts or cardiomyocytes were cast in a circular shape. After gelation and culture for 10 days the contracted gels were first stretched to a tensile strain of approximately 0.20 at 4.6 × 10(-3)/s strain rate, and then the strain was kept unchanged for 3 min. The tensile stress in the gels was recorded. The results were regressed against the equations of the Kelvin viscoelastic model. It was found that the two elastic coefficients in the model were 6.5 ± 1.7 and 10.2 ± 3.2 kPa, respectively, for gels with cardiomyocytes and 5.1 ± 1.6 and 4.5 ± 0.9 kPa for those with fibroblasts; the values for gels with cardiomyocytes were significantly higher than those for gels with fibr...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f4f3a9109396d8a0ae312f547585fbc9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314122,&quot;asset_id&quot;:23927843,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314122/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927843"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927843"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927843; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927843]").text(description); $(".js-view-count[data-work-id=23927843]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927843; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927843']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927843, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f4f3a9109396d8a0ae312f547585fbc9" } } $('.js-work-strip[data-work-id=23927843]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927843,"title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes","translated_title":"","metadata":{"abstract":"The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes were investigated by uniaxial tensile testing. Rat type I collagen-Dulbecco\u0026#39;s modified Eagle\u0026#39;s medium solution (each 2 ml in volume, 0.5 mg/ml collagen concentration) containing 2.0 million rat fibroblasts or cardiomyocytes were cast in a circular shape. After gelation and culture for 10 days the contracted gels were first stretched to a tensile strain of approximately 0.20 at 4.6 × 10(-3)/s strain rate, and then the strain was kept unchanged for 3 min. The tensile stress in the gels was recorded. The results were regressed against the equations of the Kelvin viscoelastic model. It was found that the two elastic coefficients in the model were 6.5 ± 1.7 and 10.2 ± 3.2 kPa, respectively, for gels with cardiomyocytes and 5.1 ± 1.6 and 4.5 ± 0.9 kPa for those with fibroblasts; the values for gels with cardiomyocytes were significantly higher than those for gels with fibr...","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs"},"translated_abstract":"The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes were investigated by uniaxial tensile testing. Rat type I collagen-Dulbecco\u0026#39;s modified Eagle\u0026#39;s medium solution (each 2 ml in volume, 0.5 mg/ml collagen concentration) containing 2.0 million rat fibroblasts or cardiomyocytes were cast in a circular shape. After gelation and culture for 10 days the contracted gels were first stretched to a tensile strain of approximately 0.20 at 4.6 × 10(-3)/s strain rate, and then the strain was kept unchanged for 3 min. The tensile stress in the gels was recorded. The results were regressed against the equations of the Kelvin viscoelastic model. It was found that the two elastic coefficients in the model were 6.5 ± 1.7 and 10.2 ± 3.2 kPa, respectively, for gels with cardiomyocytes and 5.1 ± 1.6 and 4.5 ± 0.9 kPa for those with fibroblasts; the values for gels with cardiomyocytes were significantly higher than those for gels with fibr...","internal_url":"https://www.academia.edu/23927843/Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes","translated_internal_url":"","created_at":"2016-04-01T20:16:26.906-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272565,"work_id":23927843,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"},{"id":18272594,"work_id":23927843,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172231,"email":"k***a@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Tadashi Kosawada","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"},{"id":18272615,"work_id":23927843,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":6291456,"name":"Zhonggang Feng","title":"Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes"}],"downloadable_attachments":[{"id":44314122,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314122/thumbnails/1.jpg","file_name":"s10047-010-0508-x.pdf20160401-32123-49wifx","download_url":"https://www.academia.edu/attachments/44314122/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Viscoelastic_characteristics_of_contract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314122/s10047-010-0508-x-libre.pdf20160401-32123-49wifx?