CINXE.COM

Search results for: inoculum

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: inoculum</title> <meta name="description" content="Search results for: inoculum"> <meta name="keywords" content="inoculum"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="inoculum" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="inoculum"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 85</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: inoculum</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Anaerobic Digestion of Coffee Wastewater from a Fast Inoculum Adaptation Stage: Replacement of Complex Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Lepe-Cervantes">D. Lepe-Cervantes</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Leon-Becerril"> E. Leon-Becerril</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gomez-Romero"> J. Gomez-Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Garcia-Depraect"> O. Garcia-Depraect</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lopez-Lopez"> A. Lopez-Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, raw coffee wastewater (CWW) was used as a complex substrate for anaerobic digestion. The inoculum adaptation stage, microbial diversity analysis and biomethane potential (BMP) tests were performed. A fast inoculum adaptation stage was used by the replacement of vinasse to CWW in an anaerobic sequential batch reactor (AnSBR) operated at mesophilic conditions. Illumina MiSeq sequencing was used to analyze the microbial diversity. While, BMP tests using inoculum adapted to CWW were carried out at different inoculum to substrate (I/S) ratios (2:1, 3:1 and 4:1, on a VS basis). Results show that the adaptability percentage was increased gradually until it reaches the highest theoretical value in a short time of 10 d; with a methane yield of 359.10 NmL CH<sub>4</sub>/g COD-removed; <em>Methanobacterium beijingense</em> was the most abundant microbial (75%) and the greatest specific methane production was achieved at I/S ratio 4:1, whereas the lowest was obtained at 2:1, with BMP values of 320 NmL CH<sub>4</sub>/g VS and 151 NmL CH<sub>4</sub>/g VS, respectively. In conclusion, gradual replacement of substrate was a feasible method to adapt the inoculum in a short time even using complex raw substrates, whereas in the BMP tests, the specific methane production was proportional to the initial amount of inoculum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biomethane%20potential%20test" title=" biomethane potential test"> biomethane potential test</a>, <a href="https://publications.waset.org/abstracts/search?q=coffee%20wastewater" title=" coffee wastewater"> coffee wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20inoculum%20adaptation" title=" fast inoculum adaptation"> fast inoculum adaptation</a> </p> <a href="https://publications.waset.org/abstracts/64826/anaerobic-digestion-of-coffee-wastewater-from-a-fast-inoculum-adaptation-stage-replacement-of-complex-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Effect of Inoculum Ratio on Dark Fermentative Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Yilmazer%20Hitit">Zeynep Yilmazer Hitit</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20C.%20Hallenbeck"> Patrick C. Hallenbeck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel reserve requirements due to depletion of fossil fuels have increased interest in biohydrogen since the 1990’s. In fermentative hydrogen production, pure, mixed, and co-cultures can be used to produce hydrogen. Several previous studies have evaluated hydrogen production by pure cultures of Clostridium butyricum or Enterobacter aerogenes. Evaluating hydrogen production by co-culture of these microorganisms is an interestıng approach since E. aerogenes is a facultative microorganism with resistance to oxygen in contrast to the strict anaerobe C. butyricum, and therefore has the ability to maintain anaerobic conditions. It was found that using co-cultures of facultative E. aerogenes (as a reducing agent and H2 producer) and the obligate anaerobe C. butyricum for producing hydrogen increases the yield of hydrogen by about 50% compared to C. butyricum by itself. Also, using different types of microorganisms for hydrogen production eliminates the need to use expensive reducing agents. C. butyricum strain pre-cultured anaerobically at 37 0C for 15h by inoculating 100 mL of GP medium (pH 6.8) consisting of 1% glucose, 2% polypeptone, 0.2% KH2PO4, 0.05% yeast extract, 0.05% MgSO4. 7H2O and E. aerogenes strain was pre-cultured aerobically at 30 0C, 150 rpm for 9 h by inoculating 100 mL of TGY medium (pH 6.8), consisting of 0.1% glucose, 0.5% tryptone, 0.1% K2HPO4, 0.5% yeast extract. All duplicate batch experiments were conducted in 100 mL bottles with different inoculum ratios of Clostridium butyricum and Enterobater aerogenes (C:E) using 5x diluted rich media (GP) consisting of 2 g/L glucose, 4g/L polypeptone, 0.4 g/L KH2PO4, 0.1 g/L yeast extract, 0.1 MgSO4.7H2O. The range of inoculum ratio of C. butyricum to E. aerogenes were 2:1,4:1,8:1, 1:2,1:4, 1:8, 1:0, 0:1. Using glucose as a carbon source aided in the observation of microbial behavior as well as making the effect of inoculum ratio more evident. Nearly all the glucose in the medium was used to produce hydrogen, except at a 1:0 ratio of inoculum (i.e. containing only C. butyricum). Low glucose consumption leads to a higher hydrogen yield due to cumulative hydrogen production and consumption of glucose, but not as much as C:E, 8:1. The lowest hydrogen yield was achieved in 1:8 inoculum ratio of C:E, 71.9 mL, 1.007±0.01 mol H2/mol glucose and the highest cumulative hydrogen, hydrogen yield and dry cell weight were achieved in 8:1 inoculum ratio of C:E, 117.4 mL, 2.035±0.082 mol H2/mol glucose, 0.4 g/L respectively. In this study effect of inoculum ratio on dark fermentative biohydrogen production using C. butyricum and E. aerogenes was investigated. The maximum hydrogen yield of 2.035mol H2/mol glucose was obtained using 2g/L glucose, an initial pH of 6 and an inoculum ratio of C. butyricum to E. aerogenes of 8:1. Results showed that inoculum ratio is an important parameter on hydrogen production due to competition between the two microorganisms in using substrate for growth and production of by-products. The results presented here could be of great significance for further waste management studies using co-culture hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biohydrogen" title="biohydrogen">biohydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20butyricum" title=" Clostridium butyricum"> Clostridium butyricum</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20fermentation" title=" dark fermentation"> dark fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Enterobacter%20aerogenes" title=" Enterobacter aerogenes"> Enterobacter aerogenes</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20ratio%20in%20biohydrogen%20production" title=" inoculum ratio in biohydrogen production"> inoculum ratio in biohydrogen production</a> </p> <a href="https://publications.waset.org/abstracts/47191/effect-of-inoculum-ratio-on-dark-fermentative-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suvidha%20Gupta">Suvidha Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Pandey"> R. A. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Pawar"> Sanjay Pawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20sp." title="Chlorella sp.">Chlorella sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title=" chemical oxygen demand"> chemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20processing%20industrial%20wastewater" title=" food processing industrial wastewater"> food processing industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=mixotrophic%20growth" title=" mixotrophic growth"> mixotrophic growth</a> </p> <a href="https://publications.waset.org/abstracts/42921/mixotropohic-growth-of-chlorella-sp-on-raw-food-processing-industrial-wastewater-effect-of-cod-tolerance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Experimental Studies on the Effect of Premixing Methods in Anaerobic Digestor with Corn Stover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sagarika">M. Sagarika</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chandra%20Sekhar"> M. Chandra Sekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural residues are producing in large quantities in India and account for abundant but underutilized source of renewable biomass in agriculture. In India, the amount of crop residues available is estimated to be approximately 686 million tons. Anaerobic digestion is a promising option to utilize the surplus agricultural residues and can produce biogas and digestate. Biogas is mainly methane (CH4), which can be utilized as an energy source in replacement for fossil fuels such as natural gas, oil, in other hand, digestate contains high amounts of nutrients, can be employed as fertilizer. Solid state anaerobic digestion (total solids ≥ 15%) is suitable for agricultural residues, as it reduces the problems like stratification and floating issues that occur in liquid anaerobic digestion (total solids < 15%). The major concern in solid-state anaerobic digestion is the low mass transfer of feedstock and inoculum that resulting in low performance. To resolve this low mass transfer issue, effective mixing of feedstock and inoculum is required. Mechanical mixing using stirrer at the time of digestion process can be done, but it is difficult to operate the stirring of feedstock with high solids percentage and high viscosity. Complete premixing of feedstock and inoculum is an alternative method, which is usual in lab scale studies but may not be affordable due to high energy demand in large-scale digesters. Developing partial premixing methods may reduce this problem. Current study is to improve the performance of solid-state anaerobic digestion of corn stover at feedstock to inoculum ratios 3 and 5, by applying partial premixing methods and to compare the complete premixing method with two partial premixing methods which are two alternative layers of feedstock and inoculum and three alternative layers of feedstock and inoculum where higher inoculum ratios in the top layers. From experimental studies it is observed that, partial premixing method with three alternative layers of feedstock and inoculum yielded good methane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=premixing%20methods" title=" premixing methods"> premixing methods</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20yield" title=" methane yield"> methane yield</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20stover" title=" corn stover"> corn stover</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20solids" title=" volatile solids"> volatile solids</a> </p> <a href="https://publications.waset.org/abstracts/90209/experimental-studies-on-the-effect-of-premixing-methods-in-anaerobic-digestor-with-corn-stover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Pre-Treatment of Anodic Inoculum with Nitroethane to Improve Performance of a Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20P.P.">Rajesh P.P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Tabish%20Noori"> Md. Tabish Noori</a>, <a href="https://publications.waset.org/abstracts/search?q=Makarand%20M.