CINXE.COM
Search results for: building performance analysis
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: building performance analysis</title> <meta name="description" content="Search results for: building performance analysis"> <meta name="keywords" content="building performance analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="building performance analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="building performance analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 39156</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: building performance analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38946</span> Life Cycle Assessment of Residential Buildings: A Case Study in Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkatesh%20Kumar">Venkatesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasun%20Hewage"> Kasun Hewage</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehan%20Sadiq"> Rehan Sadiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20simulation" title="building simulation">building simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20energy%20analysis" title=" life cycle energy analysis"> life cycle energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a> </p> <a href="https://publications.waset.org/abstracts/35021/life-cycle-assessment-of-residential-buildings-a-case-study-in-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38945</span> Modernism’s Influence on Architect-Client Relationship: Comparative Case Studies of Schroder and Farnsworth Houses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omneya%20Messallam">Omneya Messallam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20S.%20Fouad"> Sara S. Fouad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Modernist Movement initially flourished in France, Holland, Germany and the Soviet Union. Many architects and designers were inspired and followed its principles. Two of its most important architects (Gerrit Rietveld and Ludwig Mies van de Rohe) were introduced in this paper. Each did not follow the other’s principles and had their own particular rules; however, they shared the same features of the Modernist International Style, such as Anti-historicism, Abstraction, Technology, Function and Internationalism/ Universality. Key Modernist principles translated into high expectations, which sometimes did not meet the inhabitants’ aspirations of living comfortably; consequently, leading to a conflict and misunderstanding between the designer and their clients’ needs. Therefore, historical case studies (the Schroder and the Farnsworth houses) involving two Modernist pioneer architects have been chosen. This paper is an attempt to explore some of the influential factors affecting buildings design such as: needs, gender, and question concerning commonalities between both designers and their clients. The three aspects and two designers explored here have been chosen because they have been influenced the researchers to understand the impact of those factors on the design process, building’s performance, and the dweller’s satisfaction. This is a descriptive/ analytical research based on two historical comparative case studies that involve several steps such as: key evaluation questions (KEQs), observations, document analysis, etc. The methodology is based on data collation and finding validations. The research aims to state a manifest to regulate the relation between architects and their clients to reach the optimum building performance and functional interior design that suits their clients’ needs, reflects the architects’ character, and the school they belong to. At the end, through the investigation in this paper, the different needs between both the designers and the clients have been seen not only in the building itself but also it could convert the inhabitant’s life in various ways. Moreover, a successful relationship between the architect and their clients could play a significant role in the success of projects. In contrast, not every good design or celebrated building could end up with a successful relationship between the designer and their client or full-fill the inhabitant’s aspirations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architect%E2%80%99s%20character" title="architect’s character">architect’s character</a>, <a href="https://publications.waset.org/abstracts/search?q=building%E2%80%99s%20performance" title=" building’s performance"> building’s performance</a>, <a href="https://publications.waset.org/abstracts/search?q=commonalities" title=" commonalities"> commonalities</a>, <a href="https://publications.waset.org/abstracts/search?q=client%E2%80%99s%20character" title=" client’s character"> client’s character</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=modernist%20movement" title=" modernist movement"> modernist movement</a>, <a href="https://publications.waset.org/abstracts/search?q=needs" title=" needs"> needs</a> </p> <a href="https://publications.waset.org/abstracts/99253/modernisms-influence-on-architect-client-relationship-comparative-case-studies-of-schroder-and-farnsworth-houses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38944</span> A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roberto%20de%20Lieto%20Vollaro">Roberto de Lieto Vollaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Emanuele%20de%20Lieto%20Vollaro"> Emanuele de Lieto Vollaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Gianluca%20Coltrinari"> Gianluca Coltrinari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical" title=" electrical"> electrical</a> </p> <a href="https://publications.waset.org/abstracts/26229/a-new-model-to-perform-preliminary-evaluations-of-complex-systems-for-the-production-of-energy-for-buildings-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38943</span> Modern Methods of Construction (MMC): The Potentials and Challenges of Using Prefabrication Technology for Building Modern Houses in Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latif%20Karimi">Latif Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhide%20Mochida"> Yasuhide Mochida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to study Modern Methods of Construction (MMC); specifically, the prefabrication technology and check the applicability, suitability, and benefits of this construction technique over conventional methods for building new houses in Afghanistan. Construction industry and house building sector are a key contributor to Afghanistan’s economy. However, this sector is challenged with lack of innovation and severe impacts that it has on the environment due to huge amount of construction waste from building, demolition and or renovation activities. This paper studies the prefabrication technology, a popular MMC that is becoming more common, improving in quality and being available in a variety of budgets. Several feasibility studies worldwide have revealed that this method is the way forward in improving construction industry performance as it has been proven to reduce construction time, construction wastes and improve the environmental performance of the construction processes. In addition, this study emphasizes on 'sustainability' in-house building, since it is a common challenge in housing construction projects on a global scale. This challenge becomes more severe in the case of under-developed countries, like Afghanistan. Because, most of the houses are being built in the absence of a serious quality control mechanism and dismissive to basic requirements of sustainable houses; well-being, cost-effectiveness, minimization - prevention of wastes production during construction and use, and severe environmental impacts in view of a life cycle assessment. Methodology: A literature review and study of the conventional practices of building houses in urban areas of Afghanistan. A survey is also being completed to study the potentials and challenges of using prefabrication technology for building modern houses in the cities across the country. A residential housing project is selected for case study to