CINXE.COM

Search results for: response modification factor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: response modification factor</title> <meta name="description" content="Search results for: response modification factor"> <meta name="keywords" content="response modification factor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="response modification factor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="response modification factor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11024</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: response modification factor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11024</span> Evaluation of Response Modification Factor and Behavior of Seismic Base-Isolated RC Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Parsaeimaram">Mohammad Parsaeimaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Congqi"> Fang Congqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, one of the significant seismic design parameter as response modification factor in reinforced concrete (RC) buildings with base isolation system was evaluated. The seismic isolation system is a capable approach to absorbing seismic energy at the base and transfer to the substructure with lower response modification factor as compared to non-isolated structures. A response spectrum method and static nonlinear pushover analysis in according to Uniform Building Code (UBC-97), have been performed on building models involve 5, 8, 12 and 15 stories building with fixed and isolated bases consist of identical moment resisting configurations. The isolation system is composed of lead rubber bearing (LRB) was designed with help UBC-97 parameters. The force-deformation behavior of isolators was modeled as bi-linear hysteretic behavior which can be effectively used to create the isolation systems. The obtained analytical results highlight the response modification factor of considered base isolation system with higher values than recommended in the codes. The response modification factor is used in modern seismic codes to scale down the elastic response of structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title="response modification factor">response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20isolation%20system" title=" base isolation system"> base isolation system</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20rubber%20bearing" title=" lead rubber bearing"> lead rubber bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-linear%20hysteretic" title=" bi-linear hysteretic"> bi-linear hysteretic</a> </p> <a href="https://publications.waset.org/abstracts/72242/evaluation-of-response-modification-factor-and-behavior-of-seismic-base-isolated-rc-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11023</span> Evaluation of Response Modification Factors in Moment Resisting Frame Buildings Considering Soil Structure Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Farheen">K. Farheen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Munir"> A. Munir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic response of the multi-storey buildings is created by the interaction of both the structure and underlying soil medium. The seismic design philosophy is incorporated using response modification factor 'R'. Current code based values of 'R' factor does not reflect the SSI problem as it is based on fixed base condition. In this study, the modified values of 'R' factor for moment resisting frame (MRF) considering SSI are evaluated. The response of structure with and without SSI has been compared using equivalent linear static and nonlinear static pushover analyses for 10-storied moment resisting frame building. The building is located in seismic zone 2B situated on different soils with shear wave velocity (Vₛ) of 300m/sec (SD) and 1200m/s (SB). Code based 'R' factor value for building frame system has been taken as 5.5. Soil medium is modelled using identical but mutually independent horizontal and vertical springs. It was found that the modified 'R' factor values have been decreased by 47% and 43% for soil SD and SB respectively as compared to that of code based 'R' factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildings" title="buildings">buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=SSI" title=" SSI"> SSI</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=R%20factor" title=" R factor"> R factor</a> </p> <a href="https://publications.waset.org/abstracts/100311/evaluation-of-response-modification-factors-in-moment-resisting-frame-buildings-considering-soil-structure-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11022</span> Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Javaherzadeh">Saeed Javaherzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Dindar%20Safa"> Babak Dindar Safa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=added%20viscoelastic%20damper" title="added viscoelastic damper">added viscoelastic damper</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20base%20shear" title=" design base shear"> design base shear</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title=" response modification factor"> response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20time%20history" title=" non-linear time history"> non-linear time history</a> </p> <a href="https://publications.waset.org/abstracts/31363/proposing-a-new-design-method-for-added-viscoelastic-dampers-application-in-steel-moment-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11021</span> Response Reduction Factor for Earthquake Resistant Design of Special Moment Resisting Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohan%20V.%20Ambekar">Rohan V. Ambekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrirang%20N.%20Tande"> Shrirang N. Tande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study estimates the seismic response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall using static nonlinear (pushover) analysis. Calculation of response reduction factor (R) is done as per the new formulation of response reduction factor (R) given by Applied Technology Council (ATC)-19 which is the product of strength factor (Rs), ductility factor (Rµ) and redundancy factor (RR). The analysis revealed that these three factors affect the actual value of response reduction factor (R) and therefore they must be taken into consideration while determining the appropriate response reduction factor to be used during the seismic design process. The actual values required for determination of response reduction factor (R) is worked out on the basis of pushover curve which is a plot of base shear verses roof displacement. Finally, the calculated values of response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall are compared with the codal values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20reduction%20factor" title="response reduction factor">response reduction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility%20ratio" title=" ductility ratio"> ductility ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20shear" title=" base shear"> base shear</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20moment%20resisting%20frames" title=" special moment resisting frames"> special moment resisting frames</a> </p> <a