%20Ghangrekar"> Makarand M. Ghangrekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell which significantly reduces the power production capacity and coulombic efficiency (CE) of microbial fuel cell (MFC). Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with coulombic efficiency and sustainable volumetric power density of 39.85 % and 14.63 W/m3 respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63 % reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulombic%20efficiency" title="coulombic efficiency">coulombic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogenesis%20inhibition" title=" methanogenesis inhibition"> methanogenesis inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nitroethane" title=" nitroethane"> nitroethane</a> </p> <a href="https://publications.waset.org/abstracts/70270/pre-treatment-of-anodic-inoculum-with-nitroethane-to-improve-performance-of-a-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Crop Genotype and Inoculum Density Influences Plant Growth and Endophytic Colonization Potential of Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naveed">Muhammad Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohail%20Yousaf"> Sohail Yousaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahir%20Ahmad%20Zahir"> Zahir Ahmad Zahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Birgit%20Mitter"> Birgit Mitter</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Sessitsch"> Angela Sessitsch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most bacterial endophytes originate from the soil and enter plants via the roots followed by further spread through the inner tissues. The mechanisms allowing bacteria to colonize plants endophytically are still poorly understood for most bacterial and plant species. Specific bacterial functions are required for plant colonization, but also the plant itself is a determining factor as bacterial ability to establish endophytic populations is very often dependent on the plant genotype (cultivar) and inoculums density. The effect of inoculum density (107, 108, 109 CFU mL-1) of Burkholderia phytofirmans strain PsJN was evaluated on growth and endophytic colonization of different maize and potato cultivars under axenic and natural soil conditions. PsJN inoculation significantly increased maize seedling growth and tuber yield of potato at all inoculum density compared to uninoculated control. Under axenic condition, PsJN inoculation (108 CFU mL-1) significantly improved the germination, root/shoot length and biomass up to 62, 115, 98 and 135% of maize seedling compared to uninoculated control. In case of potato, PsJN inoculation (109 CFU mL-1) showed maximum response and significantly increased root/shoot biomass and tuber yield under natural soil condition. We confirmed that PsJN is able to colonize the rhizosphere, roots and shoots of maize and potato cultivars. The endophytic colonization increased linearly with increasing inoculum density (within a range of 8 x 104 – 3 x 107 CFU mL-1) and were highest for maize (Morignon) and potato (Romina) as compared to other cultivars. Efficient colonization of cv. Morignon and Romina by strain PsJN indicates the specific cultivar colonizing capacity of the bacteria. The findings of the study indicate the non-significant relationship between colonization and plant growth promotion in maize under axenic conditions. However, the inoculum level (109 CFU mL-1) that promoted colonization of rhizosphere and plant interior (endophytic) also best promoted growth and tuber yield of potato under natural soil conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20genotype" title="crop genotype">crop genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20density" title=" inoculum density"> inoculum density</a>, <a href="https://publications.waset.org/abstracts/search?q=Burkholderia%20phytofirmans%20PsJN" title=" Burkholderia phytofirmans PsJN"> Burkholderia phytofirmans PsJN</a>, <a href="https://publications.waset.org/abstracts/search?q=colonization" title=" colonization"> colonization</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a> </p> <a href="https://publications.waset.org/abstracts/20888/crop-genotype-and-inoculum-density-influences-plant-growth-and-endophytic-colonization-potential-of-plant-growth-promoting-bacterium-burkholderia-phytofirmans-psjn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Extracellular Production of the Oncolytic Enzyme, Glutaminase Free L-Asparaginase, from Newly Isolated Streptomyces Olivaceus NEAE-119: Optimization of Culture Conditions Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noura%20El-Ahmady%20El-Naggar">Noura El-Ahmady El-Naggar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the antitumour drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product(1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett–Burman experimental design and response surface methodology was carried out. Fifteen nutritional variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4.7H2O, NaCl and FeSO4. 7H2O) were screened using Plackett–Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age and agitation speed) were further optimized by the central composite face-centered design -response surface methodology. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase in the culture filtrate of Streptomyces olivaceus NEAE-119: Dextrose 3g, starch 20g, L-asparagine 10g, KNO3 1g, K2HPO4 1g, MgSO4.7H2O 0.1g, NaCl 0.1g, pH 7, temperature 37°C, agitation speed 200 rpm/min, inoculum size 4%, v/v, inoculum age 72 h and fermentation period 5 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Streptomyces%20olivaceus%20NEAE-119" title="Streptomyces olivaceus NEAE-119">Streptomyces olivaceus NEAE-119</a>, <a href="https://publications.waset.org/abstracts/search?q=glutaminase%20free%20L-asparaginase" title=" glutaminase free L-asparaginase"> glutaminase free L-asparaginase</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=Plackett-Burman%20design" title=" Plackett-Burman design"> Plackett-Burman design</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20face-centered%20design" title=" central composite face-centered design"> central composite face-centered design</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA" title=" 16S rRNA"> 16S rRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope "> scanning electron microscope </a> </p> <a href="https://publications.waset.org/abstracts/13217/extracellular-production-of-the-oncolytic-enzyme-glutaminase-free-l-asparaginase-from-newly-isolated-streptomyces-olivaceus-neae-119-optimization-of-culture-conditions-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Optimization of Sucrose Concentration, PH Level and Inoculum Size for Callus Proliferation and Anti-bacterial Potential of Stevia Rebaudiana Bertoni</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inayat%20Ur%20Rahman%20Arshad">Inayat Ur Rahman Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non caloric sweet Steviol Glycosides (SGs). The purpose of the study is to optimize sugar concentration, pH level and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes were inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Maximum callus induction 100, 87.5 and 85.33% was resulted in the medium supplemented with 30g/l sucrose, pH maintained at 5.5 and inoculated with 1.25g inoculum respectively. Similarly, the highest fresh weight 65.00, 75.50 and 50.53g/l were noted in medium fortified with 40g/l sucrose, inoculated 1.25g inoculum and 6.0 pH level respectively. However, the callus developed in medium containing 50g/l sucrose found highly antibacterial potent with 27.3 and 26.5mm inhibition zone against P. vulgaris and B. subtilize respectively. Similarly, the callus grown on medium inoculated with 1.00g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72mm inhibition zones respectively. However, in the case of pH levels the medium maintained at 6.5pH showed maximum antibacterial activity against P. vulgaris, B.subtilis and E.coli with 27.9, 25 and 23.72mm respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment the standard antibacterial agent Streptomycin showed the highest inhibition zones from the rest of the callus extract, however the pure DMSO (Dimethyl Sulfoxide) caused no inhibitory zone against any bacteria. From these findings it is concluded that among various levels sucrose at the rate of 40g L-1, pH 6.0 and inoculums 0.75g was found best for most of the growth and quality attributes including fresh weight, dry weight and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steviol%20Glycosides" title="Steviol Glycosides">Steviol Glycosides</a>, <a href="https://publications.waset.org/abstracts/search?q=Skoog" title=" Skoog"> Skoog</a>, <a href="https://publications.waset.org/abstracts/search?q=Murashige" title=" Murashige"> Murashige</a>, <a href="https://publications.waset.org/abstracts/search?q=Clavebactor%20michiganensis" title=" Clavebactor michiganensis"> Clavebactor michiganensis</a> </p> <a href="https://publications.waset.org/abstracts/155829/optimization-of-sucrose-concentration-ph-level-and-inoculum-size-for-callus-proliferation-and-anti-bacterial-potential-of-stevia-rebaudiana-bertoni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Optimization of Sucrose Concentration, pH Level and Inoculum Size for Callus Proliferation and Anti-Bacterial Potential of Stevia rebaudiana Bertoni</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inayat%20Ur%20Rahman%20Arshad">Inayat Ur Rahman Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non-caloric