CINXE.COM
Search results for: label-free biosensing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: label-free biosensing</title> <meta name="description" content="Search results for: label-free biosensing"> <meta name="keywords" content="label-free biosensing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="label-free biosensing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="label-free biosensing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 47</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: label-free biosensing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Functionalization of Nanomaterials for Bio-Sensing Applications: Current Progress and Future Prospective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew%20Tefery">Temesgen Geremew Tefery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials, due to their unique properties, have revolutionized the field of biosensing. Their functionalization, or modification with specific molecules, is crucial for enhancing their biocompatibility, selectivity, and sensitivity. This review explores recent advancements in nanomaterial functionalization for biosensing applications. We discuss various strategies, including covalent and non-covalent modifications, and their impact on biosensor performance. The use of biomolecules like antibodies, enzymes, and nucleic acids for targeted detection is highlighted. Furthermore, the integration of nanomaterials with different sensing modalities, such as electrochemical, optical, and mechanical, is examined. The future outlook for nanomaterial-based biosensing is promising, with potential applications in healthcare, environmental monitoring, and food safety. However, challenges related to biocompatibility, scalability, and cost-effectiveness need to be addressed. Continued research and development in this area will likely lead to even more sophisticated and versatile biosensing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/190956/functionalization-of-nanomaterials-for-bio-sensing-applications-current-progress-and-future-prospective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Quantum Dot Biosensing for Advancing Precision Cancer Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourav%20Sarkar">Sourav Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manashjit%20Gogoi"> Manashjit Gogoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title="quantum dots">quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensing" title=" biosensing"> biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=device" title=" device"> device</a> </p> <a href="https://publications.waset.org/abstracts/179627/quantum-dot-biosensing-for-advancing-precision-cancer-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Pumera">Martin Pumera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials" title=" 2D nanomaterials"> 2D nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensing" title=" biosensing"> biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=chip%20design" title=" chip design"> chip design</a> </p> <a href="https://publications.waset.org/abstracts/28959/graphene-based-nanobiosensors-and-lab-on-chip-for-sensitive-pesticide-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Nanomaterials Based Biosensing Chip for Non-Invasive Detection of Oral Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suveen%20Kumar">Suveen Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oral cancer (OC) is the sixth most death causing cancer in world which includes tumour of lips, floor of the mouth, tongue, palate, cheeks, sinuses, throat, etc. Conventionally, the techniques used for OC detection are toluidine blue staining, biopsy, liquid-based cytology, visual attachments, etc., however these are limited by their highly invasive nature, low sensitivity, time consumption, sophisticated instrument handling, sample processing and high cost. Therefore, we developed biosensing chips for non-invasive detection of OC via CYFRA-21-1 biomarker. CYFRA-21-1 (molecular weight: 40 kDa) is secreted in saliva of OC patients which is a non-invasive biological fluid with a cut-off value of 3.8 ng mL-1, above which the subjects will be suffering from oral cancer. Therefore, in first work, 3-aminopropyl triethoxy silane (APTES) functionalized zirconia (ZrO2) nanoparticles (APTES/nZrO2) were used to successfully detect CYFRA-21-1 in a linear detection range (LDR) of 2-16 ng mL-1 with sensitivity of 2.2 µA mL ng-1. Successively, APTES/nZrO2-RGO was employed to prevent agglomeration of ZrO2 by providing high surface area reduced graphene oxide (RGO) support and much wider LDR (2-22 ng mL-1) was obtained with remarkable limit of detection (LOD) as 0.12 ng mL-1. Further, APTES/nY2O3/ITO platform was used for oral cancer bioseneor development. The developed biosensor (BSA/anti-CYFRA-21-1/APTES/nY2O3/ITO) have wider LDR (0.01-50 ng mL-1) with remarkable limit of detection (LOD) as 0.01 ng mL-1. To improve the sensitivity of the biosensing platform, nanocomposite of yattria stabilized nanostructured zirconia-reduced graphene oxide (nYZR) based biosensor has been developed. The developed biosensing chip having ability to detect CYFRA-21-1 biomolecules in the range of 0.01-50 ng mL-1, LOD of 7.2 pg mL-1 with sensitivity of 200 µA mL ng-1. Further, the applicability of the fabricated biosensing chips were also checked through real sample (saliva) analysis of OC patients and the obtained results showed good correlation with the standard protein detection enzyme linked immunosorbent assay (ELISA) technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-invasive" title="non-invasive">non-invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20cancer" title=" oral cancer"> oral cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=biochip" title=" biochip"> biochip</a> </p> <a href="https://publications.waset.org/abstracts/154815/nanomaterials-based-biosensing-chip-for-non-invasive-detection-of-oral-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Assessment of Highly Sensitive Dielectric Modulated GaN-FinFET for Label-Free Biosensing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar">Ajay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Gupta"> Neha Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the sensitivity assessment of Gallium Nitride (GaN) material-based FinFET by dielectric modulation in the nanocavity gap for label-free biosensing applications. The significant deflection is observed in the electrical characteristics such as drain current (ID), transconductance (gm), surface potential, energy band profile, electric field, sub-threshold slope (SS), and threshold voltage (Vth) in the presence of biomolecules owing to GaN material. Further, the device sensitivity is evaluated to identify the effectiveness of the proposed biosensor and its capability to detect the biomolecules with high precision or accuracy. Higher sensitivity is observed for Gelatin (k=12) in terms of on-current (SION), threshold voltage (SVth), and switching ratio (SSR) by 104.88%, 82.12%, and 119.73%, respectively. This work is performed using a powerful tool 3D Sentaurus TCAD using a well-calibrated structure. All the results pave the way for GaN-FinFET as a viable candidate for label-free dielectric modulated biosensor applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=biomolecules" title=" biomolecules"> biomolecules</a>, <a