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DViscoelastic_characteristics_of_contract.pdf\u0026Expires=1732437491\u0026Signature=PFWnyU5q0ETelBynFrIf3ghHCHZMkVz7Bq79XxtfS6NreB1Mo4S-w3kcC1p7u11qXEvjFrCwK-arNmUsbhIgOdwNtSXq0E0dUwVGoDjThu4nkYAqu0SIcIKNKoizZ-nWfBpRrxwTPab4-kSVs3jkFS-WaS7CRhn1xGpAbEal59OGEKuJryb567AWdljkJyO-nZo~mffNes8ahvwTHp2uZQQUEM6z03sjKV9wsr2YzN2RewCNXeQiDEte2cOD-qIk3ZE0V1hCzbns6YjWADdIdq2RG2f1FzsVj0RcBkrDqThBsM1~T~DQjnRU3xsPZlYH655RW6GFXKqaJUVTasIDUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Viscoelastic_characteristics_of_contracted_collagen_gels_populated_with_rat_fibroblasts_or_cardiomyocytes","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314122,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314122/thumbnails/1.jpg","file_name":"s10047-010-0508-x.pdf20160401-32123-49wifx","download_url":"https://www.academia.edu/attachments/44314122/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Viscoelastic_characteristics_of_contract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314122/s10047-010-0508-x-libre.pdf20160401-32123-49wifx?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DViscoelastic_characteristics_of_contract.pdf\u0026Expires=1732437491\u0026Signature=PFWnyU5q0ETelBynFrIf3ghHCHZMkVz7Bq79XxtfS6NreB1Mo4S-w3kcC1p7u11qXEvjFrCwK-arNmUsbhIgOdwNtSXq0E0dUwVGoDjThu4nkYAqu0SIcIKNKoizZ-nWfBpRrxwTPab4-kSVs3jkFS-WaS7CRhn1xGpAbEal59OGEKuJryb567AWdljkJyO-nZo~mffNes8ahvwTHp2uZQQUEM6z03sjKV9wsr2YzN2RewCNXeQiDEte2cOD-qIk3ZE0V1hCzbns6YjWADdIdq2RG2f1FzsVj0RcBkrDqThBsM1~T~DQjnRU3xsPZlYH655RW6GFXKqaJUVTasIDUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":11101,"name":"Artificial Organs","url":"https://www.academia.edu/Documents/in/Artificial_Organs"},{"id":39606,"name":"Strain Rate","url":"https://www.academia.edu/Documents/in/Strain_Rate"},{"id":48904,"name":"Elasticity","url":"https://www.academia.edu/Documents/in/Elasticity"},{"id":79808,"name":"Collagen","url":"https://www.academia.edu/Documents/in/Collagen"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":284907,"name":"Gels","url":"https://www.academia.edu/Documents/in/Gels"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":954995,"name":"Human Fibroblasts","url":"https://www.academia.edu/Documents/in/Human_Fibroblasts"},{"id":973999,"name":"Tensile Strength","url":"https://www.academia.edu/Documents/in/Tensile_Strength"},{"id":1330652,"name":"Tensile Test","url":"https://www.academia.edu/Documents/in/Tensile_Test"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927842"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927842/Comparison_of_mRNA_expression_of_transcriptional_factors_and_intercalated_disk_constituent_proteins_between_in_vivo_and_cultured_cardiomyocytes"><img alt="Research paper thumbnail of Comparison of mRNA expression of transcriptional factors and intercalated disk constituent proteins between in vivo and cultured cardiomyocytes" class="work-thumbnail" src="https://attachments.academia-assets.com/44314119/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927842/Comparison_of_mRNA_expression_of_transcriptional_factors_and_intercalated_disk_constituent_proteins_between_in_vivo_and_cultured_cardiomyocytes">Comparison of mRNA expression of transcriptional factors and intercalated disk constituent proteins between in vivo and cultured cardiomyocytes</a></div><div class="wp-workCard_item"><span>Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The weak contractile force exerted by engineered cardiac muscle is a big problem in cardiac muscl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The weak contractile force exerted by engineered cardiac muscle is a big problem in cardiac muscle tissue engineering, even though the field has made great progress over the past decade. We believe that one major reason for the weak contractile force is that the expression of genes regulating cardiomyocyte differentiation and cardiac tissue syncytium may be different for in vivo and cultured cells. In the present study, we investigated the difference of mRNA expression under in vivo and culture conditions in order to seek a target for further gene transfer treatment in the process of cardiac tissue construction. To this end, mRNA expression of four major transcriptional factors (SRF, p300, Nkx2.5, and myocardin) and two intercalated disk constituent proteins (N-cadherin and connexin43) in rat cardiomyocytes was measured by means of ratiometric reverse-transcription polymerase chain reaction. Cardiomyocytes were harvested from the hearts of 18-day (about 3 days before birth) Wistar-r...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="67dbe318718a5a0adb058511012d098d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314119,&quot;asset_id&quot;:23927842,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314119/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927842"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927842"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927842; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927842]").text(description); $(".js-view-count[data-work-id=23927842]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927842; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927842']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927842, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "67dbe318718a5a0adb058511012d098d" } } $('.js-work-strip[data-work-id=23927842]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927842,"title":"Comparison of