sweet steviol glycosides (SGs). Purpose: The purpose of the study is to optimize sugar concentration, pH level, and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Method: Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes was inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Results: Maximum callus induction 100, 87.5, and 85.33% resulted in the medium supplemented with 30 g/l sucrose, pH maintained at 5.5, and inoculated with 1.25g inoculum, respectively. Similarly, the highest fresh weights 65.00, 75.50, and 50.53 g/l were noted in a medium fortified with 40 g/l sucrose, inoculated 1.25g inoculum, and 6.0 pH level, respectively. However, the callus developed in a medium containing 50 g/l sucrose was found to be highly antibacterial potent with 27.3 and 26.5 mm inhibition zone against P. vulgaris and B. subtilis, respectively. Similarly, the callus grown on a medium inoculated with 1.00 g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72 mm inhibition zone, respectively. However, in the case of pH levels, the medium maintained at 6.5 pH showed maximum antibacterial activity against P. vulgaris, B.subtilis, and E.coli with 27.9, 25, and 23.72 mm, respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment, the standard antibacterial agent Streptomycin showed the highest inhibition zones among the rest of the callus extract; however, the pure dimethyl sulfoxide (DMSO) caused no inhibitory zone against any bacteria. Conclusion: From these findings, it is concluded that among various levels, sucrose @ 40 g L⁻¹, pH 6.0, and inoculums at 0.75 g were found best for most of the growth and quality attributes, including fresh weight, dry weight, and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stevia%20rebaudiana" title="Stevia rebaudiana">Stevia rebaudiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Steviol%20Glycosides" title=" Steviol Glycosides"> Steviol Glycosides</a>, <a href="https://publications.waset.org/abstracts/search?q=callus" title=" callus"> callus</a>, <a href="https://publications.waset.org/abstracts/search?q=Xanthomonas%20campestris" title=" Xanthomonas campestris"> Xanthomonas campestris</a> </p> <a href="https://publications.waset.org/abstracts/155733/optimization-of-sucrose-concentration-ph-level-and-inoculum-size-for-callus-proliferation-and-anti-bacterial-potential-of-stevia-rebaudiana-bertoni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Physiological Response of Naturally Regenerated Pinus taeda L. Saplings to Four Levels of Stem Inoculation with Leptographium terebrantis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20K.%20Mensah">John K. Mensah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20A.%20Sword%20Sayer"> Mary A. Sword Sayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20L.%20Nadel"> Ryan L. Nadel</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Matusick"> George Matusick</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaofei%20Fan"> Zhaofei Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20G.%20Eckhardt"> Lori G. Eckhardt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leptographium terebrantis is an opportunistic root pathogen commonly associated with loblolly pine (Pinus taeda L.) stands that are undergoing a loss of vigor in the southeastern US. In order to understand the relationship between L. terebrantis inoculum density and host physiology, an artificial inoculation study was conducted in a five-year-old naturally regenerated loblolly pine stand over a 24 week period in a completely randomized design. L. terebrantis caused sapwood occlusions that increased in severity as inoculum density increased. The occlusions significantly reduced water transport through the stem but did not interfere with fascicle-level stomatal conductance or induce moisture stress in the saplings. The resilience of stomatal conductance among pathogen-infested saplings is attributed to the growth and hydraulic function of new sapwood that developed after artificial inoculation. Results demonstrate that faster-growing families of loblolly pine may be capable of tolerating the vascular root disease when the formation of new sapwood is supported by sustained crown health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductance" title="hydraulic conductance">hydraulic conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20density" title=" inoculum density"> inoculum density</a>, <a href="https://publications.waset.org/abstracts/search?q=Leptographium%20terebrantis" title=" Leptographium terebrantis"> Leptographium terebrantis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinus%20taeda" title=" Pinus taeda"> Pinus taeda</a>, <a href="https://publications.waset.org/abstracts/search?q=sapwood%20occlusion" title=" sapwood occlusion"> sapwood occlusion</a> </p> <a href="https://publications.waset.org/abstracts/84361/physiological-response-of-naturally-regenerated-pinus-taeda-l-saplings-to-four-levels-of-stem-inoculation-with-leptographium-terebrantis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Optimization of Sequential Thermophilic Bio-Hydrogen/Methane Production from Mono-Ethylene Glycol via Anaerobic Digestion: Impact of Inoculum to Substrate Ratio and N/P Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elreedy">Ahmed Elreedy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tawfik"> Ahmed Tawfik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation aims to assess the effect of inoculum to substrate ratio (ISR) and nitrogen to phosphorous balance on simultaneous biohydrogen and methane production from anaerobic decomposition of mono-ethylene glycol (MEG). Different ISRs were applied in the range between 2.65 and 13.23 gVSS/gCOD, whereas the tested N/P ratios were changed from 4.6 to 8.5; both under thermophilic conditions (55°C). The maximum obtained methane and hydrogen yields (MY and HY) of 151.86±10.8 and 22.27±1.1 mL/gCODinitial were recorded at ISRs of 5.29 and 3.78 gVSS/gCOD, respectively. Unlikely, the ammonification process, in terms of net ammonia produced, was found to be ISR and COD/N ratio dependent, reaching its peak value of 515.5±31.05 mgNH4-N/L at ISR and COD/N ratio of 13.23 gVSS/gCOD and 11.56. The optimum HY was enhanced by more than 1.45-fold with declining N/P ratio from 8.5 to 4.6; whereas, the MY was improved (1.6-fold), while increasing N/P ratio from 4.6 to 5.5 with no significant impact at N/P ratio of 8.5. The results obtained revealed that the methane production was strongly influenced by initial ammonia, compared to initial phosphate. Likewise, the generation of ammonia was markedly deteriorated from 535.25±41.5 to 238.33±17.6 mgNH4-N/L with increasing N/P ratio from 4.6 to 8.5. The kinetic study using Modified Gompertz equation was successfully fitted to the experimental outputs (R2 > 0.9761). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mono-ethylene%20glycol" title="mono-ethylene glycol">mono-ethylene glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=biohydrogen%20and%20methane" title=" biohydrogen and methane"> biohydrogen and methane</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio" title=" inoculum to substrate ratio"> inoculum to substrate ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20to%20phosphorous%20balance" title=" nitrogen to phosphorous balance"> nitrogen to phosphorous balance</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonification" title=" ammonification"> ammonification</a> </p> <a href="https://publications.waset.org/abstracts/54353/optimization-of-sequential-thermophilic-bio-hydrogenmethane-production-from-mono-ethylene-glycol-via-anaerobic-digestion-impact-of-inoculum-to-substrate-ratio-and-np-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Anaerobic Co-Digestion of Duckweed (Lemna gibba) and Waste Activated Sludge in Batch Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rubia%20Gaur">Rubia Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Surindra%20Suthar"> Surindra Suthar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the anaerobic co-digestion of duckweed (Lemna gibba) and waste activated sludge (WAS) of different proportions with acclimatized anaerobic granular sludge (AAGS) as inoculum in mesophilic conditions. Batch experiments were performed in 500 mL capacity reagent bottles at 300C temperature. Varied combinations of pre-treated duckweed biomass with constant volume of anaerobic inoculum (AAGS - 100 mL) and waste activated sludge (WAS - 22.5 mL) were devised into five batch tests. The highest methane generation was observed with batch study, T4. The Gompertz model fits well on the experimental data of the batch study, T4. The values of correlation coefficient were achieved relatively higher (R2 ≥ 0.99). The co-digestion without pre-treatment of both duckweed and WAS shows poor generation of methane gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20weed" title="aquatic weed">aquatic weed</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=Gompertz%20equation" title=" Gompertz equation"> Gompertz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20activated%20sludge" title=" waste activated sludge"> waste activated sludge</a> </p> <a href="https://publications.waset.org/abstracts/57321/anaerobic-co-digestion-of-duckweed-lemna-gibba-and-waste-activated-sludge-in-batch-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Investigating the Role of Lactiplantibacillus Plantarum vs. Spontaneous Fermentation in Improving Nutritional and Consumer Safety of the Fermented White Cabbage Sprouts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anam%20Layla">Anam Layla</a>, <a href="https://publications.waset.org/abstracts/search?q=Qamar%20Abbas%20Syed"> Qamar Abbas Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Zahoor"> Tahir Zahoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahid"> Muhammad Shahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5 – 7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum inoculated fermentation and spontaneous fermentation. Plant material was dehydrated at 40˚C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/ 100g d.w.), Mg (204 mg/100g d.w.), Fe (9.3 mg/100g d.w.), Zn (5 mg/100g d.w.) and Cu (0.5 mg/100g d.w.) were recorded in IF-BCS. L. plantarum led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 to 56%. The results suggest L. plantarum led lactic acid fermentation coupled with sprouts blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20fermentation" title="lactic