href="https://publications.waset.org/abstracts/1362/response-reduction-factor-for-earthquake-resistant-design-of-special-moment-resisting-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11020</span> Behavior Factors Evaluation for Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rizwan">Muhammad Rizwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmad"> Naveed Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhtar%20Naeem%20Khan"> Akhtar Naeem Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic behavior factors are evaluated for the performance assessment of low rise reinforced concrete RC frame structures based on experimental study of unidirectional dynamic shake table testing of two 1/3rd reduced scaled two storey frames, with a code confirming special moment resisting frame (SMRF) model and a noncompliant model of similar characteristics but built in low strength concrete .The models were subjected to a scaled accelerogram record of 1994 Northridge earthquake to deformed the test models to final collapse stage in order to obtain the structural response parameters. The fully compliant model was observed with more stable beam-sway response, experiencing beam flexure yielding and ground-storey column base yielding upon subjecting to 100% of the record. The response modification factor - R factor obtained for the code complaint and deficient prototype structures were 7.5 and 4.5 respectively, which is about 10% and 40% less than the UBC-97 specified value for special moment resisting reinforced concrete frame structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Northridge%201994%20earthquake" title="Northridge 1994 earthquake">Northridge 1994 earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20frame" title=" reinforced concrete frame"> reinforced concrete frame</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title=" response modification factor"> response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20testing" title=" shake table testing"> shake table testing</a> </p> <a href="https://publications.waset.org/abstracts/98880/behavior-factors-evaluation-for-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11019</span> Pushover Analysis of Reinforced Concrete Buildings Using Full Jacket Technics: A Case Study on an Existing Old Building in Madinah </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20M.%20Alguhane">Tarek M. Alguhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20H.%20Khalil"> Ayman H. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Fayed"> M. N. Fayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Ismail"> Ayman M. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The retrofitting of existing buildings to resist the seismic loads is very important to avoid losing lives or financial disasters. The aim at retrofitting processes is increasing total structure strength by increasing stiffness or ductility ratio. In addition, the response modification factors (R) have to satisfy the code requirements for suggested retrofitting types. In this study, two types of jackets are used, i.e. full reinforced concrete jackets and surrounding steel plate jackets. The study is carried out on an existing building in Madinah by performing static pushover analysis before and after retrofitting the columns. The selected model building represents nearly all-typical structure lacks structure built before 30 years ago in Madina City, KSA. The comparison of the results indicates a good enhancement of the structure respect to the applied seismic forces. Also, the response modification factor of the RC building is evaluated for the studied cases before and after retrofitting. The design of all vertical elements (columns) is given. The results show that the design of retrofitted columns satisfied the code&#39;s design stress requirements. However, for some retrofitting types, the ductility requirements represented by response modification factor do not satisfy KSA design code (SBC- 301). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20jackets" title="concrete jackets">concrete jackets</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20jackets" title=" steel jackets"> steel jackets</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20buildings" title=" RC buildings"> RC buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Linear%20analysis" title=" non-Linear analysis"> non-Linear analysis</a> </p> <a href="https://publications.waset.org/abstracts/58899/pushover-analysis-of-reinforced-concrete-buildings-using-full-jacket-technics-a-case-study-on-an-existing-old-building-in-madinah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11018</span> A Study on the Coefficient of Transforming Relative Lateral Displacement under Linear Analysis of Structure to Its Real Relative Lateral Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abtin%20Farokhipanah">Abtin Farokhipanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, analysis of structures is based on ductility design in contradictory to strength design in surveying earthquake effects on structures. ASCE07-10 code offers to intensify relative drifts calculated from a linear analysis with Cd which is called (Deflection Amplification Factor) to obtain the real relative drifts which can be calculated using nonlinear analysis. This lateral drift should be limited to the code boundaries. Calculation of this amplification factor for different structures, comparing with ASCE07-10 code and offering the best coefficient are the purposes of this research. Following our target, short and tall building steel structures with various earthquake resistant systems in linear and nonlinear analysis should be surveyed, so these questions will be answered: 1. Does the Response Modification Coefficient (R) have a meaningful relation to Deflection Amplification Factor? 2. Does structure height, seismic zone, response spectrum and similar parameters have an effect on the conversion coefficient of linear analysis to real drift of structure? The procedure has used to conduct this research includes: (a) Study on earthquake resistant systems, (b) Selection of systems and modeling, (c) Analyzing modeled systems using linear and nonlinear methods, (d) Calculating conversion coefficient for each system and (e) Comparing conversion coefficients with the code offered ones and concluding results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASCE07-10%20code" title="ASCE07-10 code">ASCE07-10 code</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection%20amplification%20factor" title=" deflection amplification factor"> deflection amplification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title=" earthquake engineering"> earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20displacement%20of%20structures" title=" lateral displacement of structures"> lateral displacement of structures</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20coefficient" title=" response modification coefficient"> response modification coefficient</a> </p> <a href="https://publications.waset.org/abstracts/31424/a-study-on-the-coefficient-of-transforming-relative-lateral-displacement-under-linear-analysis-of-structure-to-its-real-relative-lateral-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11017</span> Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as Per ASCE </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20M.