mRNA expression of transcriptional factors and intercalated disk constituent proteins between in vivo and cultured cardiomyocytes","translated_title":"","metadata":{"abstract":"The weak contractile force exerted by engineered cardiac muscle is a big problem in cardiac muscle tissue engineering, even though the field has made great progress over the past decade. We believe that one major reason for the weak contractile force is that the expression of genes regulating cardiomyocyte differentiation and cardiac tissue syncytium may be different for in vivo and cultured cells. In the present study, we investigated the difference of mRNA expression under in vivo and culture conditions in order to seek a target for further gene transfer treatment in the process of cardiac tissue construction. To this end, mRNA expression of four major transcriptional factors (SRF, p300, Nkx2.5, and myocardin) and two intercalated disk constituent proteins (N-cadherin and connexin43) in rat cardiomyocytes was measured by means of ratiometric reverse-transcription polymerase chain reaction. Cardiomyocytes were harvested from the hearts of 18-day (about 3 days before birth) Wistar-r...","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs"},"translated_abstract":"The weak contractile force exerted by engineered cardiac muscle is a big problem in cardiac muscle tissue engineering, even though the field has made great progress over the past decade. We believe that one major reason for the weak contractile force is that the expression of genes regulating cardiomyocyte differentiation and cardiac tissue syncytium may be different for in vivo and cultured cells. In the present study, we investigated the difference of mRNA expression under in vivo and culture conditions in order to seek a target for further gene transfer treatment in the process of cardiac tissue construction. To this end, mRNA expression of four major transcriptional factors (SRF, p300, Nkx2.5, and myocardin) and two intercalated disk constituent proteins (N-cadherin and connexin43) in rat cardiomyocytes was measured by means of ratiometric reverse-transcription polymerase chain reaction. Cardiomyocytes were harvested from the hearts of 18-day (about 3 days before birth) Wistar-r...","internal_url":"https://www.academia.edu/23927842/Comparison_of_mRNA_expression_of_transcriptional_factors_and_intercalated_disk_constituent_proteins_between_in_vivo_and_cultured_cardiomyocytes","translated_internal_url":"","created_at":"2016-04-01T20:16:26.787-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272557,"work_id":23927842,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Comparison of mRNA expression of transcriptional factors and intercalated disk constituent proteins between in vivo and cultured cardiomyocytes"},{"id":18272611,"work_id":23927842,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Zhonggang Feng","title":"Comparison of mRNA expression of transcriptional factors and intercalated disk constituent proteins between in vivo and cultured cardiomyocytes"}],"downloadable_attachments":[{"id":44314119,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314119/thumbnails/1.jpg","file_name":"s10047-008-0414-7.pdf20160401-2339-gmdp8a","download_url":"https://www.academia.edu/attachments/44314119/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_mRNA_expression_of_transcr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314119/s10047-008-0414-7-libre.pdf20160401-2339-gmdp8a?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_mRNA_expression_of_transcr.pdf\u0026Expires=1732437491\u0026Signature=gAP26WDDcWcQL9j0-~fQI42b0~5J6PF3aoIaBzewVlQ2VU8ccvRZdILvxh20sxpSV-FX240marLYVZBo8Az3IMDglZGTHYlKfgQrHROD8FhO2gzQRZTPvL~jCgC2VTVZcK5-KhdIZ~-yithb312SrasGc25VGEBjkhXmBoo44l1FeomIP30Maelo~pC7jtmhbcrlr~nnkjXq457SsLFeM54viKd6Nc~NY7aN1Kbf~I7zeplY7i3exh5IoC8OtnI1S4LQQPVD0~CW3oW8pHJo3jUck3EZZkrFy9eMMOODcbUP5LxF5VjV4SVNUVoKkz79Y361BW1aJCKt2quSekXNag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comparison_of_mRNA_expression_of_transcriptional_factors_and_intercalated_disk_constituent_proteins_between_in_vivo_and_cultured_cardiomyocytes","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314119,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314119/thumbnails/1.jpg","file_name":"s10047-008-0414-7.pdf20160401-2339-gmdp8a","download_url":"https://www.academia.edu/attachments/44314119/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_mRNA_expression_of_transcr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314119/s10047-008-0414-7-libre.pdf20160401-2339-gmdp8a?