CINXE.COM
Search results for: Makarand M. Lokhande
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Makarand M. Lokhande</title> <meta name="description" content="Search results for: Makarand M. Lokhande"> <meta name="keywords" content="Makarand M. Lokhande"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Makarand M. Lokhande" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Makarand M. Lokhande"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Makarand M. Lokhande</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Feasibilty and Penetration of Electric Vehicles in Indian Power Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kashyap%20L.%20Mokariya">Kashyap L. Mokariya</a>, <a href="https://publications.waset.org/abstracts/search?q=Varsha%20A.%20Shah"> Varsha A. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Makarand%20M.%20Lokhande"> Makarand M. Lokhande </a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the current status and growth of Indian automobile industry is remarkable, transportation sectors are the main concern in terms of Energy security and climate change. Rising demand of fuel and its dependency on other countries affects the GDP of nation. So in this context if the 10 percent of vehicle got operated in Electrical mode how much saving in terms of Rs and in terms of liters is achieved has been analyzed which is also a part of Nations Electric mobility mission plan. Analysis is also done for converting unit consumption of Electricity of Electric vehicle into equivalent fuel consumption in liters which shows that at present tariff rate Electrical operated vehicles are far more beneficial. It also gives benchmark to the authorities to set the tariff rate for Electrical vehicles. Current situation of Indian grid is shown and how the Gap between Generation and Demand can be reduced is analyzed in terms of increasing generation capacity and Energy Conservation measures. As the certain regions of country is facing serious deficit than how to take energy conservation measures in Industry and especially in rural areas where generally Energy Auditing is not carried out that is analyzed in context of Electric vehicle penetration in near future. Author was a part of Vishvakarma yojna where in 255 villages of Gujarat Energy losses were measured and solutions were given to mitigate them and corresponding report to the authorities of villages was delivered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehiclepenetration" title="vehiclepenetration">vehiclepenetration</a>, <a href="https://publications.waset.org/abstracts/search?q=feasibility" title=" feasibility"> feasibility</a>, <a href="https://publications.waset.org/abstracts/search?q=Energyconservation" title=" Energyconservation"> Energyconservation</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20grid" title=" future grid"> future grid</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20security" title=" Energy security"> Energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=pf%20controller" title=" pf controller"> pf controller</a> </p> <a href="https://publications.waset.org/abstracts/17262/feasibilty-and-penetration-of-electric-vehicles-in-indian-power-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Influence of Chemical Processing Treatment on Handle Properties of Worsted Suiting Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Lokhande">Priyanka Lokhande</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20P.%20Sawant"> Ram P. Sawant</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Kakad"> Ganesh Kakad</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Kolhatkar"> Avinash Kolhatkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to evaluate the influence of chemical processing on low-stress mechanical properties and fabric hand of worsted cloth, eight worsted suiting fabric samples of balance plain and twill weave were studied. The Kawabata KES-FB system has been used for the measurement of low-stress mechanical properties of before and after chemically processed worsted suiting fabrics. Primary hand values and Total Hand Values (THV) of before and after chemically processed worsted suiting fabrics were calculated using the KES-FB test data. Upon statistical analysis, it is observed that chemical processing has considerable influence on the low-stress mechanical properties and thereby on handle properties of worsted suiting fabrics. Improvement in the Total Hand Values (THV) after chemical processing is experienced in most of fabric samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20stress%20mechanical%20properties" title="low stress mechanical properties">low stress mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20and%20twill%20weave" title=" plain and twill weave"> plain and twill weave</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20hand%20value%20%28THV%29" title=" total hand value (THV)"> total hand value (THV)</a>, <a href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric" title=" worsted suiting fabric"> worsted suiting fabric</a> </p> <a href="https://publications.waset.org/abstracts/62357/influence-of-chemical-processing-treatment-on-handle-properties-of-worsted-suiting-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Pre-Treatment of Anodic Inoculum with Nitroethane to Improve Performance of a Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20P.P.">Rajesh P.P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Tabish%20Noori"> Md. Tabish Noori</a>, <a href="https://publications.waset.org/abstracts/search?q=Makarand%20M.%20Ghangrekar"> Makarand M. Ghangrekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell which significantly reduces the power production capacity and coulombic efficiency (CE) of microbial fuel cell (MFC). Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with coulombic efficiency and sustainable volumetric power density of 39.85 % and 14.63 W/m3 respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63 % reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulombic%20efficiency" title="coulombic efficiency">coulombic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogenesis%20inhibition" title=" methanogenesis inhibition"> methanogenesis inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nitroethane" title=" nitroethane"> nitroethane</a> </p> <a href="https://publications.waset.org/abstracts/70270/pre-treatment-of-anodic-inoculum-with-nitroethane-to-improve-performance-of-a-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Strategic Investment in Infrastructure Development to Facilitate Economic Growth in the United States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arkaprabha%20Bhattacharyya">Arkaprabha Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Makarand%20Hastak"> Makarand Hastak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 pandemic is unprecedented in terms of its global reach and economic impacts. Historically, investment in infrastructure development projects has been touted to boost the economic growth of a nation. The State and Local governments responsible for delivering infrastructure assets work under tight budgets. Therefore, it is important to understand which infrastructure projects have the highest potential of boosting economic growth in the post-pandemic era. This paper presents relationships between infrastructure projects and economic growth. Statistical relationships between investment in different types of infrastructure projects (transit, water and wastewater, highways, power, manufacturing etc.) and indicators of economic growth are presented using historic data between 2002 and 2020 from the U.S. Census Bureau and U.S. Bureau of Economic Analysis (BEA). The outcome of the paper is the comparison of statistical correlations between investment in different types of infrastructure projects and indicators of economic growth. The comparison of the statistical correlations is useful in ranking the types of infrastructure projects based on their ability to influence economic prosperity. Therefore, investment in the infrastructures with the higher rank will have a better chance of boosting the economic growth. Once, the ranks are derived, they can be used by the decision-makers in infrastructure investment related decision-making process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title="economic growth">economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20development" title=" infrastructure development"> infrastructure development</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20projects" title=" infrastructure projects"> infrastructure projects</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20investment" title=" strategic investment"> strategic investment</a> </p> <a href="https://publications.waset.org/abstracts/129316/strategic-investment-in-infrastructure-development-to-facilitate-economic-growth-in-the-united-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Rhizospheric Oxygen Release of Hydroponically Grown Wetland Macrophytes as Passive Source for Cathodic Reduction in Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chabungbam%20Niranjit%20Khuman">Chabungbam Niranjit Khuman</a>, <a href="https://publications.waset.org/abstracts/search?q=Makarand%20Madhao%20Ghangrekar"> Makarand Madhao Ghangrekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunabha%20Mitra"> Arunabha Mitra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cost of aeration is one of the limiting factors in the upscaling of microbial fuel cells (MFC) for field-scale applications. Wetland macrophytes have the ability to release oxygen into the water to maintain aerobic conditions in their root zone. In this experiment, the efficacy of rhizospheric oxygen release of wetland macrophytes as a source of oxygen in the cathodic chamber of MFC was conducted. The experiment was conducted in an MFC consisting of a three-liter anodic chamber made of ceramic cylinder and a 27 L cathodic chamber. Untreated carbon felts were used as electrodes (i.e., anode and cathode) and connected to an external load of 100 Ω using stainless steel wire. Wetland macrophytes (Canna indica) were grown in the cathodic chamber of the MFC in a hydroponic fashion using a styrofoam sheet (termed as macrophytes assisted-microbial fuel cell, M-MFC). The catholyte (i.e., water) in the M-MFC had negligible contact with atmospheric air due to the styrofoam sheet used for maintaining the hydroponic condition. There was no mixing of the catholyte in the M-MFC. Sucrose based synthetic wastewater having chemical oxygen demand (COD) of 3000 mg/L was fed into the anodic chamber of the MFC in fed-batch mode with a liquid retention time of four days. The C. indica thrived well throughout the duration of the experiment without much care. The average dissolved oxygen (DO) concentration and pH value in the M-MFC were 3.25 mg/L and 7.07, respectively, in the catholyte. Since the catholyte was not in contact with air, the DO in the catholyte might be considered as solely liberated from the rhizospheric oxygen release of C. indica. The maximum COD removal efficiency of M-MFC observed during the experiment was 76.9%. The inadequacy of terminal electron acceptor in the cathodic chamber in M-MFC might have hampered the electron transfer, which in turn, led to slower specific microbial activity, thereby resulting in lower COD removal efficiency than the traditional MFC with aerated catholyte. The average