%20%20Alguhane">Tarek M. Alguhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20H.%20Khalil"> Ayman H. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nour%20M.%20Fayed"> Nour M. Fayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Ismail"> Ayman M. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i. e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey-ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP 2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infill%20wall" title="infill wall">infill wall</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title=" response modification factor"> response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title=" seismic assessment "> seismic assessment </a> </p> <a href="https://publications.waset.org/abstracts/22829/seismic-assessment-of-old-existing-rc-buildings-with-masonry-infill-in-madinah-as-per-asce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11016</span> X-Bracing Configuration and Seismic Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Rahjoo">Saeed Rahjoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20H.%20Mamaqani"> Babak H. Mamaqani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentric bracing systems have been in practice for many years because of their effectiveness in reducing seismic response. Depending on concept, seismic design codes provide various response modification factors (R), which itself consists of different terms, for different types of lateral load bearing systems but configuration of these systems are often ignored in the proposed values. This study aims at considering the effect of different x-bracing diagonal configuration on values of ductility dependent term in R computation. 51 models were created and nonlinear push over analysis has been performed. The main variables of this study were the suitable location of X–bracing diagonal configurations, which establishes better nonlinear behavior in concentric braced steel frames. Results show that some x-bracing diagonal configurations improve the seismic performance of CBF significantly and explicit consideration of lateral load bearing systems seems necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bracing%20configuration" title="bracing configuration">bracing configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrically%20braced%20frame%20%28CBF%29" title=" concentrically braced frame (CBF)"> concentrically braced frame (CBF)</a>, <a href="https://publications.waset.org/abstracts/search?q=push%20over%20analyses" title=" push over analyses"> push over analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20reduction%20factor" title=" response reduction factor"> response reduction factor</a> </p> <a href="https://publications.waset.org/abstracts/5888/x-bracing-configuration-and-seismic-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11015</span> Silver Grating for Strong and Reproducible SERS Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kalachyova">Y. Kalachyova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Lyutakov"> O. Lyutakov</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Svorcik"> V. Svorcik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most significant obstacles for the application of surface enhanced Raman spectroscopy (SERS) is the poor reproducibility of SERS active substrates: SERS intensity can be varied from one substrate to another and moreover along the one substrate surface. High enhancement of the near-field intensity is the key factor for ultrasensitive SERS realization. SERS substrate can be prepared through introduction of highly ordered metal array, where light focusing is achieved through excitation of surface plasmon-polaritons (SPPs). In this work, we report the preparation of silver nanostructures with plasmon absorption peaks tuned by the metal arrangement. Excimer laser modification of poly(methyl methacrylate) followed by silver evaporation is proposed as an effective way for the creation of reproducible and effective surface plasmon-polaritons (SPP)-based SERS substrate. Theoretical and experimental studies were performed to optimize structure parameter for effective SPP excitation. It was found that the narrow range of grating periodicity and metal thickness exist, where SPPs can be most efficiently excited. In spite of the fact, that SERS response was almost always achieved, the enhancement factor was found to vary more with the effectivity of SPP excitation. When the real structure parameters were set to optimal for SPP excitation, a SERS enhancement factor was achieved up to four times. Theoretical and experimental investigation of SPP excitation on the two-dimensional periodical silver array was performed with the aim to make SERS response as high as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grating" title="grating">grating</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon-polaritons" title=" plasmon-polaritons"> plasmon-polaritons</a>, <a href="https://publications.waset.org/abstracts/search?q=SERS" title=" SERS"> SERS</a> </p> <a href="https://publications.waset.org/abstracts/32916/silver-grating-for-strong-and-reproducible-sers-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11014</span> Magnification Factor Based Seismic Response of Moment Resisting Frames with Open Ground Storey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subzar%20Ahmad%20Bhat">Subzar Ahmad Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Saraswati%20Setia"> Saraswati Setia</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.Sehgal"> V. K.Sehgal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past earthquakes, open ground storey buildings have performed poorly due to the soft storey defect. Indian Standard IS 1893:2002 allows analysis of open ground storey buildings without considering infill stiffness but with a multiplication factor 2.5 in compensation for the stiffness discontinuity. Therefore, the aim of this paper is to check the applicability of the multiplication factor of 2.5 and study behaviour of the structure after the application of the multiplication factor. For this purpose, study is performed on models considering infill stiffness using SAP 2000 (Version 14) by linear static analysis and response spectrum analysis. Total seven models are analysed and designed for the range of multiplication factor ranging from 1.25 to 2.5. The value of multiplication factor equal to 2.5 has been found on the higher side, resulting in increased dimension and percentage of reinforcement without significant enhancement beyond a certain multiplication factor. When the building with OGS is designed for values of MF higher than 1.25 considering infill stiffness soft storey effect shifts from ground storey to first storey. For the analysis of the OGS structure best way to analysis the structure is to analyse it as the frame with stiffness and strength of the infill taken into account. The provision of infill walls in the upper storeys enhances the performance of the structure in terms of displacement and storey drift controls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20ground%20storey" title="open ground storey">open ground storey</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplication%20factor" title=" multiplication factor"> multiplication factor</a>, <a href="https://publications.waset.org/abstracts/search?q=IS%201893%3A2002%20provisions" title=" IS 