CINXE.COM

Search results for: simulation of photonic crystal lasers

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: simulation of photonic crystal lasers</title> <meta name="description" content="Search results for: simulation of photonic crystal lasers"> <meta name="keywords" content="simulation of photonic crystal lasers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="simulation of photonic crystal lasers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="simulation of photonic crystal lasers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5713</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: simulation of photonic crystal lasers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5713</span> Design and Simulation of Low Threshold Nanowire Photonic Crystal Surface Emitting Lasers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balthazar%20Temu">Balthazar Temu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Yan"> Zhao Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdan-Petrin%20Ratiu"> Bogdan-Petrin Ratiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Soon%20Oh"> Sang Soon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Li"> Qiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanowire based Photonic Crystal Surface Emitting Lasers (PCSELs) reported in the literature have been designed using a triangular, square or honeycomb patterns. The triangular and square pattern PCSELs have limited degrees of freedom in tuning the design parameters which hinders the ability to design high quality factor (Q-factor) devices. Nanowire based PCSELs designed using triangular and square patterns have been reported with the lasing thresholds of 130 kW/〖cm〗^2 and 7 kW/〖cm〗^2 respectively. On the other hand the honeycomb pattern gives more degrees of freedom in tuning the design parameters, which can allow one to design high Q-factor devices. A deformed honeycomb pattern device was reported with lasing threshold of 6.25 W/〖cm〗^2 corresponding to a simulated Q-factor of 5.84X〖10〗^5.Despite this achievement, the design principles which can lead to realization of even higher Q-factor honeycomb pattern PCSELs have not yet been investigated. In this work we show that through deforming the honeycomb pattern and tuning the heigh and lattice constants of the nanowires, it is possible to achieve even higher Q-factor devices. Considering three different band edge modes, we investigate how the resonance wavelength changes as the device is deformed, which is useful in designing high Q-factor devices in different wavelength bands. We eventually establish the design and simulation of honeycomb PCSELs operating around the wavelength of 960nm , in the O and the C band with Q-factors up to 7X〖10〗^7. We also investigate the Q-factors of undeformed device, and establish that the mode at the band edge close to 960nm can attain highest Q-factor of all the modes when the device is undeformed and the Q-factor degrades as the device is deformed. This work is a stepping stone towards the fabrication of very high Q-factor, nanowire based honey comb PCSELs, which are expected to have very low lasing threshold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=designing%20nanowire%20PCSEL" title="designing nanowire PCSEL">designing nanowire PCSEL</a>, <a href="https://publications.waset.org/abstracts/search?q=designing%20PCSEL%20on%20silicon%20substrates" title=" designing PCSEL on silicon substrates"> designing PCSEL on silicon substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20threshold%20nanowire%20laser" title=" low threshold nanowire laser"> low threshold nanowire laser</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers" title=" simulation of photonic crystal lasers"> simulation of photonic crystal lasers</a> </p> <a href="https://publications.waset.org/abstracts/193552/design-and-simulation-of-low-threshold-nanowire-photonic-crystal-surface-emitting-lasers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5712</span> Designing Electrically Pumped Photonic Crystal Surface Emitting Lasers Based on a Honeycomb Nanowire Pattern</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balthazar%20Temu">Balthazar Temu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Yan"> Zhao Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdan-Petrin%20Ratiu"> Bogdan-Petrin Ratiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Soon%20Oh"> Sang Soon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Li"> Qiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photonic crystal surface emitting lasers (PCSELs) has recently become an area of active research because of the advantages these lasers have over the edge emitting lasers and vertical cavity surface emitting lasers (VCSELs). PCSELs can emit laser beams with high power (from the order of few milliwatts to Watts or even tens of Watts) which scales with the emission area while maintaining single mode operation even at large emission areas. Most PCSELs reported in the literature are air-hole based, with only few demonstrations of nanowire based PCSELs. We previously reported an optically pumped, nanowire based PCSEL operating in the O band by using the honeycomb lattice. The nanowire based PCSELs have the advantage of being able to grow on silicon platform without threading dislocations. It is desirable to extend their operating wavelength to C band to open more applications including eye-safe sensing, lidar and long haul optical communications. In this work we first analyze how the lattice constant , nanowire diameter, nanowire height and side length of the hexagon in the honeycomb pattern can be changed to increase the operating wavelength of the honeycomb based PCSELs to the C band. Then as an attempt to make our device electrically pumped, we present the finite-difference time-domain (FDTD) simulation results with metals on the nanowire. The results for different metals on the nanowire are presented in order to choose the metal which gives the device with the best quality factor. The metals under consideration are those which form good ohmic contact with p-type doped InGaAs with low contact resistivity and decent sticking coefficient to the semiconductor. Such metals include Tungsten, Titanium, Palladium and Platinum. Using the chosen metal we demonstrate the impact of thickness of the metal for a given nanowire height on the quality factor of the device. We also investigate how the height of the nanowire affects the quality factor for a fixed thickness of the metal. Finally, the main steps in making the practical device are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=designing%20nanowire%20PCSEL" title="designing nanowire PCSEL">designing nanowire PCSEL</a>, <a href="https://publications.waset.org/abstracts/search?q=designing%20PCSEL%20on%20silicon%20substrates" title=" designing PCSEL on silicon substrates"> designing PCSEL on silicon substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20threshold%20nanowire%20laser" title=" low threshold nanowire laser"> low threshold nanowire laser</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers." title=" simulation of photonic crystal lasers."> simulation of photonic crystal lasers.