acid fermentation">lactic acid fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-nutrients" title=" anti-nutrients"> anti-nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20content" title=" mineral content"> mineral content</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20quality" title=" nutritional quality"> nutritional quality</a> </p> <a href="https://publications.waset.org/abstracts/183531/investigating-the-role-of-lactiplantibacillus-plantarum-vs-spontaneous-fermentation-in-improving-nutritional-and-consumer-safety-of-the-fermented-white-cabbage-sprouts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Improving the Quality and Nutrient Content of Palm Kernel Cake through Fermentation with Bacillus subtilis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirnawati">Mirnawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Gita%20Ciptaan"> Gita Ciptaan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferawati"> Ferawati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective: Palm kernel cake (PKC) is a waste of the palm oil industry. Indonesia, as the largest palm oil producer in the world, produced 45-46% palm kernel cake. Palm kernel cake can potentially be used as animal ration but its utilization for poultry is limited. Thus, fermentation process was done in order to increase the utilization PKC in poultry ration. An experiment was conducted to study the effect between Inoculum Doses with Bacillus subtilis and fermentation time to improve the quality and nutrient content of fermented Palm Kernel Cake. Material and Methods: 1) Palm kernel cake derived from Palm Kernel Processing Manufacture of Andalas Agro Industry in Pasaman, West Sumatra. 2) Bacillus subtilis obtained from The Research Center of Applied Chemistry LIPI, Bogor. 3) Preparations nutrient agar medium (NA) produced by Difoo - Becton Dickinson. 4) Rice bran 5) Aquades and mineral standard. The experiment used completely randomize design (CRD) with 3 x 3 factorial and 3 replications. The first factors were three doses of inoculum Bacillus subtilis: (3%), (5%), and (7%). The second factor was fermentation time: (1) 2 day, (2) 4 day, and (3) 6 day. The parameters were crude protein, crude fiber, nitrogen retention, and crude fiber digestibility of fermented palm kernel cake (FPKC). Results: The result of the study showed that there was significant interaction (P<0.01) between factor A and factor B and each factor A and B also showed significant effect (P<0.01) on crude protein, crude fiber, nitrogen retention, and crude fiber digestibility. Conclusion: From this study, it can be concluded that fermented PKC with 7% doses of Bacillus subtilis and 6 days fermentation time provides the best result as seen from 24.65% crude protein, 17.35% crude fiber, 68.47% nitrogen retention, 53.25% crude fiber digestibility of fermented palm kernel cake (FPKC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20Subtilis" title=" Bacillus Subtilis"> Bacillus Subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum" title=" inoculum"> inoculum</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20cake" title=" palm kernel cake"> palm kernel cake</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient" title=" nutrient"> nutrient</a> </p> <a href="https://publications.waset.org/abstracts/104216/improving-the-quality-and-nutrient-content-of-palm-kernel-cake-through-fermentation-with-bacillus-subtilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> White-Rot Hymenomycetes as Oil Palm Log Treatments: Accelerating Biodegradation of Basal Stem Rot-Affected Oil Palm Stumps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuvarani%20Naidu">Yuvarani Naidu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmeen%20Siddiqui"> Yasmeen Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yusof%20Rafii"> Mohd Yusof Rafii </a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Seman%20Idris"> Abu Seman Idris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainability of oil palm production in Southeast Asia, especially in Indonesia and Malaysia, is jeopardized by Ganoderma boninense, the fungus which causes basal stem rot (BSR) in oil palm. The root contact with unattended infected debris left in the plantations during replanting is known to be the primary source of inoculum. Abiding by the law, potentially effective technique of managing Ganoderma infected oil palm debris is deemed necessary because of the zero-burning policy in Malaysian oil palm plantations. White-rot hymenomycetes antagonistic to Ganoderma sp were selected to test their efficacy as log treatments in degrading Ganoderma infected oil palm logs and to minimize the survival of Ganoderma inoculum. Decay rate in terms of mass loss was significantly higher after the application of solid-state cultivation (SSC) of Trametes lactinea FBW (64% ±1.2), followed by Pycnoporus sanguineus FBR (55% ±1.7) in infected log block tissues, after 10 months of treatments. The degradation pattern was clearly distinguished between the treated and non-treated log blocks with the developed SSC formulations. The control infected log blocks showed the highest, whereas infected log blocks treated with either P. sanguineus FBR or T. lactinea FBW SSC formulations exhibited statistically lowest number of Ganoderma spp. recovery on Ganoderma Selective Medium (GSM), after 8 months of treatment. Out of that, the lowest recovery of Ganoderma spp. was reported in infected log blocks inoculated with the strain T. lactinea FBW (21% ± 0.9) followed by P. sanguineus FBR (33% ± 2.2), after 8 months, Further, no recovery of Ganoderma was noticeable, 10 months after treatment applications in log blocks treated with both of the formulations. This is the first nursery-base study to substantiate the initial colonization of white-rot hymenomycetes on oil palm log blocks previously infected with BSR pathogen, G. boninense. The present study has indicated that log blocks treatment with white-rot hymenomycetes significantly affected the mass loss of diseased and healthy log block tissues. This study provides a basis of biotechnological approaches inefficient degradation of oil palm-generated crop debris, under natural conditions with an ultimate aim of reducing the Ganoderma inoculum under heavy BSR infection pressure in eco-friendly manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basal%20stem%20rot%20disease" title="basal stem rot disease">basal stem rot disease</a>, <a href="https://publications.waset.org/abstracts/search?q=ganoderma%20boninense" title=" ganoderma boninense"> ganoderma boninense</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=white-rot%20fungi" title=" white-rot fungi"> white-rot fungi</a> </p> <a href="https://publications.waset.org/abstracts/89372/white-rot-hymenomycetes-as-oil-palm-log-treatments-accelerating-biodegradation-of-basal-stem-rot-affected-oil-palm-stumps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Newly Isolated Enterococcus faecium BS13</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vandana%20Bali">Vandana Bali</a>, <a href="https://publications.waset.org/abstracts/search?q=Manab%20B.%20Bera"> Manab B. Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar"> Parmjit S. Panesar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial production of antimicrobials as biopreservatives is the major area of focus nowadays due to increased interest of consumers towards natural and safe preservation of ready to eat food products. The agro-industrial byproduct based medium and optimized process conditions can contribute in economical production of bacteriocins. Keeping this in view, the present investigation was carried out on agro-industrial byproducts utilization for the production of bacteriocin using Enterococcus faecium BS13 isolated from local fermented food. Different agro-industrial byproduct based carbon sources (whey, potato starch liquor, kinnow peel, deoiledrice bran and molasses), nitrogen sources (soya okra, pea pod and corn steep liquor), metal ions and surfactants were tested for optimal bacteriocin production. The effect of various process parameters such as pH, temperature, inoculum level, agitation and time were also tested on bacteriocin production. The optimized medium containing whey, supplemented with 4%corn steep liquor and polysorbate-80 displayed maximum bacteriocin activity with 2% inoculum, at pH 6.5, temperature 40oC under shaking conditions (100 rpm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacteriocin" title="Bacteriocin">Bacteriocin</a>, <a href="https://publications.waset.org/abstracts/search?q=biopreservation" title=" biopreservation"> biopreservation</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20steep%20liquor" title=" corn steep liquor"> corn steep liquor</a>, <a href="https://publications.waset.org/abstracts/search?q=Enterococcus%20faecium" title=" Enterococcus faecium"> Enterococcus faecium</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20utilization" title=" waste utilization"> waste utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/7189/utilization-of-agro-industrial-byproducts-for-bacteriocin-production-using-newly-isolated-enterococcus-faecium-bs13" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supanun%20Kangrang">Supanun Kangrang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kraipat%20Cheenkachorn"> Kraipat Cheenkachorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Kittiphong%20Rattanaporn"> Kittiphong Rattanaporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Malinee%20Sriariyanun"> Malinee Sriariyanun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment method that modifies such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulolytic%20biomass" title="lignocellulolytic biomass">lignocellulolytic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20consortium" title=" microbial consortium"> microbial consortium</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulase" title=" cellulase"> cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=Response%20Surface%20Methodology%20%28RSM%29" title=" Response Surface Methodology (RSM)"> Response Surface Methodology (RSM)</a> </p> <a href="https://publications.waset.org/abstracts/21514/analysis-of-a-lignocellulose-degrading-microbial-consortium-to-enhance-the-anaerobic-digestion-of-rice-straws" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Increasing Sustainability