1893:2002 provisions"> IS 1893:2002 provisions</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20spectrum%20analysis" title=" response spectrum analysis"> response spectrum analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20stiffness" title=" infill stiffness"> infill stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20strut" title=" equivalent strut "> equivalent strut </a> </p> <a href="https://publications.waset.org/abstracts/28538/magnification-factor-based-seismic-response-of-moment-resisting-frames-with-open-ground-storey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11013</span> Characterization of Edible Film from Uwi Starch (Dioscorea alata L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miksusanti">Miksusanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Herlina"> Herlina</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiwin"> Wiwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research about modification uwi starch (Dioscorea alata L) by using propylene oxide has been done. Concentration of propylene oxide were 6%(v/w), 8%(v/w), and 10%(v/w). The amilograf parameters after modification were characteristic breakdown viscosity 43 BU and setback viscosity 975 BU. The modification starch have edible properties according to FDA (Food and Drug Administration) which have degree of modification < 7%, degree of substitution < 0,1 and propylene oxide concentration < 10%(v/w). The best propylene oxide in making of edible film was 8 %( v/w). The starch control can be made into edible film with thickness 0,136 mm, tensile strength 20,4605 MPa and elongation 22%. Modification starch of uwi can be made into edible film with thickness 0,146 mm, tensile strength 25, 3521 Mpa, elongation 30% and water vapor transmission 7, 2651 g/m2/24 hours. FTIR characterization of uwi starch showed the occurrence of hydroxypropylation. The peak spectrum at 2900 cm-1 showed bonding of C-H from methyl group, which is characteristic for modification starch with hydroxypropyl. Characterization with scanning electron microscopy showed that modification of uwi starch has turned the granule of starch to be fully swallon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uwi%20starch" title="uwi starch">uwi starch</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=propylen%20oxide" title=" propylen oxide"> propylen oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a> </p> <a href="https://publications.waset.org/abstracts/54718/characterization-of-edible-film-from-uwi-starch-dioscorea-alata-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11012</span> Study of the Responding Time for Low Permeability Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Lei">G. Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Dong"> P. C. Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Q.%20Cen"> X. Q. Cen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Mo"> S. Y. Mo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most significant parameters, describing the effect of water flooding in porous media, is flood-response time, and it is an important index in oilfield development. The responding time in low permeability reservoir is usually calculated by the method of stable state successive substitution neglecting the effect of medium deformation. Numerous studies show that the media deformation has an important impact on the development for low permeability reservoirs and can not be neglected. On the base of streamline tube model, we developed a method to interpret responding time with medium deformation factor. The results show that: the media deformation factor, threshold pressure gradient and well spacing have a significant effect on the flood response time. The greater the media deformation factor, threshold pressure gradient or well spacing is, the lower the flood response time is. The responding time of different streamlines varies. As the angle with the main streamline increases, the water flooding response time delays as a "parabola" shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20permeability" title="low permeability">low permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=flood-response%20time" title=" flood-response time"> flood-response time</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20pressure%20gradient" title=" threshold pressure gradient"> threshold pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20deformation" title=" medium deformation"> medium deformation</a> </p> <a href="https://publications.waset.org/abstracts/11166/study-of-the-responding-time-for-low-permeability-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11011</span> Prevalence of Complement Factor H (Y402H) Gene Polymorphism and Its Impact on the Predisposition of Syrians to Age-Related Macular Degeneration (AMD) and Response to Bevacizumab Intravitreal Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loubna%20Safar">Loubna Safar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lama%20Youssef"> Lama Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Majd%20Aljamali"> Majd Aljamali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Age-related macular degeneration (AMD) is one of the leading causes of blindness worldwide. Complement factor H polymorphism (Y402H) is thought to play a potential role in the predisposition to AMD and response of patients with exudative AMD to treatment with anti-Vascular Endothelial Growth Factor (anti-VEGF). This study aimed to investigate the frequency of Y402H among Syrians, its impact on their susceptibility to AMD, and the hypothesized role of Y402H in patients' response to intravitreal anti-VEGF (i.e.,, bevacizumab). Our case-control study encompassed unrelated 54 AMD cases and 44 controls. Genotyping was determined by standard sequencing of PCR products. Frequency was compared between patients and controls, and correlation between genotype and response to treatment was assessed in 20 patients with wet AMD who received a therapeutic course of three intravitreal bevacizumab injections (once monthly). Our results revealed a significantly higher prevalence of the risk allele C among AMD cases (51.9%) in comparison with controls (37.5%) (P= 0.04, OR= 1.386, CI= 0.999- 1.923). Patients with the TT genotype (no risk allele) exhibited a significantly better primary response rate, reached 87.5% compared to only 41.7% in patients carrying the risk allele C (TC + CC), (P= 0.04, OR= 9.8, CI=0.899- 106.84). The findings of this study prove the importance of investigating Y402H polymorphism as a prognostic marker for predicting response to bevacizumab in AMD patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age-related%20macular%20degeneration" title="age-related macular degeneration">age-related macular degeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=bevacizumab" title=" bevacizumab"> bevacizumab</a>, <a href="https://publications.waset.org/abstracts/search?q=complement%20factor%20H%20gene" title=" complement factor H gene"> complement factor H gene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=Y402H" title=" Y402H"> Y402H</a> </p> <a href="https://publications.waset.org/abstracts/142631/prevalence-of-complement-factor-h-y402h-gene-polymorphism-and-its-impact-on-the-predisposition-of-syrians-to-age-related-macular-degeneration-amd-and-response-to-bevacizumab-intravitreal-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11010</span> Estimation