</a> </p> <a href="https://publications.waset.org/abstracts/193555/designing-electrically-pumped-photonic-crystal-surface-emitting-lasers-based-on-a-honeycomb-nanowire-pattern" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5711</span> Designing Nanowire Based Honeycomb Photonic Crystal Surface Emitting Lasers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balthazar%20Temu">Balthazar Temu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Yan"> Zhao Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdan-Petrin%20Ratiu"> Bogdan-Petrin Ratiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Soon%20Oh"> Sang Soon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Li"> Qiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photonic Crystal Surface Emitting Lasers (PCSELs) are structures which are made up of a periodically repeating patterns with a unit cell consisting of changes in refractive index. The variation in refractive index can be achieved by etching air holes in a semiconductor material to get hole based PCSELs or by growing nanowires to get nanowire based PCSELs. As opposed to hole based PCSELs, nanowire based PCSELs can be integrated on silicon platform without threading dislocations, thanks to the small area of the nanowire that is in contact with silicon substrate that relaxes the strain. Nanowire based PCSELs reported in the literature have been designed using a triangular, square or honeycomb patterns. The triangular and square pattern PCSELs have limited degrees of freedom in tuning the design parameters which hinders the ability to design high quality factor (Q-factor) and/or variable wavelength devices. Nanowire based PCSELs designed using triangular and square patterns have been reported with the lasing thresholds of 130 kW/〖cm〗^2 and 7 kW/〖cm〗^2 respectively. On the other hand the honeycomb pattern gives more degrees of freedom in tuning the design parameters, which can allow one to design high Q-factor devices. A deformed honeycomb pattern device was reported with lasing threshold of 6.25 W/〖cm〗^2 corresponding to a simulated Q-factor of 5.84X〖10〗^5.Despite this achievement, the design principles which can lead to realization of even higher Q-factor honeycomb pattern PCSELs have not yet been investigated. In this work we study how the resonance wavelength and the Q-factor of three different resonance modes of the device vary when their design parameters are tuned. Through this study we establish the design and simulation of devices operating in 970nm wavelength band, O band and in the C band with quality factors up to 7X〖10〗^7 . We also investigate the quality factors of undeformed device and establish that the band edge close to 970nm can attain high quality factor when the device is undeformed and the quality factor degrades as the device is deformed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20PCSEL" title="honeycomb PCSEL">honeycomb PCSEL</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire%20laser" title=" nanowire laser"> nanowire laser</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20laser" title=" photonic crystal laser"> photonic crystal laser</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20surface%20emitting%20laser" title=" simulation of photonic crystal surface emitting laser"> simulation of photonic crystal surface emitting laser</a> </p> <a href="https://publications.waset.org/abstracts/193577/designing-nanowire-based-honeycomb-photonic-crystal-surface-emitting-lasers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5710</span> A High Quality Factor Filter Based on Quasi- Periodic Photonic Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Alipour-Banaei">Hamed Alipour-Banaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Mehdizadeh"> Farhad Mehdizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the design and characterization of ultra high quality factor filter based on one-dimensional photonic-crystal Thue-Morse sequence structure. The behavior of aperiodic array of photonic crystal structure is numerically investigated and we show that by changing the angle of incident wave, desired wavelengths could be tuned and a tunable filter is realized. Also it is shown that high quality factor filter be achieved in the telecommunication window around 1550 nm, with a device based on Thue-Morse structure. Simulation results show that the proposed structure has a quality factor more than 100000 and it is suitable for DWDM communication applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thue-Morse" title="Thue-Morse">Thue-Morse</a>, <a href="https://publications.waset.org/abstracts/search?q=filter" title=" filter"> filter</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20factor" title=" quality factor"> quality factor</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic" title=" photonic"> photonic</a> </p> <a href="https://publications.waset.org/abstracts/31621/a-high-quality-factor-filter-based-on-quasi-periodic-photonic-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5709</span> Room Temperature Lasing from InGaAs Quantum Well Nanowires on Silicon-On-Insulator Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balthazar%20Temu">Balthazar Temu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Yan"> Zhao Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdan-Petrin%20Ratiu"> Bogdan-Petrin Ratiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Soon%20Oh"> Sang Soon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Li"> Qiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum confinement can be used to increase efficiency and control the emitted spectra in lasers and LEDs. In semiconductor nanowires, quantum confinement can be achieved in the axial direction by stacking multiple quantum disks or in the radial direction by forming a core-shell structure. In this work we demonstrate room temperature lasing in topological photonic crystal nanowire array lasers by using the InGaAs radial quantum well as the gain material. The nanowires with the GaAs/ InGaAs/ InGaP quantum well structure are arranged in a deformed honeycomb lattice, forming a photonic crystal surface emitting laser (PCSEL) . Under optical pumping we show that the PCSEL lase at the wavelength of 1001 nm (undeformed pattern) and 966 nm (stretched pattern), with the lasing threshold of 103 µJ〖/cm 〗^2. We compare the lasing wavelengths from devices with three different nanowire diameters for undeformed compressed and stretched devices, showing that the lasing wavelength increases as the nanowire diameter increases. The impact of deforming the honeycomb pattern is studied, where it was found out that the lasing wavelengths of undeformed devices are always larger than the corresponding stretched or compressed devices with the same nanowire diameter. Using photoluminescence results and numerical simulations on the field profile and the quality factors of the devices, we establish that the lasing of the device is from the radial quantum well structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20PCSEL" title="honeycomb PCSEL">honeycomb PCSEL</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire%20laser" title=" nanowire laser"> nanowire laser</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20laser" title=" photonic crystal laser"> photonic crystal laser</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20well%20laser" title=" quantum well laser"> quantum well laser</a> </p> <a href="https://publications.waset.org/abstracts/193549/room-temperature-lasing-from-ingaas-quantum-well-nanowires-on-silicon-on-insulator-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5708</span> A Connected Structure of All-Optical Logic Gate “NOT-AND”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roumaissa%20Derdour">Roumaissa Derdour</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebbal%20Mohamed%20Redha"> Lebbal Mohamed Redha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a study of the transmission of the all-optical logic gate using a structure connected with a triangular photonic crystal lattice that is improved. The proposed logic gate consists of a photonic crystal nano-resonator formed by changing the size of the air holes. In addition to the simplicity, the response time is very short, and the designed nano-resonator increases the bit rate of the logic gate. The two-dimensional finite difference time domain (2DFDTD) method is used to simulate the structure; the transmission obtained is about 98% with very negligible losses. The proposed photonic crystal AND logic gate is widely used in future integrated optical microelectronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logic%20gates" title="logic gates">logic gates</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystals" title=" photonic crystals"> photonic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20integrated%20circuits" title=" optical integrated circuits"> optical integrated circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20cavities" title=" resonant cavities"> resonant cavities</a> </p> <a