determine the drawbacks of current construction methods vs. prefabrication technique for building a new house. Originality: There are little previous research available about MMC considering its specific impacts on sustainability related to house building practices. This study will be specifically of interest to a broad range of people, including planners, construction managers, builders, and house owners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modern%20methods%20of%20construction%20%28MMC%29" title="modern methods of construction (MMC)">modern methods of construction (MMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabrication" title=" prefabrication"> prefabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=prefab%20houses" title=" prefab houses"> prefab houses</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title=" sustainable construction"> sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20houses" title=" modern houses"> modern houses</a> </p> <a href="https://publications.waset.org/abstracts/87950/modern-methods-of-construction-mmc-the-potentials-and-challenges-of-using-prefabrication-technology-for-building-modern-houses-in-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38942</span> Comparison of Steel and Composite Analysis of a Multi-Storey Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%87i%C4%9Fdem%20Avc%C4%B1%20Karata%C5%9F">Çiğdem Avcı Karataş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20analysis" title="composite analysis">composite analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-storey%20building" title=" multi-storey building "> multi-storey building </a> </p> <a href="https://publications.waset.org/abstracts/20662/comparison-of-steel-and-composite-analysis-of-a-multi-storey-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38941</span> Review of Life-Cycle Analysis Applications on Sustainable Building and Construction Sector as Decision Support Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liying%20Li">Liying Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Guo"> Han Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the environmental issues generated by the building sector for its energy consumption, solid waste generation, water use, land use, and global greenhouse gas (GHG) emissions, this review pointed out to LCA as a decision-support tool to substantially improve the sustainability in the building and construction industry. The comprehensiveness and simplicity of LCA make it one of the most promising decision support tools for the sustainable design and construction of future buildings. This paper contains a comprehensive review of existing studies related to LCAs with a focus on their advantages and limitations when applied in the building sector. The aim of this paper is to enhance the understanding of a building life-cycle analysis, thus promoting its application for effective, sustainable building design and construction in the future. Comparisons and discussions are carried out between four categories of LCA methods: building material and component combinations (BMCC) vs. the whole process of construction (WPC) LCA,attributional vs. consequential LCA, process-based LCA vs. input-output (I-O) LCA, traditional vs. hybrid LCA. Classical case studies are presented, which illustrate the effectiveness of LCA as a tool to support the decisions of practitioners in the design and construction of sustainable buildings. (i) BMCC and WPC categories of LCA researches tend to overlap with each other, as majority WPC LCAs are actually developed based on a bottom-up approach BMCC LCAs use. (ii) When considering the influence of social and economic factors outside the proposed system by research, a consequential LCA could provide a more reliable result than an attributional LCA. (iii) I-O LCA is complementary to process-based LCA in order to address the social and economic problems generated by building projects. (iv) Hybrid LCA provides a more superior dynamic perspective than a traditional LCA that is criticized for its static view of the changing processes within the building’s life cycle. LCAs are still being developed to overcome their limitations and data shortage (especially data on the developing world), and the unification of LCA methods and data can make the results of building LCA more comparable and consistent across different studies or even countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20support%20tool" title="decision support tool">decision support tool</a>, <a href="https://publications.waset.org/abstracts/search?q=life-cycle%20analysis" title=" life-cycle analysis"> life-cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA%20tools%20and%20data" title=" LCA tools and data"> LCA tools and data</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20building%20design" title=" sustainable building design"> sustainable building design</a> </p> <a href="https://publications.waset.org/abstracts/111724/review-of-life-cycle-analysis-applications-on-sustainable-building-and-construction-sector-as-decision-support-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38940</span> The Effects of Learning Engagement on Interpreting Performance among English Major Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianhua%20Wang">Jianhua Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhou"> Ying Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xi%20%20Zhang"> Xi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To establish the influential mechanism of learning engagement on interpreter’s performance, the present study submitted a questionnaire to a sample of 927 English major students with 804 valid ones and used the structural equation model as the basis for empirical analysis and statistical inference on the sample data. In order to explore the mechanism for interpreting learning engagement on student interpreters’ performance, a path model of interpreting processes with three variables of ‘input-environment-output’ was constructed. The results showed that the effect of each ‘environment’ variable on interpreting ability was different from and greater than the ‘input’ variable, and learning engagement was the greatest influencing factor. At the same time, peer interaction on interpreting performance has significant influence. Results suggest that it is crucial to provide effective guidance for optimizing learning engagement and interpreting teaching research by both improving the environmental support and building the platform of peer interaction, beginning with learning engagement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20engagement" title="learning engagement">learning engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=interpreting%20performance" title=" interpreting performance"> interpreting performance</a>, <a href="https://publications.waset.org/abstracts/search?q=interpreter%20training" title=" interpreter training"> interpreter training</a>, <a href="https://publications.waset.org/abstracts/search?q=English%20major%20students" title=" English major students"> English major students</a> </p> <a href="https://publications.waset.org/abstracts/112290/the-effects-of-learning-engagement-on-interpreting-performance-among-english-major-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38939</span> A Review of Current Knowledge on Assessment of Precast Structures Using Fragility Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Akpinar">E. Akpinar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Erol"> A. Erol</a>, <a href="https://publications.waset.org/abstracts/search?q=M.F.%20Cakir"> M.F. Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast reinforced concrete (RC) structures are excellent alternatives for construction world all over the globe, thanks to their rapid erection phase, ease mounting process, better quality and reasonable prices. Such structures are rather popular for industrial buildings. For the sake of economic importance of such industrial buildings as well as significance of safety, like every other type of structures, performance assessment and structural risk analysis are important. Fragility curves are powerful tools for damage projection and assessment for any sort of building as well as precast structures. In this study, a comparative review of current knowledge on fragility analysis of industrial precast RC structures were presented and findings in previous studies were compiled. Effects of different structural variables, parameters and building geometries as well as soil conditions on fragility analysis of precast structures are reviewed. It was aimed to briefly present the information in the literature about the procedure of damage probability prediction including fragility curves for such industrial facilities. It is found that determination of the aforementioned structural parameters as well as selecting analysis procedure are critically important for damage prediction of industrial precast RC structures using fragility curves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20prediction" title="damage prediction">damage prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20curve" title=" fragility curve"> fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20buildings" title=" industrial buildings"> industrial buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20reinforced%20concrete%20structures" title=" precast reinforced concrete structures"> precast reinforced concrete structures</a> </p> <a href="https://publications.waset.org/abstracts/100004/a-review-of-current-knowledge-on-assessment-of-precast-structures-using-fragility-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38938</span> Linking Market Performance to Exploration and Exploitation in The Pharmaceutical Industry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johann%20Valentowitsch">Johann Valentowitsch</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Burr"> Wolfgang Burr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In organizational research, strategies of exploration and exploitation are often considered to be contradictory. Building on the tradeoff argument, many authors have assumed that a company's market performance should be positively dependent on its strategic balance between exploration and exploitation over time. In this study, we apply this reasoning to the pharmaceutical industry. Using exploratory regression analysis we show that the long-term market performance of a pharmaceutical company is linked to both its ability to carry out exploratory projects and its ability to develop exploitative competencies. In particular, our findings demonstrate that, on average, the company's annual sales performance is higher the better the strategic alignment between exploration and exploitation is balanced. The contribution of our research is twofold. On the one hand, we provide empirical evidence for the initial tradeoff hypothesis and thus support the theoretical position of those who understand exploration and exploitation as strategic substitutes. On the other hand, our findings show that a balanced relationship between exploration and exploitation is also important in research-intensive industries, which naturally tend to place more emphasis on exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exploitation" title="exploitation">exploitation</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration" title=" exploration"> exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20performance" title=" market performance"> market performance</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20industry" title=" pharmaceutical industry"> pharmaceutical industry</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy "> strategy </a> </p> <a href="https://publications.waset.org/abstracts/128901/linking-market-performance-to-exploration-and-exploitation-in-the-pharmaceutical-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38937</span> Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Marcos%20Dom%C3%ADnguez">L. Marcos Domínguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Nils%20Rage"> Nils Rage</a>, <a href="https://publications.waset.org/abstracts/search?q=Ongun%20B.%20Kazanci"> Ongun B. Kazanci</a>, <a href="https://publications.waset.org/abstracts/search?q=Bjarne%20W.%20Olesen"> Bjarne W. Olesen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require the heated or cooled surfaces to be as exposed as possible to the indoor space, but exposing the bare concrete surfaces has a diminishing effect on the acoustic qualities of the spaces in a building. Acoustic solutions capable of providing optimal acoustic comfort and allowing the heat exchange between the TABS and the room are desirable. In this study, the effects of free-hanging units on the cooling performance of TABS and the occupants’ thermal comfort was measured in a full-scale TABS laboratory. Investigations demonstrate that the use of free-hanging sound absorbers are compatible with the performance of TABS and the occupant’s thermal comfort, but an appropriate acoustic design is needed to find the most suitable solution for each case. The results show a reduction of 11% of the cooling performance of the TABS when 43% of the ceiling area is covered with free-hanging horizontal sound absorbers, of 23% for 60% ceiling coverage ratio and of 36% for 80% coverage. Measurements in actual buildings showed an increase of the room operative temperature of 0.3 K when 50% of the ceiling surface is covered with horizontal panels and of 0.8 to 1 K for a 70% coverage ratio. According to numerical simulations using a new TRNSYS Type, the use of comfort ventilation has a considerable influence on the thermal conditions in the room; if the ventilation is removed, then the operative temperature increases by 1.8 K for a 60%-covered ceiling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20comfort" title="acoustic comfort">acoustic comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20core%20activation" title=" concrete core activation"> concrete core activation</a>, <a href="https://publications.waset.org/abstracts/search?q=full-scale%20measurements" title=" full-scale measurements"> full-scale measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=thermally%20activated%20building%20systems" title=" thermally activated building systems"> thermally activated building systems</a>, <a href="https://publications.waset.org/abstracts/search?q=TRNSys" title=" TRNSys"> TRNSys</a> </p> <a href="https://publications.waset.org/abstracts/57228/effects-of-free-hanging-horizontal-sound-absorbers-on-the-cooling-performance-of-thermally-activated-building-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38936</span> Structural Performance of Mechanically Connected Stone Panels under Cyclic Loading: Application to Aesthetic and Environmental Building Skin Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michel%20Soto%20Chalhoub">Michel Soto Chalhoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building designers in the Mediterranean region and other parts of the world utilize natural stone panels on the exterior façades as skin cover. This type of finishing is not only intended for aesthetic reasons but also environmental. The stone, since the earliest ages of civilization, has been used in construction and to-date some of the most appealing buildings owe their beauty to stone finishing. The stone also provides warmth in winter and freshness in summer as it moderates heat transfer and absorbs radiation. However, as structural codes became increasingly stringent about the dynamic performance of buildings, it became essential to study the performance of stone panels under cyclic loading – a condition that arises under the building is subjected to wind or earthquakes. The present paper studies the performance of stone panels using mechanical connectors when subjected to load reversal. In this paper, we present a theoretical model that addresses modes of failure in the steel connectors, by yield, and modes of failure in the stone, by fracture. Then we provide an experimental set-up and test results for rectangular stone panels of varying