of Melanin Bio-Production Using Seawater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harsha%20Thaira">Harsha Thaira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Raval"> Ritu Raval</a>, <a href="https://publications.waset.org/abstracts/search?q=Keyur%20Raval"> Keyur Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melanin has immense applications in the field of agriculture, cosmetics and pharmaceutical industries due to its photo-protective, UV protective and anti- oxidant activities. However, its production is limited to costly chemical methods or harsh extractive methods from hair which ultimately gives poor yields. This makes the cost of melanin very high, to the extent of US Dollar 300 per gram. Some microorganisms are reported to produce melanin under stress conditions. Out of all melanin producing organisms, Pseudomonas stutzeri can grow in sea water and produce melanin under saline stress. The objective of this study was to develop a sea water based bioprocess. Effects of different growth media and process parameters on melanin production using sea water were investigated. The marine bacterial strain Pseudomonas stutzeri HMGM-7(MTCC 11712) was selected and the effect of different media such as Nutrient Broth (NB), Luria Bertini (LB) broth, Bushnell- Haas broth (BHB) and Trypticase Soy broth (TSB) and various medium components were investigated with one factor at a time approach. Parameters like shaking frequency, inoculum age, inoculum size, pH and temperature were also investigated in order to obtain the optimum conditions for maximum melanin production. The highest yield of melanin concentration, 0.306 g/L, was obtained in Trypticase Soy broth at 36 hours. The yield was 1.88 times higher than the melanin obtained before optimization, 0.163 g/L at 36 hours. Studies are underway to optimize medium constituents to further enhance melanin production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanin" title="melanin">melanin</a>, <a href="https://publications.waset.org/abstracts/search?q=marine" title=" marine"> marine</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprocess" title=" bioprocess"> bioprocess</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas" title=" pseudomonas"> pseudomonas</a> </p> <a href="https://publications.waset.org/abstracts/53437/increasing-sustainability-of-melanin-bio-production-using-seawater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Encapsulation of Probiotic Bacteria in Complex Coacervates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20A.%20Bosnea">L. A. Bosnea</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Moschakis"> T. Moschakis</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Biliaderis"> C. Biliaderis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3% w/v) and gum arabic (GA, 3% w/v) solutions mixed at different polymer ratio (1:1, 2:1 and 4:1). The effect of total biopolymer concentration on cell viability was assessed using WPI and GA solutions of 1, 3 and 6% w/v at a constant ratio of 2:1. Also, several parameters were examined for optimization of the microcapsule formation, such as inoculum concentration and the effect of ionic strength. The viability of the bacterial cells during heat treatment and under simulated gut conditions was also evaluated. Among the different WPI/GA weight ratios tested (1:1, 2:1, and 4:1), the highest survival rate was observed for the coacervate structures made with the ratio of 2:1. The protection efficiency at low pH values is influenced by both concentration and the ratio of the added biopolymers. Moreover, the inoculum concentration seems to affect the efficiency of microcapsules to entrap the bacterial cells since an optimum level was noted at less than 8 log cfu/ml. Generally, entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73%), especially in comparison with non-encapsulated (free) cells (<19%). The encapsulated lactobacilli also exhibited enhanced viability after 10–30 min of heat treatment (65oC) as well as at different NaCl concentrations (pH 4.0). Overall, the results of this study suggest that complex coacervation with WPI/GA has a potential to deliver live probiotics in low pH food systems and fermented dairy products; the complexes can dissolve at pH 7.0 (gut environment), releasing the microbial cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotic" title="probiotic">probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20coacervation" title=" complex coacervation"> complex coacervation</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a> </p> <a href="https://publications.waset.org/abstracts/16064/encapsulation-of-probiotic-bacteria-in-complex-coacervates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Optimization of Artisanal Fishing Waste Fermentation for Volatile Fatty Acids Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luz%20Stella%20Cadavid-Rodriguez">Luz Stella Cadavid-Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviana%20E.%20Castro-Lopez"> Viviana E. Castro-Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish waste (FW) has a high content of potentially biodegradable components, so it is amenable to be digested anaerobically. In this line, anaerobic digestion (AD) of FW has been studied for biogas production. Nevertheless, intermediate products such as volatile fatty acids (VFA), generated during the acidogenic stage, have been scarce investigated, even though they have a high potential as a renewable source of carbon. In the literature, there are few studies about the Inoculum-Substrate (I/S) ratio on acidogenesis. On the other hand, it is well known that pH is a critical factor in the production of VFA. The optimum pH for the production of VFA seems to change depending on the substrate and can vary in a range between 5.25 and 11. Nonetheless, the literature about VFA production from protein-rich waste, such as FW, is scarce. In this context, it is necessary to deepen on the determination of the optimal operating conditions of acidogenic fermentation for VFA production from protein-rich waste. Therefore, the aim of this research was to optimize the volatile fatty acid production from artisanal fishing waste, studying the effect of pH and the I/S ratio on the acidogenic process. For this research, the inoculum used was a methanogenic sludge (MS) obtained from a UASB reactor treating wastewater of a slaughterhouse plant, and the FW was collected in the port of Tumaco (Colombia) from the local artisanal fishers. The acidogenic fermentation experiments were conducted in batch mode, in 500 mL glass bottles as anaerobic reactors, equipped with rubber stoppers provided with a valve to release biogas. The effective volume used was 300 mL. The experiments were carried out for 15 days at a mesophilic temperature of 37± 2 °C and constant agitation of 200 rpm. The effect of 3 pH levels: 5, 7, 9, coupled with five I/S ratios, corresponding to 0.20, 0.15, 0.10, 0.05, 0.00 was evaluated taking as a response variable the production of VFA. A complete randomized block design was selected for the experiments in a 5x3 factorial arrangement, with two repetitions per treatment. At the beginning and during the process, pH in the experimental reactors was adjusted to the corresponding values of 5, 7, and 9 using 1M NaOH or 1M H2SO4, as was appropriated. In addition, once the optimum I/S ratio was determined, the process was evaluated at this condition without pH control. The results indicated that pH is the main factor in the production of VFA, obtaining the highest concentration with neutral pH. By reducing the I/S ratio, as low as 0.05, it was possible to maximize VFA production. Thus, the optimum conditions found were natural pH (6.6-7.7) and I/S ratio of 0.05, with which it was possible to reach a maximum total VFA concentration of 70.3 g Ac/L, whose major components were acetic acid (35%) and butyric acid (32%). The findings showed that the acidogenic fermentation of FW is an efficient way of producing VFA and that the operating conditions can be simple and economical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidogenesis" title="acidogenesis">acidogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=artisanal%20fishing%20waste" title=" artisanal fishing waste"> artisanal fishing waste</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio" title=" inoculum to substrate ratio"> inoculum to substrate ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20fatty%20acids" title=" volatile fatty acids"> volatile fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/122967/optimization-of-artisanal-fishing-waste-fermentation-for-volatile-fatty-acids-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sesethu%20G.%20Njokweni">Sesethu G. Njokweni</a>, <a href="https://publications.waset.org/abstracts/search?q=Marelize%20Botes"> Marelize Botes</a>, <a href="https://publications.waset.org/abstracts/search?q=Emile%20W.%20H.%20Van%20Zyl"> Emile W. H. Van Zyl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title="agricultural wastes">agricultural wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxylate%20platform" title=" carboxylate platform"> carboxylate platform</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20microbiome" title=" rumen microbiome"> rumen microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20fatty%20acids" title=" volatile fatty acids"> volatile fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/92186/application-of-the-carboxylate-platform-in-the-consolidated-bioconversion-of-agricultural-wastes-to-biofuel-precursors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Azmy">Ahmed F. Azmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20E.%20Saafan"> Amal E. Saafan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20M.%20Essam"> Tamer M. Essam</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdy%20A.%20Amin"> Magdy A. Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaban%20H.%20Ahmed"> Shaban H. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacterial strains capable of degradation of malathion from the domestic sewage were isolated by an enrichment culture technique. Three bacterial strains were screened and identified as Acinetobacter baumannii (AFA), Pseudomonas aeruginosae (PS1),andPseudomonas mendocina (PS2) based on morphological, biochemical identification and 16S rRNA sequence analysis. Acinetobacter baumannii AFA was the most efficient malathion degrading bacterium, so used for further biodegradation study. AFA was able to grow in mineral salt medium (MSM) supplemented with malathion (100 mg/l) as a sole carbon source, and within 14 days, 84% of the initial dose was degraded by the isolate measured by high performance liquid chromatography. Strain AFA could also degrade other organophosphorus compounds including diazenon, chlorpyrifos and fenitrothion. The effect of different culture conditions on the degradation of malathion like inoculum density, other carbon or nitrogen sources, temperature and shaking were examined. Degradation of malathion and bacterial cell growth were accelerated when culture media were supplemented with yeast extract, glucose and citrate. The optimum conditions for malathion degradation by strain AFA were; an inoculum density of 1.5x 1012CFU/ml at 30°C with shaking. A specific polymerase chain reaction primers were designed manually using multiple sequence alignment of the corresponding carboxylesterase enzymes of Acinetobacter species. Sequencing result of amplified PCR product and phylogenetic analysis showed low degree of homology with the other carboxylesterase enzymes of Acinetobacter strains, so we suggested that this enzyme is a novel esterase enzyme. Isolated bacterial strains may have potential role for use in bioremediation of malathion contaminated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acinetobacter%20baumannii" title="Acinetobacter baumannii">Acinetobacter baumannii</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=malathion" title=" malathion"> malathion</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphate%20pesticides" title=" organophosphate pesticides"> organophosphate pesticides</a> </p> <a href="https://publications.waset.org/abstracts/17465/biodegradation-of-malathion-by-acinetobacter-baumannii-strain-afa-isolated-from-domestic-sewage-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Co-Smoldered Digestate Ash as Additive for Anaerobic Digestion of Berry Fruit Waste: Stability and Enhanced Production Rate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arinze%20Ezieke">Arinze Ezieke</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Serrano"> Antonio Serrano</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Clarke"> William Clarke</a>, <a href="https://publications.waset.org/abstracts/search?q=Denys%20Villa-Gomez"> Denys Villa-Gomez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Berry cultivation results in discharge of high organic strength putrescible solid waste which potentially contributes to environmental degradation, making it imperative to assess options for its complete management. Anaerobic digestion (AD) could be an ideal option when the target is energy generation; however, due to berry fruit characteristics high carbohydrate composition, the technology could be limited by its high alkalinity requirement which suggests dosing of additives such as buffers and trace elements supplement. Overcoming this limitation in an economically viable way could entail replacement of synthetic additives with recycled by-product waste. Consequently, ash from co-smouldering of high COD characteristic AD digestate and coco-coir could be a promising material to be used to enhance the AD of berry fruit waste, given its characteristic high pH, alkalinity and metal concentrations which is typical of synthetic additives. Therefore, the aim of the research was to evaluate the stability and process performance from the AD of BFW when ash from co-smoldered digestate and coir are supplemented as alkalinity and trace elements (TEs) source. Series of batch experiments were performed to ascertain the necessity for alkalinity addition and to see whether the alkalinity and metals in the co-smouldered digestate ash can provide the necessary buffer and TEs for AD of berry fruit waste. Triplicate assays were performed in batch systems following I/S of 2 (in VS), using serum bottles (160 mL) sealed and placed in a heated room (35±0.5 °C), after creating anaerobic conditions. Control experiment contained inoculum and substrates only, and inoculum, substrate and NaHCO3 for optimal total alkalinity concentration and TEs assays, respectively. Total alkalinity concentration refers to alkalinity of inoculum and the additives. The alkalinity and TE potential of the ash were evaluated by supplementing ash (22.574 g/kg) of equivalent total alkalinity concentration to that of the pre-determined optimal from NaHCO3, and by dosing ash (0.012 – 7.574 g/kg) of varying concentrations of specific essential TEs (Co, Fe, Ni, Se), respectively. The result showed a stable process at all examined conditions. Supplementation of 745 mg/L CaCO3 NaHCO3 resulted to an optimum TAC of 2000 mg/L CaCO3. Equivalent ash supplementation of 22.574 g/kg allowed the achievement of this pre-determined optimum total alkalinity concentration, resulting to a stable process with a 92% increase in the methane production rate (323 versus 168 mL CH4/ (gVS.d)), but a 36% reduction in the cumulative methane production (103 versus 161 mL CH4/gVS). Addition of ashes at incremental dosage as TEs source resulted to a reduction in the Cumulative methane production, with the highest dosage of 7.574 g/kg having the highest effect of -23.5%; however, the seemingly immediate bioavailability of TE at this high dosage allowed for a +15% increase in the methane production rate. With an increased methane production rate, the results demonstrated that the ash at high dosages could be an effective supplementary material for either a buffered or none buffered berry fruit waste AD system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=alkalinity" title=" alkalinity"> alkalinity</a>, <a href="https://publications.waset.org/abstracts/search?q=co-smoldered%20digestate%20ash" title=" co-smoldered digestate ash"> co-smoldered digestate ash</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elements" title=" trace elements"> trace elements</a> </p> <a href="https://publications.waset.org/abstracts/121603/co-smoldered-digestate-ash-as-additive-for-anaerobic-digestion-of-berry-fruit-waste-stability-and-enhanced-production-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Bioethanol Production from Marine Algae Ulva Lactuca and Sargassum Swartzii: Saccharification and Process Optimization </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jerold">M. Jerold</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sivasubramanian"> V. Sivasubramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20George"> A. George</a>, <a href="https://publications.waset.org/abstracts/search?q=B.S.%20Ashik"> B.S. Ashik</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Kumar"> S. S. Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioethanol is a sustainable biofuel that can be used alternative to fossil fuels. Today, third generation (3G) biofuel is gaining more attention than first and second-generation biofuel. The more lignin content in the lignocellulosic biomass is the major drawback of second generation biofuels. Algae are the renewable feedstock used in the third generation biofuel production. Algae contain a large number of carbohydrates, therefore it can be used for the fermentation by hydrolysis process. There are two groups of Algae, such as micro and macroalgae. In the present investigation, Macroalgae was chosen as raw material for the production of bioethanol. Two marine algae viz. Ulva Lactuca and Sargassum swartzii were used for the experimental studies. The algal biomass was characterized using various analytical techniques like Elemental Analysis, Scanning Electron Microscopy Analysis and Fourier Transform Infrared Spectroscopy to understand the physio-Chemical characteristics. The batch experiment was done to study the hydrolysis and operation parameters such as pH, agitation, fermentation time, inoculum size. The saccharification was done with acid and alkali treatment. The experimental results showed that NaOH treatment was shown to enhance the bioethanol. From the hydrolysis study, it was found that 0.5 M Alkali treatment would serve as optimum concentration for the saccharification of polysaccharide sugar to monomeric sugar. The maximum yield of bioethanol was attained at a fermentation time of 9 days. The inoculum volume of 1mL was found to be lowest for the ethanol fermentation. The agitation studies show that the fermentation was higher during the process. The percentage yield of bioethanol was found to be 22.752% and 14.23 %. The elemental analysis showed that S. swartzii contains a higher carbon source. The results confirmed hydrolysis was not completed to recover the sugar from biomass. The specific gravity of ethanol was found to 0.8047 and 0.808 for Ulva Lactuca and Sargassum swartzii, respectively. The purity of bioethanol also studied and found to be 92.55 %. Therefore, marine algae can be used as a most promising renewable feedstock for the production of bioethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethaol" title=" bioethaol"> bioethaol</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/115391/bioethanol-production-from-marine-algae-ulva-lactuca-and-sargassum-swartzii-saccharification-and-process-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Optimization of Fermentation Conditions for Extracellular Production of the Oncolytic Enzyme, L-Asparaginase, by New Subsp. Streptomyces Rochei Subsp. Chromatogenes NEAE-K Using Response Surface Methodology under Solid State Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noura%20El-Ahmady%20El-Naggar">Noura El-Ahmady El-Naggar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> L-asparaginase is an important enzyme as therapeutic agents used in combination therapy with other drugs in the treatment of acute lymphoblastic leukemia in children. L-asparaginase producing actinomycete strain, NEAE-K, was isolated from soil sample and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as new subsp. Streptomyces rochei subsp. chromatogenes NEAE-K and sequencing product (1532 bp) was deposited in the GenBank database under accession number KJ200343. The study was conducted to screen parameters affecting the production of L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K on solid state fermentation using Plackett–Burman experimental design. Sixteen different independent variables including incubation time, moisture content, inoculum size, temperature, pH, soybean meal+ wheat bran, dextrose, fructose, L-asparagine, yeast extract, KNO3, K2HPO4, MgSO4.7H2O, NaCl, FeSO4. 