CINXE.COM

Search results for: non destructive control

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: non destructive control</title> <meta name="description" content="Search results for: non destructive control"> <meta name="keywords" content="non destructive control"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="non destructive control" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="non destructive control"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11188</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: non destructive control</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11188</span> A Study on the Non-Destructive Test Characterization of Carbon Fiber Reinforced Plastics Using Thermo-Graphic Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Jae%20Shin">Hee Jae Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Pyo%20Cha"> In Pyo Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Sang%20Lee"> Min Sang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Kyung%20Yoon"> Hyun Kyung Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Ho%20Kim"> Tae Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon%20Sun%20Lee"> Yoon Sun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ku%20Kwac"> Lee Ku Kwac</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Gun%20Kim"> Hong Gun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-destructive testing and evaluation techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. In this study, Analyze into non-destructive test characterization of carbon fiber reinforced plastics(CFRP) internal and external defects using thermo-graphic camera and transient thermography method. non-destructive testing were characterized by defect size(∅8,∅10,∅12,∅14) and depth(1.2mm,2.4mm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Non-Destructive%20Test%20%28NDT%29" title="Non-Destructive Test (NDT)">Non-Destructive Test (NDT)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20characteristic" title=" thermal characteristic"> thermal characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermographic%20camera" title=" thermographic camera"> thermographic camera</a>, <a href="https://publications.waset.org/abstracts/search?q=Carbon%20Fiber%20Reinforced%20Plastics%28CFRP%29." title=" Carbon Fiber Reinforced Plastics(CFRP)."> Carbon Fiber Reinforced Plastics(CFRP).</a> </p> <a href="https://publications.waset.org/abstracts/20078/a-study-on-the-non-destructive-test-characterization-of-carbon-fiber-reinforced-plastics-using-thermo-graphic-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11187</span> Analysis of Control by Flattening of the Welded Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hannachi%20Med%20Tahar">Hannachi Med Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Djebaili"> H. Djebaili</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Daheche"> B. Daheche </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this approach, we have tried to describe the flattening of welded tubes, and its experimental application. The test is carried out at the (National product processing company dishes and tubes production). Usually, the final products (tubes) undergo a series of non-destructive inspection online and offline welding, and obviously destructive mechanical testing (bending, flattening, flaring, etc.). For this and for the purpose of implementing the flattening test, which applies to the processing of round tubes in other forms, it took four sections of welded tubes draft (before stretching hot) and welded tubes finished (after drawing hot and annealing), it was also noted the report &#39;health&#39; flattened tubes must not show or crack or tear. The test is considered poor if it reveals a lack of ductility of the metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flattening" title="flattening">flattening</a>, <a href="https://publications.waset.org/abstracts/search?q=destructive%20testing" title=" destructive testing"> destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20drafts" title=" tube drafts"> tube drafts</a>, <a href="https://publications.waset.org/abstracts/search?q=finished%20tube" title=" finished tube"> finished tube</a>, <a href="https://publications.waset.org/abstracts/search?q=Castem%202001" title=" Castem 2001"> Castem 2001</a> </p> <a href="https://publications.waset.org/abstracts/31484/analysis-of-control-by-flattening-of-the-welded-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11186</span> Industry 4.0 Adoption, Control Mechanism and Sustainable Performance of Healthcare Supply Chains under Disruptive Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edward%20Nartey">Edward Nartey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although the boundaries of sustainable performance and growth in the field of service supply chains (SCs) have been broadened by scholars in recent years, research on the impact and promises of Industry 4.0 Destructive Technologies (IDTs) on sustainability performance under disruptive events is still scarce. To mitigate disruptions in the SC and improve efficiency by identifying areas for cost savings, organizations have resorted to investments in digitalization, automation, and control mechanisms in recent years. However, little is known about the sustainability implications for IDT adoption and controls in service SCs, especially during disruptive events. To investigate this paradox, survey data were sought from 223 public health managers across Ghana and analyzed via covariance-based structural equations modelling. The results showed that both formal and informal control have a positive and significant relationship with IDT adoption. In addition, formal control has a significant and positive relationship with environmental and economic sustainability but an insignificant relationship with social sustainability. Furthermore, informal control positively impacts economic performance but has an insignificant relationship with social and environmental sustainability. While the findings highlight the prevalence of the IDTs being initiated by Ghanaian public health institutions (PHIs), this study concludes that the installed control systems in these organizations are inadequate for promoting sustainable SC behaviors under destructive events. Thus, in crisis situations, PHIs need to redesign their control systems to facilitate IDT integration towards sustainability issues in SCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industry%204.0%20destructive%20technologies" title="industry 4.0 destructive technologies">industry 4.0 destructive technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20control" title=" formal control"> formal control</a>, <a href="https://publications.waset.org/abstracts/search?q=informal%20control" title=" informal control"> informal control</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20supply%20chain%20performance" title=" sustainable