href="https://publications.waset.org/abstracts/search?q=FinFET" title=" FinFET"> FinFET</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/153336/assessment-of-highly-sensitive-dielectric-modulated-gan-finfet-for-label-free-biosensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giulio%20Rosati">Giulio Rosati</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Sappia"> Luciano Sappia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rossana%20Madrid"> Rossana Madrid</a>, <a href="https://publications.waset.org/abstracts/search?q=Noemi%20Rozl%C3%B2snik"> Noemi Rozlòsnik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title="atomic force microscopy">atomic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensors" title=" biosensors"> biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=four-point%20probe" title=" four-point probe"> four-point probe</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-films" title=" nano-films"> nano-films</a>, <a href="https://publications.waset.org/abstracts/search?q=PEDOT" title=" PEDOT"> PEDOT</a> </p> <a href="https://publications.waset.org/abstracts/75824/ironiii-tosylate-doped-pedot-and-peg-a-nanoscale-conductivity-study-of-an-electrochemical-system-with-biosensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Target-Triggered DNA Motors and their Applications to Biosensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongquan%20Zhang">Hongquan Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20motors" title=" DNA motors"> DNA motors</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20amplification" title=" signal amplification"> signal amplification</a> </p> <a href="https://publications.waset.org/abstracts/165780/target-triggered-dna-motors-and-their-applications-to-biosensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Information Visualization Methods Applied to Nanostructured Biosensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osvaldo%20N.%20Oliveira%20Jr.">Osvaldo N. Oliveira Jr.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20diagnosis" title="clinical diagnosis">clinical diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20visualization" title=" information visualization"> information visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20films" title=" nanostructured films"> nanostructured films</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20technique" title=" layer-by-layer technique "> layer-by-layer technique </a> </p> <a href="https://publications.waset.org/abstracts/19287/information-visualization-methods-applied-to-nanostructured-biosensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Sensitivity Enhancement in Graphene Based Surface Plasmon Resonance (SPR) Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angad%20S.%20Kushwaha">Angad S. Kushwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar"> Rajeev Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Srivastava"> Monika Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Srivastava"> S. K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lot of research work is going on in the field of graphene based SPR biosensor. In the conventional SPR based biosensor, graphene is used as a biomolecular recognition element. Graphene adsorbs biomolecules due to carbon based ring structure through sp2 hybridization. The proposed SPR based biosensor configuration will open a new avenue for efficient biosensing by taking the advantage of Graphene and its fascinating nanofabrication properties. In the present study, we have studied an SPR biosensor based on graphene mediated by Zinc Oxide (ZnO) and Gold. In the proposed structure, prism (BK7) base is coated with Zinc Oxide followed by Gold and Graphene. Using the waveguide approach by transfer matrix method, the proposed structure has been investigated theoretically. We have analyzed the reflectance versus incidence angle curve using He-Ne laser of wavelength 632.8 nm. Angle, at which the reflectance is minimized, termed as SPR angle. The shift in SPR angle is responsible for biosensing. From the analysis of reflectivity curve, we have found that there is a shift in SPR angle as the biomolecules get attached on the graphene surface. This graphene layer also enhances the sensitivity of the SPR sensor as compare to the conventional sensor. The sensitivity also increases by increasing the no of graphene layer. So in our proposed biosensor we have found minimum possible reflectivity with optimum level of sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20method" title=" transfer matrix method"> transfer matrix method</a> </p> <a href="https://publications.waset.org/abstracts/40534/sensitivity-enhancement-in-graphene-based-surface-plasmon-resonance-spr-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Glyco-Biosensing as a Novel Tool for Prostate Cancer Early-Stage Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Damborsky">Pavel Damborsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Zamorova"> Martina Zamorova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Katrlik"> Jaroslav Katrlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prostate cancer is annually the most common newly diagnosed cancer among men. An extensive number of evidence suggests that traditional serum Prostate-specific antigen (PSA) assay still suffers from a lack of sufficient specificity and sensitivity resulting in vast over-diagnosis and overtreatment. Thus, the early-stage detection of prostate cancer (PCa) plays undisputedly a critical role for successful treatment and improved quality of life. Over the last decade, particular altered glycans have been described that are associated with a range of chronic diseases, including cancer and inflammation. These glycans differences enable a distinction to be made between physiological and pathological state and suggest a valuable biosensing tool for diagnosis and follow-up purposes. Aberrant glycosylation is one of the major characteristics of disease progression. Consequently, the aim of this study was to develop a more reliable tool for early-stage PCa diagnosis employing lectins as glyco-recognition elements. Biosensor and biochip technology putting to use lectin-based glyco-profiling is one of the most promising strategies aimed at providing fast and efficient analysis of glycoproteins. The proof-of-concept experiments based on sandwich assay employing anti-PSA antibody and an aptamer as a capture molecules followed by lectin glycoprofiling were performed. We present a lectin-based biosensing assay for glycoprofiling of serum biomarker PSA using different biosensor and biochip platforms such as label-free surface plasmon resonance (SPR) and microarray with fluorescent label. The results suggest significant differences in interaction of particular lectins with PSA. The antibody-based assay is frequently associated with the sensitivity, reproducibility, and cross-reactivity issues. Aptamers provide remarkable advantages over antibodies due to the nucleic acid origin, stability and no glycosylation. All these data are further step for construction of highly selective, sensitive and reliable sensors for early-stage diagnosis. The experimental set-up also holds promise for the development of comparable assays with other glycosylated disease biomarkers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarker" title="biomarker">biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosylation" title=" glycosylation"> glycosylation</a>, <a href="https://publications.waset.org/abstracts/search?q=lectin" title=" lectin"> lectin</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a> </p> <a