of the Seismic Response Modification Coefficient in the Superframe Structural System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Ghanbarnezhad%20Ghazvini">Ali Reza Ghanbarnezhad Ghazvini</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Hamid%20Reza%20Mosayyebi"> Seyyed Hamid Reza Mosayyebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, an earthquake has occurred approximately every five years in certain regions of Iran. To mitigate the impact of these seismic events, it is crucial to identify and thoroughly assess the vulnerability of buildings and infrastructure, ensuring their safety through principled reinforcement. By adopting new methods of risk assessment, we can effectively reduce the potential risks associated with future earthquakes. In our research, we have observed that the coefficient of behavior in the fourth chapter is 1.65 for the initial structure and 1.72 for the Superframe structure. This indicates that the Superframe structure can enhance the strength of the main structural members by approximately 10% through the utilization of super beams. Furthermore, based on the comparative analysis between the two structures conducted in this study, we have successfully designed a stronger structure with minimal changes in the coefficient of behavior. Additionally, this design has allowed for greater energy dissipation during seismic events, further enhancing the structure's resilience to earthquakes. By comprehensively examining and reinforcing the vulnerability of buildings and infrastructure, along with implementing advanced risk assessment techniques, we can significantly reduce casualties and damages caused by earthquakes in Iran. The findings of this study offer valuable insights for civil engineering professionals in the field of structural engineering, aiding them in designing safer and more resilient structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20pushover%20analysis" title="modal pushover analysis">modal pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title=" response modification factor"> response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=high-strength%20concrete" title=" high-strength concrete"> high-strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20shear%20walls" title=" concrete shear walls"> concrete shear walls</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20building" title=" high-rise building"> high-rise building</a> </p> <a href="https://publications.waset.org/abstracts/167392/estimation-of-the-seismic-response-modification-coefficient-in-the-superframe-structural-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11009</span> Maximum Deformation Estimation for Reinforced Concrete Buildings Using Equivalent Linearization Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20Chiu">Chien-Kuo Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the displacement-based seismic design and evaluation, equivalent linearization method is one of the approximation methods to estimate the maximum inelastic displacement response of a system. In this study, the accuracy of two equivalent linearization methods are investigated. The investigation consists of three soil condition in Taiwan (Taipei Basin 1, 2, and 3) and five different heights of building (H_r= 10, 20, 30, 40, and 50 m). The first method is the Taiwan equivalent linearization method (TELM) which was proposed based on Japanese equivalent linear method considering the modification factor, α_T= 0.85. On the basis of Lin and Miranda study, the second method is proposed with some modification considering Taiwan soil conditions. From this study, it is shown that Taiwanese equivalent linearization method gives better estimation compared to the modified Lin and Miranda method (MLM). The error index for the Taiwanese equivalent linearization method are 16%, 13%, and 12% for Taipei Basin 1, 2, and 3, respectively. Furthermore, a ductility demand spectrum of single-degree-of-freedom (SDOF) system is presented in this study as a guide for engineers to estimate the ductility demand of a structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement-based%20design" title="displacement-based design">displacement-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility%20demand%20spectrum" title=" ductility demand spectrum"> ductility demand spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20linearization%20method" title=" equivalent linearization method"> equivalent linearization method</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20buildings" title=" RC buildings"> RC buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=single-degree-of-freedom" title=" single-degree-of-freedom"> single-degree-of-freedom</a> </p> <a href="https://publications.waset.org/abstracts/91802/maximum-deformation-estimation-for-reinforced-concrete-buildings-using-equivalent-linearization-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11008</span> Improvement on the Specific Activities of Immobilized Enzymes by Poly(Ethylene Oxide) Surface Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaohua%20Li">Shaohua Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Zhang"> Aihua Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelly%20Zatopek"> Kelly Zatopek</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Parvez"> Saba Parvez</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20F.%20Gardner"> Andrew F. Gardner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20R.%20Corr%C3%AAa%20Jr."> Ivan R. Corrêa Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20J.%20Noren"> Christopher J. Noren</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Qun%20Xu"> Ming-Qun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Covalent immobilization of enzymes on solid supports is an alternative approach to biocatalysis with the added benefits of simple enzyme removal, improved stability, and adaptability to automation and high-throughput applications. Nevertheless, immobilized enzymes generally suffer from reduced activities compared to their soluble counterparts. One major factor leading to activity loss is the intrinsic hydrophobic property of the supporting material surface, which could result in the conformational change/confinement of enzymes. We report a strategy of utilizing flexible poly (ethylene oxide) (PEO) moieties as to improve the surface hydrophilicity of solid supports used for enzyme immobilization. DNA modifying enzymes were covalently conjugated to PEO-coated magnetic-beads. Kinetics studies proved that the activities of the covalently-immobilized DNA modifying enzymes were greatly enhanced by the PEO modification on the bead surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilized%20enzymes" title="immobilized enzymes">immobilized enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title=" biocatalysis"> biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20oxide%29" title=" poly(ethylene oxide)"> poly(ethylene oxide)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/79716/improvement-on-the-specific-activities-of-immobilized-enzymes-by-polyethylene-oxide-surface-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11007</span> Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasu%20Velagapudi">Vasu