supply chain performance"> sustainable supply chain performance</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health%20organizations" title=" public health organizations"> public health organizations</a> </p> <a href="https://publications.waset.org/abstracts/184558/industry-40-adoption-control-mechanism-and-sustainable-performance-of-healthcare-supply-chains-under-disruptive-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11185</span> Efficiency of Treatment in Patients with Newly Diagnosed Destructive Pulmonary Tuberculosis Using Intravenous Chemotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kuzhko">M. Kuzhko</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gumeniuk"> M. Gumeniuk</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Butov"> D. Butov</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Tlustova"> T. Tlustova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Denysov"> O. Denysov</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sprynsian"> T. Sprynsian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The aim of the research was to determine the effectiveness of chemotherapy using intravenous antituberculosis drugs compared with their oral administration during the intensive phase of treatment. Methods: 152 tuberculosis patients were randomized into 2 groups: Main (n=65) who received isoniazid, ethambutol and sodium rifamycin intravenous + pyrazinamide per os and control (n=87) who received all the drugs (isoniazid, rifampicin, ethambutol, pyrazinamide) orally. Results: After 2 weeks of treatment symptoms of intoxication disappeared in 59 (90.7±3.59 %) of patients of the main group and 60 (68.9±4.9 %) patients in the control group, p<0.05. The mean duration of symptoms of intoxication in patients main group was 9.6±0.7 days, in control group – 13.7±0.9 days. After completing intensive phase sputum conversion was found in all the patients main group and 71 (81.6±4.1 %) patients control group p < 0.05. The average time of sputum conversion in main group was 1.6±0.1 months and 1.9±0.1 months in control group, p > 0.05. In patients with destructive pulmonary tuberculosis time to sputum conversion was 1.7±0.1 months in main group and 2.2±0.2 months in control group, p < 0.05. The average time of cavities healing in main group was 2.9±0.2 months and 3.9±0.2 months in the control group, p < 0.05. Conclusions: In patients with newly diagnosed destructive pulmonary tuberculosis use of isoniazid, ethambutol and sodium rifamycin intravenous in the intensive phase of chemotherapy resulted in a significant reduction in terms of the disappearance of symptoms of intoxication and sputum conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intravenous%20chemotherapy" title="intravenous chemotherapy">intravenous chemotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20efficiency" title=" treatment efficiency"> treatment efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis%20drugs" title=" tuberculosis drugs"> tuberculosis drugs</a> </p> <a href="https://publications.waset.org/abstracts/61715/efficiency-of-treatment-in-patients-with-newly-diagnosed-destructive-pulmonary-tuberculosis-using-intravenous-chemotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11184</span> Age Estimation Using Destructive and Non-Destructive Dental Methods on an Archeological Human Sample from the Poor Claire Nunnery in Brussels, Belgium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pilar%20Cornejo%20Ulloa">Pilar Cornejo Ulloa</a>, <a href="https://publications.waset.org/abstracts/search?q=Guy%20Willems"> Guy Willems</a>, <a href="https://publications.waset.org/abstracts/search?q=Steffen%20Fieuws"> Steffen Fieuws</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Quintelier"> Kim Quintelier</a>, <a href="https://publications.waset.org/abstracts/search?q=Wim%20Van%20Neer"> Wim Van Neer</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Thevissen"> Patrick Thevissen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dental age estimation can be performed both in living and deceased individuals. In anthropology, few studies have tested the reliability of dental age estimation methods complementary to the usually applied osteological methods. Objectives: In this study, destructive and non-destructive dental age estimation methods were applied on an archeological sample in order to compare them with the previously obtained anthropological age estimates. Materials and Methods: One hundred and thirty-four teeth from 24 individuals were analyzed using Kvaal, Kvaal and Solheim, Bang and Ramm, Lamendin, Gustafson, Maples, Dalitz and Johanson’s methods. Results: A high variability and wider age ranges than the ones previously obtained by the anthropologist could be observed. Destructive methods had a slightly higher agreement than the non-destructive. Discussion: Due to the heterogeneity of the sample and the lack of the real age at death, the obtained results were not representative, and it was not possible to suggest one dental age estimation method over another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archeology" title="archeology">archeology</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20age%20estimation" title=" dental age estimation"> dental age estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20anthropology" title=" forensic anthropology"> forensic anthropology</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20dentistry" title=" forensic dentistry"> forensic dentistry</a> </p> <a href="https://publications.waset.org/abstracts/68933/age-estimation-using-destructive-and-non-destructive-dental-methods-on-an-archeological-human-sample-from-the-poor-claire-nunnery-in-brussels-belgium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11183</span> Electronic Tongue as an Innovative Non-Destructive Tool for the Quality Monitoring of Fruits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Ghasemi-Varnamkhasti">Mahdi Ghasemi-Varnamkhasti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayat%20Mohammad-Razdari"> Ayat Mohammad-Razdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedeh-Hoda%20Yoosefian"> Seyedeh-Hoda Yoosefian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Taste is an important sensory property governing acceptance of products for administration through mouth. The advent of artificial sensorial systems as non-destructive tools able to mimic chemical senses such as those known as electronic tongue (ET) has open a variety of practical applications and new possibilities in many fields where the presence of taste is the phenomenon under control. In recent years, electronic tongue technology opened the possibility to exploit information on taste attributes of fruits providing real time information about quality and ripeness. Electronic tongue systems have received considerable attention