href="https://publications.waset.org/abstracts/33641/glyco-biosensing-as-a-novel-tool-for-prostate-cancer-early-stage-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Correlation between Defect Suppression and Biosensing Capability of Hydrothermally Grown ZnO Nanorods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayoorika%20%20Shukla">Mayoorika Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramila%20Jakhar"> Pramila Jakhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejendra%20Dixit"> Tejendra Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Palani"> I. A. Palani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vipul%20Singh"> Vipul Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosensors are analytical devices with wide range of applications in biological, chemical, environmental and clinical analysis. It comprises of bio-recognition layer which has biomolecules (enzymes, antibodies, DNA, etc.) immobilized over it for detection of analyte and transducer which converts the biological signal into the electrical signal. The performance of biosensor primarily the depends on the bio-recognition layer and therefore it has to be chosen wisely. In this regard, nanostructures of metal oxides such as ZnO, SnO2, V2O5, and TiO2, etc. have been explored extensively as bio-recognition layer. Recently, ZnO has the attracted attention of researchers due to its unique properties like high iso-electric point, biocompatibility, stability, high electron mobility and high electron binding energy, etc. Although there have been many reports on usage of ZnO as bio-recognition layer but to the authors’ knowledge, none has ever observed correlation between optical properties like defect suppression and biosensing capability of the sensor. Here, ZnO nanorods (ZNR) have been synthesized by a low cost, simple and low-temperature hydrothermal growth process, over Platinum (Pt) coated glass substrate. The ZNR have been synthesized in two steps viz. initially a seed layer was coated over substrate (Pt coated glass) followed by immersion of it into nutrient solution of Zinc nitrate and Hexamethylenetetramine (HMTA) with in situ addition of KMnO4. The addition of KMnO4 was observed to have a profound effect over the growth rate anisotropy of ZnO nanostructures. Clustered and powdery growth of ZnO was observed without addition of KMnO4, although by addition of it during the growth, uniform and crystalline ZNR were found to be grown over the substrate. Moreover, the same has resulted in suppression of defects as observed by Normalized Photoluminescence (PL) spectra since KMnO4 is a strong oxidizing agent which provides an oxygen rich growth environment. Further, to explore the correlation between defect suppression and biosensing capability of the ZNR Glucose oxidase (Gox) was immobilized over it, using physical adsorption technique followed by drop casting of nafion. Here the main objective of the work was to analyze effect of defect suppression over biosensing capability, and therefore Gox has been chosen as model enzyme, and electrochemical amperometric glucose detection was performed. The incorporation of KMnO4 during growth has resulted in variation of optical and charge transfer properties of ZNR which in turn were observed to have deep impact on biosensor figure of merits. The sensitivity of biosensor was found to increase by 12-18 times, due to variations introduced by addition of KMnO4 during growth. The amperometric detection of glucose in continuously stirred buffer solution was performed. Interestingly, defect suppression has been observed to contribute towards the improvement of biosensor performance. The detailed mechanism of growth of ZNR along with the overall influence of defect suppression on the sensing capabilities of the resulting enzymatic electrochemical biosensor and different figure of merits of the biosensor (Glass/Pt/ZNR/Gox/Nafion) will be discussed during the conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensors" title="biosensors">biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=KMnO4" title=" KMnO4"> KMnO4</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanorods" title=" ZnO nanorods"> ZnO nanorods</a> </p> <a href="https://publications.waset.org/abstracts/76244/correlation-between-defect-suppression-and-biosensing-capability-of-hydrothermally-grown-zno-nanorods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Electrochemical Modification of Boron Doped Carbon Nanowall Electrodes for Biosensing Purposes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kowalski">M. Kowalski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Brodowski"> M. Brodowski</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Dziabowska"> K. Dziabowska</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Czaczyk"> E. Czaczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Bialobrzeska"> W. Bialobrzeska</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Malinowska"> N. Malinowska</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zoledowska"> S. Zoledowska</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bogdanowicz"> R. Bogdanowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nidzworski"> D. Nidzworski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron-doped-carbon nanowall (BCNW) electrodes are recently in much interest among scientists. BCNWs are good candidates for biosensor purposes as they possess interesting electrochemical characteristics like a wide potential range and the low difference between redox peaks. Moreover, from technical parameters, they are mechanically resistant and very tough. The production process of the microwave plasma-enhanced chemical vapor deposition (MPECVD) allows boron to build into the structure of the diamond being formed. The effect is the formation of flat, long structures with sharp ends. The potential of these electrodes was checked in the biosensing field. The procedure of simple carbon electrodes modification by antibodies was adopted to BCNW for specific antigen recognition. Surface protein D deriving from H. influenzae pathogenic bacteria was chosen as a target analyte. The electrode was first modified with the aminobenzoic acid diazonium salt by electrografting (electrochemical reduction), next anti-protein D antibodies were linked via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry, and free sites were blocked by BSA. Cyclic voltammetry measurements confirmed the proper electrode modification. Electrochemical impedance spectroscopy records indicated protein detection. The sensor was proven to detect protein D in femtograms. This work was supported by the National Centre for Research and Development (NCBR) TECHMATSTRATEG 1/347324/12/NCBR/ 2017. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-protein%20D%20antibodies" title="anti-protein D antibodies">anti-protein D antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=boron-doped%20carbon%20nanowall" title=" boron-doped carbon nanowall"> boron-doped carbon nanowall</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Haemophilus%20influenzae." title=" Haemophilus influenzae."> Haemophilus influenzae.</a> </p> <a href="https://publications.waset.org/abstracts/112385/electrochemical-modification-of-boron-doped-carbon-nanowall-electrodes-for-biosensing-purposes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Europium Chelates as a Platform for Biosensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eiman%20A.