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_mRNA_expression_of_transcr.pdf\u0026Expires=1732437491\u0026Signature=gAP26WDDcWcQL9j0-~fQI42b0~5J6PF3aoIaBzewVlQ2VU8ccvRZdILvxh20sxpSV-FX240marLYVZBo8Az3IMDglZGTHYlKfgQrHROD8FhO2gzQRZTPvL~jCgC2VTVZcK5-KhdIZ~-yithb312SrasGc25VGEBjkhXmBoo44l1FeomIP30Maelo~pC7jtmhbcrlr~nnkjXq457SsLFeM54viKd6Nc~NY7aN1Kbf~I7zeplY7i3exh5IoC8OtnI1S4LQQPVD0~CW3oW8pHJo3jUck3EZZkrFy9eMMOODcbUP5LxF5VjV4SVNUVoKkz79Y361BW1aJCKt2quSekXNag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":4338,"name":"Gene regulation","url":"https://www.academia.edu/Documents/in/Gene_regulation"},{"id":11101,"name":"Artificial Organs","url":"https://www.academia.edu/Documents/in/Artificial_Organs"},{"id":23323,"name":"Transcription Factors","url":"https://www.academia.edu/Documents/in/Transcription_Factors"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":213901,"name":"Transcription Factor","url":"https://www.academia.edu/Documents/in/Transcription_Factor"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":725539,"name":"Connexin","url":"https://www.academia.edu/Documents/in/Connexin"},{"id":1027717,"name":"Embryos","url":"https://www.academia.edu/Documents/in/Embryos"},{"id":1187634,"name":"P","url":"https://www.academia.edu/Documents/in/P"},{"id":1458592,"name":"Serum response factor","url":"https://www.academia.edu/Documents/in/Serum_response_factor"},{"id":1706341,"name":"Gene Transfer","url":"https://www.academia.edu/Documents/in/Gene_Transfer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927840"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927840/Construction_of_fibroblast_collagen_gels_with_orientated_fibrils_induced_by_static_or_dynamic_stress_toward_the_fabrication_of_small_tendon_grafts"><img alt="Research paper thumbnail of Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts" class="work-thumbnail" src="https://attachments.academia-assets.com/44314116/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927840/Construction_of_fibroblast_collagen_gels_with_orientated_fibrils_induced_by_static_or_dynamic_stress_toward_the_fabrication_of_small_tendon_grafts">Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts</a></div><div class="wp-workCard_item"><span>Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">As a step toward the fabrication of small tendon grafts, fibroblast-collagen gels were constructe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">As a step toward the fabrication of small tendon grafts, fibroblast-collagen gels were constructed with orientated fibrils induced by static or dynamic loading. Three groups of gel samples, each consisting of 1.0 x 10(6) fibroblasts and 2 mg type I collagen, were fabricated: freely contracted gels formed the control group; contraction-directed gels made up the static group (the gel contraction was directed perpendicular to an axis made by two anchors buried in the gels so that the constraint stress exerted by the two anchors was imposed on the gel); and for the dynamic group, a specific loading pattern (free contraction followed by cyclic stretching using a tensile bioreactor) was employed. Mechanical properties were evaluated by means of the uniaxial tension test. The gels of the static group had an ultimate stress of 350 +/- 43.6 kPa and a material modulus of 548.8 +/- 61.6 kPa, which were almost 5.2 times and 15.6 times, respectively, greater than those of the controls. The dynam...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7c39fd64abb9605b2f9d9c57ba29f764" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44314116,&quot;asset_id&quot;:23927840,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44314116/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927840"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927840"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927840; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927840]").text(description); $(".js-view-count[data-work-id=23927840]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927840; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927840']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927840, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7c39fd64abb9605b2f9d9c57ba29f764" } } $('.js-work-strip[data-work-id=23927840]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927840,"title":"Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts","translated_title":"","metadata":{"abstract":"As a step toward the fabrication of small tendon grafts, fibroblast-collagen gels were constructed with orientated fibrils induced by static or dynamic loading. Three groups of gel samples, each consisting of 1.0 x 10(6) fibroblasts and 2 mg type I collagen, were fabricated: freely contracted gels formed the control group; contraction-directed gels made up the static group (the gel contraction was directed perpendicular to an axis made by two anchors buried in the gels so that the constraint stress exerted by the two anchors was imposed on the gel); and for the dynamic group, a specific loading pattern (free contraction followed by cyclic stretching using a tensile bioreactor) was employed. Mechanical properties were evaluated by means of the uniaxial tension test. The gels of the static group had an ultimate stress of 350 +/- 43.6 kPa and a material modulus of 548.8 +/- 61.6 kPa, which were almost 5.2 times and 15.6 times, respectively, greater than those of the controls. The dynam...","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs"},"translated_abstract":"As a step toward the fabrication of small tendon grafts, fibroblast-collagen gels were constructed with orientated fibrils induced by static or dynamic loading. Three groups of gel samples, each consisting of 1.0 x 10(6) fibroblasts and 2 mg type I collagen, were