href="https://publications.waset.org/abstracts/161597/a-connected-structure-of-all-optical-logic-gate-not-and" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5707</span> A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ti-An%20Tsai">Ti-An Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Chih%20Wang"> Chun-Chih Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Wen%20Wang"> Hung-Wen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ling%20Chang"> I-Ling Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lien-Wen%20Chen"> Lien-Wen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we demonstrate a high-resolution refractive index sensor based on a magnetic photonic crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20photonic%20crystal" title="magnetic photonic crystal">magnetic photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index%20sensor" title=" refractive index sensor"> refractive index sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=high-resolution" title=" high-resolution"> high-resolution</a> </p> <a href="https://publications.waset.org/abstracts/26102/a-high-resolution-refractive-index-sensor-based-on-a-magnetic-photonic-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5706</span> Ultra-Low Chromatic Dispersion, Low Confinement Loss, and Low Nonlinear Effects Index-Guiding Photonic Crystal Fiber </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Olyaee">S. Olyaee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Seifouri"> M. Seifouri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nikoosohbat"> A. Nikoosohbat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shams%20Esfand%20Abadi"> M. Shams Esfand Abadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photonic Crystal Fibers (PCFs) can be used in optical communications as transmission lines. For this reason, the PCFs with low confinement loss, low chromatic dispersion, and low nonlinear effects are highly suitable transmission media. In this paper, we introduce a new design of index-guiding photonic crystal fiber (IG-PCF) with ultra-low chromatic dispersion, low nonlinearity effects, and low confinement loss. Relatively low dispersion is achieved in the wavelength range of 1200 to 1600 nm using the proposed design. According to the new structure of IG-PCF presented in this study, the chromatic dispersion slope is -30(ps/km.nm) and the confinement loss reaches below 10-7 dB/km. While in the wavelength range mentioned above at the same time an effective area of more than 50.2μm2 is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20communication%20systems" title="optical communication systems">optical communication systems</a>, <a href="https://publications.waset.org/abstracts/search?q=index-guiding" title=" index-guiding"> index-guiding</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=confinement%20loss" title=" confinement loss"> confinement loss</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20fiber" title=" photonic crystal fiber"> photonic crystal fiber</a> </p> <a href="https://publications.waset.org/abstracts/20500/ultra-low-chromatic-dispersion-low-confinement-loss-and-low-nonlinear-effects-index-guiding-photonic-crystal-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">609</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5705</span> Low Nonlinear Effects Index-Guiding Nanostructured Photonic Crystal Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Olyaee">S. Olyaee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Seifouri"> M. Seifouri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nikoosohbat"> A. Nikoosohbat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shams%20Esfand%20Abadi"> M. Shams Esfand Abadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photonic Crystal Fibers (PCFs) can be used in optical communications as transmission lines. For this reason, the PCFs with low confinement loss, low chromatic dispersion, and low nonlinear effects are highly suitable transmission media. In this paper, we introduce a new design of index-guiding nanostructured photonic crystal fiber (IG-NPCF) with ultra-low chromatic dispersion, low nonlinearity effects, and low confinement loss. Relatively low dispersion is achieved in the wavelength range of 1200 to 1600nm using the proposed design. According to the new structure of nanostructured PCF presented in this study, the chromatic dispersion slope is -30(ps/km.nm) and the confinement loss reaches below 10-7 dB/km. While in the wavelength range mentioned above at the same time an effective area of more than 50.2μm2 is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20communication%20systems" title="optical communication systems">optical communication systems</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured" title=" nanostructured"> nanostructured</a>, <a href="https://publications.waset.org/abstracts/search?q=index-guiding" title=" index-guiding"> index-guiding</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=confinement%20loss" title=" confinement loss"> confinement loss</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20fiber" title=" photonic crystal fiber"> photonic crystal fiber</a> </p> <a href="https://publications.waset.org/abstracts/18766/low-nonlinear-effects-index-guiding-nanostructured-photonic-crystal-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5704</span> Designing a Refractive Index Gas Biosensor Exploiting Defects in Photonic Crystal Core-Shell Rods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Tebboub">Bilal Tebboub</a>, <a href="https://publications.waset.org/abstracts/search?q=AmelLabbani"> AmelLabbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article introduces a compact sensor based on high-transmission, high-sensitivity two-dimensional photonic crystals. The photonic crystal consists of a square network of silicon rods in the air. The sensor is composed of two waveguide couplers and a microcavity designed for monitoring the percentage of hydrogen in the air and identifying gas types. Through the Finite-Difference Time-Domain (FDTD) method, we demonstrate that the sensor's resonance wavelength is contingent upon changes in the gas refractive index. We analyze transmission spectra, quality factors, and sensor sensitivity. The sensor exhibits a notable quality factor and a sensitivity value of 1374 nm/RIU. Notably, the sensor's compact structure occupies an area of 74.5 μm2, rendering it suitable for integrated optical circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-D%20photonic%20crystal" title="2-D photonic crystal">2-D photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=F.D.T.D%20method" title=" F.D.T.D method"> F.D.T.D method</a>, <a href="https://publications.waset.org/abstracts/search?q=label-free%20biosensing" title=" label-free biosensing"> label-free biosensing</a> </p> <a href="https://publications.waset.org/abstracts/176388/designing-a-refractive-index-gas-biosensor-exploiting-defects-in-photonic-crystal-core-shell-rods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5703</span> Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sree%20Sanker">S. S. Sree Sanker</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Madhusoodanan"> K. N. Madhusoodanan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CST%20microwave%20studio" title="CST microwave studio">CST microwave studio</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20sensor" title=" glucose sensor"> glucose sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title=" photonic crystal"> photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20waves" title=" terahertz waves"> terahertz waves</a> </p> <a href="https://publications.waset.org/abstracts/82728/terahertz-glucose-sensors-based-on-photonic-crystal-pillar-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5702</span> Study of Photonic Crystal Band Gap and Hexagonal Microcavity Based on Elliptical Shaped Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benmerkhi">A. Benmerkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bounouioua"> A. Bounouioua</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouchemat"> M. Bouchemat</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Bouchemat"> T. Bouchemat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a