7H2O, CaCl2, and three dummy variables were screened in Plackett–Burman experimental design of 20 trials. The most significant independent variables affecting enzyme production (dextrose, L-asparagine and K2HPO4) were further optimized by the central composite design. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K from solid state fermentation: g/L (soybean meal+ wheat bran 15, dextrose 3, fructose 4, L-asparagine 8, yeast extract 2, KNO3 1, K2HPO4 2, MgSO4.7H2O 0.5, NaCl 0.1, FeSO4. 7H2O 0.02, CaCl2 0.01), incubation time 7 days, moisture content 50%, inoculum size 3 mL, temperature 30°C, pH 8.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=streptomyces%20rochei%20subsp.%20chromatogenes%20neae-k" title="streptomyces rochei subsp. chromatogenes neae-k">streptomyces rochei subsp. chromatogenes neae-k</a>, <a href="https://publications.waset.org/abstracts/search?q=16s%20rrna" title=" 16s rrna"> 16s rrna</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=l-asparaginase%20production" title=" l-asparaginase production"> l-asparaginase production</a>, <a href="https://publications.waset.org/abstracts/search?q=plackett-burman%20design" title=" plackett-burman design"> plackett-burman design</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design" title=" central composite design "> central composite design </a> </p> <a href="https://publications.waset.org/abstracts/16531/optimization-of-fermentation-conditions-for-extracellular-production-of-the-oncolytic-enzyme-l-asparaginase-by-new-subsp-streptomyces-rochei-subsp-chromatogenes-neae-k-using-response-surface-methodology-under-solid-state-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Anecic and Epigeic Earthworms as Potential Biocontrol Agents of Fusarium graminearum, Causal Agent of Fusarium Head Blight on Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriella%20Jorge">Gabriella Jorge</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20P%C3%A9rez"> Carlos A. Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Friberg"> Hanna Friberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20S%C3%B6derlund"> Sara Söderlund</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Lagerl%C3%B6f"> Jan Lagerlöf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fusarium Head Blight (FHB) is one of the most important Fusarium-caused diseases, which affects cereals with serious detrimental effects on yield and grain quality worldwide. Earthworms have been suggested as an alternative to control this disease, which requires a combination of preventive methods to reduce level of damage, although it has been proven that their effect is species dependent. Our objective was to evaluate the effect of the earthworms Aporrectodea longa and Lumbricus rubellus, on the inoculum of Fusarium graminearum on wheat straw. To test this we kept earthworms in vessels with soil, and F. graminearum-inoculated straw covering the surface, under controlled conditions for 6 weeks. Two factors were evaluated with a complete factorial design: earthworms (three levels: without earthworms, A. longa, and L. rubellus), and straw (two levels: inoculated with the pathogen, and sterile). The presence of L. rubellus significantly (P<0.05) reduced the amount of inoculated straw at the soil surface 31% after 6 weeks, while the presence of A. longa, most found in quiescence, did not have any significant effect on the amount of straw when compared to the control. After incubation, F. graminearum was detected by qPCR, only in the surface straw in those treatments inoculated with the pathogen but without earthworms. None of the treatments showed presence of Fusarium in the buried straw, soil or earthworm casts. Both earthworm species decreased in body weight during incubation, most likely due to the decrease in soil water content during the experiment, from 25% to 20%, and/or inadequate food supply, since no other source of food was added. However, this reduction in weight occurred indistinctly of the presence or not of Fusarium (P<0.05). This indicates that both species, of different ecological groups, anecic and epigeic, can reduce F. graminearum inoculum present in wheat straw, while their growth is not negatively affected by this pathogen. These promising results place A. longa, and L. rubellus as potential biocontrol agents of this fungal plant pathogen responsible for Fusarium Head Blight disease in wheat, although further ongoing experiments are needed to confirm the repeatability of these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aporrectodea%20longa" title="Aporrectodea longa">Aporrectodea longa</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20plant%20pathogen" title=" fungal plant pathogen"> fungal plant pathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lumbricus%20rubellus" title=" Lumbricus rubellus"> Lumbricus rubellus</a>, <a href="https://publications.waset.org/abstracts/search?q=qPCR" title=" qPCR"> qPCR</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20straw" title=" wheat straw"> wheat straw</a> </p> <a href="https://publications.waset.org/abstracts/58692/anecic-and-epigeic-earthworms-as-potential-biocontrol-agents-of-fusarium-graminearum-causal-agent-of-fusarium-head-blight-on-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Rhizobia-Containing Rhizobacterial Consortia and Intercropping Improved Faba Bean and Wheat Performances Under Stress Combining Drought and Phosphorus Deficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Cheto">Said Cheto</a>, <a href="https://publications.waset.org/abstracts/search?q=Khawla%20Oukaltouma"> Khawla Oukaltouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Imane%20Chamkhi"> Imane Chamkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ibn%20Yasser"> Ammar Ibn Yasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchra%20Benmrid"> Bouchra Benmrid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Qaddoury"> Ahmed Qaddoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamfeddal%20Kouisni"> Lamfeddal Kouisni</a>, <a href="https://publications.waset.org/abstracts/search?q=Joerg%20Geistlinger"> Joerg Geistlinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Zeroual"> Youssef Zeroual</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnane%20Bargaz"> Adnane Bargaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherki%20Ghoulam"> Cherki Ghoulam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study aimed to assess, the role of inoculation of faba bean/wheat intercrops with selected rhizobacteria consortia gathering one rhizobia and two phosphate solubilizing bacteria “PSB” to alleviate the effects of combined water deficit and P limitation on Faba bean/ wheat intercrops versus monocrops under greenhouse conditions. One Vicia faba L variety (Aguadulce “Ag”), and one Triticum durum L. variety (Karim “K”) were grown as sole crops or intercrop in pots containing sterilized substrate (sand: peat 4:1v/v) added either with rock phosphate (RP) as the alone P source (P limitation) or with KH₂PO₄ in nutrient solution (P sufficient control). Plant inoculation was done using rhizobacterial consortia composed; C1(Rhizobium laguerreae, Kocuria sp, and Pseudomonas sp) and C2 (R. laguerreae, Rahnella sp, and Kocuria sp). Two weeks after inoculation, the plants were submitted to water deficit consisting of 40% of substrate water holding Capacity (WHC) versus 80% WHC for well-watered plants. At the flowering stage, the trial was assessed, and the results showed that inoculation with both consortia (C1 and C2) improved faba bean biomass in terms of shoots, roots, and nodules compared to inoculation with rhizobia alone, particularly C2 improved these parametres by 19.03, 78.99, and 72.73%, respectively. Leaf relative water content decreased under combined stress, particularly in response to C1 with a significant improvement of this parameter in wheat intercrops. For faba bean under P limitation, inoculation with C2 increased stomatal conductance (gs) by 35.73% compared to plants inoculated with rhizobia alone. Furthermore, the same inoculum C2 improved membrane stability by 44,33% versus 16,16% for C1 compared to inoculation with rhizobia alone under P deficit. For sole cropped faba bean plants, inoculation with both consortia improved N accumulation compared to inoculation with rhizobia alone with an increase of 70.75% under P limitation. Moreover, under the combined stress, intercropping inoculation with C2 improved plant biomass and N content (112.98%) in wheat plants, compared to the sole crop. Our finding revealed that consortium C2 might offer an agronomic advantage under water and P deficit and could be used as inoculum for enhancing faba bean and wheat production under both monocropping and intercropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought" title="drought">drought</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=PSB" title=" PSB"> PSB</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=vicia%20faba" title=" vicia faba"> vicia faba</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20durum" title=" Triticum durum"> Triticum durum</a> </p> <a href="https://publications.waset.org/abstracts/163616/rhizobia-containing-rhizobacterial-consortia-and-intercropping-improved-faba-bean-and-wheat-performances-under-stress-combining-drought-and-phosphorus-deficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Anaerobic Digestion of Green Wastes at Different Solids Concentrations and Temperatures to Enhance Methane Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bayat">A. Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bello-Mendoza"> R. Bello-Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20Wareham"> D. G. Wareham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two major categories of green waste are fruit and vegetable (FV) waste and garden and yard (GY) waste. Although, anaerobic digestions (AD) is able to manage FV waste; there is less confidence in the conditions for AD to handle GY wastes (grass, leaves, trees and bush trimmings); mainly because GY contains lignin and other recalcitrant organics. GY in the dry state (TS ≥ 15 %) can be digested at mesophilic temperatures; however, little methane data has been reported under thermophilic conditions, where conceivably better methane yields could be achieved. In addition, it is suspected that at lower solids concentrations, the methane yield could be increased. As such, the aim of this research is to find the temperature and solids concentration conditions that produce the most methane; under two different temperature regimes (mesophilic, thermophilic) and three solids states (i.e. 