fabricated: freely contracted gels formed the control group; contraction-directed gels made up the static group (the gel contraction was directed perpendicular to an axis made by two anchors buried in the gels so that the constraint stress exerted by the two anchors was imposed on the gel); and for the dynamic group, a specific loading pattern (free contraction followed by cyclic stretching using a tensile bioreactor) was employed. Mechanical properties were evaluated by means of the uniaxial tension test. The gels of the static group had an ultimate stress of 350 +/- 43.6 kPa and a material modulus of 548.8 +/- 61.6 kPa, which were almost 5.2 times and 15.6 times, respectively, greater than those of the controls. The dynam...","internal_url":"https://www.academia.edu/23927840/Construction_of_fibroblast_collagen_gels_with_orientated_fibrils_induced_by_static_or_dynamic_stress_toward_the_fabrication_of_small_tendon_grafts","translated_internal_url":"","created_at":"2016-04-01T20:16:26.663-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272555,"work_id":23927840,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172225,"email":"n***o@sei.co.jp","display_order":0,"name":"Takao Nakamura","title":"Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts"},{"id":18272609,"work_id":23927840,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":4194304,"name":"Zhonggang Feng","title":"Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts"},{"id":18272630,"work_id":23927840,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172235,"email":"y***t@jim.dendai.ac.jp","display_order":6291456,"name":"Yu Tateishi","title":"Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts"}],"downloadable_attachments":[{"id":44314116,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314116/thumbnails/1.jpg","file_name":"s10047-006-0354-z.pdf20160401-17457-gdh013","download_url":"https://www.academia.edu/attachments/44314116/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Construction_of_fibroblast_collagen_gels.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314116/s10047-006-0354-z-libre.pdf20160401-17457-gdh013?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DConstruction_of_fibroblast_collagen_gels.pdf\u0026Expires=1732437491\u0026Signature=NHzfGrYO3iwbXDFy7pXek6weTKUdbYaJ1FORXPrX9D2RoG3fUkworiSUidOd~QnZZQBNazELomCVVmbvoaOh9a113lW2fz8AldlwoT1X9LQRkvH6ONFecmabemhBAFf2wIK-3K0kG9m4GrTMlKwfmMou-SYHVIQiiGtLSzFRBS412SkRH~-DQL1pKlv3e-~52LsDVCwX6c2j9k4VCLw9wiHb5Ikm9zvx~ezYTzQxE4gQ8v2vW4K2Y63xpLaP8O15TKoDGZufIx66qHHt6CSq0QZnfM3L74ImBugmOuCd2mGe35eaBCa4YvqYfggVcBZlR64-Y5l7~V1xk2EqNW9MpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Construction_of_fibroblast_collagen_gels_with_orientated_fibrils_induced_by_static_or_dynamic_stress_toward_the_fabrication_of_small_tendon_grafts","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[{"id":44314116,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44314116/thumbnails/1.jpg","file_name":"s10047-006-0354-z.pdf20160401-17457-gdh013","download_url":"https://www.academia.edu/attachments/44314116/download_file?st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&st=MTczMjQzMzg5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Construction_of_fibroblast_collagen_gels.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44314116/s10047-006-0354-z-libre.pdf20160401-17457-gdh013?1459567692=\u0026response-content-disposition=attachment%3B+filename%3DConstruction_of_fibroblast_collagen_gels.pdf\u0026Expires=1732437491\u0026Signature=NHzfGrYO3iwbXDFy7pXek6weTKUdbYaJ1FORXPrX9D2RoG3fUkworiSUidOd~QnZZQBNazELomCVVmbvoaOh9a113lW2fz8AldlwoT1X9LQRkvH6ONFecmabemhBAFf2wIK-3K0kG9m4GrTMlKwfmMou-SYHVIQiiGtLSzFRBS412SkRH~-DQL1pKlv3e-~52LsDVCwX6c2j9k4VCLw9wiHb5Ikm9zvx~ezYTzQxE4gQ8v2vW4K2Y63xpLaP8O15TKoDGZufIx66qHHt6CSq0QZnfM3L74ImBugmOuCd2mGe35eaBCa4YvqYfggVcBZlR64-Y5l7~V1xk2EqNW9MpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":11101,"name":"Artificial Organs","url":"https://www.academia.edu/Documents/in/Artificial_Organs"},{"id":53328,"name":"Cellular mechanotransduction","url":"https://www.academia.edu/Documents/in/Cellular_mechanotransduction"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":284907,"name":"Gels","url":"https://www.academia.edu/Documents/in/Gels"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":501201,"name":"Bioreactors","url":"https://www.academia.edu/Documents/in/Bioreactors"},{"id":646015,"name":"Dynamic Loading","url":"https://www.academia.edu/Documents/in/Dynamic_Loading"},{"id":954995,"name":"Human Fibroblasts","url":"https://www.academia.edu/Documents/in/Human_Fibroblasts"},{"id":973999,"name":"Tensile Strength","url":"https://www.academia.edu/Documents/in/Tensile_Strength"},{"id":1157201,"name":"Tendons","url":"https://www.academia.edu/Documents/in/Tendons"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927839"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927839/Contribution_of_voltage_dependent_ion_channels_to_subthreshold_resonance"><img alt="Research paper thumbnail of Contribution of voltage-dependent ion channels to subthreshold resonance" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927839/Contribution_of_voltage_dependent_ion_channels_to_subthreshold_resonance">Contribution