CINXE.COM

Search results for: bending test

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bending test</title> <meta name="description" content="Search results for: bending test"> <meta name="keywords" content="bending test"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bending test" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bending test"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9629</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bending test</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9629</span> Bending Test Characteristics for Splicing of Thermoplastic Polymer Using Hot Gas Welding </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prantasi%20Harmi%20%20Tjahjanti">Prantasi Harmi Tjahjanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Iswanto%20Iswanto"> Iswanto Iswanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Edi%20%20Widodo"> Edi Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sholeh%20%20Pamuji"> Sholeh Pamuji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Materials of the thermoplastic polymer when they break is usually thrown away, or is recycled which requires a long process. The purpose of this study is to splice the broken thermoplastic polymer using hot gas welding with different variations of welding wire/electrodes. Materials of thermoplastic polymer used are Polyethylene (PE), Polypropylene (PP), and Polyvinyl chloride (PVC) by using welding wire like the three materials. The method is carried out by using hot gas welding; there are two materials that cannot be connected, namely PE with PVC welding wire, and PP with PVC welding wire. The permeable liquid penetrant test is PP with PE welding wire, and PVC with PE welding wire. The best bending test result with the longest elongation is PE with PE welding wire with a bending test value of 179.03 kgf/mm². The microstructure was all described in Scanning Electron Microscopy (SEM) observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers" title="thermoplastic polymers">thermoplastic polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20%28PE%29" title=" polyethylene (PE)"> polyethylene (PE)</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20%28PP%29" title=" polypropylene (PP)"> polypropylene (PP)</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20chloride%20%28PVC%29" title=" polyvinyl chloride (PVC)"> polyvinyl chloride (PVC)</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20gas%20welding" title=" hot gas welding"> hot gas welding</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a> </p> <a href="https://publications.waset.org/abstracts/136833/bending-test-characteristics-for-splicing-of-thermoplastic-polymer-using-hot-gas-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9628</span> Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20A.%20Alshahrani">Hassan A. Alshahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20H.%20Hojjati"> Mehdi H. Hojjati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was developed. The results from direct measurement were compared with results derived from an image-processing procedure that analyses the captured image during the vertical bending test. A numerical simulation was performed using ABAQUS to confirm the bending stiffness value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bending%20stiffness" title="Bending stiffness">Bending stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-autoclave%20prepreg" title=" out-of-autoclave prepreg"> out-of-autoclave prepreg</a>, <a href="https://publications.waset.org/abstracts/search?q=forming%20process" title=" forming process"> forming process</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation." title=" numerical simulation."> numerical simulation.</a> </p> <a href="https://publications.waset.org/abstracts/44861/out-of-plane-bending-properties-of-out-of-autoclave-thermosetting-prepregs-during-forming-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9627</span> Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20K.%20Chudasama">Mahesh K. Chudasama</a>, <a href="https://publications.waset.org/abstracts/search?q=Harit%20K.%20Raval"> Harit K. Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper, bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20modeling" title="analytical modeling">analytical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20frustum" title=" cone frustum"> cone frustum</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20bending" title=" dynamic bending"> dynamic bending</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20bending" title=" static bending "> static bending </a> </p> <a href="https://publications.waset.org/abstracts/27189/comparative-study-of-static-and-dynamic-bending-forces-during-3-roller-cone-frustum-bending-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9626</span> Study on 3D FE Analysis on Normal and Osteoporosis Mouse Models Based on 3-Point Bending Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tae-min%20Byun">Tae-min Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-soo%20Chon"> Chang-soo Chon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-hyun%20Seo"> Dong-hyun Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-sung%20Kim"> Han-sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Bum-mo%20Ahn"> Bum-mo Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-suk%20Yun"> Hui-suk Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheolwoong%20Ko"> Cheolwoong Ko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a 3-point bending computational analysis of normal and osteoporosis mouse models was performed based on the Micro-CT image information of the femurs. The finite element analysis (FEA) found 1.68 N (normal group) and 1.39 N (osteoporosis group) in the average maximum force, and 4.32 N/mm (normal group) and 3.56 N/mm (osteoporosis group) in the average stiffness. In the comparison of the 3-point bending test results, the maximum force and the stiffness were different about 9.4 times in the normal group and about 11.2 times in the osteoporosis group. The difference between the analysis and the test was greatly significant and this result demonstrated improvement points of the material properties applied to the computational analysis of this study. For the next study, the material properties of the mouse femur will be supplemented through additional computational analysis and test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3-point%20bending%20test" title="3-point bending test">3-point bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=mouse" title=" mouse"> mouse</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a> </p> <a href="https://publications.waset.org/abstracts/54813/study-on-3d-fe-analysis-on-normal-and-osteoporosis-mouse-models-based-on-3-point-bending-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9625</span> Multifunctional Bending and Straightening Machines for Shipbuilding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Yu.