in the field of sensor technology during the last two decade because of numerous applications in diverse fields of applied sciences. This paper deals with some facets of this technology in the quality monitoring of fruits along with more recent its applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruit" title="fruit">fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20tongue" title=" electronic tongue"> electronic tongue</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive" title=" non-destructive"> non-destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=taste%20machine" title=" taste machine"> taste machine</a>, <a href="https://publications.waset.org/abstracts/search?q=horticultural" title=" horticultural"> horticultural</a> </p> <a href="https://publications.waset.org/abstracts/54390/electronic-tongue-as-an-innovative-non-destructive-tool-for-the-quality-monitoring-of-fruits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11182</span> Non-Destructive Inspection for Tunnel Lining Concrete with Small Void by Using Ultrasonic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasuyuki%20Nabeshima">Yasuyuki Nabeshima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many tunnels which have been constructed since more than 50 years were existing in Japan. Lining concrete in these tunnels have many problems such as crack, flacking and void. Inner void between lining concrete and rock was very hard to find by outside visual check and hammering test. In this paper, non-destructive inspection by using ultrasonic was applied to investigate inner void. A model concrete with inner void was used as specimen and ultrasonic inspection was applied to specify the location and the size of void. As a result, ultrasonic inspection could accurately find the inner void. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel" title="tunnel">tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=lining%20concrete" title=" lining concrete"> lining concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=void" title=" void"> void</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20inspection" title=" non-destructive inspection"> non-destructive inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a> </p> <a href="https://publications.waset.org/abstracts/74615/non-destructive-inspection-for-tunnel-lining-concrete-with-small-void-by-using-ultrasonic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11181</span> The Main Characteristics of Destructive Motivation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elen%20Gasparyan">Elen Gasparyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Naira%20Hakobyan"> Naira Hakobyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the leading factors determining the effectiveness of work in a modern organization is the motivation of its employees. In the scientific psychological literature, this phenomenon is understood mainly as constructive forms of motivation and the search for ways to increase it. At the same time, the motivation of employees can sometimes lead to a decrease in the productivity of the organization, i.e., destructive motivation is usually not considered from the point of view of various motivational theories. This article provides an analysis of various forms of destructive motivation of employees. These forms include formalism in labor behavior, inadequate assessment of the work done, and an imbalance of personal and organizational interests. The destructive motivation of personnel has certain negative consequences both for the employees themselves and for the entire organization - it leads to a decrease in the rate of production and the quality of products or services, increased conflict in the behavior of employees, etc. Currently, there is an increase in scientific interest in the study of destructive motivation. The subject of psychological research is not only modern socio-psychological processes but also the achievements of scientific thought in the field of theories of motivation and management. This article examines the theoretical approaches of J. S. Adams and Porter-Lawler, provides an analysis of theoretical concepts, and emphasizes the main characteristics of the destructiveness of motivation. Destructive work motivation is presented at the macro, meso, and micro levels. These levels express various directions of development of motivation stimuli, such as social, organizational, and personal ones. At the macro level, the most important characteristics of destructive motivation are the high-income gap between employers and employees, а high degree of unemployment, weak social protection of workers, non-compliance by employers with labor legislation, and emergencies. At the organizational level, the main characteristics are decreasing the diversity of work and insufficient work conditions. At the personal level, the main characteristic of destructive motivation is a discrepancy between personal and organizational interests. A comparative analysis of the theoretical and methodological foundations of the study of motivation makes it possible to identify not only the main characteristics of destructive motivation but also to determine the contours of psychological counseling to reduce destructiveness in the behavior of employees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=destructive" title="destructive">destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation" title=" motivation"> motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=organization" title=" organization"> organization</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a> </p> <a href="https://publications.waset.org/abstracts/186357/the-main-characteristics-of-destructive-motivation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11180</span> Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Petcharaporn">K. Petcharaporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=mold" title=" mold"> mold</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a> </p> <a href="https://publications.waset.org/abstracts/16784/detection-of-internal-mold-infection-of-intact-tomatoes-by-non-destructive-transmittance-vis-nir-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11179</span> Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Petcharaporn">K. Petcharaporn</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Prathengjit"> N. Prathengjit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=mold" title=" mold"> mold</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a> </p> <a href="https://publications.waset.org/abstracts/19657/detection-of-internal-mold-infection-of-intact-for-tomatoes-by-non-destructive-transmittance-vis-nir-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11178</span> Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annisa%20Dewanti%20Putri">Annisa