%20Al-Enezi">Eiman A. Al-Enezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gin%20Jose"> Gin Jose</a>, <a href="https://publications.waset.org/abstracts/search?q=Sikha%20Saha"> Sikha Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Millner"> Paul Millner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth nanotechnology has gained a considerable amount of interest in the field of biosensing due to the unique luminescence properties of lanthanides. Chelating rare earth ions plays a significant role in biological labelling applications including medical diagnostics, due to their different excitation and emission wavelengths, variety of their spectral properties, sharp emission peaks and long fluorescence lifetimes. We aimed to develop a platform for biosensors based on Europium (Eu³⁺) chelates against biomarkers of cardiac injury (heart-type fatty acid binding protein; H-FABP3) and stroke (glial fibrillary acidic protein; GFAP). Additional novelty in this project is the use of synthetic binding proteins (Affimers), which could offer an excellent alternative targeting strategy to the existing antibodies. Anti-GFAP and anti-HFABP3 Affimer binders were modified to increase the number of carboxy functionalities. Europium nitrate then incubated with the modified Affimer. The luminescence characteristics of the Eu³⁺ complex with modified Affimers and antibodies against anti-GFAP and anti-HFABP3 were measured against different concentrations of the respective analytes on excitation wavelength of 395nm. Bovine serum albumin (BSA) was used as a control against the IgG/Affimer Eu³⁺ complexes. The emission spectrum of Eu³⁺ complex resulted in 5 emission peaks ranging between 550-750 nm with the highest intensity peaks were at 592 and 698 nm. The fluorescence intensity of Eu³⁺ chelates with the modified Affimer or antibodies increased significantly by 4-7 folder compared to the emission spectrum of Eu³⁺ complex. The fluorescence intensity of the Affimer complex was quenched proportionally with increased analyte concentration, but this did not occur with antibody complex. In contrast, the fluorescence intensity for Eu³⁺ complex increased slightly against increased concentration of BSA. These data demonstrate that modified Affimers Eu³⁺ complexes can function as nanobiosensors with potential diagnostic and analytical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lanthanides" title="lanthanides">lanthanides</a>, <a href="https://publications.waset.org/abstracts/search?q=europium" title=" europium"> europium</a>, <a href="https://publications.waset.org/abstracts/search?q=chelates" title=" chelates"> chelates</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensors" title=" biosensors"> biosensors</a> </p> <a href="https://publications.waset.org/abstracts/73657/europium-chelates-as-a-platform-for-biosensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Peptide-Gold Nanocluster as an Optical Biosensor for Glycoconjugate Secreted from Leishmania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Prada">Y. A. Prada</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanny%20Guzman"> Fanny Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Cabanzo"> Rafael Cabanzo</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20J.%20Castillo"> John J. Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Mejia-Ospino"> Enrique Mejia-Ospino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we show the important results about of synthesis of photoluminiscents gold nanoclusters using a small peptide as template for biosensing applications. Interestingly, we design one peptide (NBC2854) homologue to conservative domain from 215 250 residue of a galactolectin protein which can recognize the proteophosphoglycans (PPG) from Leishmania. Peptide was synthetized by multiple solid phase synthesis using FMoc group methodology in acid medium. Finally, the peptide was purified by High-Performance Liquid Chromatography using a Vydac C-18 preparative column and the detection was at 215 nm using a Photo Diode Array detector. Molecular mass of this peptide was confirmed by MALDI-TOF and to verify the α-helix structure we use Circular Dichroism. By means of the methodology used we obtained a novel fluorescents gold nanoclusters (AuNC) using NBC2854 as a template. In this work, we described an easy and fast microsonic method for the synthesis of AuNC with ≈ 3.0 nm of hydrodynamic size and photoemission at 630 nm. The presence of cysteine residue in the C-terminal of the peptide allows the formation of Au-S bond which confers stability to Peptide-based gold nanoclusters. Interactions between the peptide and gold nanoclusters were confirmed by X-ray Photoemission and Raman Spectroscopy. Notably, from the ultrafine spectra shown in the MALDI-TOF analysis which containing only 3-7 KDa species was assigned to Au₈-₁₈[NBC2854]₂ clusters. Finally, we evaluated the Peptide-gold nanocluster as an optical biosensor based on fluorescence spectroscopy and the fluorescence signal of PPG (0.1 µg-mL⁻¹ to 1000 µg-mL⁻¹) was amplified at the same wavelength emission (≈ 630 nm). This can suggest that there is a strong interaction between PPG and Pep@AuNC, therefore, the increase of the fluorescence intensity can be related to the association mechanism that take place when the target molecule is sensing by the Pep@AuNC conjugate. Further spectroscopic studies are necessary to evaluate the fluorescence mechanism involve in the sensing of the PPG by the Pep@AuNC. To our best knowledge the fabrication of an optical biosensor based on Pep@AuNC for sensing biomolecules such as Proteophosphoglycans which are secreted in abundance by parasites Leishmania. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania" title=" Leishmania"> Leishmania</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide-gold%20nanoclusters" title=" peptide-gold nanoclusters"> peptide-gold nanoclusters</a>, <a href="https://publications.waset.org/abstracts/search?q=proteophosphoglycans" title=" proteophosphoglycans"> proteophosphoglycans</a> </p> <a href="https://publications.waset.org/abstracts/102599/peptide-gold-nanocluster-as-an-optical-biosensor-for-glycoconjugate-secreted-from-leishmania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Dipeptide Functionalized Nanoporous Anodic Aluminium Oxide Membrane for Capturing Small Molecules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Mutalib%20Md%20Jani">Abdul Mutalib Md Jani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hadi%20Mahmud"> Abdul Hadi Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Tajuddin%20Mohd%20Ali"> Mohd Tajuddin Mohd Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of interest in surface modification of nanostructures materials that exhibit improved structural and functional properties is attracting more researchers. The unique properties of highly ordered nanoporous anodic aluminium oxide (NAAO) membrane have been proposed as a platform for biosensing applications. They exhibit excellent physical and chemical properties with high porosity, high surface area, tunable pore sizes and excellent chemical resistance. In this study, NAAO was functionalized with 3-aminopropyltriethoxysilane (APTES) to prepared silane-modified NAAO. Amine functional groups are formed on the surface of NAAO during silanization and were characterized using Fourier Transform Infrared spectroscopy (FTIR). The synthesis of multi segment of peptide on NAAO surfaces can be realized by changing the surface chemistry of the NAAO membrane