%20Shungin">V. Yu. Shungin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Popov"> A. V. Popov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, one of the main tasks of Russian shipbuilding yards is implementation of new technologies and replacement of main process equipment. In particular, conventional bending technologies with dies are being replaced with resource-saving methods of rotation (roller) banding. Such rolling bending is performed by multiple rolling of a plat in special bending rollers. Studies, conducted in JSC SSTC, allowed developing a theory of rotation bending, methods for calculation of process parameters, requirements to roller presses and bending accessories. This technology allows replacing old and expensive presses with new cheaper roller ones, having less power consumption and bending force. At first, roller presses were implemented in ship repair, however now they are widely employed at major shipbuilding yards. JSC SSTC develops bending technology and carries out design, manufacturing and delivery of roller presses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%2Fstraightening%20machines" title="bending/straightening machines">bending/straightening machines</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20bending" title=" rotational bending"> rotational bending</a>, <a href="https://publications.waset.org/abstracts/search?q=ship%20hull%20structures" title=" ship hull structures"> ship hull structures</a>, <a href="https://publications.waset.org/abstracts/search?q=multifunctional%20bending" title=" multifunctional bending"> multifunctional bending</a> </p> <a href="https://publications.waset.org/abstracts/6847/multifunctional-bending-and-straightening-machines-for-shipbuilding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9624</span> A Comparative Study of Force Prediction Models during Static Bending Stage for 3-Roller Cone Frustum Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Chudasama">Mahesh Chudasama</a>, <a href="https://publications.waset.org/abstracts/search?q=Harit%20Raval"> Harit Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conical sections and shells of metal plates manufactured by 3-roller conical bending process are widely used in the industries. The process is completed by first bending the metal plates statically and then dynamic roller bending sequentially. It is required to have an analytical model to get maximum bending force, for optimum design of the machine, for static bending stage. Analytical models assuming various stress conditions are considered and these analytical models are compared considering various parameters and reported in this paper. It is concluded from the study that for higher bottom roller inclination, the shear stress affects greatly to the static bending force whereas for lower bottom roller inclination it can be neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roller-bending" title="roller-bending">roller-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=static-bending" title=" static-bending"> static-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-conditions" title=" stress-conditions"> stress-conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical-modeling" title=" analytical-modeling"> analytical-modeling</a> </p> <a href="https://publications.waset.org/abstracts/45482/a-comparative-study-of-force-prediction-models-during-static-bending-stage-for-3-roller-cone-frustum-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9623</span> A Study on the Comparatison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Jae%20Shin">Hee Jae Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ku%20Kwac"> Lee Ku Kwac</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Pyo%20Cha"> In Pyo Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Sang%20Lee"> Min Sang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Kyung%20Yoon"> Hyun Kyung Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Gun%20Kim"> Hong Gun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In rapid industrial development has increased the demand for high-strength and lightweight materials. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order, and thickness. Thus, the hardness and strength of CFRP depend much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75°, and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75°, and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carbon%20Fiber%20Reinforced%20Plastic%20%28CFRP%29" title="Carbon Fiber Reinforced Plastic (CFRP)">Carbon Fiber Reinforced Plastic (CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20camera" title=" infrared camera"> infrared camera</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a> </p> <a href="https://publications.waset.org/abstracts/21385/a-study-on-the-comparatison-of-mechanical-and-thermal-properties-according-to-laminated-orientation-of-cfrp-through-bending-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9622</span> Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Minapoor">Sh. Minapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ajeli"> S. Ajeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave&#39;s parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-crimp%203D%20orthogonal%20weave" title="non-crimp 3D orthogonal weave">non-crimp 3D orthogonal weave</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20composite%20reinforcement" title=" carbon composite reinforcement"> carbon composite reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20behavior" title=" flexural behavior"> flexural behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20bending" title=" three-point bending"> three-point bending</a> </p> <a href="https://publications.waset.org/abstracts/50505/investigation-on-flexural-behavior-of-non-crimp-3d-orthogonal-weave-carbon-composite-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9621</span> Review for Mechanical Tests of Corner Joints on Wooden Windows and Effects to the Stiffness </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milan%20Podlena">Milan Podlena</a>, <a href="https://publications.waset.org/abstracts/search?q=Stepan%20Hysek"> Stepan Hysek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20%20Prochazka"> Jiri Prochazka</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Bohm"> Martin Bohm</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Bomba"> Jan Bomba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corner joints are the weakest part of windows, where the members are connected together. Since the dimensions of the windows started become bigger, the strength requirements for corner joints started to increase as well. Therefore, the aim of this study was to test the samples of corner joints of wooden windows. Moisture content of test specimens was stabilized in the climate chamber. After conditioning, test specimens were loaded in the laboratory conditions onto an universal testing machine and the failure load was measured. Data was recalculated by using goniometric, bending moment and stiffness equation to the stiffness coefficients and the bending moments were investigated. The results showed difference that was observed for the mortise with tenon joint and the dowel joint. This difference was explained by a varied adhesive bond area, which is related to the dimensions of dowels (diameter and length) as well. The bending moments and stiffness ware (except of type of corner joint) also affected by type of used adhesive, type of dowels and wood species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corner%20joint" title="corner joint">corner joint</a>, <a href="https://publications.waset.org/abstracts/search?q=wooden%20window" title=" wooden window"> wooden window</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title=" bending moment"> bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/82921/review-for-mechanical-tests-of-corner-joints-on-wooden-windows-and-effects-to-the-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9620</span> Comparative Study of Concrete Filled Steel I-Girder Bridge with Conventional Type of Bridge </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waheed%20Ahmad%20Safi">Waheed Ahmad Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunichi%20Nakamura"> Shunichi Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Habib%20Ghaforzai"> Abdul Habib Ghaforzai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel and concrete composite bridge with concrete filled steel I-girder (CFIG) was proposed and FEM and laboratory tests were conducted to analysis bending and shear behavior. The proposed form of structural steel I-section is mainly used at the intermediate support zone by placing infilled concrete into the top and bottom flanges of steel I-section to resist negative bending moment. The bending and shear tests were carried out to find out the significance of CFIG section. The result for test showing that the bending and shear capacity of proposed CFIG is at least 3 times and 2 times greater than conventional steel I-section (IG) respectively. Finite element study was also carried out to ensure the result for laboratory tests due to bending and shear behavior and load transfer behavior of proposed structural form. Finite element result result agreed the test result. A design example was carried out for a four-span continuous highway bridge and design method was established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20strength" title="bending strength">bending strength</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20filled%20steel%20I-girder" title=" concrete filled steel I-girder"> concrete filled steel I-girder</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20I-girder" title=" steel I-girder"> steel I-girder</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20states%20design%20and%20shear%20strength" title=" limit states design and shear strength"> limit states design and shear strength</a> </p> <a href="https://publications.waset.org/abstracts/109262/comparative-study-of-concrete-filled-steel-i-girder-bridge-with-conventional-type-of-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9619</span> Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface Under Three-Point Bending Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Al%20Dandachli">S. Al Dandachli</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Perales"> F. Perales</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Monerie"> Y. Monerie</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Jamin"> F. Jamin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20El%20Youssoufi"> M. S. El Youssoufi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Pelissou"> C. Pelissou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20paste" title="cement paste">cement paste</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20flexural%20test%20bending" title=" three-point flexural test bending"> three-point flexural test bending</a> </p> <a href="https://publications.waset.org/abstracts/152427/numerical-and-experimental-investigation-of-mixed-mode-fracture-of-cement-paste-and-interface-under-three-point-bending-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9618</span> FEM and Experimental Studies on the Filled Steel I-Girder Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waheed%20Ahmad%20Safi">Waheed Ahmad Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunichi%20Nakamura"> Shunichi Nakamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel/concrete composite bridge with the concrete filled steel I-girder (CFIG) was proposed, and the bending and shear strength was studied by experiments and FEM analysis. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used at the intermediate support of a continuous girder. The bending and shear tests of the CFIG were carried out, showing that the bending strength of CFIG was 2.8 times of the conventional steel I-girder and the shear strength was 3.0 times of the steel I-girder. Finite element models were established to clarify bending and shear behaviors and the load transfer mechanism of CFIG. FEM result agreed very well with the test results. The FEM model was also applied to simulate the shear tests of the CFIG specimens. A trail design was carried out for a four-span continuous highway bridge and the design method was established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20strength" title="bending strength">bending strength</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20filled%20steel%20I-girder" title=" concrete filled steel I-girder"> concrete filled steel I-girder</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20I-girder" title=" steel I-girder"> steel I-girder</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20states%20design%20and%20shear%20strength" title=" limit states design and shear strength"> limit states design and shear strength</a> </p> <a href="https://publications.waset.org/abstracts/76921/fem-and-experimental-studies-on-the-filled-steel-i-girder-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9617</span> Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Engel">B. Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hassan"> H. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf=bending radius/ diameter of the tube), wall thickness (Wf=diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotary%20draw%20bending" title="rotary draw bending">rotary draw bending</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20properties" title=" material properties"> material properties</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20axis%20shifting" title=" neutral axis shifting"> neutral axis shifting</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20thickness%20distribution" title=" wall thickness distribution"> wall thickness distribution</a> </p> <a href="https://publications.waset.org/abstracts/18270/advanced-model-for-calculation-of-the-neutral-axis-shifting-and-the-wall-thickness-distribution-in-rotary-draw-bending-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9616</span> Theoretical and Experimental Bending Properties of Composite Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maja%20Stefanovska">Maja Stefanovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Risteska"> Svetlana Risteska</a>, <a href="https://publications.waset.org/abstracts/search?q=Blagoja%20Samakoski"> Blagoja Samakoski</a>, <a href="https://publications.waset.org/abstracts/search?q=Gari%20Maneski"> Gari Maneski</a>, <a href="https://publications.waset.org/abstracts/search?q=Biljana%20Kostadinoska"> Biljana Kostadinoska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim of this work is to determine the theoretical and experimental properties of filament wound glass fiber/epoxy resin composite pipes with different winding design subjected under bending. For determination of bending strength of composite samples three point bending tests were conducted according to ASTM D790 standard. Good correlation between theoretical and experimental results has been obtained, where sample No4 has shown the highest value of bending strength. All samples have demonstrated matrix cracking and fiber failure followed by layers delamination during testing. Also, it was found that smaller winding angles lead to an increase in bending stress. From presented results good merger between glass fibers and epoxy resin was confirmed by SEM analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20properties" title="bending properties">bending properties</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20pipe" title=" composite pipe"> composite pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=winding%20design" title=" winding design"> winding design</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/29344/theoretical-and-experimental-bending-properties-of-composite-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9615</span> Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Engel">Bernd Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Salman%20Hassan%20Al-Maeeni"> Sara Salman Hassan Al-Maeeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deflection" title="deflection">deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analysis" title=" FE analysis"> FE analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft" title=" shaft"> shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20bending" title=" three-point bending"> three-point bending</a> </p> <a href="https://publications.waset.org/abstracts/92854/experimental-and-numerical-evaluation-of-a-shaft-failure-behaviour-using-three-point-bending-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9614</span> Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Yong%20Kang">Hee Yong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20Ho%20Shin"> Hyeon Ho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Cheol%20Yoo"> Jung Cheol Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Taek%20Lee"> Il Taek Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Mo%20Yang"> Sung Mo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seat%20back%20frame" title="seat back frame">seat back frame</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20and%20torsional%20strength" title=" bending and torsional strength"> bending and torsional strength</a>, <a href="https://publications.waset.org/abstracts/search?q=BMC%20%28Bulk%20Molding%20Compound%29" title=" BMC (Bulk Molding Compound)"> BMC (Bulk Molding Compound)</a>, <a href="https://publications.waset.org/abstracts/search?q=FMVSS%20207%20seating%20systems" title=" FMVSS 207 seating systems"> FMVSS 207 seating systems</a> </p> <a href="https://publications.waset.org/abstracts/92200/experimental-study-on-bending-and-torsional-strength-of-bulk-molding-compound-seat-back-frame-part" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9613</span> Bending Effect on POF Splitter Performance for Different Thickness of Fiber Cores</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Supian">L. S. Supian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Syuhaimi%20Ab-Rahman"> Mohd Syuhaimi Ab-Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhana%20Arsad"> Norhana