Dewanti Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Juan"> Wang Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Qing%20Shan"> Y. Qing Shan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancient%20structure" title="ancient structure">ancient structure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20destructive%20test" title=" non destructive test"> non destructive test</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20wave" title=" stress wave"> stress wave</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20assessment" title=" structural assessment"> structural assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20structure" title=" timber structure"> timber structure</a> </p> <a href="https://publications.waset.org/abstracts/81641/mechanical-properties-of-ancient-timber-structure-based-on-the-non-destructive-test-method-a-study-to-feiyun-building-shanxi-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11177</span> Simulation and Experimentation Investigation of Infrared Non-Destructive Testing on Thermal Insulation Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi%20Yan-Qiang">Bi Yan-Qiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shang%20Yonghong"> Shang Yonghong</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Boying"> Lin Boying</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Xinyan"> Ji Xinyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xiyuan"> Li Xiyuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat-resistant material has important application in the aerospace field. The reliability of the connection between the heat-resisting material and the body determines the success or failure of the project. In this paper, lock-in infrared thermography non-destructive testing technology is used to detect the stability of the thermal-resistant structure. The phase relationship between the temperature and the heat flow is calculated by the numerical method, and the influence of the heating frequency and power is obtained. The correctness of the analysis is verified by the experimental method. Through the research, it can provide the basis for the parameter setting of heat flux including frequency and power, improve the efficiency of detection and the reliability of connection between the heat-resisting material and the body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared%20non-destructive" title="infrared non-destructive">infrared non-destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation%20material" title=" thermal insulation material"> thermal insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=connection" title=" connection"> connection</a> </p> <a href="https://publications.waset.org/abstracts/63241/simulation-and-experimentation-investigation-of-infrared-non-destructive-testing-on-thermal-insulation-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11176</span> Management of Innovations in the Context of Overcoming Destructive Work Motivation and Anomie</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naira%20Hakobyan">Naira Hakobyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shant%20Bagratyan"> Shant Bagratyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the phenomenon of management of innovations from the standpoint of work motivation. The main purpose of the theoretical research is to reveal the role of management of innovations to overcome the destructive work motivation and anomie. Systematization of the theoretical approaches and the literary sources indicates connections between destructive forms of work motivation and anomie. These connections allow an understanding of the role of innovations dedicated to decrease the motivational destructiveness of the employees. It is important to note that, in general, the presence of destructive motivation among employees can lead to work anomie. At the same time, issues related to the influence of destructive motivation on innovative processes in the management of an organization are not sufficiently studied. Exploring the factors leading to destructive work motivation and anomie manages toolkit and innovative ways of solution of the motivational destructiveness. The relevance of this scientific issue is that motivational destructiveness and work anomie are widespread phenomena in modern society. It means that previous forms of management become unusable and the way to introduce the innovations seems unclear for the employees. Investigation of the phenomenon of management of innovations is carried out in the following logical sequence: firstly, the issues of destructive work motivation and leadership are considered, and then the key points of work anomie are presented. Finally, there are explored the modern trends in the management of innovations aimed at overcoming motivational destructiveness and work anomie. The issue of management of innovations is explored by two levels: external-social and internal-organizational levels. Considering the phenomenon of management of innovations, the motivational role of the innovations is emphasized. The object of the research is the phenomenon of management of innovations in the context of overcoming motivational and anomic destructiveness. The paper presents the results of the theoretical analysis of the main factors of destructive motivation and work anomie among employees: an excessive dependence of employees on the manager, ignorance of one’s own work functions or unreasonable change by the manager, prevalence of formalism in assessing work comparing with the content and quality of work, lack of adaptive interaction among employees and low self-esteem of work activity. The paper theoretically proves that unclearly formulated innovative strategies for the development of the organization, lack of feedback from the manager to employees regarding the discussion of innovative technologies, non-compliance of working conditions with declared norms and standards, and formalism in management of innovations lead to destructiveness in a management system. The results of the research can be useful for managers, sociologists, economists, and psychologists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=management%20of%20innovations" title="management of innovations">management of innovations</a>, <a href="https://publications.waset.org/abstracts/search?q=destructive%20motivation" title=" destructive motivation"> destructive motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20anomie" title=" work anomie"> work anomie</a>, <a href="https://publications.waset.org/abstracts/search?q=leadership" title=" leadership"> leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=workaholism" title=" workaholism"> workaholism</a> </p> <a href="https://publications.waset.org/abstracts/189832/management-of-innovations-in-the-context-of-overcoming-destructive-work-motivation-and-anomie" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11175</span> Corrosion Monitoring Techniques Impact on Concrete Durability: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20A.