CINXE.COM

Search results for: rotational bending

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rotational bending</title> <meta name="description" content="Search results for: rotational bending"> <meta name="keywords" content="rotational bending"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rotational bending" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rotational bending"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 851</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rotational bending</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> Multifunctional Bending and Straightening Machines for Shipbuilding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Yu.%20Shungin">V. Yu. Shungin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Popov"> A. V. Popov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, one of the main tasks of Russian shipbuilding yards is implementation of new technologies and replacement of main process equipment. In particular, conventional bending technologies with dies are being replaced with resource-saving methods of rotation (roller) banding. Such rolling bending is performed by multiple rolling of a plat in special bending rollers. Studies, conducted in JSC SSTC, allowed developing a theory of rotation bending, methods for calculation of process parameters, requirements to roller presses and bending accessories. This technology allows replacing old and expensive presses with new cheaper roller ones, having less power consumption and bending force. At first, roller presses were implemented in ship repair, however now they are widely employed at major shipbuilding yards. JSC SSTC develops bending technology and carries out design, manufacturing and delivery of roller presses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%2Fstraightening%20machines" title="bending/straightening machines">bending/straightening machines</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20bending" title=" rotational bending"> rotational bending</a>, <a href="https://publications.waset.org/abstracts/search?q=ship%20hull%20structures" title=" ship hull structures"> ship hull structures</a>, <a href="https://publications.waset.org/abstracts/search?q=multifunctional%20bending" title=" multifunctional bending"> multifunctional bending</a> </p> <a href="https://publications.waset.org/abstracts/6847/multifunctional-bending-and-straightening-machines-for-shipbuilding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20K.%20Chudasama">Mahesh K. Chudasama</a>, <a href="https://publications.waset.org/abstracts/search?q=Harit%20K.%20Raval"> Harit K. Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper, bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20modeling" title="analytical modeling">analytical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20frustum" title=" cone frustum"> cone frustum</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20bending" title=" dynamic bending"> dynamic bending</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20bending" title=" static bending "> static bending </a> </p> <a href="https://publications.waset.org/abstracts/27189/comparative-study-of-static-and-dynamic-bending-forces-during-3-roller-cone-frustum-bending-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> A Comparative Study of Force Prediction Models during Static Bending Stage for 3-Roller Cone Frustum Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Chudasama">Mahesh Chudasama</a>, <a href="https://publications.waset.org/abstracts/search?q=Harit%20Raval"> Harit Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conical sections and shells of metal plates manufactured by 3-roller conical bending process are widely used in the industries. The process is completed by first bending the metal plates statically and then dynamic roller bending sequentially. It is required to have an analytical model to get maximum bending force, for optimum design of the machine, for static bending stage. Analytical models assuming various stress conditions are considered and these analytical models are compared considering various parameters and reported in this paper. It is concluded from the study that for higher bottom roller inclination, the shear stress affects greatly to the static bending force whereas for lower bottom roller inclination it can be neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roller-bending" title="roller-bending">roller-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=static-bending" title=" static-bending"> static-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-conditions" title=" stress-conditions"> stress-conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical-modeling" title=" analytical-modeling"> analytical-modeling</a> </p> <a href="https://publications.waset.org/abstracts/45482/a-comparative-study-of-force-prediction-models-during-static-bending-stage-for-3-roller-cone-frustum-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aref%20Maalej">Aref Maalej</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Fakhfakh"> Marwa Fakhfakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Ben%20Amira"> Wael Ben Amira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present in this work a numerical investigation of fluid-structure interaction to study the elastic behavior of flexible rotors. The principal aim is to provide the effect of the aero/hydrodynamic parameters on the bending deformation of flexible rotors. This study is accomplished using the strong two-way fluid-structure interaction (FSI) developed by the ANSYS Workbench software. This method is used for coupling the fluid solver to the transient structural solver to study the elastic behavior of flexible rotors in water. In this study, we use a moderately flexible rotor modeled by a single blade with simplified rectangular geometry. In this work, we focus on the effect of the rotational frequency on the flapwise bending deformation. It is demonstrated that the blade deforms in the downstream direction, and the amplitude of these deformations increases with the rotational frequencies. Also, from a critical frequency, the blade begins to deform in the upstream direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20blade" title=" flexible blade"> flexible blade</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20workbench" title=" ANSYS workbench"> ANSYS workbench</a>, <a href="https://publications.waset.org/abstracts/search?q=flapwise%20deformation" title=" flapwise deformation"> flapwise deformation</a> </p> <a href="https://publications.waset.org/abstracts/169091/study-of-the-effect-of-rotation-on-the-deformation-of-a-flexible-blade-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20A.