numerical optical properties of a triangular periodic lattice of elliptical air holes. We report the influence of the ratio (semi-major axis length of elliptical hole to the filling ratio) on the photonic band gap. Then by using the finite difference time domain (FDTD) algorithm, the resonant wavelength of the point defect microcavities in a two-dimensional photonic crystal (PC) shifts towards the low wavelengths with significantly increased filing ratio. It can be noted that the Q factor is gradually changed to higher when the filling ratio increases. It is due to an increase in reflectivity of the PC mirror. Also we theoretically investigate the H1 cavity, where the value of semi-major axis (Rx) of the six holes surrounding the cavity are fixed at 0.5a and the Rx of the two edge air holes are fixed at the optimum value of 0.52a. The highest Q factor of 4.1359 &times; 10<sup>6</sup> is achieved at the resonant mode located at &lambda; = 1.4970 &micro;m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title="photonic crystal">photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=microcavity" title=" microcavity"> microcavity</a>, <a href="https://publications.waset.org/abstracts/search?q=filling%20ratio" title=" filling ratio"> filling ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptical%20holes" title=" elliptical holes"> elliptical holes</a> </p> <a href="https://publications.waset.org/abstracts/119036/study-of-photonic-crystal-band-gap-and-hexagonal-microcavity-based-on-elliptical-shaped-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5701</span> Interesting Behavior of Non-Thermal Plasma Photonic Crystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mousavi">A. Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sadegzadeh"> S. Sadegzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the effect of non-thermal micro plasma with non-Maxwellian distribution function on the one dimensional plasma photonic crystals containing alternate plasma-dielectric layers, has been studied. By using Kronig Penny model, the dispersion relation of electromagnetic modes for such a periodic structure is obtained. In this study we take two plasma photonic crystals with different dielectric layers: the first one with Silicon monoxide named PPCI, and the second one with Tellurium dioxide named PPCII. The effects of the plasma layer thickness and the material of the dielectric layer on the plasma photonic crystal band gaps have been illustrated in the dispersion relation and the group velocity figures. Results revealed that in such a system, the non-thermal plasma exerts stronger limit on the wave’s propagation. In another word, for the non-thermal plasma photonic crystals (NPPC), there are two distinct regions in the dispersion plot. The upper region consists of alternate band gaps in such a way that both width and length of the bands decrease gradually as the band gaps order increases. Whereas in the lower region where v_ph > 20 c (for PPCI), waves will not be allowed to propagate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20gap" title="band gap">band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20relation" title=" dispersion relation"> dispersion relation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20photonic%20crystal" title=" plasma photonic crystal"> plasma photonic crystal</a> </p> <a href="https://publications.waset.org/abstracts/24618/interesting-behavior-of-non-thermal-plasma-photonic-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5700</span> A Comparative Study of Linearly Graded and without Graded Photonic Crystal Structure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar">Rajeev Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Angad%20Singh%20Kushwaha"> Angad Singh Kushwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Amritanshu%20Pandey"> Amritanshu Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Srivastava"> S. K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photonic crystals (PCs) have attracted much attention due to its electromagnetic properties and potential applications. In PCs, there is certain range of wavelength where electromagnetic waves are not allowed to pass are called photonic band gap (PBG). A localized defect mode will appear within PBG, due to change in the interference behavior of light, when we create a defect in the periodic structure. We can also create different types of defect structures by inserting or removing a layer from the periodic layered structure in two and three-dimensional PCs. We can design microcavity, waveguide, and perfect mirror by creating a point defect, line defect, and palanar defect in two and three- dimensional PC structure. One-dimensional and two-dimensional PCs with defects were reported theoretically and experimentally by Smith et al.. in conventional photonic band gap structure. In the present paper, we have presented the defect mode tunability in tilted non-graded photonic crystal (NGPC) and linearly graded photonic crystal (LGPC) using lead sulphide (PbS) and titanium dioxide (TiO2) in the infrared region. A birefringent defect layer is created in NGPC and LGPC using potassium titany phosphate (KTP). With the help of transfer matrix method, the transmission properties of proposed structure is investigated for transverse electric (TE) and transverse magnetic (TM) polarization. NGPC and LGPC without defect layer is also investigated. We have found that a photonic band gap (PBG) arises in the infrared region. An additional defect layer of KTP is created in NGPC and LGPC structure. We have seen that an additional transmission mode appers in PBG region. It is due to the addition of defect layer. We have also seen the effect, linear gradation in thickness, angle of incidence, tilt angle, and thickness of defect layer, on PBG and additional transmission mode. We have observed that the additional transmission mode and PBG can be tuned by changing the above parameters. The proposed structure may be used as channeled filter, optical switches, monochromator, and broadband optical reflector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20modes" title="defect modes">defect modes</a>, <a href="https://publications.waset.org/abstracts/search?q=graded%20photonic%20crystal" title=" graded photonic crystal"> graded photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title=" photonic crystal"> photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20angle" title=" tilt angle"> tilt angle</a> </p> <a href="https://publications.waset.org/abstracts/40533/a-comparative-study-of-linearly-graded-and-without-graded-photonic-crystal-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5699</span> A Comparative Study of a Defective Superconductor/ Semiconductor-Dielectric Photonic Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sadegzadeh">S. Sadegzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mousavi"> A. Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature-dependent tunable photonic crystals have attracted widespread interest in recent years. In this research, transmission characteristics of a one-dimensional photonic crystal structure with a single defect have been studied. Here, we assume two different defect layers: InSb as a semiconducting layer and HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub> as a high-temperature superconducting layer. Both the defect layers have temperature-dependent refractive indexes. Two different types of dielectric materials (Si as a high-refractive index dielectric and MgF<sub>2</sub> as a low-refractive index dielectric) are used to construct the asymmetric structures (Si/MgF<sub>2</sub>)<sup>N</sup>InSb(Si/MgF<sub>2</sub>)<sup>N</sup> named S.I, and (Si/MgF<sub>2</sub>)<sup>N</sup>HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub>(Si/MgF<sub>2</sub>)<sup>N</sup> named S.II. It is found that in response to the temperature changes, transmission peaks within the photonic band gap of the S.II structure, in contrast to S.I, show a small wavelength shift. Furthermore, the results show that under the same conditions, S.I structure generates an extra defect mode in the transmission spectra. Besides high efficiency transmission property of S.II structure, it can be concluded that the semiconductor-dielectric photonic crystals are more sensitive to temperature variation than superconductor types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20modes" title="defect modes">defect modes</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystals" title=" photonic crystals"> photonic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=superconductor" title=" superconductor"> superconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/67733/a-comparative-study-of-a-defective-superconductor-semiconductor-dielectric-photonic-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5698</span> Synthesis of Dispersion-Compensating Triangular Lattice Index-Guiding Photonic Crystal Fibers Using the Directed Tabu Search Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Karim">F. Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, triangular lattice index-guiding photonic crystal fibers (PCFs) are synthesized to compensate the chromatic dispersion of a single mode fiber (SMF-28) for an 80 km optical link operating at 1.55 &micro;m, by using the directed tabu search algorithm. Hole-to-hole distance, circular air-hole diameter, solid-core diameter, ring number and PCF length parameters are optimized for this purpose. Three Synthesized PCFs with different physical parameters are compared in terms of their objective functions values, residual dispersions and compensation ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triangular%20lattice%20index-guiding%20photonic%20crystal%20fiber" title="triangular lattice index-guiding photonic crystal fiber">triangular lattice index-guiding photonic crystal fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20compensation" title=" dispersion compensation"> dispersion compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=directed%20tabu%20search" title=" directed tabu search"> directed tabu search</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/39125/synthesis-of-dispersion-compensating-triangular-lattice-index-guiding-photonic-crystal-fibers-using-the-directed-tabu-search-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5697</span> Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinlu%20Ruan">Jinlu Ruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Chen"> Liang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Liu"> Bo Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoping%20Ouyang"> Xiaoping Ouyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhichao%20Zhu"> Zhichao Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongbing%20Zhang"> Zhongbing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiyi%20He"> Shiyi He</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengxuan%20Xu"> Mengxuan Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angular%20profile" title="angular profile">angular profile</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20layer%20deposition" title=" atomic layer deposition"> atomic layer deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20extraction%20efficiency" title=" light extraction efficiency"> light extraction efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20scintillator" title=" plastic scintillator"> plastic scintillator</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title=" photonic crystal"> photonic crystal</a> </p> <a href="https://publications.waset.org/abstracts/87289/luminescent-properties-of-plastic-scintillator-with-large-area-photonic-crystal-prepared-by-a-combination-of-nanoimprint-lithography-and-atomic-layer-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5696</span> A Comparative Analysis of an All-Optical Switch Using Chalcogenide Glass and Gallium Arsenide Based on Nonlinear Photonic Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Kumari%20Gupta">Priyanka Kumari Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Punya%20Prasanna%20Paltani"> Punya Prasanna Paltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrivishal%20Tripathi"> Shrivishal Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a nonlinear photonic crystal ring resonator-based all-optical 2 × 2 switch. The nonlinear Kerr effect is used to evaluate the essential 2 x 2 components of the photonic crystal-based optical switch, including the bar and cross states. The photonic crystal comprises a two-dimensional square lattice of dielectric rods in an air background. In the background air, two different dielectric materials are used for this comparison study separately. Initially with chalcogenide glass rods, then with GaAs rods. For both materials, the operating wavelength, bandgap diagram, operating power intensities, and performance parameters, such as the extinction ratio, insertion loss, and cross-talk of an optical switch, have also been estimated using the plane wave expansion and the finite-difference time-domain method. The chalcogenide glass material (Ag20As32Se48) has a high refractive index of 3.1 which is highly suitable for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 9.1 x 10-17 m2/W. The resonance wavelength is at 1552 nm, with the operating power intensities at the cross-state and bar state around 60 W/μm2 and 690 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are 17.19 dB, 0.051 dB, and -17.14 dB, and the bar state, the values are 11.32 dB, 0.025 dB, and -11.35 dB respectively. The gallium arsenide (GaAs) dielectric material has a high refractive index of 3.4, a direct bandgap semiconductor material highly preferred nowadays for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 3.1 x 10-16 m2/W. The resonance wavelength is at 1558 nm, with the operating power intensities at the cross-state and bar state around 110 W/μm2 and 200 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are found to be 3.36.19 dB, 2.436 dB, and -5.8 dB, and for the bar state, the values are 15.60 dB, 0.985 dB, and -16.59 dB respectively. This paper proposes an all-optical 2 × 2 switch based on a nonlinear photonic crystal using a ring resonator. The two-dimensional photonic crystal comprises a square lattice of dielectric rods in an air background. The resonance wavelength is in the range of photonic bandgap. Later, another widely used material, GaAs, is also considered, and its performance is compared with the chalcogenide glass. Our presented structure can be potentially applicable in optical integration circuits and information processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title="photonic crystal">photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=FDTD" title=" FDTD"> FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20resonator" title=" ring resonator"> ring resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20switch" title=" optical switch"> optical switch</a> </p> <a href="https://publications.waset.org/abstracts/165997/a-comparative-analysis-of-an-all-optical-switch-using-chalcogenide-glass-and-gallium-arsenide-based-on-nonlinear-photonic-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5695</span> Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zian%20Cheak%20Tiu">Zian Cheak Tiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Harith%20Ahmad"> Harith Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Wadi%20Harun"> Sulaiman Wadi Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 µs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-wavelength%20Q-switched" title="multi-wavelength Q-switched">multi-wavelength Q-switched</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotube" title=" multi-walled carbon nanotube"> multi-walled carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20fiber" title=" photonic crystal fiber"> photonic crystal fiber</a> </p> <a href="https://publications.waset.org/abstracts/8270/multi-wavelength-q-switched-erbium-doped-fiber-laser-with-photonic-crystal-fiber-and-multi-walled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5694</span> Optical Properties of a One Dimensional Graded Photonic Structure Based on Material