of voltage-dependent ion channels to subthreshold resonance</a></div><div class="wp-workCard_item"><span>2013 9th Asian Control Conference (ASCC)</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927839"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927839"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927839; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927839]").text(description); $(".js-view-count[data-work-id=23927839]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927839; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927839']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927839, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927839]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927839,"title":"Contribution of voltage-dependent ion channels to subthreshold resonance","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"2013 9th Asian Control Conference (ASCC)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/23927839/Contribution_of_voltage_dependent_ion_channels_to_subthreshold_resonance","translated_internal_url":"","created_at":"2016-04-01T20:16:26.541-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272621,"work_id":23927839,"tagging_user_id":46223781,"tagged_user_id":null,"co_author_invite_id":4172233,"email":"z***g@yz.yamagata-u.ac.jp","display_order":0,"name":"Zhonggang Feng","title":"Contribution of voltage-dependent ion channels to subthreshold resonance"}],"downloadable_attachments":[],"slug":"Contribution_of_voltage_dependent_ion_channels_to_subthreshold_resonance","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23927837"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23927837/Contribution_of_NaP_Channels_to_the_Property_of_Subthreshold_Resonance_Oscillation"><img alt="Research paper thumbnail of Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23927837/Contribution_of_NaP_Channels_to_the_Property_of_Subthreshold_Resonance_Oscillation">Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/TatsuoKitajima">Tatsuo Kitajima</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/ShahrumBinAbdullah">Shahrum Bin Abdullah</a></span></div><div class="wp-workCard_item"><span>Communications in Computer and Information Science</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Subthreshold resonance oscillations are observed in many excitatory/inhibitory neurons i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Subthreshold resonance oscillations are observed in many excitatory/inhibitory neurons in our brain. Although they have been thought to play an important role in behavioral or perceptual states in animals, detail properties of these phenomena have not been clarified, yet. It is necessary to understand first these oscillatory features to clarify the contribution of these rhythmic oscillations to higher brain function, such as short-term memory, the working memory, long-term potentiation and long-term depression. Among various voltage-dependent channels thought to be involved in the generation of these oscillations, hyperpolarization-activated potassium channel (h channel) and persistent inactivating sodium channel (NaP) are considered, because these two voltage-dependent channels are closely related to the sustained oscillatory activity observed in Entorhinal cortex and other Neocortex regions. This feature article considers a compartmental neuron model with an h-channel and a NaP-channel. The NaP-channel contribution to the property of subthreshold resonance oscillation is examined by computer simulation of this neuron model.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23927837"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23927837"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23927837; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23927837]").text(description); $(".js-view-count[data-work-id=23927837]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23927837; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23927837']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23927837, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23927837]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23927837,"title":"Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation","translated_title":"","metadata":{"abstract":"ABSTRACT Subthreshold resonance oscillations are observed in many excitatory/inhibitory neurons in our brain. Although they have been thought to play an important role in behavioral or perceptual states in animals, detail properties of these phenomena have not been clarified, yet. It is necessary to understand first these oscillatory features to clarify the contribution of these rhythmic oscillations to higher brain function, such as short-term memory, the working memory, long-term potentiation and long-term depression. Among various voltage-dependent channels thought to be involved in the generation of these oscillations, hyperpolarization-activated potassium channel (h channel) and persistent inactivating sodium channel (NaP) are considered, because these two voltage-dependent channels are closely related to the sustained oscillatory activity observed in Entorhinal cortex and other Neocortex regions. This feature article considers a compartmental neuron model with an h-channel and a NaP-channel. The NaP-channel contribution to the property of subthreshold resonance oscillation is examined by computer simulation of this neuron model.