%20Alshahrani">Hassan A. Alshahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20H.%20Hojjati"> Mehdi H. Hojjati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was developed. The results from direct measurement were compared with results derived from an image-processing procedure that analyses the captured image during the vertical bending test. A numerical simulation was performed using ABAQUS to confirm the bending stiffness value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bending%20stiffness" title="Bending stiffness">Bending stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-autoclave%20prepreg" title=" out-of-autoclave prepreg"> out-of-autoclave prepreg</a>, <a href="https://publications.waset.org/abstracts/search?q=forming%20process" title=" forming process"> forming process</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation." title=" numerical simulation."> numerical simulation.</a> </p> <a href="https://publications.waset.org/abstracts/44861/out-of-plane-bending-properties-of-out-of-autoclave-thermosetting-prepregs-during-forming-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> Theoretical and Experimental Bending Properties of Composite Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maja%20Stefanovska">Maja Stefanovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Risteska"> Svetlana Risteska</a>, <a href="https://publications.waset.org/abstracts/search?q=Blagoja%20Samakoski"> Blagoja Samakoski</a>, <a href="https://publications.waset.org/abstracts/search?q=Gari%20Maneski"> Gari Maneski</a>, <a href="https://publications.waset.org/abstracts/search?q=Biljana%20Kostadinoska"> Biljana Kostadinoska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim of this work is to determine the theoretical and experimental properties of filament wound glass fiber/epoxy resin composite pipes with different winding design subjected under bending. For determination of bending strength of composite samples three point bending tests were conducted according to ASTM D790 standard. Good correlation between theoretical and experimental results has been obtained, where sample No4 has shown the highest value of bending strength. All samples have demonstrated matrix cracking and fiber failure followed by layers delamination during testing. Also, it was found that smaller winding angles lead to an increase in bending stress. From presented results good merger between glass fibers and epoxy resin was confirmed by SEM analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20properties" title="bending properties">bending properties</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20pipe" title=" composite pipe"> composite pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=winding%20design" title=" winding design"> winding design</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/29344/theoretical-and-experimental-bending-properties-of-composite-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Abnormal Features of Two Quasiparticle Rotational Bands in Rare Earths</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kawalpreet%20Kalra">Kawalpreet Kalra</a>, <a href="https://publications.waset.org/abstracts/search?q=Alpana%20Goel"> Alpana Goel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behaviour of the rotational bands should be smooth but due to large amount of inertia and decreased pairing it is not so. Many experiments have been done in the last few decades, and a large amount of data is available for comprehensive study in this region. Peculiar features like signature dependence, signature inversion, and signature reversal are observed in many two quasiparticle rotational bands of doubly odd and doubly even nuclei. At high rotational frequencies, signature and parity are the only two good quantum numbers available to label a state. Signature quantum number is denoted by 伪. Even-angular momentum states of a rotational band have 伪 =0, and the odd-angular momentum states have 伪 =1. It has been observed that the odd-spin members lie lower in energy up to a certain spin Ic; the normal signature dependence is restored afterwards. This anomalous feature is termed as signature inversion. The systematic of signature inversion in high-j orbitals for doubly odd rare earth nuclei have been done. Many unusual features like signature dependence, signature inversion and signature reversal are observed in rotational bands of even-even/odd-odd nuclei. Attempts have been made to understand these phenomena using several models. These features have been analyzed within the framework of the Two Quasiparticle Plus Rotor Model (TQPRM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotational%20bands" title="rotational bands">rotational bands</a>, <a href="https://publications.waset.org/abstracts/search?q=signature%20dependence" title=" signature dependence"> signature dependence</a>, <a href="https://publications.waset.org/abstracts/search?q=signature%20quantum%20number" title=" signature quantum number"> signature quantum number</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20quasiparticle" title=" two quasiparticle"> two quasiparticle</a> </p> <a href="https://publications.waset.org/abstracts/84944/abnormal-features-of-two-quasiparticle-rotational-bands-in-rare-earths" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> Bending Effect on POF Splitter Performance for Different Thickness of Fiber Cores</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Supian">L. S. Supian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Syuhaimi%20Ab-Rahman"> Mohd