%20Okenyi">Victor A. Okenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kehinde%20A.%20Alawode"> Kehinde A. Alawode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion of reinforcement in concrete structures remains a durability issue in structural engineering with the increasing cost of repair and maintenance. The mechanism and factors influencing reinforcement corrosion in concrete with various electrochemical monitoring techniques including non-destructive, destructive techniques and the roles of sensors have been reviewed with the aim of determining the monitoring technique that proved most effective in determining corrosion parameters and more practicable for the assessment of concrete durability. Electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques showed great performance in evaluating corrosion kinetics and corrosion rate, respectively, while the gravimetric weight loss (GWL) technique provided accurate measurements. However, no single monitoring technique showed to be the ultimate technique, and this calls for more research work in the development of more dynamic monitoring tools capable of considering all possible corrosion factors in the corrosion monitoring process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structures" title=" concrete structures"> concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20technique" title=" non-destructive technique"> non-destructive technique</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/131142/corrosion-monitoring-techniques-impact-on-concrete-durability-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11174</span> Determination of Weathering at Kilistra Ancient City by Using Non-Destructive Techniques, Central Anatolia, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C4%B0smail%20%C4%B0nce">İsmail İnce</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20G%C3%BCnaydin"> Osman Günaydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20%C3%96zer"> Fatma Özer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stones used in the construction of historical structures are exposed to various direct or indirect atmospheric effects depending on climatic conditions. Building stones deteriorate partially or fully as a result of this exposure. The historic structures are important symbols of any cultural heritage. Therefore, it is important to protect and restore these historical structures. The aim of this study is to determine the weathering conditions at the Kilistra ancient city. It is located in the southwest of the Konya city, Central Anatolia, and was built by carving into pyroclastic rocks during the Byzantine Era. For this purpose, the petrographic and mechanical properties of the pyroclastic rocks were determined. In the assessment of weathering of structures in the ancient city, in-situ non-destructive testing (i.e., Schmidt hardness rebound value, relative humidity measurement) methods were applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title="cultural heritage">cultural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=Kilistra%20ancient%20city" title=" Kilistra ancient city"> Kilistra ancient city</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20techniques" title=" non-destructive techniques"> non-destructive techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering" title=" weathering"> weathering</a> </p> <a href="https://publications.waset.org/abstracts/63339/determination-of-weathering-at-kilistra-ancient-city-by-using-non-destructive-techniques-central-anatolia-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11173</span> Non-Destructive Testing of Selective Laser Melting Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luca%20Collini">Luca Collini</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Antolotti"> Michele Antolotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Schiavi"> Diego Schiavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, complex geometries within production time shrinkage, rapidly increasing demand, and high-quality standard requirement make the non-destructive (ND) control of additively manufactured components indispensable means. On the other hand, a technology gap and the lack of standards regulating the methods and the acceptance criteria indicate the NDT of these components a stimulating field to be still fully explored. Up to date, penetrant testing, acoustic wave, tomography, radiography, and semi-automated ultrasound methods have been tested on metal powder based products so far. External defects, distortion, surface porosity, roughness, texture, internal porosity, and inclusions are the typical defects in the focus of testing. Detection of density and layers compactness are also been tried on stainless steels by the ultrasonic scattering method. In this work, the authors want to present and discuss the radiographic and the ultrasound ND testing on additively manufactured Ti₆Al₄V and inconel parts obtained by the selective laser melting (SLM) technology. In order to test the possibilities given by the radiographic method, both X-Rays and γ-Rays are tried on a set of specifically designed specimens realized by the SLM. The specimens contain a family of defectology, which represent the most commonly found, as cracks and lack of fusion. The tests are also applied to real parts of various complexity and thickness. A set of practical indications and of acceptance criteria is finally drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title="non-destructive testing">non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=radiography" title=" radiography"> radiography</a>, <a href="https://publications.waset.org/abstracts/search?q=UT%20method" title=" UT method"> UT method</a> </p> <a href="https://publications.waset.org/abstracts/109009/non-destructive-testing-of-selective-laser-melting-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11172</span> [Keynote Talk]: Role of Leaders in Managing Employees’ Dysfunctional Behavior at Workplace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aya%20Maher">Aya Maher</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakinam%20Youssef"> Pakinam Youssef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this theoretical study is to explore in depth the role of leaders in managing employees’ dysfunctional behavior at workplace in an effort to recommend strategies and solutions for these destructive behaviors that affect employees’ performance. The significance of the study lies in the fact that dysfunctional behavior has been widely spread in almost all organizations, public and private, with its very destructive manifestations. Dysfunctional behavior may be classified into thefts, sabotage, sexual harassment, jealousy, envy, revenge, vulgarity all of which affect employees’ moral, self-esteem and satisfaction level drastically which will be reflected negatively on their performance and productivity. The main research question will focus on the role of leaders in managing employees’ dysfunctional behavior effectively at the workplace through the different strategies and control measures. In this study, the data will be collected from different academic literature and through some primary data by conducting interviews with some public and private employees from different managerial levels and fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dysfunctional%20behavior" title="dysfunctional behavior">dysfunctional behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=employees%20deviant%20behavior" title=" employees deviant behavior"> employees deviant behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=employees%20moral" title=" employees moral"> employees moral</a>, <a href="https://publications.waset.org/abstracts/search?q=leaders%20role" title=" leaders role"> leaders role</a> </p> <a href="https://publications.waset.org/abstracts/44126/keynote-talk-role-of-leaders-in-managing-employees-dysfunctional-behavior-at-workplace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11171</span> Destructive Groups: The Impact on Adolescent Mental Health and Social Integration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Du%C5%A1ica%20Kova%C4%8Devi%C4%87">Dušica Kovačević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the influence of destructive groups on the mental health and social integration of high school students in Loznica, Serbia. Despite increasing concerns, there is a significant lack of research on the impact of these groups on adolescents in this region. This qualitative study aims to fill this gap by examining the prevalence of destructive groups, their psychological effects on students, and their broader social implications. Data were collected through surveys and in-depth interviews with high school students, educators, and mental health professionals. The study focuses on key mental health indicators, such as anxiety, depression, and identity formation, alongside social factors, including peer relationships and community engagement. Additionally, it defines coping mechanisms and supporting strategies employed by students affected by these groups. The findings reveal substantial psychological and social challenges faced by students exposed to destructive groups, including increased levels of anxiety and depression, disrupted identity development, and impaired social integration. Insights into the personal experiences of these students provide a detailed understanding of the groups’ impact, underscoring the need for targeted interventions. This research offers evidence-based recommendations for educators, mental health practitioners, and policymakers. It emphasizes the importance of developing effective educational programs and support services to enhance the well-being of high school advocates for proactive measures to protect adolescent mental health and promote healthy social values within educational and community settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adolescents" title="adolescents">adolescents</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=destructive%20groups" title=" destructive groups"> destructive groups</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20integration" title=" social integration"> social integration</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20study" title=" qualitative study"> qualitative study</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20school%20students" title=" high school students"> high school students</a>, <a href="https://publications.waset.org/abstracts/search?q=Serbia" title=" Serbia"> Serbia</a> </p> <a href="https://publications.waset.org/abstracts/186443/destructive-groups-the-impact-on-adolescent-mental-health-and-social-integration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11170</span> Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Ali">M. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-%20Ani"> Ahmed Al- Ani</a>, <a href="https://publications.waset.org/abstracts/search?q=Derek%20Eamus"> Derek Eamus</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20K.%20Y.%20Tan"> Daniel K. Y. Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image-based%20techniques" title="image-based techniques">image-based techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20area" title=" leaf area"> leaf area</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20P%20contents" title=" leaf P contents"> leaf P contents</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20discriminant%20analysis" title=" linear discriminant analysis"> linear discriminant analysis</a> </p> <a href="https://publications.waset.org/abstracts/37572/image-based-rbg-technique-for-estimating-phosphorus-levels-of-different-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11169</span> Detection of Defects in CFRP by Ultrasonic IR Thermographic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Swiderski">W. Swiderski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a> </p> <a href="https://publications.waset.org/abstracts/67100/detection-of-defects-in-cfrp-by-ultrasonic-ir-thermographic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11168</span> The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raed%20Abendeh">Raed Abendeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousa%20Bani%20Baker"> Mousa Bani Baker</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaydoun%20Abu%20Salem"> Zaydoun Abu Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Ahmad"> Hesham Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposal in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20waste" title=" glass waste"> glass waste</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-thaw%20cycles" title=" freeze-thaw cycles"> freeze-thaw cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20test" title=" non-destructive test"> non-destructive test</a> </p> <a href="https://publications.waset.org/abstracts/31024/the-feasibility-of-using-milled-glass-wastes-in-concrete-to-resist-freezing-thawing-action" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11167</span> A Non-Destructive TeraHertz System and Method for Capsule and Liquid Medicine Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ke%20Lin">Ke Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Wu%20Qing%20Yang"> Steve Wu Qing Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Nan"> Zhang Nan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The medicine and drugs has in the past been manufactured to the final products and then used laboratory analysis to verify their quality. However the industry needs crucially a monitoring technique for the final batch to batch quality check. The introduction of process