Arsad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental study has been done to study the performance on polymer optical fiber splitter characterization when different bending radii are applied on splitters with different fiber cores. The splitters with different cores pair are attached successively to splitter platform of ellipse-shape geometrical blocks of several bending radii. A force is exerted upon the blocks thus the splitter in order to encourage the splitting of energy between the two fibers. The aim of this study is to investigate which fiber core pair gives the optimum performance that goes with each bending radius in order to develop an effective splitter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=splitter" title="splitter">splitter</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-bending" title=" macro-bending"> macro-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=cores" title=" cores"> cores</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20blocks" title=" geometrical blocks"> geometrical blocks</a> </p> <a href="https://publications.waset.org/abstracts/13489/bending-effect-on-pof-splitter-performance-for-different-thickness-of-fiber-cores" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">672</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9612</span> Study on Bending Characteristics of Square Tube Using Energy Absorption Part</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama">Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Zefry%20Darmawan"> Zefry Darmawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the square tube subjected to the bending load, the rigidity of the entire square tube is reduced when a collapse occurs due to local stress concentration. Therefore, in this research, the influence of bending load on the square tube with attached energy absorbing part was examined and reported. The analysis was conducted by using Finite Element Method (FEM) to produced bending deflection and buckling points. Energy absorption was compared from rigidity of attached part and square tube body. Buckling point was influenced by the rigidity of attached part and the thickness rate of square tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20absorber" title="energy absorber">energy absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20tube" title=" square tube"> square tube</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=rigidity" title=" rigidity"> rigidity</a> </p> <a href="https://publications.waset.org/abstracts/64216/study-on-bending-characteristics-of-square-tube-using-energy-absorption-part" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9611</span> Development of Probability Distribution Models for Degree of Bending (DoB) in Chord Member of Tubular X-Joints under Bending Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ahmadi">Hamid Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Ghaffari"> Amirreza Ghaffari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fatigue life of tubular joints in offshore structures is not only dependent on the value of hot-spot stress, but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The DoB exhibits considerable scatter calling for greater emphasis in accurate determination of its governing probability distribution which is a key input for the fatigue reliability analysis of a tubular joint. Although the tubular X-joints are commonly found in offshore jacket structures, as far as the authors are aware, no comprehensive research has been carried out on the probability distribution of the DoB in tubular X-joints. What has been used so far as the probability distribution of the DoB in reliability analyses is mainly based on assumptions and limited observations, especially in terms of distribution parameters. In the present paper, results of parametric equations available for the calculation of the DoB have been used to develop probability distribution models for the DoB in the chord member of tubular X-joints subjected to four types of bending loads. Based on a parametric study, a set of samples was prepared and density histograms were generated for these samples using Freedman-Diaconis method. Twelve different probability density functions (PDFs) were fitted to these histograms. The maximum likelihood method was utilized to determine the parameters of fitted distributions. In each case, Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, after substituting the values of estimated parameters for each distribution, a set of fully defined PDFs have been proposed for the DoB in tubular X-joints subjected to bending loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tubular%20X-joint" title="tubular X-joint">tubular X-joint</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20bending%20%28DoB%29" title=" degree of bending (DoB)"> degree of bending (DoB)</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20density%20function%20%28PDF%29" title=" probability density function (PDF)"> probability density function (PDF)</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolmogorov-Smirnov%20goodness-of-fit%20test" title=" Kolmogorov-Smirnov goodness-of-fit test"> Kolmogorov-Smirnov goodness-of-fit test</a> </p> <a href="https://publications.waset.org/abstracts/20736/development-of-probability-distribution-models-for-degree-of-bending-dob-in-chord-member-of-tubular-x-joints-under-bending-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">719</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9610</span> Bending and Shear Characteristics of Hollowcore Slab with Polystyrene Forms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang%20Kun%20Lee">Kang Kun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New I-slab system with polystyrene forms and precast concrete deck is proposed to reduce the construction period and the self-weight of the slab. This paper presents experimental works on the bending and shear of the I-slabs. Five specimens were tested. The main parameters of experiments are diameters of the holes made by polystyrene form and the thickness of slab. Structural performance of I-slab is evaluated on the basis of failure mode, load-displacement curve, and ultimate strengths. Based on the test results, it is found that the