'dry', 'semi-dry' and 'wet'). Twenty liters of GY waste was collected from a public park located in the northern district in Tehran. The clippings consisted of freshly cut grass as well as dry branches and leaves. The GY waste was chopped before being fed into a mechanical blender that reduced it to a paste-like consistency. An initial TS concentration of approximately 38 % was achieved. Four hundred mL of anaerobic inoculum (average total solids (TS) concentration of 2.03 ± 0.131 % of which 73.4% were volatile solid (VS), soluble chemical oxygen demand (sCOD) of 4.59 ± 0.3 g/L) was mixed with the GY waste substrate paste (along with distilled water) to achieve a TS content of approximately 20 %. For comparative purposes, approximately 20 liters of FV waste was ground in the same manner as the GY waste. Since FV waste has a much higher natural water content than GY, it was dewatered to obtain a starting TS concentration in the dry solid-state range (TS ≥ 15 %). Three samples were dewatered to an average starting TS concentration of 32.71 %. The inoculum was added (along with distilled water) to dilute the initial FV TS concentrations down to semi-dry conditions (10-15 %) and wet conditions (below 10 %). Twelve 1-L batch bioreactors were loaded simultaneously with either GY or FV waste at TS solid concentrations ranging from 3.85 ± 1.22 % to 20.11 ± 1.23 %. The reactors were sealed and were operated for 30 days while being immersed in water baths to maintain a constant temperature of 37 ± 0.5 °C (mesophilic) or 55 ± 0.5 °C (thermophilic). A maximum methane yield of 115.42 (L methane/ kg VS added) was obtained for the GY thermophilic-wet AD combination. Methane yield was enhanced by 240 % compared to the GY waste mesophilic-dry condition. The results confirm that high temperature regimes and small solids concentrations are conditions that enhance methane yield from GY waste. A similar trend was observed for the anaerobic digestion of FV waste. Furthermore, a maximum value of VS (53 %) and sCOD (84 %) reduction was achieved during the AD of GY waste under the thermophilic-wet condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic" title=" thermophilic"> thermophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic" title=" mesophilic"> mesophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20solids%20concentration" title=" total solids concentration"> total solids concentration</a> </p> <a href="https://publications.waset.org/abstracts/111217/anaerobic-digestion-of-green-wastes-at-different-solids-concentrations-and-temperatures-to-enhance-methane-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Bacterial Recovery of Copper Ores</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zh.%20Karaulova">Zh. Karaulova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Baizhigitov"> D. Baizhigitov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the Aktogay deposit, the oxidized ore section has been developed since 2015; by now, the reserves of easily enriched ore are decreasing, and a large number of copper-poor, difficult-to-enrich ores has been accumulated in the dumps of the KAZ Minerals Aktogay deposit, which is unprofitable to mine using the traditional mining methods. Hence, another technology needs to be implemented, which will significantly expand the raw material base of copper production in Kazakhstan and ensure the efficient use of natural resources. Heap and dump bacterial recovery are the most acceptable technologies for processing low-grade secondary copper sulfide ores. Test objects were the copper ores of Aktogay deposit and chemolithotrophic bacteria Leptospirillum ferrooxidans (L.f.), Acidithiobacillus caldus (A.c.), Sulfobacillus Acidophilus (S.a.), which are mixed cultures were both used in bacterial oxidation systems. They can stay active in the 20-400C temperature range. These bacteria were the most extensively studied and widely used in sulfide mineral recovery technology. Biocatalytic acceleration was achieved as a result of bacteria oxidizing iron sulfides to form iron sulfate, which subsequently underwent chemical oxidation to become sulfate oxide. The following results have been achieved at the initial stage: the goal was to grow and maintain the life activity of bacterial cultures under laboratory conditions. These bacteria grew the best within the pH 1,2-1,8 range with light stirring and in an aerated environment. The optimal growth temperature was 30-33оC. The growth rate decreased by one-half for each 4-5°C fall in temperature from 30°C. At best, the number of bacteria doubled every 24 hours. Typically, the maximum concentration of cells that can be grown in ferrous solution is about 107/ml. A further step researched in this case was the adaptation of microorganisms to the environment of certain metals. This was followed by mass production of inoculum and maintenance for their further cultivation on a factory scale. This was done by adding sulfide concentrate, allowing the bacteria to convert the ferrous sulfate as indicated by the Eh (>600 mV), then diluting to double the volume and adding concentrate to achieve the same metal level. This process was repeated until the desired metal level and volumes were achieved. The final stage of bacterial recovery was the transportation and irrigation of secondary sulfide copper ores of the oxidized ore section. In conclusion, the project was implemented at the Aktogay mine since the bioleaching process was prolonged. Besides, the method of bacterial recovery might compete well with existing non-biological methods of extraction of metals from ores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20recovery" title="bacterial recovery">bacterial recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20ore" title=" copper ore"> copper ore</a>, <a href="https://publications.waset.org/abstracts/search?q=bioleaching" title=" bioleaching"> bioleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20inoculum" title=" bacterial inoculum"> bacterial inoculum</a> </p> <a href="https://publications.waset.org/abstracts/165349/bacterial-recovery-of-copper-ores" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Studies on Optimizing the Level of Liquid Biofertilizers in Peanut and Maize and Their Economic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandragouda%20R.%20Patil">Chandragouda R. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Jagadeesh"> K. S. Jagadeesh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Kalolgi"> S. D. Kalolgi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofertilizers containing live microbial cells can mobilize one or more nutrients to plants when applied to either seed or rhizosphere. They form an integral part of nutrient management strategies for sustainable production of agricultural crops. Annually, about 22 tons of lignite-based biofertilizers are being produced and supplied to farmers at the Institute of Organic Farming, University of Agricultural Sciences, Dharwad, Karnataka state India. Although carrier based biofertilizers are common, they have shorter shelf life, poor quality, high contamination, unpredictable field performance and high cost of solid carriers. Hence, liquid formulations are being developed to increase their efficacy and broaden field applicability. An attempt was made to develop liquid formulation of strains of Rhizobium NC-92 (Groundnut), Azospirillum ACD15 both nitrogen-fixing biofertilizers and Pseudomonas striata an efficient P-solubilizing bacteria (PSB). Different concentration of amendments such as additives (glycerol and polyethylene glycol), adjuvants (carboxyl methyl cellulose), gum arabica (GA), surfactant (polysorbate) and trehalose specifically for Azospirillum were found essential. Combinations of formulations of Rhizobium and PSB for groundnut and Azospirillum and PSB for maize were evaluated under field conditions to determine the optimum level of inoculum required. Each biofertilizer strain was inoculated at the rate of 2, 4, 8 ml per kg of seeds and the efficacy of each formulation both individually and in combinations was evaluated against the lignite-based formulation at the rate of 20 g each per kg seeds and a un-inoculated set was included to compare the inoculation effect. The field experiment had 17 treatments in three replicates and the best level of inoculum was decided based on net returns and cost: benefit ratio. In peanut, the combination of 4 ml of Rhizobium and 2 ml of PSB resulted in the highest net returns and higher cost to benefit ratio of 1:2.98 followed by treatment with a combination of 2 ml per kg each of Rhizobium and PSB with a B;C ratio of 1:2.84. The benefits in terms of net returns were to the extent of 16 percent due to inoculation with lignite based formulations while it was up to 48 percent due to the best combination of liquid biofertilizers. In maize combination of liquid formulations consisting of 4 ml of Azospirillum and 2 ml of PSB resulted in the highest net returns; about 53 percent higher than the un-inoculated control and 20 percent higher than the treatment with lignite based formulation. In both the crops inoculation with lignite based formulations significantly increased the net returns over un-inoculated control while levels higher or lesser than 4 ml of Rhizobium and Azospirillum and higher or lesser than 2 ml of PSB were not economical and hence not optimal for these two crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rhizobium" title="Rhizobium">Rhizobium</a>, <a href="https://publications.waset.org/abstracts/search?q=Azospirillum" title=" Azospirillum"> Azospirillum</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20solubilizing%20bacteria" title=" phosphate solubilizing bacteria"> phosphate solubilizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20formulation" title=" liquid formulation"> liquid formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=benefit-cost%20ratio" title=" benefit-cost ratio"> benefit-cost ratio</a> </p> <a href="https://publications.waset.org/abstracts/81440/studies-on-optimizing-the-level-of-liquid-biofertilizers-in-peanut-and-maize-and-their-economic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10