Syuhaimi Ab-Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhana%20Arsad"> Norhana Arsad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental study has been done to study the performance on polymer optical fiber splitter characterization when different bending radii are applied on splitters with different fiber cores. The splitters with different cores pair are attached successively to splitter platform of ellipse-shape geometrical blocks of several bending radii. A force is exerted upon the blocks thus the splitter in order to encourage the splitting of energy between the two fibers. The aim of this study is to investigate which fiber core pair gives the optimum performance that goes with each bending radius in order to develop an effective splitter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=splitter" title="splitter">splitter</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-bending" title=" macro-bending"> macro-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=cores" title=" cores"> cores</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20blocks" title=" geometrical blocks"> geometrical blocks</a> </p> <a href="https://publications.waset.org/abstracts/13489/bending-effect-on-pof-splitter-performance-for-different-thickness-of-fiber-cores" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">672</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">843</span> Study on Bending Characteristics of Square Tube Using Energy Absorption Part</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama">Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Zefry%20Darmawan"> Zefry Darmawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the square tube subjected to the bending load, the rigidity of the entire square tube is reduced when a collapse occurs due to local stress concentration. Therefore, in this research, the influence of bending load on the square tube with attached energy absorbing part was examined and reported. The analysis was conducted by using Finite Element Method (FEM) to produced bending deflection and buckling points. Energy absorption was compared from rigidity of attached part and square tube body. Buckling point was influenced by the rigidity of attached part and the thickness rate of square tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20absorber" title="energy absorber">energy absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20tube" title=" square tube"> square tube</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=rigidity" title=" rigidity"> rigidity</a> </p> <a href="https://publications.waset.org/abstracts/64216/study-on-bending-characteristics-of-square-tube-using-energy-absorption-part" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">842</span> Bending Moment of Flexible Batter Pile in Sands under Horizontal Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabian%20J.%20Manoppo">Fabian J. Manoppo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dody%20M.%20J.%20Sumayouw"> Dody M. J. Sumayouw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bending moment of a single free head model flexible batter piles in sand under horizontal loads is investigated. The theoretical estimate of the magnitude maximum bending moment for the piles was considering a vertical rigid pile under an inclined load and using semi-empirical relations. The length of the equivalent rigid pile was based on the relative stiffness factor of the pile. Model tests were carried out using instrumented piles of wide-ranging flexibilities. The piles were buried in loose sand at batter angles of 尾=卤150, 尾=卤300 and were applied to incrementally increasing lateral loads. The pile capacities and the variation of bending moment along the pile shaft were measured. The new coefficient of 0.5 was proposed to estimate the bending moment of a flexible batter pile in the sand under horizontal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batter%20pile" title="batter pile">batter pile</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title=" bending moment"> bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20loads" title=" horizontal loads"> horizontal loads</a> </p> <a href="https://publications.waset.org/abstracts/190372/bending-moment-of-flexible-batter-pile-in-sands-under-horizontal-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">841</span> Effect of Short Chain Alcohols on Bending Rigidity of Lipid Bilayer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buti%20Suryabrahmam">Buti Suryabrahmam</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Raghunathan"> V. A. Raghunathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the effect of short chain alcohols on mechanical properties of saturated lipid bilayers in the fluid phase. The Bending rigidity of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane was measured at 28 掳C by employing Vesicle Fluctuation Analysis technique. The concentration and chain length (n) of alcohol in the buffer solution were varied from 0 to 1.5 M and from 2 to 8 respectively. We observed a non-linear reduction in the bending rigidity from ~17脳10鈦宦测伆 J to ~10脳10鈦宦测伆 J, for all chain lengths of alcohols used in our experiment. We observed approximately three orders of the concentration difference between ethanol and octanol, to show the similar reduction in the bending values. We attribute this phenomenon to thinning of the bilayer due to the adsorption of alcohols at the bilayer-water interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alcohols" title="alcohols">alcohols</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20rigidity" title=" bending rigidity"> bending rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=DMPC" title=" DMPC"> DMPC</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20bilayers" title=" lipid bilayers"> lipid bilayers</a> </p> <a href="https://publications.waset.org/abstracts/100295/effect-of-short-chain-alcohols-on-bending-rigidity-of-lipid-bilayer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">840</span> Association