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Communications in Computer and Information Science"},"translated_abstract":"ABSTRACT Subthreshold resonance oscillations are observed in many excitatory/inhibitory neurons in our brain. Although they have been thought to play an important role in behavioral or perceptual states in animals, detail properties of these phenomena have not been clarified, yet. It is necessary to understand first these oscillatory features to clarify the contribution of these rhythmic oscillations to higher brain function, such as short-term memory, the working memory, long-term potentiation and long-term depression. Among various voltage-dependent channels thought to be involved in the generation of these oscillations, hyperpolarization-activated potassium channel (h channel) and persistent inactivating sodium channel (NaP) are considered, because these two voltage-dependent channels are closely related to the sustained oscillatory activity observed in Entorhinal cortex and other Neocortex regions. This feature article considers a compartmental neuron model with an h-channel and a NaP-channel. The NaP-channel contribution to the property of subthreshold resonance oscillation is examined by computer simulation of this neuron model.","internal_url":"https://www.academia.edu/23927837/Contribution_of_NaP_Channels_to_the_Property_of_Subthreshold_Resonance_Oscillation","translated_internal_url":"","created_at":"2016-04-01T20:16:26.409-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46223781,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18272549,"work_id":23927837,"tagging_user_id":46223781,"tagged_user_id":3231063,"co_author_invite_id":null,"email":"b***g@yahoo.com","affiliation":"Universiti Teknologi Malaysia - UTM","display_order":0,"name":"Babak Ghaffari","title":"Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation"},{"id":18272551,"work_id":23927837,"tagging_user_id":46223781,"tagged_user_id":8204519,"co_author_invite_id":null,"email":"m***d@yahoo.com","affiliation":"Universiti Teknologi Malaysia - UTM","display_order":4194304,"name":"mojgan kouhnavard","title":"Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation"},{"id":18272553,"work_id":23927837,"tagging_user_id":46223781,"tagged_user_id":46241574,"co_author_invite_id":4172224,"email":"s***m@utm.my","display_order":6291456,"name":"Shahrum Bin Abdullah","title":"Contribution of NaP-Channels to the Property of Subthreshold Resonance Oscillation"}],"downloadable_attachments":[],"slug":"Contribution_of_NaP_Channels_to_the_Property_of_Subthreshold_Resonance_Oscillation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46223781,"first_name":"Tatsuo","middle_initials":"","last_name":"Kitajima","page_name":"TatsuoKitajima","domain_name":"independent","created_at":"2016-04-01T20:15:16.899-07:00","display_name":"Tatsuo Kitajima","url":"https://independent.academia.edu/TatsuoKitajima"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4953409" id="conferencepresentations"><div class="js-work-strip profile--work_container" data-work-id="23708218"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/23708218/The_Effect_of_Input_Current_on_Canard_Induced_Mixed_Mode_Oscillation_in_Layer_II_Stellate_Cell"><img alt="Research paper thumbnail of The Effect of Input Current on Canard-Induced Mixed-Mode Oscillation in Layer II Stellate Cell" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/23708218/The_Effect_of_Input_Current_on_Canard_Induced_Mixed_Mode_Oscillation_in_Layer_II_Stellate_Cell">The Effect of Input Current on Canard-Induced Mixed-Mode Oscillation in Layer II Stellate Cell</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://teknologimalaysia.academia.edu/BabakVGhaffari">Babak V.Ghaffari</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://teknologimalaysia.academia.edu/mojgankouhnavard">mojgan kouhnavard</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/TatsuoKitajima">Tatsuo Kitajima</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Stellate Cells (SCs) of layer II of medial entorhinal cortex show both subthreshold oscillations ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Stellate Cells (SCs) of layer II of medial entorhinal cortex show both subthreshold oscillations (STOs) and mixed-mode oscillations (MMOs) at theta frequencies (8-12 Hz) under increased injection of depolarizing current. The conductance-based model of fully SCs model consists of seven-dimensional nonlinear equations, which imitate many properties of the oscillatory patterns observed in experimental data. Recently, the reduced model of fully SCs model is introduced, which is three-dimensional system with a threshold and reset value for voltage. In this paper, we examine the effects of external current, Iapp, on MMOs pattern in this reduced model. Specifically, by taking advantage of canard phenomenon, we show that only the specific range of values of Iapp can generates the MMOs in this model. Our method provides a geometrical framework to predict the dynamic properties, which can be resulted in MMO patterns.