analytical technology (PAT) provides an incentive to obtain real-time information about drugs on the production line, with the following optical techniques being considered: near-infrared (NIR) spectroscopy, Raman spectroscopy and imaging, mid-infrared spectroscopy with the use of chemometric techniques to quantify the final product. However, presents problems in that the spectra obtained will consist of many combination and overtone bands of the fundamental vibrations observed, making analysis difficult. In this work, we describe a non-destructive system and method for capsule and liquid medicine identification, more particularly, using terahertz time-domain spectroscopy and/or designed terahertz portable system for identifying different types of medicine in the package of capsule or in liquid medicine bottles. The target medicine can be detected directly, non-destructively and non-invasively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive" title=" non-destructive"> non-destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive" title=" non-invasive"> non-invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20identification" title=" chemical identification"> chemical identification</a> </p> <a href="https://publications.waset.org/abstracts/111335/a-non-destructive-terahertz-system-and-method-for-capsule-and-liquid-medicine-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11166</span> The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyle%20Saltmarsh">Kyle Saltmarsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plates" title="plates">plates</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20features" title=" acoustic features"> acoustic features</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/76911/the-condition-testing-of-damaged-plates-using-acoustic-features-and-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11165</span> Simulation 2D of Flare Steel Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Daheche">B. Daheche</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Hannachi"> M. T. Hannachi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Djebaili"> H. Djebaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this approach, we tried to describe the flare test tubes welded by high frequency induction HF, and its experimental application. The test is carried out ENTTPP (National company of pipe mill and processing of flat products). Usually, the final products (tube) undergo a series of destructive testing (CD) in order to see the efficiency of welding. This test performed on sections of pipe with a length defined in the notice is made under a determined effort (pressure), which depends on its share of other parameters namely mechanical (fracture resistance) and geometry (thickness tube, outside diameter), the variation of this effort is well researched and recorded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flare" title="flare">flare</a>, <a href="https://publications.waset.org/abstracts/search?q=destructive%20testing" title=" destructive testing"> destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=drafts%20tube" title=" drafts tube"> drafts tube</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20finished" title=" tube finished"> tube finished</a> </p> <a href="https://publications.waset.org/abstracts/31487/simulation-2d-of-flare-steel-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11164</span> An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Mi">Hao Mi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Yang"> Ming Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian-yue%20Yang"> Tian-yue Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20monitoring" title="remote monitoring">remote monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20Linux%20system" title=" embedded Linux system"> embedded Linux system</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/101979/an-intelligent-nondestructive-testing-system-of-ultrasonic-infrared-thermal-imaging-based-on-embedded-linux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11163</span> Application of Voltammetry as a Non-Destructive Tool to Quantify Cathodic Protection of Steel in Simulated Soil Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandlenkosi%20G.%20R.%20Mahlobo">Mandlenkosi G. R. Mahlobo</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20A.%20Olubambi"> Peter A. Olubambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cathodic protection (CP) has been widely considered as a suitable technique for mitigating corrosion of steel structures buried in soil. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. This study was aimed at using a specifically modified voltammetry approach as a non-destructive tool to monitor and quantify the effectiveness of CP of steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for four days before applying CP for further 11 days. A specifically modified voltammetry technique was applied at various time intervals of the experiment to monitor the corrosion behaviour and therefore reflect CP effectiveness. The voltammetry results revealed that the application of CP reduced the corrosion rate from the highest value of 410 µm/yr to 8 µm/yr between days 5 and 14 of the experiments. The microstructural analysis of the steel surface performed using x-ray diffraction identified calcareous deposit as the dominant phase protecting the surface from corrosion. It was deduced that the formation of calcareous deposits was linked with the effectiveness of CP of steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title="carbon steel">carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title=" cathodic protection"> cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=NS4%20solution" title=" NS4 solution"> NS4 solution</a>, <a href="https://publications.waset.org/abstracts/search?q=voltammetry" title=" voltammetry"> voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/171321/application-of-voltammetry-as-a-non-destructive-tool-to-quantify-cathodic-protection-of-steel-in-simulated-soil-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11162</span> A Case Study of the Ground Collapse Due to Excavation Using Non-Destructive Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki-Cheong%20Yoo">Ki-Cheong Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yushik%20Han"> Yushik Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Heejeung%20Sohn"> Heejeung Sohn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoo%20Kim"> Jinwoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A ground collapse can be caused by natural and artificial factors. Ground collapses that have occurred frequently in Korea were observed and classified into different types by the main contributing factor. In this study, ground collapse induced by groundwater level disturbance in an excavation site was analyzed. Also, ground loosening region