of Laterality and Sports Specific Rotational Preference with Number of Injuries in Artistic Gymnasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teja%20Joshi">Teja Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laterality has shown to play a role in performance as well as injuries especially in unilateral sports disciplines. Uniquely, Artistic Gymnastics involves combination of unilateral, bilateral and complex multi-planer elements as well as gymnastics specific rotational preference. Therefore, this study was conducted to explore if any such preferences are associated with number of injuries in artistic gymnasts. To explore the association between lateral preferences, rotational preferences and injuries incidence in artistic gymnastics. Artistic gymnasts above 16 years of age, were invited to participate in an online survey. The survey included consent, lateral preference inventory, injury data collection according to anatomical locations and rotational preference for selected gymnastics elements performed on the floor exercise. SPSS version 24 was used to analyse Non-parametric data using Kruskal-Wallis (K- independent test) test. Multiple regression was performed to identify the predictor for injuries and their side in gymnasts. Total number of injuries per gymnast was associated with handedness (p value-0.049) and no significant association was noted for footdness (p value-0.207), eyedness (p value-0.491) and eardness (p value-0.798). Additionally, rotational preferences did not influence number of injuries (p value-0.521). In multiple regression, eyedness was identified as a predicting factor to determine the number of injuries. Rotational preferences were neither determined as a national strategy nor a product of lateral preference. Dominant hand had higher number of injuries in artistic gymnasts. Rotational preference is independent of laterality, number of injuries and nationality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sports%20injury" title="sports injury">sports injury</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20preference" title=" rotational preference"> rotational preference</a>, <a href="https://publications.waset.org/abstracts/search?q=gymnastics" title=" gymnastics"> gymnastics</a>, <a href="https://publications.waset.org/abstracts/search?q=handedness" title=" handedness"> handedness</a> </p> <a href="https://publications.waset.org/abstracts/153281/association-of-laterality-and-sports-specific-rotational-preference-with-number-of-injuries-in-artistic-gymnasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> Polarization Dependent Flexible GaN Film Nanogenerators and Electroluminescence Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Min%20Baik">Jeong Min Baik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present that the electroluminescence (EL) properties and electrical output power of flexible N-face p-type GaN thin films can be tuned by strain-induced piezo-potential generated across the metal-semiconductor-metal structures. Under different staining conditions (convex and concave bending modes), the transport properties of the GaN films can be changed due to the spontaneous polarization of the films. The I-V characteristics with the bending modes show that the convex bending can increase the current across the films by the decrease in the barrier height at the metal-semiconductor contact, increasing the EL intensity of the P-N junction. At convex bending, it is also shown that the flexible p-type GaN films can generate an output voltage of up to 1.0 V, while at concave bending, 0.4 V. The change of the band bending with the crystal polarity of GaN films was investigated using high-resolution photoemission spectroscopy. This study has great significance on the practical applications of GaN in optoelectronic devices and nanogenerators under a working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN" title="GaN">GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible" title=" flexible"> flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20lift-off" title=" laser lift-off"> laser lift-off</a>, <a href="https://publications.waset.org/abstracts/search?q=nanogenerator" title=" nanogenerator"> nanogenerator</a> </p> <a href="https://publications.waset.org/abstracts/13583/polarization-dependent-flexible-gan-film-nanogenerators-and-electroluminescence-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> Comparison between Torsional Ultrasonic Assisted Drilling and Conventional Drilling of Bone: An in vitro Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikoo%20Soleimani">Nikoo Soleimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Reducing torque during bone drilling is one of the effective factors in reaching to an optimal drilling process. Methods: 15 bovine femurs were drilled in vitro with a drill bit with a diameter of 4 mm using two methods of torsional ultrasonic assisted drilling (T-UAD) and convent conventional drilling (CD) and the effects of changing the feed rate and rotational speed on the torque were compared in both methods. Results: There was no significant difference in the thrust force measured in both methods due to the direction of vibrations. Results showed that using T-UAD method for bone drilling at feed rates of 0.16, 0.24 and 0.32 mm/rev led for all rotational speeds to a decrease of at least 16.3% in torque compared to the CD method. Further, using T-UAD at rotational speeds of 355~1000 rpm with various feed rates resulted in a torque reduction of 16.3~50.5% compared to CD method. Conclusions: Reducing the feed rate and increasing the rotational speed, except for the rotational speed of 500 rpm and a feed rate of 0.32 mm/rev, resulted generally in torque reduction in both methods. However, T-UAD is a more effective and desirable option for bone drilling considering its significant torque reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torsional%20ultrasonic%20assisted%20drilling" title="torsional ultrasonic assisted drilling">torsional ultrasonic assisted drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20drilling" title=" bone