Velagapudi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Suresh"> G. Suresh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PTFE%2FHNT" title="PTFE/HNT">PTFE/HNT</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology%20%28RSM%29" title=" response surface methodology (RSM)"> response surface methodology (RSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20wear%20rate" title=" specific wear rate"> specific wear rate</a> </p> <a href="https://publications.waset.org/abstracts/67177/multi-objective-optimization-of-wear-parameters-of-tube-like-clay-mineral-filled-thermoplastic-polymer-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11006</span> Behavioral Problems Among Down Syndrome Children in the Special Education Complex Peshawar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huma%20Atta">Huma Atta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishrat%20Rehman"> Ishrat Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair"> Muhammad Umair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To find out the effectiveness of Dr. Stein behavioural modification strategies among Down syndrome children’s behavioural problems. Material & Methods: We took a group of individuals (aged 8-16) having Down syndrome from national special education complex, Peshawar. They were assessed through the behavioural problem index to give us an idea on their behaviour problems, those with a behavioural problem were kept in therapy for further sessions to help them improve. Results: A treatment plan was made according to the extracted behavioural problems of Down syndrome children. Dr. Stein recommended behavioural modification treatment strategies were used for behavioural modification of Down syndrome children (Routine, reward, choice, redirection and consistency). Pre-intervention (M=69.11, SD=6.27) and post-intervention (M=61.33, SD=6.51) conditions; t (8) =2.70, p=0.027. Conclusion: After the successful completion of 9 sessions with Down syndrome children, their behavioural problems were reassessed. Results indicated that Dr. Stein behavioural modification strategy is an effective treatment plan for the modification of behavioural problems among Down syndrome children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior" title="behavior">behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=down%20syndrome" title=" down syndrome"> down syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=strategies" title=" strategies"> strategies</a> </p> <a href="https://publications.waset.org/abstracts/193314/behavioral-problems-among-down-syndrome-children-in-the-special-education-complex-peshawar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11005</span> Simple Rheological Method to Estimate the Branch Structures of Polyethylene under Reactive Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Golriz">Mahdi Golriz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to estimate the change in molecular structure of linear low-density polyethylene (LLDPE) during peroxide modification can be detected by a simple rheological method. For this purpose a commercial grade LLDPE (Exxon MobileTM LL4004EL) was reacted with different doses of dicumyl peroxide (DCP). The samples were analyzed by size-exclusion chromatography coupled with a light scattering detector. The dynamic shear oscillatory measurements showed a deviation of the δ-׀G ׀٭curve from that of the linear LLDPE, which can be attributed to the presence of long-chain branching (LCB). By the use of a simple rheological method that utilizes melt rheology, transformations in molecular architecture induced on an originally linear low density polyethylene during the early stages of reactive modification were indicated. Reasonable and consistent estimates are obtained, concerning the degree of LCB, the volume fraction of the various molecular species produced in peroxide modification of LLDPE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20low-density%20polyethylene" title="linear low-density polyethylene">linear low-density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxide%20modification" title=" peroxide modification"> peroxide modification</a>, <a href="https://publications.waset.org/abstracts/search?q=long-chain%20branching" title=" long-chain branching"> long-chain branching</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20method" title=" rheological method"> rheological method</a> </p> <a href="https://publications.waset.org/abstracts/123353/simple-rheological-method-to-estimate-the-branch-structures-of-polyethylene-under-reactive-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11004</span> Improving Paper Mechanical Properties and Printing Quality by Using Carboxymethyl Cellulose as a Strength Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Simonian">G. N. Simonian</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Basalah"> R. F. Basalah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Abd%20El%20Halim"> F. T. Abd El Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20F.%20Abd%20El%20Latif"> F. F. Abd El Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Adel"> A. M. Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20El%20Shafey."> A. M. El Shafey. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carboxymethyl cellulose (CMC) is an anionic water soluble polymer that has been introduced in paper coating as a strength agent. One of the main objectives of this research is to investigate the influence of CMC concentration in improving the strength properties of paper fiber. In this work, we coated the paper sheets; Xerox paper sheets by different concentration of carboxymethyl cellulose solution (0.1, 0.5, 1, 1.5, 2, 3%) w/v. The mechanical properties; breaking length and tearing resistance (tear factor) were measured for the treated and untreated paper specimens. The retained polymer in the coated paper samples were also calculated. The more the concentration of the coating material; CMC increases, the more the mechanical properties; breaking length and tear factor increases. It can be concluded that CMC enhance the improvement of the mechanical properties of paper sheets result in increasing paper stability. The aim of the present research was also to study the effects on the vessel element structure and vessel picking tendency of the coated paper sheets. In addition to the improved strength properties of the treated sheet, a significant decrease in the vessel picking tendency was expected whereas refining of the original paper sheets (untreated paper sheets) improved mainly the bonding ability of fibers, CMC effectively enhanced the bonding of vessels as well. Moreover, film structures were formed in the fibrillated areas of the coated paper specimens, and they were concluded to reinforce the bonding within the sheet. Also, fragmentation of vessel elements through CMC modification was found to be important and results in a decreasing picking tendency which reflects in a good printability. Moreover, Scanning – Electron Microscope (SEM) images are represented to specifically explain the improved bonding ability of vessels and fibers after CMC modification. Finally, CMC modification enhance paper mechanical properties and print quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose%20%28CMC%29" title="carboxymethyl cellulose (CMC)">carboxymethyl cellulose (CMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20length" title=" breaking length"> breaking length</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20factor" title=" tear factor"> tear factor</a>, <a href="https://publications.waset.org/abstracts/search?q=vessel%20picking" title=" vessel picking"> vessel picking</a>, <a href="https://publications.waset.org/abstracts/search?q=printing" title=" printing"> printing</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration "> concentration </a> </p> <a href="https://publications.waset.org/abstracts/18136/improving-paper-mechanical-properties-and-printing-quality-by-using-carboxymethyl-cellulose-as-a-strength-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11003</span> Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monalisa%20Pal">Monalisa Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalyan%20Mandal"> Kalyan Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-based%20oxide%20nanostructures" title="co-based oxide nanostructures">co-based oxide nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-color%20fluorescence" title=" multi-color fluorescence"> multi-color fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a> </p> <a href="https://publications.waset.org/abstracts/25906/surface-modification-of-co-based-nanostructures-to-develop-intrinsic-fluorescence-and-catalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11002</span> Factor Structure of the University of California, Los Angeles (UCLA) Loneliness Scale: Gender, Age, and Marital Status Differences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamzeh%20Dodeen">Hamzeh Dodeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at examining the effects of item wording effects on the factor structure of the University of California, Los Angeles (UCLA) Loneliness Scale: gender, age, and marital status differences. A total of 2374 persons from the UAE participated, representing six different populations (teenagers/elderly, males/females, and married/unmarried). The results of the exploratory factor analysis using principal axis factoring with (oblique) rotation revealed that two factors were extracted from the 20 items of the scale. The nine positively worded items were highly loaded on the first factor, while 10 out of the 11 negatively worded items were highly loaded on the second factor. The two-factor solution was confirmed on the six different populations based on age, gender, and marital status. It has been concluded that the rating of the UCLA scale is affected by a response style related to the item wording. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UCLA%20Loneliness%20Scale" title="UCLA Loneliness Scale">UCLA Loneliness Scale</a>, <a href="https://publications.waset.org/abstracts/search?q=loneliness" title=" loneliness"> loneliness</a>, <a href="https://publications.waset.org/abstracts/search?q=positively%20worded%20items" title=" positively worded items"> positively worded items</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20structure" title=" factor structure"> factor structure</a>, <a href="https://publications.waset.org/abstracts/search?q=negatively%20worded%20items" title=" negatively worded items"> negatively worded items</a> </p> <a href="https://publications.waset.org/abstracts/64009/factor-structure-of-the-university-of-california-los-angeles-ucla-loneliness-scale-gender-age-and-marital-status-differences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11001</span> Role of Interleukin-36 in Response to Pseudomonas aeruginosa Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muslim%20Idan%20Mohsin">Muslim Idan Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Jasim%20Al-Shamarti"> Mohammed Jasim Al-Shamarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Rusul%20Idan%20Mohsin"> Rusul Idan Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Majeed"> Ali A. Majeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the causative agents of the lower respiratory tract (LRT) is Pseudomonas aeruginosa, which can lead to severe infection associated with a lung infection. There are many cytokines that are secreted in response to bacterial infection, in particular interleukin IL-36 cytokine in response to P. aeruginosa infection. The involvement of IL-36 in the P. aeruginosa infection could be a clue to find a specific way for treatments of different inflammatory and degenerative lung diseases. IL36 promotes primary immune response via binding to the IL-36 receptor (IL-36R). Indeed, an overactivity of IL-36 might be an initiating factor for many immunopathologic sceneries in pneumonia. Here we demonstrate if the IL-36 cytokine increases in response P. aeruginosa infection that is isolated from lower respiratory tract infection (LRT). We demonstrated that IL-36 expression significantly unregulated in human lung epithelial (A549) cells after infected by P. aeruginosa at mRNA level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IL36" title="IL36">IL36</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa" title=" Pseudomonas aeruginosa"> Pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=LRT%20infection" title=" LRT infection"> LRT infection</a>, <a href="https://publications.waset.org/abstracts/search?q=A549%20cells" title=" A549 cells"> A549 cells</a> </p> <a href="https://publications.waset.org/abstracts/119670/role-of-interleukin-36-in-response-to-pseudomonas-aeruginosa-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11000</span> Frequency Response of Complex Systems with Localized Nonlinearities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Menga">E. Menga</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hernandez"> S. Hernandez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an &lsquo;updating&rsquo; process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20response" title="frequency response">frequency response</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamics" title=" nonlinear dynamics"> nonlinear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20dynamic%20modification" title=" structural dynamic modification"> structural dynamic modification</a>, <a href="https://publications.waset.org/abstracts/search?q=softening%20effect" title=" softening effect"> softening effect</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber" title=" rubber"> rubber</a> </p> <a href="https://publications.waset.org/abstracts/47202/frequency-response-of-complex-systems-with-localized-nonlinearities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10999</span> Nitrate Removal from Drinking Water Using Modified Natural Nanozeolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Meftah">T. Meftah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Zerafat"> M. M. Zerafat</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sabbaghi"> S. Sabbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrate compounds are considered as groundwater contaminants, the concentration of which has been growing in these resources during recent years. As a result, it seems necessary to use effective methods to remove nitrate from water and wastewater. Adsorption process is generally considered more economical in water treatment. Natural clinoptilolite zeolite is one of the best absorbents because of its high capacity and low cost.In this research, we are going to modify zeolite nanoparticles as