critical punching shear sections are changed as the test variables are different, hence resulting in the varied punching shear strengths. Test results indicate that the developed I-slab is very effective to increase the strength due to self-weight reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollowcore%20slab" title="hollowcore slab">hollowcore slab</a>, <a href="https://publications.waset.org/abstracts/search?q=section%20force-deformation%20response" title=" section force-deformation response"> section force-deformation response</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete%20deck" title=" precast concrete deck"> precast concrete deck</a> </p> <a href="https://publications.waset.org/abstracts/4392/bending-and-shear-characteristics-of-hollowcore-slab-with-polystyrene-forms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9609</span> Bending Moment of Flexible Batter Pile in Sands under Horizontal Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabian%20J.%20Manoppo">Fabian J. Manoppo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dody%20M.%20J.%20Sumayouw"> Dody M. J. Sumayouw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bending moment of a single free head model flexible batter piles in sand under horizontal loads is investigated. The theoretical estimate of the magnitude maximum bending moment for the piles was considering a vertical rigid pile under an inclined load and using semi-empirical relations. The length of the equivalent rigid pile was based on the relative stiffness factor of the pile. Model tests were carried out using instrumented piles of wide-ranging flexibilities. The piles were buried in loose sand at batter angles of β=±150, β=±300 and were applied to incrementally increasing lateral loads. The pile capacities and the variation of bending moment along the pile shaft were measured. The new coefficient of 0.5 was proposed to estimate the bending moment of a flexible batter pile in the sand under horizontal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batter%20pile" title="batter pile">batter pile</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title=" bending moment"> bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20loads" title=" horizontal loads"> horizontal loads</a> </p> <a href="https://publications.waset.org/abstracts/190372/bending-moment-of-flexible-batter-pile-in-sands-under-horizontal-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9608</span> Effect of Short Chain Alcohols on Bending Rigidity of Lipid Bilayer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buti%20Suryabrahmam">Buti Suryabrahmam</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Raghunathan"> V. A. Raghunathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the effect of short chain alcohols on mechanical properties of saturated lipid bilayers in the fluid phase. The Bending rigidity of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane was measured at 28 °C by employing Vesicle Fluctuation Analysis technique. The concentration and chain length (n) of alcohol in the buffer solution were varied from 0 to 1.5 M and from 2 to 8 respectively. We observed a non-linear reduction in the bending rigidity from ~17×10⁻²⁰ J to ~10×10⁻²⁰ J, for all chain lengths of alcohols used in our experiment. We observed approximately three orders of the concentration difference between ethanol and octanol, to show the similar reduction in the bending values. We attribute this phenomenon to thinning of the bilayer due to the adsorption of alcohols at the bilayer-water interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alcohols" title="alcohols">alcohols</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20rigidity" title=" bending rigidity"> bending rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=DMPC" title=" DMPC"> DMPC</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20bilayers" title=" lipid bilayers"> lipid bilayers</a> </p> <a href="https://publications.waset.org/abstracts/100295/effect-of-short-chain-alcohols-on-bending-rigidity-of-lipid-bilayer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9607</span> Development and Characterization of Sandwich Bio-Composites Based on Short Alfa Fiber and Jute Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Rezzoug">Amine Rezzoug</a>, <a href="https://publications.waset.org/abstracts/search?q=Selsabil%20Rokia%20Laraba"> Selsabil Rokia Laraba</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Ancer"> Mourad Ancer</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Abdi"> Said Abdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials are taking center stage in different fields thanks to their mechanical characteristics and their ease of preparation. Environmental constraints have led to the development of composite with natural reinforcements. The sandwich structure has the advantage to have good flexural proprieties for low density, which is why it was chosen in this work. The development of these materials is related to an energy saving strategy and environmental protection. The present work refers to the study of the development and characterization of sandwiches composites based on hybrids laminates with natural reinforcements (Alfa and Jute), a metal fabric was introduced into composite in order to have a compromise between weight and properties. We use different configurations of reinforcements (jute, metallic fabric) to develop laminates in order to use them as thin facings for sandwiches materials. While the core was an epoxy matrix reinforced with Alfa short fibers, a chemical treatment sodium hydroxide was cared to improve the adhesion of the Alfa fibers. The mechanical characterization of our materials was made by the tensile and bending test, to highlight the influence of jute and Alfa. After testing, the fracture surfaces are observed by scanning electron microscopy (SEM). Optical microscopy allowed us to calculate the degree of porosity and to observe the morphology of the individual layers. Laminates based on jute fabric have shown better results in tensile test as well as to bending, compared to those of the metallic fabric (100%, 65%). Sandwich Panels were also characterized in terms of bending test. Results we had provide, shows that this composite has sufficient properties