Length Redistribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danny%20Manuel%20Calvo%20Velasco">Danny Manuel Calvo Velasco</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Sanchez%20Cano"> Robert Sanchez Cano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using the transference matrix formalism, in this work, it is presented the study of the optical properties of the 1D graded structure, constructed by multiple bi-layers of dielectric and air, considering a redistribution of the material lengths following an arithmetic progression as a function of two parameters. It is presented a factorization for the transference matrices for the graded structure, which allows the interpretation of their optical properties in terms of the properties of simpler structures. It is shown that the graded structure presents new transmission peaks, which can be controlled by the parameter values located in frequencies for which a periodic system has a photonic bandgap. This result is extended to the case of a photonic crystal for which the unitary cell is the proposed graded structure, showing new transmission bands which are due to the multiple new sub-structures present in the system. Also, for the TE polarization, it is observed transmission bands' low frequencies which present low variation of its width and position with the incidence angle. It is expected that these results could guide a route in the design of new photonic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graded" title="graded">graded</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20redistribution" title=" material redistribution"> material redistribution</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20system" title=" photonic system"> photonic system</a>, <a href="https://publications.waset.org/abstracts/search?q=transference%20matrix" title=" transference matrix"> transference matrix</a> </p> <a href="https://publications.waset.org/abstracts/137354/optical-properties-of-a-one-dimensional-graded-photonic-structure-based-on-material-length-redistribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5693</span> Designing a Dispersion Flattened Single Mode PCF for E-Band to U-Band with Less Effective Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shabbir%20Chowdhury">Shabbir Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A signal is broadened when it is gone through a channel, this phenomenon is known as dispersion. And dispersion is different for different wavelength. So bandwidth become limited. Research have tried to design an optical fiber with flattened dispersion to use more bandwidth and also for wavelength division multiplexing. In this paper, a single mode photonic crystal fiber with a flattened dispersion and less effective area has been proposed where silica is used as fiber materials. The effective dispersion varies from -1.996 to 0.1783 [ps/(nm-km)] for enter E-band to U-band. This fiber will take only 3.048 [micrometer^2] (for 1.75 micrometer wavelength). Silica is being used as the fiber material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20fiber" title="photonic crystal fiber">photonic crystal fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatic%20dispersion" title=" chromatic dispersion"> chromatic dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20dispersion" title=" effective dispersion"> effective dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20compensation" title=" dispersion compensation"> dispersion compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20area" title=" effective area"> effective area</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20refractive%20index" title=" effective refractive index"> effective refractive index</a> </p> <a href="https://publications.waset.org/abstracts/51092/designing-a-dispersion-flattened-single-mode-pcf-for-e-band-to-u-band-with-less-effective-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5692</span> Sensitivity Enhancement of Photonic Crystal Fiber Biosensor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Farhat%20O.%20Hameed">Mohamed Farhat O. Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasamin%20K.%20A.%20Alrayk"> Yasamin K. A. Alrayk</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A%20Shaalan"> A. A Shaalan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20A.%20Obayya"> S. S. A. Obayya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The surface plasmon resonance (SPR) sensors are widely used due to its high sensitivity with molecular labels free. The commercial SPR sensors depend on the conventional prism-coupled configuration. However, this type of configuration suffers from miniaturization and integration. Therefore, the search for compact, portable and highly sensitive SPR sensors becomes mandatory.In this paper, sensitivity enhancement of a novel photonic crystal fiber biosensoris introduced and studied. The suggested design has microstructure of air holes in the core region surrounded by two large semicircular metallized channels filled with the analyte. The inner surfaces of the two channels are coated by a silver layer followed by a gold layer.The simulation results are obtained using full vectorial finite element methodwith perfect matched layer (PML) boundary conditions. The proposed design depends on bimetallic configuration to enhance the biosensor sensitivity. Additionally, the suggested biosensor can be used for multi-channel/multi-analyte sensing. In this study, the sensor geometrical parameters are studied to maximize the sensitivity for the two polarized modes. The numerical results show that high refractive index sensitivity of 4750 nm/RIU (refractive index unit) and 4300 nm/RIU can be achieved for the quasi (transverse magnetic) TM and quasi (transverse electric) TE modes of the proposed biosensor, respectively. The reportedbiosensor has advantages of integration of microfluidics setup, waveguide and metallic layers into a single structure. As a result, compact biosensor with better integration compared to conventional optical fiber SPR biosensors can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20fibers" title="photonic crystal fibers">photonic crystal fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon" title=" surface plasmon"> surface plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a> </p> <a href="https://publications.waset.org/abstracts/40173/sensitivity-enhancement-of-photonic-crystal-fiber-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5691</span> Design of Photonic Crystal with Defect Layer to Eliminate Interface Corrugations for Obtaining Unidirectional and Bidirectional Beam Splitting under Normal Incidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evrim%20Colak">Evrim Colak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andriy%20E.%20Serebryannikov"> Andriy E. Serebryannikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20V.%20Usik"> Pavel V. Usik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekmel%20Ozbay"> Ekmel Ozbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Working with a dielectric photonic crystal (PC) structure which does not include surface corrugations, unidirectional transmission and dual-beam splitting are observed under normal incidence as a result of the strong diffractions caused by the embedded defect layer. The defect layer has twice the period of the regular PC segments which sandwich the defect layer. Although the PC has even number of rows, the structural symmetry is broken due to the asymmetric placement of the defect layer with respect to the symmetry axis of the regular PC. The simulations verify that efficient splitting and occurrence of strong diffractions are related to the dispersion properties of the Floquet-Bloch modes of the photonic crystal. Unidirectional and bi-directional splitting, which are associated with asymmetric transmission, arise due to the dominant contribution of the first positive and first negative diffraction orders. The effect of the depth of the defect layer is examined by placing single defect layer in varying rows, preserving the asymmetry of PC. Even for deeply buried defect layer, asymmetric