thickness. When the building is subjected to an earthquake, its rectangular panels within the structural system are subjected to shear deformations, which in turn impart stress into the stone cover. Rectangular stone panels, which typically range from 40cmx80cm to 60cmx120cm, need to be designed to withstand transverse loading from the direct application of lateral loads, and to withstand simultaneously in-plane loading (membrane stress) caused by inter-story drift and overall building lateral deflection. Results show correlation between the theoretical model which we derive from solid mechanics fundamentals and the experimental results, and lead to practical design recommendations. We find that for panel thickness below a certain threshold, it is more advantageous to utilize structural adhesive materials to connect stone panels to the main structural system of the building. For larger panel thicknesses, it is recommended to utilize mechanical connectors with special detailing to ensure a minimum level of ductility and energy dissipation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20mechanics" title="solid mechanics">solid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20connectors" title=" mechanical connectors"> mechanical connectors</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20stone" title=" natural stone"> natural stone</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20skin" title=" building skin"> building skin</a> </p> <a href="https://publications.waset.org/abstracts/7514/structural-performance-of-mechanically-connected-stone-panels-under-cyclic-loading-application-to-aesthetic-and-environmental-building-skin-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38935</span> Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Zhu">Li Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Binghua%20Wang"> Binghua Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Sun"> Yong Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agritourism%20complex" title="agritourism complex">agritourism complex</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20planning" title=" energy planning"> energy planning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demand%20simulation" title=" energy demand simulation"> energy demand simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure%20model" title=" hierarchical structure model"> hierarchical structure model</a> </p> <a href="https://publications.waset.org/abstracts/103773/energy-planning-analysis-of-an-agritourism-complex-based-on-energy-demand-simulation-a-case-study-of-wuxi-yangshan-agritourism-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38934</span> The Effect of Collapse Structure on Economic Growth and Influence of Soil Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatai%20Shola%20Afolabi">Fatai Shola Afolabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study identified and evaluates the causes of building failure and examined the effects of building failure with respect to cost in Lagos State, Nigeria. The method employed in the collection of data includes the administration of questionnaire to professionals in the construction industry and case studies for the sites. A purposive sampling technique was used for selecting the sites visited, and selecting the construction professionals. Descriptive statistical techniques such as frequency distribution and percentages and mean response analysis were used to analyze data. The study revealed that the major causes of building failures were bad design, faulty construction, over loading, non-possession of approved drawings, Possession of approved drawings but non-compliance, and the use of quarks. In the two case studies considered, the total direct loss to the building owners was thirty eight million three hundred and eight five thousand, seven hundred and twenty one naira (38,385,721) which is about One hundred and ninety four thousand, eighty hundred and fifty one dollars ($194,851) at one hundred and ninety seven naira to one US dollars, central bank Nigeria of exchange rate as at 14th March, 2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20structures" title="building structures">building structures</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20failure" title=" building failure"> building failure</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20collapse" title=" building collapse"> building collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20failure" title=" structural failure"> structural failure</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20loss" title=" direct loss"> direct loss</a> </p> <a href="https://publications.waset.org/abstracts/49013/the-effect-of-collapse-structure-on-economic-growth-and-influence-of-soil-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38933</span> Performance Modeling and Availability Analysis of Yarn Dyeing System of a Textile Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Tewari">P. C. Tewari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Kumar"> Rajiv Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Khanduja"> Dinesh Khanduja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the performance modeling and availability analysis of Yarn Dyeing System of a Textile Industry. The Textile Industry is a complex and repairable engineering system. Yarn Dyeing System of Textile Industry consists of five subsystems arranged in series configuration. For performance modeling and analysis of availability, a performance evaluating model has been developed with the help of mathematical formulation based on Markov-Birth-Death Process. The differential equations have been developed on the basis of Probabilistic Approach using a Transition Diagram. These equations have further been solved using normalizing condition in order to develop the steady state availability, a performance measure of the system concerned. The system performance has been further analyzed with the help of decision matrices. These matrices provide various availability levels for different combinations of failure and repair rates for various subsystems. The findings of this paper are, therefore, considered to be useful for the analysis of availability and determination of the best possible maintenance strategies which can be implemented in future to enhance the system performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20modeling" title="performance modeling">performance modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20process" title=" markov process"> markov process</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state%20availability" title=" steady state availability"> steady state availability</a>, <a href="https://publications.waset.org/abstracts/search?q=availability%20analysis" title=" availability analysis"> availability analysis</a> </p> <a href="https://publications.waset.org/abstracts/2111/performance-modeling-and-availability-analysis-of-yarn-dyeing-system-of-a-textile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38932</span> Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying-Chang%20Yu">Ying-Chang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Lung%20Lo"> Yuan-Lung Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20facade" title="multi-layer facade">multi-layer facade</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=facade%20performance" title=" facade performance"> facade performance</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20and%20distributed%20resistance" title=" turbulence and distributed resistance"> turbulence and distributed resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/80270/wind-load-reduction-effect-of-exterior-porous-skin-on-facade-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38931</span> Effects of Soil-Structure Interaction on Seismic Performance of Steel Structures Equipped with Viscous Fluid Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faramarz%20Khoshnoudian">Faramarz Khoshnoudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Vosoughiyan"> Saeed Vosoughiyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this article is to clarify the soil-structure interaction (SSI) effects on the seismic performance of steel moment resisting frame buildings which are rested on soft soil and equipped with viscous fluid dampers (VFDs). For this purpose, detailed structural models of a ten-story SMRF with VFDs excluding and including the SSI are constructed first. In order to simulate the dynamic response of the foundation, in this paper, the simple cone model is applied. Then, the nonlinear time-history analysis of the models is conducted using three kinds of earthquake excitations with different intensities. The analysis results have demonstrated that the SSI effects on the seismic performance of a structure equipped with VFDs and supported by rigid foundation on soft soil need to be considered. Also VFDs designed based on rigid foundation hypothesis fail to achieve the expected seismic objective while SSI goes into effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20time-history%20analysis" title="nonlinear time-history analysis">nonlinear time-history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20moment%20resisting%20frame%20building" title=" steel moment resisting frame building"> steel moment resisting frame building</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20fluid%20dampers" title=" viscous fluid dampers"> viscous fluid dampers</a> </p> <a href="https://publications.waset.org/abstracts/10274/effects-of-soil-structure-interaction-on-seismic-performance-of-steel-structures-equipped-with-viscous-fluid-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38930</span> Challenges in Adopting 3R Concept in the Heritage Building Restoration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Goh">H. H. Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Goh"> K. C. Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20W.%20Seow"> T. W. Seow</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Said"> N. S. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20P.%20Ang"> S. E. P. Ang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaysia is rich with historic buildings, particularly in Penang and Malacca states. Restoration activities are increasingly important as these states are recognized under UNESCO World Heritage Sites. Restoration activities help to maintain the uniqueness and value of a heritage building. However, increasing in restoration activities has resulted in large quantities of waste. To cope with this problem, the 3R concept (reduce, reuse and recycle) is introduced. The 3R concept is one of the waste management hierarchies. This concept is still yet to apply in the building restoration industry compared to the construction industry. Therefore, this study aims to promote the 3R concept in the heritage building restoration industry. This study aims to examine the importance of 3R concept and to identify challenges in applying the 3R concept in the heritage building restoration industry. This study focused on contractors and consultants who are involved in heritage restoration projects in Penang. Literature review and interviews helps to reach the research objective. Data that obtained is analyzed by using content analysis. For the research, application of 3R concept is important to conserve natural resources and reduce pollution problems. However, limited space to organise waste is the obstruction during the implementation of this concept. In conclusion, the 3R concept plays an important role in promoting environmental conservation and helping in reducing the construction waste <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3R%20Concept" title="3R Concept">3R Concept</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage%20building" title=" heritage building"> heritage building</a>, <a href="https://publications.waset.org/abstracts/search?q=restoration%20activities" title=" restoration activities"> restoration activities</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20science" title=" building science"> building science</a> </p> <a href="https://publications.waset.org/abstracts/16832/challenges-in-adopting-3r-concept-in-the-heritage-building-restoration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38929</span> Roof Integrated Photo Voltaic with Air Collection on Glasgow School of Art Campus Building: A Feasibility Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosalie%20Menon">Rosalie Menon</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Reid"> Angela Reid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building integrated photovoltaic systems with air collectors (hybrid PV-T) have proved successful however there are few examples of their application in the UK. The opportunity to pull heat from behind the PV system to contribute to a building’s heating system is an efficient use of waste energy and its potential to improve the performance of the PV array is well documented. As part of Glasgow School of Art’s estate expansion, the purchase and redevelopment of an existing 1950’s college building was used as a testing vehicle for the hybrid PV-T system as an integrated element of the upper floor and roof. The primary objective of the feasibility study was to determine if hybrid PV-T was technically and financially suitable for the refurbished building. The key consideration was whether the heat recovered from the PV panels (to increase the electrical efficiency) can be usefully deployed as a heat source within the building. Dynamic thermal modelling (IES) and RetScreen Software were used to carry out the feasibility study not only to simulate overshadowing and optimise the PV-T locations but also to predict the atrium temperature profile; predict the air load for the proposed new 4 No. roof mounted air handling units and to predict the dynamic electrical efficiency of the PV element. The feasibility study demonstrates that there is an energy reduction and carbon saving to be achieved with each hybrid PV-T option however the systems are subject to lengthy payback periods and highlights the need for enhanced government subsidy schemes to reward innovation with this technology in the UK. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20integrated" title="building integrated">building integrated</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltatic%20thermal" title=" photovoltatic thermal"> photovoltatic thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-heat%20air" title=" pre-heat air"> pre-heat air</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a> </p> <a href="https://publications.waset.org/abstracts/90259/roof-integrated-photo-voltaic-with-air-collection-on-glasgow-school-of-art-campus-building-a-feasibility-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38928</span> Developing a Decision-Making Tool for Prioritizing Green Building Initiatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayyab%20Ahmad">Tayyab Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerard%20Healey"> Gerard Healey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainability in built environment sector is subject to many development constraints. Building projects are developed under different requirements of deliverables which makes each project unique. For an owner organization, i.e., a higher-education institution, involved in a significant building stock, it is important to prioritize some of the sustainability initiatives over the others in order to align the sustainable building development with organizational goals. The point-based green building rating tools i.e. Green Star, LEED, BREEAM are becoming increasingly popular and are well-acknowledged worldwide for verifying a sustainable development. It is imperative to synthesize a multi-criteria decision-making tool that can capitalize on the point-based methodology of rating systems while customizing the sustainable development of building projects according to the individual requirements and constraints of the client organization. A multi-criteria decision-making tool for the University of Melbourne is developed that