a chemical modification. Zeolite nanoparticles have been modified with a kind of organosilane, like 3-aminopropyltriethoxysilane. The advantage of this modification method, in comparison with physical modification, is the good stability in various environmental conditions. In this research, absorbent properties have been analyzed by PSA, FTIR and CHN elemental analysis. Also, nitrate adsorption by modified nanoparticles was examined by UV-Vis spectroscopy. There would be 〖NH〗_2 groups on the zeolite surface as a result of organosilane modification. In order to adsorption of nitrate, we need to convert 〖NH〗_2 groups to〖NH〗_4^+, that it is possible in acidic condition. As a result, the best nitrate removal is possible in the lowest concentration and pH. We obtained 80.12% nitrate removal in pH=3 and 50 mg⁄l nitrate concentration and 4 g⁄l absorbent optimum concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrate%20removal" title="nitrate removal">nitrate removal</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=organosilane" title=" organosilane"> organosilane</a> </p> <a href="https://publications.waset.org/abstracts/18940/nitrate-removal-from-drinking-water-using-modified-natural-nanozeolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10998</span> Efficiency of DMUs in Presence of New Inputs and Outputs in DEA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmat%20Noroozi">Esmat Noroozi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elahe%20Sarfi"> Elahe Sarfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farha%20Hosseinzadeh%20Lotfi"> Farha Hosseinzadeh Lotfi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Examining the impacts of data modification is considered as sensitivity analysis. A lot of studies have considered the data modification of inputs and outputs in DEA. The issues which has not heretofore been considered in DEA sensitivity analysis is modification in the number of inputs and (or) outputs and determining the impacts of this modification in the status of efficiency of DMUs. This paper is going to present systems that show the impacts of adding one or multiple inputs or outputs on the status of efficiency of DMUs and furthermore a model is presented for recognizing the minimum number of inputs and (or) outputs from among specified inputs and outputs which can be added whereas an inefficient DMU will become efficient. Finally the presented systems and model have been utilized for a set of real data and the results have been reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title="data envelopment analysis">data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=input" title=" input"> input</a>, <a href="https://publications.waset.org/abstracts/search?q=out%20put" title=" out put"> out put</a> </p> <a href="https://publications.waset.org/abstracts/30483/efficiency-of-dmus-in-presence-of-new-inputs-and-outputs-in-dea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10997</span> Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nabhan">A. Nabhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20R.%20El-Sharkawy"> Mohamed R. El-Sharkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rashed"> A. Rashed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE.&nbsp; Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation%20model" title="simulation model">simulation model</a>, <a href="https://publications.waset.org/abstracts/search?q=misalignment" title=" misalignment"> misalignment</a>, <a href="https://publications.waset.org/abstracts/search?q=cogs%20missing" title=" cogs missing"> cogs missing</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/98593/monitoring-of-belt-drive-defects-using-the-vibration-signals-and-simulation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10996</span> Designing Emergency Response Network for Rail Hazmat Shipments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Vaezi">Ali Vaezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotirmoy%20Dalal"> Jyotirmoy Dalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Verma"> Manish Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The railroad is one of the primary transportation modes for hazardous materials (hazmat) shipments in North America. Installing an emergency response network capable of providing a commensurate response is one of the primary levers to contain (or mitigate) the adverse consequences from rail hazmat incidents. To this end, we propose a two-stage stochastic program to determine the location of and equipment packages to be stockpiled at each response facility. The raw input data collected from publicly available reports were processed, fed into the proposed optimization program, and then tested on a realistic railroad network in Ontario (Canada). From the resulting analyses, we conclude that the decisions based only on empirical datasets would undermine the effectiveness of the resulting network; coverage can be improved by redistributing equipment in the network, purchasing equipment with higher containment capacity, and making use of a disutility multiplier factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazmat" title="hazmat">hazmat</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20network" title=" rail network"> rail network</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20programming" title=" stochastic programming"> stochastic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20response" title=" emergency response"> emergency response</a> </p> <a href="https://publications.waset.org/abstracts/118793/designing-emergency-response-network-for-rail-hazmat-shipments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10995</span> Potential Ecological Risk Index of the Northern Egyptian Lagoons, South of Mediterranean Sea, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El-Bady">Mohamed El-Bady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Northern Egyptian Lagoons are (from east to west) Bardawil Lagoon, Manzala Lagoon, Burullus Lagoon, Edku Lagoons and Mariute Lagoon. These lagoons have been received the bulk of drainage water from the lands of Delta and from the other coastal areas. Where, the heavy metals can occur in Lagoons environments through a variety of sources, including industries, wastewaters and domestic effluents. The potential ecological risk index (RI) calculation of the bottom sediments of the northern lagoons depends on contamination factor (CF), potential ecological risk factor and proposed toxic response factor (Tr). Each lagoon with special indices according to its conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Northern%20Lagoons" title="Northern Lagoons">Northern Lagoons</a>, <a href="https://publications.waset.org/abstracts/search?q=Nile%20Delta" title=" Nile Delta"> Nile Delta</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20risk%20index" title=" ecological risk index"> ecological risk index</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title=" contamination factor"> contamination factor</a> </p> <a href="https://publications.waset.org/abstracts/48031/potential-ecological-risk-index-of-the-northern-egyptian-lagoons-south-of-mediterranean-sea-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=367">367</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=368">368</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10