via click chemistry. By click reactions, utilizing alkyne terminated with amino group, various peptides tagged on NAAO can be envisioned from chiral natural or unnatural amino acids using standard coupling methods (HOBt, EDCI and HBTU). This strategy seemly versatile since coupling strategy of dipeptide with another amino acids, leading to tripeptide, tetrapeptide or pentapeptide, can be synthesized without purification. When an appropriate terminus is selected, multiple segments of amino acids can be successfully synthesized on the surfaces. The immobilized NAAO should be easily separated from the reaction medium by conventional filtration, thus avoiding complicated purification methods. Herein, we proposed to synthesize multi fragment peptide as a model for capturing and attaching various small biomolecules on NAAO surfaces and can be also applied as biosensing device, drug delivery systems and biocatalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20anodic%20aluminium%20oxide" title="nanoporous anodic aluminium oxide">nanoporous anodic aluminium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=silanization" title=" silanization"> silanization</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide%20synthesise" title=" peptide synthesise"> peptide synthesise</a>, <a href="https://publications.waset.org/abstracts/search?q=click%20chemistry" title=" click chemistry"> click chemistry</a> </p> <a href="https://publications.waset.org/abstracts/28035/dipeptide-functionalized-nanoporous-anodic-aluminium-oxide-membrane-for-capturing-small-molecules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Developing Manufacturing Process for the Graphene Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Faqihi">Abdullah Faqihi</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Hedley"> John Hedley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20scribing" title="laser scribing">laser scribing</a>, <a href="https://publications.waset.org/abstracts/search?q=lightscribe%20DVD" title=" lightscribe DVD"> lightscribe DVD</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/132492/developing-manufacturing-process-for-the-graphene-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Spectrophotometric Detection of Histidine Using Enzyme Reaction and Examination of Reaction Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akimitsu%20Kugimiya">Akimitsu Kugimiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kouhei%20Iwato"> Kouhei Iwato</a>, <a href="https://publications.waset.org/abstracts/search?q=Toru%20Saito"> Toru Saito</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiro%20Kohda"> Jiro Kohda</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhisa%20Nakano"> Yasuhisa Nakano</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Takano"> Yu Takano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The measurement of amino acid content is reported to be useful for the diagnosis of several types of diseases, including lung cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, and diabetes. The conventional detection methods for amino acid are high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS), but they have several drawbacks as the equipment is cumbersome and the techniques are costly in terms of time and costs. In contrast, biosensors and biosensing methods provide more rapid and facile detection strategies that use simple equipment. The authors have reported a novel approach for the detection of each amino acid that involved the use of aminoacyl-tRNA synthetase (aaRS) as a molecular recognition element because aaRS is expected to a selective binding ability for corresponding amino acid. The consecutive enzymatic reactions used in this study are as follows: aaRS binds to its cognate amino acid and releases inorganic pyrophosphate. Hydrogen peroxide (H₂O₂) was produced by the enzyme reactions of inorganic pyrophosphatase and pyruvate oxidase. The Trinder’s reagent was added into the reaction mixture, and the absorbance change at 556 nm was measured using a microplate reader. In this study, an amino acid-sensing method using histidyl-tRNA synthetase (HisRS; histidine-specific aaRS) as molecular recognition element in combination with the Trinder’s reagent spectrophotometric method was developed. The quantitative performance and selectivity of the method were evaluated, and the optimal enzyme reaction and detection conditions were determined. The authors developed a simple and rapid method for detecting histidine with a combination of enzymatic reaction and spectrophotometric detection. In this study, HisRS was used to detect histidine, and the reaction and detection conditions were optimized for quantitation of these amino acids in the ranges of 1–100 µM histidine. The detection limits are sufficient to analyze these amino acids in biological fluids. This work was partly supported by Hiroshima City University Grant for Special Academic Research (General Studies). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title="amino acid">amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=aminoacyl-tRNA%20synthetase" title=" aminoacyl-tRNA synthetase"> aminoacyl-tRNA synthetase</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensing" title=" biosensing"> biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20reaction" title=" enzyme reaction"> enzyme reaction</a> </p> <a href="https://publications.waset.org/abstracts/70824/spectrophotometric-detection-of-histidine-using-enzyme-reaction-and-examination-of-reaction-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Fe Modified Tin Oxide Thin Film Based Matrix for Reagentless Uric Acid Biosensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kashima%20Arora">Kashima Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Tomar"> Monika Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Gupta"> Vinay Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosensors have found potential applications ranging from environmental testing and biowarfare agent detection to clinical testing, health care, and cell analysis. This is driven in part by the desire to decrease the cost of health care and to obtain precise information more quickly about the health status of patient by the development of various biosensors, which has become increasingly prevalent in clinical testing and point of care testing for a wide range of biological elements. Uric acid is an important byproduct in human body and a number of pathological disorders are related to its high concentration in human body. In past few years, rapid growth in the development of new materials and improvements in sensing techniques have led to the evolution of advanced biosensors. In this context, metal oxide thin film based matrices due to their bio compatible nature, strong adsorption ability, high isoelectric point (IEP) and abundance in nature have become the materials of choice for recent technological advances in biotechnology. In the past few years, wide band-gap metal oxide semiconductors including ZnO, SnO₂ and CeO₂ have gained much attention as a matrix for immobilization of various biomolecules. Tin oxide (SnO₂), wide band gap semiconductor (Eg =3.87 eV), despite having multifunctional properties for broad range of applications including transparent electronics, gas sensors, acoustic devices, UV photodetectors, etc., it has not been explored much for biosensing purpose. To realize a high performance miniaturized biomolecular electronic device, rf sputtering technique is considered