drilling"> bone drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed" title=" rotational speed"> rotational speed</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20rate" title=" feed rate"> feed rate</a> </p> <a href="https://publications.waset.org/abstracts/99313/comparison-between-torsional-ultrasonic-assisted-drilling-and-conventional-drilling-of-bone-an-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> In-situ Observations Using SEM-EBSD for Bending Deformation in Single-Crystal Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuko%20Matayoshi">Yuko Matayoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Sakai"> Takashi Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin-Gjum%20Jin"> Yin-Gjum Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-ichi%20Koyama"> Jun-ichi Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To elucidate the material characteristics of single crystals of pure aluminum and copper, the respective relations between crystallographic orientations and micro structures were examined, along with bending and mechanical properties. The texture distribution was also analysed. Bending tests were performed in a SEM apparatus while its behaviors were observed. Some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from electron back scatter diffraction (EBSD) analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pure%20aluminum" title="pure aluminum">pure aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20copper" title=" pure copper"> pure copper</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20crystal" title=" single crystal"> single crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM-EBSD%20analysis" title=" SEM-EBSD analysis"> SEM-EBSD analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/16499/in-situ-observations-using-sem-ebsd-for-bending-deformation-in-single-crystal-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Bending Test Characteristics for Splicing of Thermoplastic Polymer Using Hot Gas Welding </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prantasi%20Harmi%20%20Tjahjanti">Prantasi Harmi Tjahjanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Iswanto%20Iswanto"> Iswanto Iswanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Edi%20%20Widodo"> Edi Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sholeh%20%20Pamuji"> Sholeh Pamuji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Materials of the thermoplastic polymer when they break is usually thrown away, or is recycled which requires a long process. The purpose of this study is to splice the broken thermoplastic polymer using hot gas welding with different variations of welding wire/electrodes. Materials of thermoplastic polymer used are Polyethylene (PE), Polypropylene (PP), and Polyvinyl chloride (PVC) by using welding wire like the three materials. The method is carried out by using hot gas welding; there are two materials that cannot be connected, namely PE with PVC welding wire, and PP with PVC welding wire. The permeable liquid penetrant test is PP with PE welding wire, and PVC with PE welding wire. The best bending test result with the longest elongation is PE with PE welding wire with a bending test value of 179.03 kgf/mm虏. The microstructure was all described in Scanning Electron Microscopy (SEM) observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers" title="thermoplastic polymers">thermoplastic polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20%28PE%29" title=" polyethylene (PE)"> polyethylene (PE)</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20%28PP%29" title=" polypropylene (PP)"> polypropylene (PP)</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20chloride%20%28PVC%29" title=" polyvinyl chloride (PVC)"> polyvinyl chloride (PVC)</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20gas%20welding" title=" hot gas welding"> hot gas welding</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a> </p> <a href="https://publications.waset.org/abstracts/136833/bending-test-characteristics-for-splicing-of-thermoplastic-polymer-using-hot-gas-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> Temperature Measurements of Corona Discharge in the SF6-N2 Gas Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Lemzadmi">A. Lemzadmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotational and vibrational temperatures of the SF6-N2 gas mixture are spectroscopically measured over a pressure range of 2-14 bars. The spectra obtained of the light emission of the corona discharge were recorded with different values of pressure, voltage and current together with the variation of the position of the tip electrode. The emission of N2 is very dominant for different gas concentration and the second positive system 2S+ is the most important. The convolution method is used for the determination of the temperature. The Rotational temperature measurements of the plasma reveal gas temperatures in the range of 450-650掳K and vibrational temperatures in the range of 1800-2200掳K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotational%20temperatures" title="rotational temperatures">rotational temperatures</a>, <a href="https://publications.waset.org/abstracts/search?q=corona%20discharges" title=" corona discharges"> corona discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=SF6-N2%20gas%20mixture" title=" SF6-N2 gas mixture"> SF6-N2 gas mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20temperatures" title=" vibrational temperatures"> vibrational temperatures</a> </p> <a href="https://publications.waset.org/abstracts/33622/temperature-measurements-of-corona-discharge-in-the-sf6-n2-gas-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Translational and Rotational Effect of Earthquake Ground Motion on a Bridge Substructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tauhidur%20Rahman">Tauhidur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gitartha%20Kalita"> Gitartha Kalita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study a four span box girder bridge is considered and effect of the rotational and translational earthquake ground