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23708218"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23708218"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23708218; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23708218]").text(description); $(".js-view-count[data-work-id=23708218]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23708218; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23708218']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23708218, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23708218]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23708218,"title":"The Effect of Input Current on Canard-Induced Mixed-Mode Oscillation in Layer II Stellate Cell","translated_title":"","metadata":{"abstract":"Stellate Cells (SCs) of layer II of medial entorhinal cortex show both subthreshold oscillations (STOs) and mixed-mode oscillations (MMOs) at theta frequencies (8-12 Hz) under increased injection of depolarizing current. The conductance-based model of fully SCs model consists of seven-dimensional nonlinear equations, which imitate many properties of the oscillatory patterns observed in experimental data. Recently, the reduced model of fully SCs model is introduced, which is three-dimensional system with a threshold and reset value for voltage. In this paper, we examine the effects of external current, Iapp, on MMOs pattern in this reduced model. Specifically, by taking advantage of canard phenomenon, we show that only the specific range of values of Iapp can generates the MMOs in this model. Our method provides a geometrical framework to predict the dynamic properties, which can be resulted in MMO patterns."},"translated_abstract":"Stellate Cells (SCs) of layer II of medial entorhinal cortex show both subthreshold oscillations (STOs) and mixed-mode oscillations (MMOs) at theta frequencies (8-12 Hz) under increased injection of depolarizing current. The conductance-based model of fully SCs model consists of seven-dimensional nonlinear equations, which imitate many properties of the oscillatory patterns observed in experimental data. Recently, the reduced model of fully SCs model is introduced, which is three-dimensional system with a threshold and reset value for voltage. In this paper, we examine the effects of external current, Iapp, on MMOs pattern in this reduced model. Specifically, by taking advantage of canard phenomenon, we show that only the specific range of values of Iapp can generates the MMOs in this model. Our method provides a geometrical framework to predict the dynamic properties, which can be resulted in MMO patterns.","internal_url":"https://www.academia.edu/23708218/The_Effect_of_Input_Current_on_Canard_Induced_Mixed_Mode_Oscillation_in_Layer_II_Stellate_Cell","translated_internal_url":"","created_at":"2016-03-26T08:53:39.127-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":8193526,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[{"id":17978063,"work_id":23708218,"tagging_user_id":8193526,"tagged_user_id":8204519,"co_author_invite_id":null,"email":"m***d@yahoo.com","affiliation":"Universiti Teknologi Malaysia - UTM","display_order":0,"name":"mojgan kouhnavard","title":"The Effect of Input Current on Canard-Induced Mixed-Mode Oscillation in Layer II Stellate Cell"},{"id":17978064,"work_id":23708218,"tagging_user_id":8193526,"tagged_user_id":46223781,"co_author_invite_id":4112633,"email":"t***l@utm.my","display_order":4194304,"name":"Tatsuo Kitajima","title":"The Effect of Input Current on Canard-Induced Mixed-Mode Oscillation in Layer II Stellate Cell"}],"downloadable_attachments":[],"slug":"The_Effect_of_Input_Current_on_Canard_Induced_Mixed_Mode_Oscillation_in_Layer_II_Stellate_Cell","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":8193526,"first_name":"Babak","middle_initials":null,"last_name":"V.Ghaffari","page_name":"BabakVGhaffari","domain_name":"teknologimalaysia","created_at":"2014-01-11T02:41:59.986-08:00","display_name":"Babak V.Ghaffari","url":"https://teknologimalaysia.academia.edu/BabakVGhaffari"},"attachments":[],"research_interests":[{"id":2059474,"name":"Stellate Cells","url":"https://www.academia.edu/Documents/in/Stellate_Cells"}],"urls":[{"id":6947097,"url":"http://ieeexplore.ieee.org/xpl/login.jsp?tp=\u0026arnumber=7244842\u0026url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7244842"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 2 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "c1b44f8e2d5bad68ac53d6ab968bfa5f7d86259a9007f74bf9b95ac9405946a1", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="ksGz82Y+ZObjWk0UMD/16aFahLwl2syqptl6pl2V48Z4nydkk8FnSk7SQmv5OA2azUWnPxemYUVpow9awvQF0w==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/TatsuoKitajima" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="4CsYPkxozQYCV17pHCNzKyh/TfDs7gqYeUFGKDwtTHYKdYypuZfOqq/fUZbVJItYRGBuc96Sp3e2OzPUo0yqYw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10