to be the most promising for the reproducible growth of good quality thin films, controlled surface morphology and desired film crystallization with improved electron transfer property. Recently, iron oxide and its composites have been widely used as matrix for biosensing application which exploits the electron communication feature of Fe, for the detection of various analytes using urea, hemoglobin, glucose, phenol, L-lactate, H₂O₂, etc. However, to the authors’ knowledge, no work is being reported on modifying the electronic properties of SnO₂ by implanting with suitable metal (Fe) to induce the redox couple in it and utilizing it for reagentless detection of uric acid. In present study, Fe implanted SnO₂ based matrix has been utilized for reagentless uric acid biosensor. Implantation of Fe into SnO₂ matrix is confirmed by energy-dispersive X-Ray spectroscopy (EDX) analysis. Electrochemical techniques have been used to study the response characteristics of Fe modified SnO₂ matrix before and after uricase immobilization. The developed uric acid biosensor exhibits a high sensitivity to about 0.21 mA/mM and a linear variation in current response over concentration range from 0.05 to 1.0 mM of uric acid besides high shelf life (~20 weeks). The Michaelis-Menten kinetic parameter (Km) is found to be relatively very low (0.23 mM), which indicates high affinity of the fabricated bioelectrode towards uric acid (analyte). Also, the presence of other interferents present in human serum has negligible effect on the performance of biosensor. Hence, obtained results highlight the importance of implanted Fe:SnO₂ thin film as an attractive matrix for realization of reagentless biosensors towards uric acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe%20implanted%20tin%20oxide" title="Fe implanted tin oxide">Fe implanted tin oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reagentless%20uric%20acid%20biosensor" title=" reagentless uric acid biosensor"> reagentless uric acid biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=rf%20sputtering" title=" rf sputtering"> rf sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/79005/fe-modified-tin-oxide-thin-film-based-matrix-for-reagentless-uric-acid-biosensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Membrane Spanning DNA Origami Nanopores for Protein Translocation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Genevieve%20Pugh">Genevieve Pugh</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnathan%20Burns"> Johnathan Burns</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Howorka"> Stefan Howorka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-molecule sensing via protein nanopores has achieved a step-change in portable and label-free DNA sequencing. However, protein pores of both natural or engineered origin are not able to produce the tunable diameters needed for effective protein sensing. Here, we describe a generic strategy to build synthetic DNA nanopores that are wide enough to accommodate folded protein. The pores are composed of interlinked DNA duplexes and carry lipid anchors to achieve the required membrane insertion. Our demonstrator pore has a contiguous cross-sectional channel area of 50 nm2 which is 6-times larger than the largest protein pore. Consequently, transport of folded protein across bilayers is possible. The modular design is amenable for different pore dimensions and can be adapted for protein sensing or to create molecular gates in synthetic biology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20nanotechnology" title=" DNA nanotechnology"> DNA nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20origami" title=" DNA origami"> DNA origami</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopore%20sensing" title=" nanopore sensing"> nanopore sensing</a> </p> <a href="https://publications.waset.org/abstracts/78556/membrane-spanning-dna-origami-nanopores-for-protein-translocation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Designing a Refractive Index Gas Biosensor Exploiting Defects in Photonic Crystal Core-Shell Rods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Tebboub">Bilal Tebboub</a>, <a href="https://publications.waset.org/abstracts/search?q=AmelLabbani"> AmelLabbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article introduces a compact sensor based on high-transmission, high-sensitivity two-dimensional photonic crystals. The photonic crystal consists of a square network of silicon rods in the air. The sensor is composed of two waveguide couplers and a microcavity designed for monitoring the percentage of hydrogen in the air and identifying gas types. Through the Finite-Difference Time-Domain (FDTD) method, we demonstrate that the sensor's resonance wavelength is contingent upon changes in the gas refractive index. We analyze transmission spectra, quality factors, and sensor sensitivity. The sensor exhibits a notable quality factor and a sensitivity value of 1374 nm/RIU. Notably, the sensor's compact structure occupies an area of 74.5 μm2, rendering it suitable for integrated optical circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-D%20photonic%20crystal" title="2-D photonic crystal">2-D photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=F.D.T.D%20method" title=" F.D.T.D method"> F.D.T.D method</a>, <a href="https://publications.waset.org/abstracts/search?q=label-free%20biosensing" title=" label-free biosensing"> label-free biosensing</a> </p> <a href="https://publications.waset.org/abstracts/176388/designing-a-refractive-index-gas-biosensor-exploiting-defects-in-photonic-crystal-core-shell-rods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Agostini">M. Agostini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sonato"> A. Sonato</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Greco"> G. Greco</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Travagliati"> M. Travagliati</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ruffato"> G. Ruffato</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Gazzola"> E. Gazzola</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Liuni"> D. Liuni</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Romanato"> F. Romanato</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cecchini"> M. Cecchini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20acoustic%20wave" title=" surface acoustic wave"> surface acoustic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a> </p> <a href="https://publications.waset.org/abstracts/44761/surface-acoustic-wave-saw-induced-mixing-enhances-biomolecules-kinetics-in-a-novel-phase-interrogation-surface-plasmon-resonance-spr-microfluidic-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Electrochemical Study of Ni and/or Fe Based Mono- And Bi- Hydroxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Benaldjia">H. Benaldjia</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Habib"> N. Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Djefaflia"> F. Djefaflia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nait-Merzoug"> A. Nait-Merzoug</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harat"> A. Harat</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20El-Haskouri"> J. El-Haskouri</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Guellati"> O. Guellati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the technology has attracted knowledge of energy storage sources similar to batteries, capacitors and super-capacitors because of its very different applications in many fields with major social and economic challenges. Moreover, hydroxides have attracted much attention as a promising and active material choice in large-scale applications such as molecular adsorption/storage and separation for the environment, ion exchange, nanotechnology, supercapacitor for energy storage and conversion, electro-biosensing, and catalysts, due to their unique properties which are strongly influenced by their composition, microstructure, and synthesis method. In this context, we report in this study the synthesis of hydroxide-based nanomaterials precisely based on Ni and Fe using a simple hydrothermal method with mono and bi precursors at optimized growth conditions (6h-120°C). The obtained products were characterized using different techniques, such as XRD, FTIR, FESEM and BET, as well as electrochemical measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=Supercapacitors" title=" Supercapacitors"> Supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanohybride" title=" nanohybride"> nanohybride</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-active%20materials." title=" electro-active materials."> electro-active materials.</a> </p> <a href="https://publications.waset.org/abstracts/169193/electrochemical-study-of-ni-andor-fe-based-mono-and-bi-hydroxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Development of Folding Based Aptasensor for Ochratoxin a Using Different Pulse Voltammetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupesh%20K.%20Mishra">Rupesh K. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga%C3%ABlle%20Catanante"> Gaëlle Catanante</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhtar%20Hayat"> Akhtar Hayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Louis%20Marty"> Jean-Louis Marty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ochratoxins (OTA) are secondary metabolites present in a wide variety of food stuff. They are dangerous by-products mainly produced by several species of storage fungi including the Aspergillus and Penicillium genera. OTA is known to have nephrotoxic, immunotoxic, teratogenic and carcinogenic effects. Thus, needs a special attention for a highly sensitive and selective detection system that can quantify these organic toxins in various matrices such as cocoa beans. This work presents a folding based aptasensors by employing an aptamer conjugated redox probe (methylene blue) specifically designed for OTA. The aptamers were covalently attached to the screen printed carbon electrodes using diazonium grafting. Upon sensing the OTA, it binds with the immobilized aptamer on the electrode surface, which induces the conformational changes of the aptamer, consequently increased in the signal. This conformational change of the aptamer before and after biosensing of target OTA could produce the distinguishable electrochemical signal. The obtained limit of detection was 0.01 ng/ml for OTA samples with recovery of up to 88% in contaminated cocoa samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ochratoxin%20A" title="ochratoxin A">ochratoxin A</a>, <a href="https://publications.waset.org/abstracts/search?q=cocoa" title=" cocoa"> cocoa</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20aptamer" title=" DNA aptamer"> DNA aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=labelled%20probe" title=" labelled probe"> labelled probe</a> </p> <a href="https://publications.waset.org/abstracts/43825/development-of-folding-based-aptasensor-for-ochratoxin-a-using-different-pulse-voltammetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shah%20Abbas">Shah Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title="rheumatoid arthritis">rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide%20sensor" title=" peptide sensor"> peptide sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=anti%20citrullinated%20peptide%20antibodies" title=" anti citrullinated peptide antibodies"> anti citrullinated peptide antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/125129/peptide-aptasensor-for-electrochemical-detection-of-rheumatoid-arthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Controlling Dimensions and Shape of Carbon Nanotubes Using Nanoporous Anodic Alumina under Different Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Mezni">Amine Mezni</a>, <a href="https://publications.waset.org/abstracts/search?q=Merfat%20Algethami"> Merfat Algethami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Aldalbahi"> Ali Aldalbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arwa%20Alrooqi"> Arwa Alrooqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abel%20Santos"> Abel Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Dusan%20Losic"> Dusan Losic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Alharthi"> Sarah Alharthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Altalhi"> Tariq Altalhi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In situ synthesis of carbon nanotubes featuring different diameters (10-200 nm), lengths (1 to 100 µm) and periodically nanostructured shape was performed in a custom designed chemical vapor deposition (CVD) system using nanoporous anodic alumina (NAA) under different conditions. The morphology of the resulting CNTs/NAA composites and free-standing CNTs were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results confirm that highly ordered arrays of CNTs with precise control of nanotube dimensions in the range 20-200 nm with tube length in the range < 1 µm to > 100 μm and with periodically shaped morphology can be fabricated using nanostructured NAA templates prepared by anodization. This technique allows us to obtain tubes open at one / both ends with a uniform diameter along the pore length without using any metal catalyst. Our finding suggests that this fabrication strategy for designing new CNTs membranes and structures can be significant for emerging applications as molecular separation/transport, optical biosensing, and drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD%20approach" title=" CVD approach"> CVD approach</a>, <a href="https://publications.waset.org/abstracts/search?q=composites%20membrane" title=" composites membrane"> composites membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20anodic%20alumina" title=" nanoporous anodic alumina"> nanoporous anodic alumina</a> </p> <a href="https://publications.waset.org/abstracts/65463/controlling-dimensions-and-shape-of-carbon-nanotubes-using-nanoporous-anodic-alumina-under-different-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Two-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Badmus">Mariam Badmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Bothina%20Manasreh"> Bothina Manasreh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal dichalcogenides (TMDs) have gained significant attention as two-dimensional (2D) materials due to their intrinsic band gaps and unique properties, which make them ideal candidates for electronic and photonic applications. Unlike graphene, which lacks a band gap, TMDs (MX₂, where M is a transition metal and X is a chalcogen such as sulfur, selenium, or tellurium) exhibit semiconductor behavior and can be exfoliated into monolayers, enhancing their properties. The properties of these materials are investigated using density functional theory, a quantum mechanical computational method to solve Schrodinger equation for many body problems to calculate electron density of the atoms involved on which the energy and