builds on the action-learning and experience of implementing Green Buildings at the University of Melbourne. The tool evaluates the different sustainable building initiatives based on the framework of Green Star rating tool of Green Building Council of Australia. For each different sustainability initiative the decision-making tool makes an assessment based on at least five performance criteria including the ease with which a sustainability initiative can be achieved and the potential of a sustainability initiative to enhance project objectives, reduce life-cycle costs, enhance University’s reputation, and increase the confidence in quality construction. The use of a weighted aggregation mathematical model in the proposed tool can have a considerable role in the decision-making process of a Green Building project by indexing the Green Building initiatives in terms of organizational priorities. The index value of each initiative will be based on its alignment with some of the key performance criteria. The usefulness of the decision-making tool is validated by conducting structured interviews with some of the key stakeholders involved in the development of sustainable building projects at the University of Melbourne. The proposed tool is realized to help a client organization in deciding that within limited resources which sustainability initiatives and practices are more important to be pursued than others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=higher%20education%20institution" title="higher education institution">higher education institution</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-criteria%20decision-making%20tool" title=" multi-criteria decision-making tool"> multi-criteria decision-making tool</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20values" title=" organizational values"> organizational values</a>, <a href="https://publications.waset.org/abstracts/search?q=prioritizing%20sustainability%20initiatives" title=" prioritizing sustainability initiatives"> prioritizing sustainability initiatives</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20aggregation%20model" title=" weighted aggregation model"> weighted aggregation model</a> </p> <a href="https://publications.waset.org/abstracts/85042/developing-a-decision-making-tool-for-prioritizing-green-building-initiatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38927</span> Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20A.%20Ghoneim">Adel A. Ghoneim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20integrated%20renewable%20systems" title="building integrated renewable systems">building integrated renewable systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Net-Zero%20energy%20building" title=" Net-Zero energy building"> Net-Zero energy building</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20fraction" title=" solar fraction"> solar fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=avoided%20CO2%20emission" title=" avoided CO2 emission"> avoided CO2 emission</a> </p> <a href="https://publications.waset.org/abstracts/26650/achieving-net-zero-energy-building-in-a-hot-climate-using-integrated-photovoltaic-and-parabolic-trough-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38926</span> Effect of Double-Skin Facade Configuration on the Energy Performance of Office Building in Maritime Desert Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Umaru%20Mohammed">B. Umaru Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Faris%20A.%20Al-Maziad"> Faris A. Al-Maziad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Y.%20Numan"> Mohammad Y. Numan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important factors affecting the energy performance within a building is a carefully and efficiently designed facade. The primary aim of this research was to identify and present the potentiality of utilising Double-Skin Facade (DSF) construction and critically examine its effect on the energy consumption of an office building located within a maritime desert climate as to the conventional single-skin curtain wall system. A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilised. A computer dynamic modelling was utilised in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin façade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilized. A computer dynamic modelling was utilized in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin facade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20dynamics%20modelling" title="computer dynamics modelling">computer dynamics modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20computation" title=" energy computation"> energy computation</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20skin%20facade" title=" double skin facade"> double skin facade</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20skin%20curtain%20wall" title=" single skin curtain wall"> single skin curtain wall</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20desert%20climate" title=" maritime desert climate"> maritime desert climate</a> </p> <a href="https://publications.waset.org/abstracts/66975/effect-of-double-skin-facade-configuration-on-the-energy-performance-of-office-building-in-maritime-desert-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38925</span> Perception of Indoor Environmental Qualities in Residential Buildings: A Quantitative Case Survey for Turkey and Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Bahramian">Majid Bahramian</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Yetilmezsoy"> Kaan Yetilmezsoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental performance of residential buildings been a hotspot for the research community, however, the indoor environmental quality significantly overlooked in the literature. The paper is motivated by the understanding of the occupants from the indoor environmental qualities and seeks to find the satisfaction level in two high-rise green-certified residential buildings. Views of more than 250 respondents in each building were solicited on 15 Indoor Environmental Qualities (IEQ) parameters. Findings suggest that occupants are generally satisfied with five critical aspects of IEQ, but some unsatisfaction exists during operation phase. The results also indicate that the green build certification systems for new buildings have some deficiencies which affect the actual environmental performance of green buildings during operation. Some reasons were suggested by the occupants of which the design-focus construction and lack of monitoring after certification were the most critical factors. Among the crucial criteria for environmental performance assessment of green buildings, energy saving, reduction of Greenhouse Gases (GHG) emissions, environmental impacts on neighborhood area, waste reduction and IEQs, were the most critical factors dominating the performance, in a descending order. This study provides valuable information on the performance of IEQ parameters of green building and gives a deeper understanding for stakeholders and companies involved in construction sector with the relevant feedback for their decision-making on current and future projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20environmental%20qualities" title="indoor environmental qualities">indoor environmental qualities</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20buildings" title=" green buildings"> green buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=occupant%20satisfaction" title=" occupant satisfaction"> occupant satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20performance" title=" environmental performance"> environmental performance</a> </p> <a href="https://publications.waset.org/abstracts/158825/perception-of-indoor-environmental-qualities-in-residential-buildings-a-quantitative-case-survey-for-turkey-and-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38924</span> Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suglo%20Tohari%20Luri">Suglo Tohari Luri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data" title="data">data</a>, <a