around the excavation site was detected and analyzed using non-destructive testing, such as GPR (Ground Penetrating Radar) survey and Electrical Resistivity. The result of the surveys showed that the ground was loosened widely over the surrounding area of the excavation due to groundwater discharge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title="electrical resistivity">electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20collapse" title=" ground collapse"> ground collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20level" title=" groundwater level"> groundwater level</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR%20%28ground%20penetrating%20radar%29" title=" GPR (ground penetrating radar)"> GPR (ground penetrating radar)</a> </p> <a href="https://publications.waset.org/abstracts/79051/a-case-study-of-the-ground-collapse-due-to-excavation-using-non-destructive-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11161</span> Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Meier">R. Meier</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pander"> M. Pander</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The &ldquo;digital twin&rdquo; representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young&rsquo;s modulus, Poisson&rsquo;s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, &ldquo;non-destructive&rdquo;, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lamb%20waves" title="lamb waves">lamb waves</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20control" title=" process control"> process control</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustoelasticity" title=" acoustoelasticity"> acoustoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/70296/methods-for-material-and-process-monitoring-by-characterization-of-second-and-third-order-elastic-properties-with-lamb-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11160</span> Micro-CT Imaging Of Hard Tissues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Davood%20Elmi">Amir Davood Elmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the earliest light microscope to the most innovative X-ray imaging techniques, all of them have refined and improved our knowledge about the organization and composition of living tissues. The old techniques are time consuming and ultimately destructive to the tissues under the examination. In recent few decades, thanks to the boost of technology, non-destructive visualization techniques, such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), selective plane illumination microscopy (SPIM), and optical projection tomography (OPT), have come to the forefront. Among these techniques, CT is excellent for mineralized tissues such as bone or dentine. In addition, CT it is faster than other aforementioned techniques and the sample remains intact. In this article, applications, advantages, and limitations of micro-CT is discussed, in addition to some information about micro-CT of soft tissue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micro-CT" title="Micro-CT">Micro-CT</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20tissue" title=" hard tissue"> hard tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=bone" title=" bone"> bone</a>, <a href="https://publications.waset.org/abstracts/search?q=attenuation%20coefficient" title=" attenuation coefficient"> attenuation coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a> </p> <a href="https://publications.waset.org/abstracts/128393/micro-ct-imaging-of-hard-tissues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11159</span> High-Frequency Acoustic Microscopy Imaging of Pellet/Cladding Interface in Nuclear Fuel Rods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Saikouk">H. Saikouk</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Laux"> D. Laux</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Le%20Cl%C3%A9zio"> Emmanuel Le Clézio</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lacroix"> B. Lacroix</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Audic"> K. Audic</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Largenton"> R. Largenton</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Federici"> E. Federici</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Despaux"> G. Despaux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (e.g. UO2 or (U,Pu) O2) assembled in a zirconium cladding tube. By design, an initial gap exists between these two elements. During irradiation, they both undergo transformations leading progressively to the closure of this gap. A local and non destructive examination of the pellet/cladding interface could constitute a useful help to identify the zones where the two materials are in contact, particularly at high burnups when a strong chemical bonding occurs under nominal operating conditions in PWR fuel rods. The evolution of the pellet/cladding bonding during irradiation is also an area of interest. In this context, the Institute of Electronic and Systems (IES- UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface with high resolution. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, 2D images of this interface need to be acquired via this ultrasonic system with a highly performing processing signal and by means of controlled displacement of the sample rod along both its axis and its circumference. Modeling the multi-layer system (water, cladding, fuel etc.) is necessary in this present study and aims to take into account all the parameters that have an influence on the resolution of the acquired images. The first prototype of this microscope and the first results of the visualization of the inner face of the cladding will be presented in a poster in order to highlight the potentials of the system, whose final objective is to be introduced in the existing bench MEGAFOX dedicated to the non-destructive examination of irradiated fuel rods at LECA-STAR facility in CEA-Cadarache. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-frequency%20acoustic%20microscopy" title="high-frequency acoustic microscopy">high-frequency acoustic microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20model" title=" multi-layer model"> multi-layer model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel%20rod" title=" nuclear fuel rod"> nuclear fuel rod</a>, <a href="https://publications.waset.org/abstracts/search?q=pellet%2Fcladding%20interface" title=" pellet/cladding interface"> pellet/cladding interface</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/61215/high-frequency-acoustic-microscopy-imaging-of-pelletcladding-interface-in-nuclear-fuel-rods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=372">372</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=373">373</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20destructive%20control&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10