for possible replacing conventional composite materials by considering the environmental factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title="bending test">bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-composites" title=" bio-composites"> bio-composites</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwiches" title=" sandwiches"> sandwiches</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a> </p> <a href="https://publications.waset.org/abstracts/35497/development-and-characterization-of-sandwich-bio-composites-based-on-short-alfa-fiber-and-jute-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9606</span> Polarization Dependent Flexible GaN Film Nanogenerators and Electroluminescence Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Min%20Baik">Jeong Min Baik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present that the electroluminescence (EL) properties and electrical output power of flexible N-face p-type GaN thin films can be tuned by strain-induced piezo-potential generated across the metal-semiconductor-metal structures. Under different staining conditions (convex and concave bending modes), the transport properties of the GaN films can be changed due to the spontaneous polarization of the films. The I-V characteristics with the bending modes show that the convex bending can increase the current across the films by the decrease in the barrier height at the metal-semiconductor contact, increasing the EL intensity of the P-N junction. At convex bending, it is also shown that the flexible p-type GaN films can generate an output voltage of up to 1.0 V, while at concave bending, 0.4 V. The change of the band bending with the crystal polarity of GaN films was investigated using high-resolution photoemission spectroscopy. This study has great significance on the practical applications of GaN in optoelectronic devices and nanogenerators under a working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN" title="GaN">GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible" title=" flexible"> flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20lift-off" title=" laser lift-off"> laser lift-off</a>, <a href="https://publications.waset.org/abstracts/search?q=nanogenerator" title=" nanogenerator"> nanogenerator</a> </p> <a href="https://publications.waset.org/abstracts/13583/polarization-dependent-flexible-gan-film-nanogenerators-and-electroluminescence-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9605</span> In-situ Observations Using SEM-EBSD for Bending Deformation in Single-Crystal Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuko%20Matayoshi">Yuko Matayoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Sakai"> Takashi Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin-Gjum%20Jin"> Yin-Gjum Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-ichi%20Koyama"> Jun-ichi Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To elucidate the material characteristics of single crystals of pure aluminum and copper, the respective relations between crystallographic orientations and micro structures were examined, along with bending and mechanical properties. The texture distribution was also analysed. Bending tests were performed in a SEM apparatus while its behaviors were observed. Some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from electron back scatter diffraction (EBSD) analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pure%20aluminum" title="pure aluminum">pure aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20copper" title=" pure copper"> pure copper</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20crystal" title=" single crystal"> single crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM-EBSD%20analysis" title=" SEM-EBSD analysis"> SEM-EBSD analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/16499/in-situ-observations-using-sem-ebsd-for-bending-deformation-in-single-crystal-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9604</span> The Effect of Aerobics Course on Fitness Ability of the University Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hui-Fang%20Lee">Hui-Fang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsuan-Jung%20Hsieh"> Hsuan-Jung Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Chi%20Lu"> Wen-Chi Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Chu%20Liu"> Meng-Chu Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study was to examine abnormal BMI students of Chien Hsin University of Science and Technology, implement teaching aerobics course through elementary and advanced curriculum design, dietary education and three-day dietary record, analyze participant fitness improvement, an 10-week course as well as pre-test and post-test were carried out to evaluate the effect of the aerobics course on the fitness ability. The actual participate elementary and advanced courses each of 40 people, with low participation deduction course unfinished fitness testing, access to elementary curriculum valid samples 35 (87.5%) people, advanced courses valid samples 38(95%) people, 16 students participated in two consecutive courses. The fitness activities included sit-bending, one-minute sit-ups, standing long jump, and three minutes to board the stage. Analysis and comparison to the average three-day dietary record difference, an independent samples t-test was conducted to analyze the differences in the four activities between pre-test and post-test. The results showed that the elementary course had significant effects on females’ sit-bending and one minute sit-ups, the females also had high fat intake in three-day dietary record. The advanced course had significant effects on males’ sit-bending and on females’ BMI, sit-bending and standing long jump, males and females in three-day dietary record carbohydrate intake slightly low, slightly higher protein and fat intake. In conclusion, aerobics course teaching, dietary education and three-day, dietary record implementation can significantly enhance the physical fitness indicators, and continued to participate in advanced courses better. In the practice of sport should be the future course planning elementary and advanced courses, while introducing dietary education, achieve concrete results in improving physical