transmission is still valid even if the zeroth order is not coupled. This transmission is due to evanescent waves which reach to the deeply embedded defect layer and couple to higher order modes. In an additional selected performance, whichever surface is illuminated, i.e., in both upper and lower surface illumination cases, incident beam is split into two beams of equal intensity at the output surface where the intensity of the out-going beams are equal for both illumination cases. That is, although the structure is asymmetric, symmetric bidirectional transmission with equal transmission values is demonstrated and the structure mimics the behavior of symmetric structures. Finally, simulation studies including the examination of a coupled-cavity defect for two different permittivity values (close to the permittivity values of GaAs or Si and alumina) reveal unidirectional splitting for a wider band of operation in comparison to the bandwidth obtained in the case of a single embedded defect layer. Since the dielectric materials that are utilized are low-loss and weakly dispersive in a wide frequency range including microwave and optical frequencies, the studied structures should be scalable to the mentioned ranges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20transmission" title="asymmetric transmission">asymmetric transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20deflection" title=" beam deflection"> beam deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=blazing" title=" blazing"> blazing</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting" title=" bi-directional splitting"> bi-directional splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20layer" title=" defect layer"> defect layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20beam%20splitting" title=" dual beam splitting"> dual beam splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=Floquet-Bloch%20modes" title=" Floquet-Bloch modes"> Floquet-Bloch modes</a>, <a href="https://publications.waset.org/abstracts/search?q=isofrequency%20contours" title=" isofrequency contours"> isofrequency contours</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20defect" title=" line defect"> line defect</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20incidence" title=" oblique incidence"> oblique incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title=" photonic crystal"> photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectionality" title=" unidirectionality"> unidirectionality</a> </p> <a href="https://publications.waset.org/abstracts/94548/design-of-photonic-crystal-with-defect-layer-to-eliminate-interface-corrugations-for-obtaining-unidirectional-and-bidirectional-beam-splitting-under-normal-incidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5690</span> Simulation of Mid Infrared Supercontinuum Generation in Silicon Germanium Photonic Waveguides for Gas Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Proficiency%20Munsaka">Proficiency Munsaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Baricholo"> Peter Baricholo</a>, <a href="https://publications.waset.org/abstracts/search?q=Erich%20%20Rohwer"> Erich Rohwer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulse evolutions along the 5 cm long, 6.0 ×4.2 μm² cross-section silicon germanium (SiGe) photonic waveguides were simulated and compared with experiments. Simulations were carried out by solving a generalized nonlinear Schrodinger equation (GNLSE) for an optical pulse evolution along the length of the SiGe photonic waveguides by the split-step Fourier method (SSFM). The solution obtained from the SSFM gave the pulse envelope in both time and spectral domain calculated at each distance step along the propagation direction. The SiGe photonic waveguides were pumped in an anomalous group velocity dispersion (GVD) regime using a 4.7 μm, 210 fs femtosecond laser to produce a significant supercontinuum (SC). The simulated propagation of ultrafast pulse along the SiGe photonic waveguides produced an SC covering the atmospheric window (2.5-8.5 μm) containing the molecular fingerprints for important gases. Thus, the mid-infrared supercontinuum generation in SiGe photonic waveguides system can be commercialized for gas spectroscopy for detecting gases that include CO₂, CH₄, H₂O, SO₂, SO₃, NO₂, H₂S, CO, and NO at trace level using absorption spectroscopy technique. The simulated profile evolutions are spectrally and temporally similar to those obtained by other researchers. Obtained evolution profiles are characterized by pulse compression, Soliton fission, dispersive wave generation, stimulated Raman Scattering, and Four Wave mixing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon%20germanium%20photonic%20waveguide" title="silicon germanium photonic waveguide">silicon germanium photonic waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=supercontinuum%20generation" title=" supercontinuum generation"> supercontinuum generation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=mid%20infrared" title=" mid infrared"> mid infrared</a> </p> <a href="https://publications.waset.org/abstracts/132277/simulation-of-mid-infrared-supercontinuum-generation-in-silicon-germanium-photonic-waveguides-for-gas-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5689</span> Ge₁₋ₓSnₓ Alloys with Tuneable Energy Band Gap on GaAs (100) Substrate Manufactured by a Modified Magnetron Co-Sputtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Qian">Li Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinchao%20Tong"> Jinchao Tong</a>, <a href="https://publications.waset.org/abstracts/search?q=Daohua%20Zhang"> Daohua Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weijun%20Fan"> Weijun Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Suo"> Fei Suo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photonic applications based on group IV semiconductors have always been an interest but also a challenge for the research community. We report manufacturing group IV Ge₁₋ₓSnₓ alloys with tuneable energy band gap on (100) GaAs substrate by a modified radio frequency magnetron co-sputtering. Images were taken by atomic force microscope, and scanning electron microscope clearly demonstrates a smooth surface profile, and Ge₁₋ₓSnₓ nano clusters are with the size of several tens of nanometers. Transmittance spectra were measured by Fourier Transform Infrared Spectroscopy that showed changing energy gaps with the variation in elementary composition. Calculation results by 8-band k.p method are consistent with measured gaps. Our deposition system realized direct growth of Ge₁₋ₓSnₓ thin film on GaAs (100) substrate by sputtering. This simple deposition method was modified to be able to grow high-quality photonic materials with tuneable energy gaps. This work provides an alternative and successful method for fabricating Group IV photonic semiconductor materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GeSn" title="GeSn">GeSn</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20growth" title=" crystal growth"> crystal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=sputtering" title=" sputtering"> sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic" title=" photonic"> photonic</a> </p> <a href="https://publications.waset.org/abstracts/96173/ge1sn-alloys-with-tuneable-energy-band-gap-on-gaas-100-substrate-manufactured-by-a-modified-magnetron-co-sputtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5688</span> Scope of Lasers in Periodontics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atmaja%20Patel">Atmaja Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the development of lasers in 1951, the first medical application was reported by Goldman in 1962. In 1960, T.H. Maiman produced the first Ruby laser and was used in cardiovascular surgery by McGuff in 1963. After a long time of investigations and new developments in laser technology first clinical applications were performed by Choy and Ginsburg in 1983. Introduction of the first true dental laser was in 1989. This paper is to highlight the various treatments and prevention of periodontal diseases. Lasers