motion have been thoroughly investigated. This study is motivated by the fact that in many countries the translational and rotational components of earthquake ground motion, especially rocking, is not adequately considered in analysing the overall response of the structures subjected to earthquake ground excitations. Much consideration is given to only the horizontal components of the earthquake ground motion during the response analysis of structures. In the present research work, P waves, SV waves and Rayleigh wave excitations are considered for different angle of incidence. In the present paper, the four span bridge is model considering the effects of vertical and rocking components of P, SV and Rayleigh wave excitations. Ground responses namely displacement, velocity and acceleration of the substructures of the bridge have been considered for rotational and translational effects in addition to the horizontal ground motion due to earthquake and wind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title="ground motion">ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20effects" title=" rotational effects"> rotational effects</a>, <a href="https://publications.waset.org/abstracts/search?q=translational%20effects" title=" translational effects"> translational effects</a> </p> <a href="https://publications.waset.org/abstracts/26464/translational-and-rotational-effect-of-earthquake-ground-motion-on-a-bridge-substructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hau-Wei%20Lee">Hau-Wei Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Liu"> Yu-Chi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hung%20Liu"> Chien-Hung Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within 卤1 飦璵 and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 飦璵. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20lens" title="ball lens">ball lens</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrant%20detector" title=" quadrant detector"> quadrant detector</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20error" title=" axial error"> axial error</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20error" title=" radial error"> radial error</a> </p> <a href="https://publications.waset.org/abstracts/26125/a-mathematical-model-for-3-dof-rotary-accuracy-measurement-method-based-on-a-ball-lens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Comparative Assessment of MRR, TWR, and Surface Integrity in Rotary and Stationary Tool EDM for Machining AISI D3 Tool Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20Prakash%20Dwivedi">Anand Prakash Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sounak%20Kumar%20Choudhury"> Sounak Kumar Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric Discharge Machining (EDM) is a well-established and one of the most primitive unconventional manufacturing processes, that is used world-wide for the machining of geometrically complex or hard and electrically conductive materials which are extremely difficult to cut by any other conventional machining process. One of the major flaws, over all its advantages, is its very slow Material Removal Rate (MRR). In order to eradicate this slow machining rate, various researchers have proposed various methods like; providing rotational motion to the tool or work-piece or to both, mixing of conducting additives (such as SiC, Cr, Al, graphite etc) powders in the dielectric, providing vibrations to the tool or work-piece or to both etc. Present work is a comparative study of Rotational and Stationary Tool EDM, which deals with providing rotational motion to the copper tool for the machining of AISI D3 Tool Steel and the results have been compared with stationary tool EDM. It has been found that the tool rotation substantially increases the MRR up to 28%. The average surface finish increases around 9-10% by using the rotational tool EDM. The average tool wear increment is observed to be around 19% due to the tool rotation. Apart from this, the present work also focusses on the recast layer analysis, which are being re-deposited on the work-piece surface during the operation. The recast layer thickness is less in case of Rotational EDM and more for Stationary Tool EDM. Moreover, the cracking on the re-casted surface is also more for stationary tool EDM as compared with the rotational EDM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EDM" title="EDM">EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=MRR" title=" MRR"> MRR</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra" title=" Ra"> Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=TWR" title=" TWR"> TWR</a> </p> <a href="https://publications.waset.org/abstracts/26356/comparative-assessment-of-mrr-twr-and-surface-integrity-in-rotary-and-stationary-tool-edm-for-machining-aisi-d3-tool-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Minapoor">Sh. Minapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ajeli"> S. Ajeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave&#39;s parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-crimp%203D%20orthogonal%20weave" title="non-crimp 3D orthogonal weave">non-crimp 3D orthogonal weave</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20composite%20reinforcement" title=" carbon composite reinforcement"> carbon composite reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20behavior" title=" flexural behavior"> flexural behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20bending" title=" three-point bending"> three-point bending</a> </p> <a href="https://publications.waset.org/abstracts/50505/investigation-on-flexural-behavior-of-non-crimp-3d-orthogonal-weave-carbon-composite-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Evaluation of Flange Bending Capacity near Member End Using a Finite Element Analysis Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alicia%20Kamischke">Alicia Kamischke</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhail%20Elhouar"> Souhail Elhouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Khodair"> Yasser Khodair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The American