fitness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20fitness" title="physical fitness">physical fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=aerobics%20course" title=" aerobics course"> aerobics course</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20education" title=" dietary education"> dietary education</a>, <a href="https://publications.waset.org/abstracts/search?q=three-day%20dietary%20record" title=" three-day dietary record"> three-day dietary record</a> </p> <a href="https://publications.waset.org/abstracts/66076/the-effect-of-aerobics-course-on-fitness-ability-of-the-university-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9603</span> Laboratory Evaluation of Rutting and Fatigue Damage Resistance of Asphalt Mixtures Modified with Carbon Nano Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Zain%20Ul%20Abadeen">Ali Zain Ul Abadeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20Hussain"> Arshad Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Roads are considered as the national capital, and huge developmental budget is spent on its construction, maintenance, and rehabilitation. Due to proliferating traffic volume, heavier loads and challenging environmental factors, the need for high-performance asphalt pavement is increased. In this research, the asphalt mixture was modified with carbon nanotubes ranging from 0.2% to 2% of binder to study the effect of CNT modification on rutting potential and fatigue life of asphalt mixtures. During this study, the conventional and modified asphalt mixture was subjected to a uni-axial dynamic creep test and dry Hamburg wheel tracking test to study rutting resistance. Fatigue behavior of asphalt mixture was studied using a four-point bending test apparatus. The plateau value of asphalt mixture was taken as a measure of fatigue performance according to the ratio of dissipated energy approach. Results of these experiments showed that CNT modified asphalt mixtures had reduced rut depth and increased rutting and fatigue resistance at higher percentages of carbon nanotubes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20point%20bending%20test" title=" four point bending test"> four point bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20asphalt" title=" modified asphalt"> modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting" title=" rutting"> rutting</a> </p> <a href="https://publications.waset.org/abstracts/107538/laboratory-evaluation-of-rutting-and-fatigue-damage-resistance-of-asphalt-mixtures-modified-with-carbon-nano-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9602</span> Evaluation of Flange Bending Capacity near Member End Using a Finite Element Analysis Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alicia%20Kamischke">Alicia Kamischke</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhail%20Elhouar"> Souhail Elhouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Khodair"> Yasser Khodair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The American Institute of Steel Construction (AISC) Specification (360-10) provides equations for calculating the capacity of a W-shaped steel member to resist concentrated forces applied to its flange. In the case of flange local bending, the capacity equations were primarily formulated for an interior point along the member, which is defined to be at a distance larger than ten flange thicknesses away from the member’s end. When a concentrated load is applied within ten flange thicknesses from the member’s end, AISC requires a fifty percent reduction to be applied to the flange bending capacity. This reduction, however, is not supported by any research. In this study, finite element modeling is used to investigate the actual reduction in capacity near the end of such a steel member. The results indicate that the AISC equation for flange local bending is quite conservative for forces applied at less than ten flange thicknesses from the member’s end and a new equation is suggested for the evaluation of available flange local bending capacity within that distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flange%20local%20bending" title="flange local bending">flange local bending</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrated%20forces" title=" concentrated forces"> concentrated forces</a>, <a href="https://publications.waset.org/abstracts/search?q=column" title=" column"> column</a>, <a href="https://publications.waset.org/abstracts/search?q=flange%20capacity" title=" flange capacity"> flange capacity</a> </p> <a href="https://publications.waset.org/abstracts/22697/evaluation-of-flange-bending-capacity-near-member-end-using-a-finite-element-analysis-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">686</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9601</span> Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Vahedi%20Torshizi">Mohammad Vahedi Torshizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20stress" title="bending stress">bending stress</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=plantary" title=" plantary"> plantary</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20equations" title=" mathematical equations"> mathematical equations</a> </p> <a href="https://publications.waset.org/abstracts/58238/checking-planetary-clutch-on-the-romania-tractor-using-mathematical-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9600</span> Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hassani">M. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hassani"> Y. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ajudanioskooei"> N. Ajudanioskooei</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Benvid"> N. N. Benvid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20angle" title=" bending angle"> bending angle</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20forming" title=" laser forming"> laser forming</a> </p> <a href="https://publications.waset.org/abstracts/34045/comparative-study-of-bending-angle-in-laser-forming-process-using-artificial-neural-network-and-fuzzy-logic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=320">320</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=321">321</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bending%20test&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10