have become more predictable and effective form of treatment for periodontal diseases. The advantages of lasers include reduced use of anaesthesia, coagulation that yields a dry surgical field and hence better visibility, reduced need of sutures, minimal swelling and scarring, less pain and medication, faster healing and increased patient acceptance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lasers" title="lasers">lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=periodontal%20surgery" title=" periodontal surgery"> periodontal surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=diode%20laser" title=" diode laser"> diode laser</a>, <a href="https://publications.waset.org/abstracts/search?q=healing" title=" healing"> healing</a> </p> <a href="https://publications.waset.org/abstracts/27227/scope-of-lasers-in-periodontics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5687</span> Propagation of Cos-Gaussian Beam in Photorefractive Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Keshavarz">A. Keshavarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20propagation" title="beam propagation">beam propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=cos-Gaussian%20beam" title=" cos-Gaussian beam"> cos-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=photorefractive%20crystal" title=" photorefractive crystal"> photorefractive crystal</a> </p> <a href="https://publications.waset.org/abstracts/33883/propagation-of-cos-gaussian-beam-in-photorefractive-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5686</span> Beam Deflection with Unidirectionality Due to Zeroth Order and Evanescent Wave Coupling in a Photonic Crystal with a Defect Layer without Corrugations under Oblique Incidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evrim%20Colak">Evrim Colak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andriy%20E.%20Serebryannikov"> Andriy E. Serebryannikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Thore%20Magath"> Thore Magath</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekmel%20Ozbay"> Ekmel Ozbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single beam deflection and unidirectional transmission are examined for oblique incidence in a Photonic Crystal (PC) structure which employs defect layer instead of surface corrugations at the interfaces. In all of the studied cases, the defect layer is placed such that the symmetry is broken. Two types of deflection are observed depending on whether the zeroth order is coupled or not. These two scenarios can be distinguished from each other by considering the simulated field distribution in PC. In the first deflection type, Floquet-Bloch mode enables zeroth order coupling. The energy of the zeroth order is redistributed between the diffraction orders at the defect layer, providing deflection. In the second type, when zeroth order is not coupled, strong diffractions cause blazing and the evanescent waves deliver energy to higher order diffraction modes. Simulated isofrequency contours can be utilized to estimate the coupling behavior. The defect layer is placed at varying rows, preserving the asymmetry of PC while evancescent waves can still couple to higher order modes. Even for deeply buried defect layer, asymmetric transmission and beam deflection are still encountered when the zeroth order is not coupled. We assume ε=11.4 (refractive index close to that of GaAs and Si) for the PC rods. A possible operation wavelength can be within microwave and infrared range. Since the suggested material is low loss, the structure can be scaled down to operate higher frequencies. Thus, a sample operation wavelength is selected as 1.5μm. Although the structure employs no surface corrugations transmission value T≈0.97 can be achieved by means of diffraction order m=-1. Moreover, utilizing an extra line defect, T value can be increased upto 0.99, under oblique incidence even if the line defect layer is deeply embedded in the photonic crystal. The latter configuration can be used to obtain deflection in one frequency range and can also be utilized for the realization of another functionality like defect-mode wave guiding in another frequency range but still using the same structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20transmission" title="asymmetric transmission">asymmetric transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20deflection" title=" beam deflection"> beam deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=blazing" title=" blazing"> blazing</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting" title=" bi-directional splitting"> bi-directional splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20layer" title=" defect layer"> defect layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20beam%20splitting" title=" dual beam splitting"> dual beam splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=Floquet-Bloch%20modes" title=" Floquet-Bloch modes"> Floquet-Bloch modes</a>, <a href="https://publications.waset.org/abstracts/search?q=isofrequency%20contours" title=" isofrequency contours"> isofrequency contours</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20defect" title=" line defect"> line defect</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20incidence" title=" oblique incidence"> oblique incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title=" photonic crystal"> photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectionality" title=" unidirectionality"> unidirectionality</a> </p> <a href="https://publications.waset.org/abstracts/94547/beam-deflection-with-unidirectionality-due-to-zeroth-order-and-evanescent-wave-coupling-in-a-photonic-crystal-with-a-defect-layer-without-corrugations-under-oblique-incidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5685</span> Procedure to Optimize the Performance of Chemical Laser Using the Genetic Algorithm Optimizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammedi%20Ferhate">Mohammedi Ferhate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents details of the study of the entire flow inside the facility where the exothermic chemical reaction process in the chemical laser cavity is analyzed. In our paper we will describe the principles of chemical lasers where flow reversal is produced by chemical reactions. We explain the device for converting chemical potential energy laser energy. We see that the phenomenon thus has an explosive trend. Finally, the feasibility and effectiveness of the proposed method is demonstrated by computer simulation <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic" title="genetic">genetic</a>, <a href="https://publications.waset.org/abstracts/search?q=lasers" title=" lasers"> lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=programming" title=" programming"> programming</a> </p> <a href="https://publications.waset.org/abstracts/166363/procedure-to-optimize-the-performance-of-chemical-laser-using-the-genetic-algorithm-optimizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5684</span> Photonic Dual-Microcomb Ranging with Extreme Speed Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Galiev">R. R. Galiev</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20I.%20Lykov"> I. I. Lykov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Shitikov"> A. E. Shitikov</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Bilenko"> I. A. Bilenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual-comb%20spectroscopy" title="dual-comb spectroscopy">dual-comb spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=LIDAR" title=" LIDAR"> LIDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20microresonator" title=" optical microresonator"> optical microresonator</a>, <a href="https://publications.waset.org/abstracts/search?q=self-injection%20locking" title=" self-injection locking"> self-injection locking</a> </p> <a href="https://publications.waset.org/abstracts/150845/photonic-dual-microcomb-ranging-with-extreme-speed-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=190">190</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=191">191</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10