Institute of Steel Construction (AISC) Specification (360-10) provides equations for calculating the capacity of a W-shaped steel member to resist concentrated forces applied to its flange. In the case of flange local bending, the capacity equations were primarily formulated for an interior point along the member, which is defined to be at a distance larger than ten flange thicknesses away from the member鈥檚 end. When a concentrated load is applied within ten flange thicknesses from the member鈥檚 end, AISC requires a fifty percent reduction to be applied to the flange bending capacity. This reduction, however, is not supported by any research. In this study, finite element modeling is used to investigate the actual reduction in capacity near the end of such a steel member. The results indicate that the AISC equation for flange local bending is quite conservative for forces applied at less than ten flange thicknesses from the member鈥檚 end and a new equation is suggested for the evaluation of available flange local bending capacity within that distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flange%20local%20bending" title="flange local bending">flange local bending</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrated%20forces" title=" concentrated forces"> concentrated forces</a>, <a href="https://publications.waset.org/abstracts/search?q=column" title=" column"> column</a>, <a href="https://publications.waset.org/abstracts/search?q=flange%20capacity" title=" flange capacity"> flange capacity</a> </p> <a href="https://publications.waset.org/abstracts/22697/evaluation-of-flange-bending-capacity-near-member-end-using-a-finite-element-analysis-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">687</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> On the Efficiency of a Double-Cone Gravitational Motor and Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a>, <a href="https://publications.waset.org/abstracts/search?q=Akio%20Miyamura"> Akio Miyamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called <em>translational efficiency</em> and <em>rotational efficiency</em>, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitational%20motor%20and%20generator" title=" gravitational motor and generator"> gravitational motor and generator</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20and%20sliding" title=" rolling and sliding"> rolling and sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=truncated%20double-cone" title=" truncated double-cone"> truncated double-cone</a> </p> <a href="https://publications.waset.org/abstracts/80923/on-the-efficiency-of-a-double-cone-gravitational-motor-and-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Vahedi%20Torshizi">Mohammad Vahedi Torshizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20stress" title="bending stress">bending stress</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=plantary" title=" plantary"> plantary</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20equations" title=" mathematical equations"> mathematical equations</a> </p> <a href="https://publications.waset.org/abstracts/58238/checking-planetary-clutch-on-the-romania-tractor-using-mathematical-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hassani">M. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hassani"> Y. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ajudanioskooei"> N. Ajudanioskooei</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Benvid"> N. N. Benvid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20angle" title=" bending angle"> bending angle</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20forming" title=" laser forming"> laser forming</a> </p> <a href="https://publications.waset.org/abstracts/34045/comparative-study-of-bending-angle-in-laser-forming-process-using-artificial-neural-network-and-fuzzy-logic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Investigation of Neutral Axis Shifting and Wall Thickness Distribution of Bent Tubes Produced by Rotary Draw Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Engel">Bernd Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Raheem%20Hassan"> Hassan Raheem Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotary draw bending is a method used for tube forming. During the tube bending process, the neutral axis moves towards the inner arc and the wall thickness changes in the cross section of the tube. Wall thinning of the tube takes place at the extrados, whereas wall thickening of the tube occurs at the intrados. This paper investigates the tube bending with rotary draw bending process using thick-walled tubes and different material properties (16Mo3 and 10CrMo9-10). The experimental tests and finite element simulations are used to calculate the variable characteristics (wall thickness distribution, neutral axis shifting and longitudinal strain distribution). These results are compared with results of a plasto-mechanical model. Moreover, the cross section distortion is investigated in this study. This study helped to get bends with smaller wall factor for different material properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotary%20draw%20bending" title="rotary draw bending">rotary draw bending</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20wall%20tube" title=" thick wall tube"> thick wall tube</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20properties" title=" material properties"> material properties</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20influence" title=" material influence "> material influence </a> </p> <a href="https://publications.waset.org/abstracts/35913/investigation-of-neutral-axis-shifting-and-wall-thickness-distribution-of-bent-tubes-produced-by-rotary-draw-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> Effect of Aluminium Content on Bending Properties and Microstructure of Al鈧揅oCrFeNi Alloy Fabricated by Induction Melting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzena%20Tokarewicz">Marzena Tokarewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Gradzka-Dahlke"> Malgorzata Gradzka-Dahlke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-entropy