operating voltage (OV) and open-circuit voltage (OCV) of 294 mV and 594 mV, respectively, were observed in M-MFC. The maximum power density observed during polarization was 381 mW/m³, and the maximum sustainable power density observed during the experiment was 397 mW/m³ in M-MFC. The maximum normalized energy recovery and coulombic efficiency of 38.09 Wh/m³ and 1.27%, respectively, were observed. Therefore, it was evidenced that rhizospheric oxygen release of wetland macrophytes (C. indica) was capable of sustaining the cathodic reaction in MFC for field-scale applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title="hydroponic">hydroponic</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizospheric%20oxygen%20release" title=" rhizospheric oxygen release"> rhizospheric oxygen release</a>, <a href="https://publications.waset.org/abstracts/search?q=wetland%20macrophytes" title=" wetland macrophytes"> wetland macrophytes</a> </p> <a href="https://publications.waset.org/abstracts/125604/rhizospheric-oxygen-release-of-hydroponically-grown-wetland-macrophytes-as-passive-source-for-cathodic-reduction-in-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Determination of Slope of Hilly Terrain by Using Proposed Method of Resolution of Forces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshma%20Raskar-Phule">Reshma Raskar-Phule</a>, <a href="https://publications.waset.org/abstracts/search?q=Makarand%20Landge"> Makarand Landge</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Singh"> Saurabh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Singh"> Vijay Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jash%20Saparia"> Jash Saparia</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivam%20Tripathi"> Shivam Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For any construction project, slope calculations are necessary in order to evaluate constructability on the site, such as the slope of parking lots, sidewalks, and ramps, the slope of sanitary sewer lines, slope of roads and highways. When slopes and grades are to be determined, designers are concerned with establishing proper slopes and grades for their projects to assess cut and fill volume calculations and determine inverts of pipes. There are several established instruments commonly used to determine slopes, such as Dumpy level, Abney level or Hand Level, Inclinometer, Tacheometer, Henry method, etc., and surveyors are very familiar with the use of these instruments to calculate slopes. However, they have some other drawbacks which cannot be neglected while major surveying works. Firstly, it requires expert surveyors and skilled staff. The accessibility, visibility, and accommodation to remote hilly terrain with these instruments and surveying teams are difficult. Also, determination of gentle slopes in case of road and sewer drainage constructions in congested urban places with these instruments is not easy. This paper aims to develop a method that requires minimum field work, minimum instruments, no high-end technology or instruments or software, and low cost. It requires basic and handy surveying accessories like a plane table with a fixed weighing machine, standard weights, alidade, tripod, and ranging rods should be able to determine the terrain slope in congested areas as well as in remote hilly terrain. Also, being simple and easy to understand and perform the people of that local rural area can be easily trained for the proposed method. The idea for the proposed method is based on the principle of resolution of weight components. When any object of standard weight ‘W’ is placed on an inclined surface with a weighing machine below it, then its cosine component of weight is presently measured by that weighing machine. The slope can be determined from the relation between the true or actual weight and the apparent weight. A proper procedure is to be followed, which includes site location, centering and sighting work, fixing the whole set at the identified station, and finally taking the readings. A set of experiments for slope determination, mild and moderate slopes, are carried out by the proposed method and by the theodolite instrument in a controlled environment, on the college campus, and uncontrolled environment actual site. The slopes determined by the proposed method were compared with those determined by the established instruments. For example, it was observed that for the same distances for mild slope, the difference in the slope obtained by the proposed method and by the established method ranges from 4’ for a distance of 8m to 2o15’20” for a distance of 16m for an uncontrolled environment. Thus, for mild slopes, the proposed method is suitable for a distance of 8m to 10m. The correlation between the proposed method and the established method shows a good correlation of 0.91 to 0.99 for various combinations, mild and moderate slope, with the controlled and uncontrolled environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surveying" title="surveying">surveying</a>, <a href="https://publications.waset.org/abstracts/search?q=plane%20table" title=" plane table"> plane table</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20component" title=" weight component"> weight component</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20determination" title=" slope determination"> slope determination</a>, <a href="https://publications.waset.org/abstracts/search?q=hilly%20terrain" title=" hilly terrain"> hilly terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a> </p> <a href="https://publications.waset.org/abstracts/152608/determination-of-slope-of-hilly-terrain-by-using-proposed-method-of-resolution-of-forces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>