properties of a system depend. They show promise for use in photodetectors, biosensors, memory devices, and other technologies in communications, health, and energy sectors. In particular, metallic TMDs, which lack an intrinsic band gap, benefit from doping with transition metals, this improves their electronic and optical properties. Doping monolayer TMDs yields more significant improvements than doping bulk materials. Notably, doping with metals such as vanadium enhances the magnetization of TMDs, expanding their potential applications in spintronics. This work highlights the effects of doping on TMDs and explores strategies for optimizing their performance for advanced technological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentration" title="concentration">concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=monolayer" title=" monolayer"> monolayer</a> </p> <a href="https://publications.waset.org/abstracts/193868/two-dimensional-transition-metal-dichalcogenides-for-photodetection-and-biosensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> A Theoretical Modelling and Simulation of a Surface Plasmon Resonance Biosensor for the Detection of Glucose Concentration in Blood and Urine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Mandal">Natasha Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Singh%20Moirangthem"> Rakesh Singh Moirangthem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work reports a theoretical model to develop a plasmonic biosensor for the detection of glucose concentrations in human blood and urine as the abnormality of glucose label is the major cause of diabetes which becomes a life-threatening disease worldwide. This study is based on the surface plasmon resonance (SPR) sensor applications which is a well-established, highly sensitive, label-free, rapid optical sensing tool. Here we have introduced a sandwich assay of two dielectric spacer layers of MgF2 and BaTiO3which gives better performance compared to commonly used SiO2 and TiO2 dielectric spacers due to their low dielectric loss and higher refractive index. The sensitivity of our proposed sensor was found as 3242 nm/RIU approximately, with an excellent linear response of 0.958, which is higher than the conventional single-layer Au SPR sensor. Further, the sensitivity enhancement is also optimized by coating a few layers of two-dimensional (2D) nanomaterials (e.g., Graphene, h-BN, MXene, MoS2, WS2, etc.) on the sensor chip. Hence, our proposed SPR sensor has the potential for the detection of glucose concentration in blood and urine with enhanced sensitivity and high affinity and could be utilized as a reliable platform for the optical biosensing application in the field of medical diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20spacer" title=" dielectric spacer"> dielectric spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials" title=" 2D nanomaterials"> 2D nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/152759/a-theoretical-modelling-and-simulation-of-a-surface-plasmon-resonance-biosensor-for-the-detection-of-glucose-concentration-in-blood-and-urine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Biosensor Design through Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenjun%20Zhang">Wenjun Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunqing%20Du"> Yunqing Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20W.%20Cranford"> Steven W. Cranford</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20L.%20Wang"> Ming L. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structure-process-property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker" title=" biomarker"> biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a> </p> <a href="https://publications.waset.org/abstracts/36962/biosensor-design-through-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Bimetallic Cu/Au Nanostructures and Bio-Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Si%20Yin%20Tee">Si Yin Tee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bimetallic" title="bimetallic">bimetallic</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensing" title=" electrochemical sensing"> electrochemical sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20oxidation" title=" glucose oxidation"> glucose oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=gold-incorporated%20copper%20nanostructures" title=" gold-incorporated copper nanostructures"> gold-incorporated copper nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/51765/bimetallic-cuau-nanostructures-and-bio-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Detection and Quantification of Ochratoxin A in Food by Aptasensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moez%20Elsaadani">Moez Elsaadani</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Durand"> Noel Durand</a>, <a href="https://publications.waset.org/abstracts/search?q=Brice%20Sorli"> Brice Sorli</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Montet"> Didier Montet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Governments and international instances are trying to improve the food safety system to prevent, reduce or avoid the increase of food borne diseases. This food risk is one of the major concerns for the humanity. The contamination by mycotoxins is a threat to the health and life of humans and animals. One of the most common mycotoxin contaminating feed and foodstuffs is Ochratoxin A (OTA), which is a secondary metabolite, produced by Aspergillus and Penicillium strains. OTA has a chronic toxic effect and proved to be mutagenic, nephrotoxic, teratogenic, immunosuppressive, and carcinogenic. On the other side, because of their high stability, specificity, affinity, and their easy chemical synthesis, aptamer based methods are applied to OTA biosensing as alternative to traditional analytical technique. In this work, five aptamers have been tested to confirm qualitatively and quantitatively their binding with OTA. In the same time, three different analytical methods were tested and compared based on their ability to detect and quantify the OTA. The best protocol that was established to quantify free OTA from linked OTA involved an ultrafiltration method in green coffee solution with. OTA was quantified by HPLC-FLD to calculate the binding percentage of all five aptamers. One aptamer (The most effective with 87% binding with OTA) has been selected to be our biorecognition element to study its electrical response (variation of electrical properties) in the presence of OTA in order to be able to make a pairing with a radio frequency identification (RFID). This device, which is characterized by its low cost, speed, and a simple wireless information transmission, will implement the knowledge on the mycotoxins molecular sensors (aptamers), an electronic device that will link the information, the quantification and make it available to operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer" title="aptamer">aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=aptasensor" title=" aptasensor"> aptasensor</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Ochratoxin%20A" title=" Ochratoxin A"> Ochratoxin A</a> </p> <a href="https://publications.waset.org/abstracts/90415/detection-and-quantification-of-ochratoxin-a-in-food-by-aptasensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=label-free%20biosensing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=label-free%20biosensing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>