alloys (HEAs) have gained significant attention due to their great potential as functional and structural materials. HEAs have very good mechanical properties (in particular, alloys based on CoCrNi). They also show the ability to maintain their strength at high temperatures, which is extremely important in some applications. AlCoCrFeNi alloy is one of the most studied high-entropy alloys. Scientists often study the effect of changing the aluminum content in this alloy because it causes significant changes in phase presence and microstructure and consequently affects its hardness, ductility, and other properties. Research conducted by the authors also investigates the effect of aluminium content in Al鈧揅oCrFeNi alloy on its microstructure and mechanical properties. Al鈧揅oCrFeNi alloys were prepared by vacuum induction melting. The obtained samples were examined for chemical composition, microstructure, and microhardness. The three-point bending method was carried out to determine the bending strength, bending modulus, and conventional bending yield strength. The obtained results confirm the influence of aluminum content on the properties of Al鈧揅oCrFeNi alloy. Most studies on Al鈧揅oCrFeNi alloy focus on the determination of mechanical properties in compression or tension, much less in bending. The achieved results provide valuable information on the bending properties of Al鈧揅oCrFeNi alloy and lead to interesting conclusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20properties" title="bending properties">bending properties</a>, <a href="https://publications.waset.org/abstracts/search?q=high-entropy%20alloys" title=" high-entropy alloys"> high-entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20melting" title=" induction melting"> induction melting</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/137068/effect-of-aluminium-content-on-bending-properties-and-microstructure-of-alcocrfeni-alloy-fabricated-by-induction-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Engel">B. Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hassan"> H. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube鈥檚 cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf=bending radius/ diameter of the tube), wall thickness (Wf=diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotary%20draw%20bending" title="rotary draw bending">rotary draw bending</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20properties" title=" material properties"> material properties</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20axis%20shifting" title=" neutral axis shifting"> neutral axis shifting</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20thickness%20distribution" title=" wall thickness distribution"> wall thickness distribution</a> </p> <a href="https://publications.waset.org/abstracts/18270/advanced-model-for-calculation-of-the-neutral-axis-shifting-and-the-wall-thickness-distribution-in-rotary-draw-bending-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Effect of Friction Pressure on the Properties of Friction Welded Aluminum鈥揅eramic Dissimilar Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fares%20Khalfallah">Fares Khalfallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Boumerzoug"> Zakaria Boumerzoug</a>, <a href="https://publications.waset.org/abstracts/search?q=Selvarajan%20Rajakumar"> Selvarajan Rajakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Elhadj%20Raouache"> Elhadj Raouache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welding%20of%20ceramic%20to%20aluminum" title="welding of ceramic to aluminum">welding of ceramic to aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20welding" title=" friction welding"> friction welding</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina" title=" alumina"> alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=AA1100%20aluminum%20alloy" title=" AA1100 aluminum alloy"> AA1100 aluminum alloy</a> </p> <a href="https://publications.waset.org/abstracts/88398/effect-of-friction-pressure-on-the-properties-of-friction-welded-aluminum-ceramic-dissimilar-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Docking Studie of Biologically Active Molecules: Exploring Medical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihame%20Amakrane">Sihame Amakrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Ouahdi"> Zineb Ouahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Salah"> Mohammed Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Belaaouad"> Said Belaaouad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> \This research explores the efficacy of novel pyrimidine derivatives on bacterial strains such as Escherichia coli, Staphylococcus aureus, and Myccobacterium tuberculosis, utilizing bending energy calculations. Of the 25 compounds examined, 13 displayed potent activity against all the bacterial strains under study, exhibiting bending energy measurements between -7.4 and -10.7 kcal/mol. The -7.4 kcal/mol value corresponds to the bending energy of the SA12 and SA13 compounds with the 2xct protein (Staphylococcus aureus), whereas the -10.7 kcal/molis linked with the bending energy of SA6 and SA11 compounds with the 6GAV protein (Myccobacterium tuberculosis). Further research will involve a QSAR (Quantitative Structure-Activity Relationship) study aimed at constructing a reliable model to combat the aforementioned bacterial strains and a molecular dynamics study to evaluate the stability of ligand-protein complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=docking" title="docking">docking</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR" title=" QSAR"> QSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20energy" title=" bending energy"> bending energy</a>, <a href="https://publications.waset.org/abstracts/search?q=e.%20coli" title=" e. coli"> e. coli</a> </p> <a href="https://publications.waset.org/abstracts/167572/docking-studie-of-biologically-active-molecules-exploring-medical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotational%20bending&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10