href="https://publications.waset.org/abstracts/search?q=engine" title=" engine"> engine</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligence" title=" intelligence"> intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=customer" title=" customer"> customer</a>, <a href="https://publications.waset.org/abstracts/search?q=neo4j" title=" neo4j"> neo4j</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a> </p> <a href="https://publications.waset.org/abstracts/141336/analysis-of-cyber-activities-of-potential-business-customers-using-neo4j-graph-databases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38923</span> Compilation of Tall Building with Green Architecture Case Study: Babolsar City (North of Iran) at 2014-2015</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Hossein%20Alavi">Seyyed Hossein Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soudabeh%20Mehri%20Talarposhti"> Soudabeh Mehri Talarposhti </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quick development of urban population need for housing on the one hand and prevention of irregular urban extension for optimum usage of urban land, resolving problems of urban physiognomy, land using, and environmental issues and urban transport, on the other hand, proposed tall building as urban area extension requirement in developing and advanced countries. Beside the tall building, protection, and creation of green architecture is one the most important issues of today's architecture world. This research is about attending tall building with green architecture in Babolsar city 2015. For this, the issues that can make favorite conditions for green architecture has been discussed. The purpose of this discussion is skeleton extension and accessing interactions between architecture and related technologies. This discussion with using of qualitative research methods (Analytical Description) tried to studying designed performance models and also studying and analyzing the inside and foreign articles and books. Hope this research is useful in solving the existing problems in this issue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title="tall building">tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20architecture" title=" green architecture"> green architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=skeleton%20extension" title=" skeleton extension"> skeleton extension</a>, <a href="https://publications.waset.org/abstracts/search?q=Babolsar%20city" title=" Babolsar city"> Babolsar city</a> </p> <a href="https://publications.waset.org/abstracts/26282/compilation-of-tall-building-with-green-architecture-case-study-babolsar-city-north-of-iran-at-2014-2015" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38922</span> 3D Building Model Utilizing Airborne LiDAR Dataset and Terrestrial Photographic Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Jasmee">J. Jasmee</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Roslina"> I. Roslina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammed%20Yaziz%20%26%20A.H%20Juazer%20Rizal"> A. Mohammed Yaziz & A.H Juazer Rizal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need of an effective building information collection method is vital to support a diversity of land development activities. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) is an established technology for building information collection, location, and elevation of the reflecting laser points towards the construction of 3D building models. In this study, LiDAR datasets and terrestrial photographic images of buildings towards the construction of 3D building models is explored. It is found that, the quantitative accuracy of the constructed 3D building model, namely in the horizontal and vertical components were ± 0.31m (RMSEx,y) and ± 0.145m (RMSEz) respectively. The accuracies were computed based on sixty nine (69) horizontal and twenty (20) vertical surveyed points. As for the qualitative assessment, it is shown that the appearance of the 3D building model is adequate to support the requirements of LOD3 presentation based on the OGC (Open Geospatial Consortium) standard CityGML. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LiDAR%20datasets" title="LiDAR datasets">LiDAR datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=DSM" title=" DSM"> DSM</a>, <a href="https://publications.waset.org/abstracts/search?q=DTM" title=" DTM"> DTM</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20building%20models" title=" 3D building models"> 3D building models</a> </p> <a href="https://publications.waset.org/abstracts/13620/3d-building-model-utilizing-airborne-lidar-dataset-and-terrestrial-photographic-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38921</span> Field Study on Thermal Performance of a Green Office in Bangkok, Thailand: A Possibility of Increasing Temperature Set-Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Sikram">T. Sikram</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ichinose"> M. Ichinose</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sasaki"> R. Sasaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the tropics, indoor thermal environment is usually provided by a cooling mode to maintain comfort all year. Indoor thermal environment performance is sometimes different from the standard or from the first design process because of operation, maintenance, and utilization. The field study of thermal environment in the green building is still limited in this region, while the green building continues to increase. This study aims to clarify thermal performance and subjective perception in the green building by testing the temperature set-points. A Thai green office was investigated twice in October 2018 and in May 2019. Indoor environment variables (temperature, relative humidity, and wind velocity) were collected continuously. The temperature set-point was normally set as 23 °C, and it was changed into 24 °C and 25 °C. The study found that this gap of temperature set-point produced average room temperature from 22.7 to 24.6 °C and average relative humidity from 55% to 62%. Thermal environments slight shifted out of the ASHRAE comfort zone when the set-point was increased. Based on the thermal sensation vote, the feeling-colder vote decreased by 30% and 18% when changing +1 °C and +2 °C, respectively. Predicted mean vote (PMV) shows that most of the calculated median values were negative. The values went close to the optimal neutral value (0) when the set-point was set at 25 °C. The neutral temperature was slightly decreased when changing warmer temperature set-points. Building-related symptom reports were found in this study that the number of votes reduced continuously when the temperature was warmer. The symptoms that occurred by a cooler condition had the number of votes more than ones that occurred by a warmer condition. In sum, for this green office, there is a possibility to adjust a higher temperature set-point to +1 °C (24 °C) in terms of reducing cold sensitivity, discomfort, and symptoms. All results could support the policy of changing a warmer temperature of this office to become “a better green building”. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20environment" title="thermal environment">thermal environment</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20office" title=" green office"> green office</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20set-point" title=" temperature set-point"> temperature set-point</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a> </p> <a href="https://publications.waset.org/abstracts/110215/field-study-on-thermal-performance-of-a-green-office-in-bangkok-thailand-a-possibility-of-increasing-temperature-set-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38920</span> Mapping of Renovation Potential in Rudersdal Municipality Based on a Sustainability Indicator Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Eschen%20Danielsen">Barbara Eschen Danielsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Morten%20Niels%20Baxter"> Morten Niels Baxter</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Sieverts%20Nielsen"> Per Sieverts Nielsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Europe is currently in an energy and climate crisis, which requires more sustainable solutions than what has been used to before. Europe uses 40% of its energy in buildings so there has come a significant focus on trying to find and commit to new initiatives to reduce energy consumption in buildings. The European Union has introduced a building standard in 2021 to be upheld by 2030. This new building standard requires a significant reduction of CO2 emissions from both privately and publicly owned buildings. The overall aim is to achieve a zero-emission building stock by 2050. EU is revising the Energy Performance of Buildings Directive (EPBD) as part of the “Fit for 55” package. It was adopted on March 14, 2023. The new directive’s main goal is to renovate the least energy-efficient homes in Europe. There will be a cost for the home owner with a renovation project, but there will also be an improvement in energy efficiency and, therefore, a cost reduction. After the implementation of the EU directive, many homeowners will have to focus their attention on how to make the most effective energy renovations of their homes. The new EU directive will affect almost one million Danish homes (30%), as they do not meet the newly implemented requirements for energy efficiency. The problem for this one mio homeowners is that it is not easy to decide which renovation project they should consider. The houses are build differently and there are many possible solutions. The main focus of this paper is to identify the most impactful solutions and evaluate their impact and evaluating them with a criteria based sustainability indicator framework. The result of the analysis give each homeowner an insight in the various renovation options, including both advantages and disadvantages with the aim of avoiding unnecessary costs and errors while minimizing their CO2 footprint. Given that the new EU directive impacts a significant number of home owners and their homes both in Denmark and the rest of the European Union it is crucial to clarify which renovations have the most environmental impact and most cost effective. We have evaluated the 10 most impactful solutions and evaluated their impact in an indicator framework which includes 9 indicators and covers economic, environmental as well as social factors. We have packaged the result of the analysis in three packages, the most cost effective (short term), the most cost effective (long-term) and the most sustainable. The results of the study secure transparency and thereby provides homeowners with a tool to help their decision-making. The analysis is based on mostly qualitative indicators, but it will be possible to evaluate most of the indicators quantitively in a future study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20renovation" title=" building renovation"> building renovation</a>, <a href="https://publications.waset.org/abstracts/search?q=renovation%20solutions" title=" renovation solutions"> renovation solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20performance%20criteria" title=" building energy performance criteria"> building energy performance criteria</a> </p> <a href="https://publications.waset.org/abstracts/168422/mapping-of-renovation-potential-in-rudersdal-municipality-based-on-a-sustainability-indicator-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38919</span> Seismic Performance of a Framed Structure Retrofitted with Damped Cable Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Naeem">Asad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Minsung%20Kim"> Minsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the effectiveness of damped cable systems (DCS) on the mitigation of earthquake-induced response of a framed structure is investigated. The seismic performance of DCS is investigated using fragility analysis and life cycle cost evaluation of an existing building retrofitted with DCS, and the results are compared with those of the structure retrofitted with viscous dampers. The comparison of the analysis results reveals that, due to the self-centering capability of the DCS, residual displacement becomes nearly zero in the structure retrofitted with the DCS. According to the fragility analysis, the structure retrofitted with the DCS has smaller probability of reaching a limit states compared to the structure with viscous dampers. It is also observed that both the initial and life cycle costs of the DCS method required for the seismic retrofit is smaller than those of the structure retrofitted with viscous dampers. Acknowledgment: This research was supported by a grant (17CTAP-C132889-01) from Technology Advancement Research Program (TARP) funded by Ministry of Land, Infrastructure, and Transport of Korean government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damped%20cable%20system" title="damped cable system">damped cable system</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20centering" title=" self centering"> self centering</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20analysis" title=" fragility analysis"> fragility analysis</a> </p> <a href="https://publications.waset.org/abstracts/80144/seismic-performance-of-a-framed-structure-retrofitted-with-damped-cable-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38918</span> Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as Per ASCE </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20M.%20%20Alguhane">Tarek M. Alguhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20H.%20Khalil"> Ayman H. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nour%20M.%20Fayed"> Nour M. Fayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Ismail"> Ayman M. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i. e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey-ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP 2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infill%20wall" title="infill wall">infill wall</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title=" response modification factor"> response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title=" seismic assessment "> seismic assessment </a> </p> <a href="https://publications.waset.org/abstracts/22829/seismic-assessment-of-old-existing-rc-buildings-with-masonry-infill-in-madinah-as-per-asce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38917</span> Assessment of the Effect of Building Materials on Energy Demand of Buildings in Jos: An Experimental and Numerical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zwalnan%20Selfa%20Johnson">Zwalnan Selfa Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Caleb%20Nanchen%20Nimyel"> Caleb Nanchen Nimyel</a>, <a href="https://publications.waset.org/abstracts/search?q=Gideon%20Duvuna%20Ayuba"> Gideon Duvuna Ayuba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio external opening area to the area of the external walls). This result shows that the proposed building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20heat%20gain" title="solar heat gain">solar heat gain</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20zone" title=" building zone"> building zone</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20energy" title=" cooling energy"> cooling energy</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title=" air conditioning"> air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=zone%20temperature" title=" zone temperature"> zone temperature</a> </p> <a href="https://publications.waset.org/abstracts/167301/assessment-of-the-effect-of-building-materials-on-energy-demand-of-buildings-in-jos-an-experimental-and-numerical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=7" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=1305">1305</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=1306">1306</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis&page=9" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>