CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;11 of 11 results for author: <span class="mathjax">Qian, Q</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Qian%2C+Q">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Qian, Q"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Qian%2C+Q&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Qian, Q"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08635">arXiv:2312.08635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08635">pdf</a>, <a href="https://arxiv.org/format/2312.08635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> OGLE-2017-BLG-0448Lb: A Low Mass-Ratio Wide-Orbit Microlensing Planet? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhai%2C+R">Ruocheng Zhai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">Rados艂aw Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Youn Kil Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">Andrzej Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuang%2C+R">Renkun Kuang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+M+D">Michael D. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+S">Sun-Ju Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+K">Kyu-Ha Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I">In-Gu Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hongjing Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cha%2C+S">Sang-Mok Cha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+H">Hyoun-Woo Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dong-Joo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Yongseok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogge%2C+R+W">Richard W. Pogge</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08635v1-abstract-short" style="display: inline;"> The gravitational microlensing technique is most sensitive to planets in a Jupiter-like orbit and has detected more than 200 planets. However, only a few wide-orbit ($s &gt; 2$) microlensing planets have been discovered, where $s$ is the planet-to-host separation normalized to the angular Einstein ring radius, $胃_{\rm E}$. Here we present the discovery and analysis of a strong candidate wide-orbit mi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08635v1-abstract-full').style.display = 'inline'; document.getElementById('2312.08635v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08635v1-abstract-full" style="display: none;"> The gravitational microlensing technique is most sensitive to planets in a Jupiter-like orbit and has detected more than 200 planets. However, only a few wide-orbit ($s &gt; 2$) microlensing planets have been discovered, where $s$ is the planet-to-host separation normalized to the angular Einstein ring radius, $胃_{\rm E}$. Here we present the discovery and analysis of a strong candidate wide-orbit microlensing planet in the event, OGLE-2017-BLG-0448. The whole light curve exhibits long-term residuals to the static binary-lens single-source model, so we investigate the residuals by adding the microlensing parallax, microlensing xallarap, an additional lens, or an additional source. For the first time, we observe a complex degeneracy between all four effects. The wide-orbit models with $s \sim 2.5$ and a planet-to-host mass-ratio of $q \sim 10^{-4}$ are significantly preferred, but we cannot rule out the close models with $s \sim 0.35$ and $q \sim 10^{-3}$. A Bayesian analysis based on a Galactic model indicates that, despite the complicated degeneracy, the surviving wide-orbit models all contain a super-Earth-mass to Neptune-mass planet at a projected planet-host separation of $\sim 6$ au and the surviving close-orbit models all consist of a Jovian-mass planet at $\sim 1$ au. The host star is probably an M or K dwarf. We discuss the implications of this dimension-degeneracy disaster on microlensing light-curve analysis and its potential impact on statistical studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08635v1-abstract-full').style.display = 'none'; document.getElementById('2312.08635v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to AJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04876">arXiv:2311.04876</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04876">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Systematic Reanalysis of KMTNet microlensing events, Paper I: Updates of the Photometry Pipeline and a New Planet Candidate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hongjing Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+K">Kyu-Ha Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qian%2C+Q">Qiyue Qian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+I+A">Ian A. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hu%2C+Z">Zhecheng Hu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+J">Jiyuan Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mao%2C+S">Shude Mao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+M+D">Michael D. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+S">Sun-Ju Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Youn Kil Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I">In-Gu Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cha%2C+S">Sang-Mok Cha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+H">Hyoun-Woo Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dong-Joo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Yongseok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04876v1-abstract-short" style="display: inline;"> In this work, we update and develop algorithms for KMTNet tender-love care (TLC) photometry in order to create an new, mostly automated, TLC pipeline. We then start a project to systematically apply the new TLC pipeline to the historic KMTNet microlensing events, and search for buried planetary signals. We report the discovery of such a planet candidate in the microlensing event MOA-2019-BLG-421/K&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04876v1-abstract-full').style.display = 'inline'; document.getElementById('2311.04876v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04876v1-abstract-full" style="display: none;"> In this work, we update and develop algorithms for KMTNet tender-love care (TLC) photometry in order to create an new, mostly automated, TLC pipeline. We then start a project to systematically apply the new TLC pipeline to the historic KMTNet microlensing events, and search for buried planetary signals. We report the discovery of such a planet candidate in the microlensing event MOA-2019-BLG-421/KMT-2019-BLG-2991. The anomalous signal can be explained by either a planet around the lens star or the orbital motion of the source star. For the planetary interpretation, despite many degenerate solutions, the planet is most likely to be a Jovian planet orbiting an M or K dwarf, which is a typical microlensing planet. The discovery proves that the project can indeed increase the sensitivity of historic events and find previously undiscovered signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04876v1-abstract-full').style.display = 'none'; document.getElementById('2311.04876v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures, 7 tables. Submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01280">arXiv:2309.01280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.01280">pdf</a>, <a href="https://arxiv.org/ps/2309.01280">ps</a>, <a href="https://arxiv.org/format/2309.01280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> KMT-2021-BLG-1547Lb: Giant microlensing planet detected through a signal deformed by source binarity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Youn Kil Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+I+A">Ian A. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+S">Sun-Ju Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+M+D">Michael D. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+K">Kyu-Ha Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I">In-Gu Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hongjing Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cha%2C+S">Sang-Mok Cha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Doeon Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dong-Joo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Yongseok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogge%2C+R+W">Richard W. Pogge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Monard%2C+L+A+G">L. A. G. Monard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qian%2C+Q">Qiyue Qian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+Z">Zhuokai Liu</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01280v1-abstract-short" style="display: inline;"> We investigate the previous microlensing data collected by the KMTNet survey in search of anomalous events for which no precise interpretations of the anomalies have been suggested. From this investigation, we find that the anomaly in the lensing light curve of the event KMT-2021-BLG-1547 is approximately described by a binary-lens (2L1S) model with a lens possessing a giant planet, but the model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01280v1-abstract-full').style.display = 'inline'; document.getElementById('2309.01280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01280v1-abstract-full" style="display: none;"> We investigate the previous microlensing data collected by the KMTNet survey in search of anomalous events for which no precise interpretations of the anomalies have been suggested. From this investigation, we find that the anomaly in the lensing light curve of the event KMT-2021-BLG-1547 is approximately described by a binary-lens (2L1S) model with a lens possessing a giant planet, but the model leaves unexplained residuals. We investigate the origin of the residuals by testing more sophisticated models that include either an extra lens component (3L1S model) or an extra source star (2L2S model) to the 2L1S configuration of the lens system. From these analyses, we find that the residuals from the 2L1S model originate from the existence of a faint companion to the source. The 2L2S solution substantially reduces the residuals and improves the model fit by $螖蠂^2=67.1$ with respect to the 2L1S solution. The 3L1S solution also improves the fit, but its fit is worse than that of the 2L2S solution by $螖蠂^2=24.7$. According to the 2L2S solution, the lens of the event is a planetary system with planet and host masses $(M_{\rm p}/M_{\rm J}, M_{\rm h}/M_\odot)=\left( 1.47^{+0.64}_{-0.77}, 0.72^{+0.32}_{-0.38}\right)$ lying at a distance $\D_{\rm L} =5.07^{+0.98}_{-1.50}$~kpc, and the source is a binary composed of a subgiant primary of a late G or an early K spectral type and a main-sequence companion of a K spectral type. The event demonstrates the need of sophisticated modeling for unexplained anomalies for the construction of a complete microlensing planet sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01280v1-abstract-full').style.display = 'none'; document.getElementById('2309.01280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 tables, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06779">arXiv:2301.06779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06779">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1398">10.1093/mnras/stad1398 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KMT-2022-BLG-0440Lb: A New $q &lt; 10^{-4}$ Microlensing Planet with the Central-Resonant Caustic Degeneracy Broken </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+J">Jiyuan Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Youn Kil Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hongjing Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sumi%2C+T">Takahiro Sumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mao%2C+S">Shude Mao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dong%2C+S">Subo Dong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+M+D">Michael D. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+S">Sun-Ju Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+K">Kyu-Ha Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I">In-Gu Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cha%2C+S">Sang-Mok Cha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+H">Hyoun-Woo Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dong-Joo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Yongseok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogge%2C+R+W">Richard W. Pogge</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06779v2-abstract-short" style="display: inline;"> We present the observations and analysis of a high-magnification microlensing planetary event, KMT-2022-BLG-0440, for which the weak and short-lived planetary signal was covered by both the KMTNet survey and follow-up observations. The binary-lens models with a central caustic provide the best fits, with a planet/host mass ratio, $q = 0.75$--$1.00 \times 10^{-4}$ at $1蟽$. The binary-lens models wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06779v2-abstract-full').style.display = 'inline'; document.getElementById('2301.06779v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06779v2-abstract-full" style="display: none;"> We present the observations and analysis of a high-magnification microlensing planetary event, KMT-2022-BLG-0440, for which the weak and short-lived planetary signal was covered by both the KMTNet survey and follow-up observations. The binary-lens models with a central caustic provide the best fits, with a planet/host mass ratio, $q = 0.75$--$1.00 \times 10^{-4}$ at $1蟽$. The binary-lens models with a resonant caustic and a brown-dwarf mass ratio are both excluded by $螖蠂^2 &gt; 70$. The binary-source model can fit the anomaly well but is rejected by the ``color argument&#39;&#39; on the second source. From Bayesian analyses, it is estimated that the host star is likely a K or M dwarf located in the Galactic disk, the planet probably has a Neptune-mass, and the projected planet-host separation is $1.9^{+0.6}_{-0.7}$ or $4.6^{+1.4}_{-1.7}$ au, subject to the close/wide degeneracy. This is the third $q &lt; 10^{-4}$ planet from a high-magnification planetary signal ($A \gtrsim 65$). Together with another such planet, KMT-2021-BLG-0171Lb, the ongoing follow-up program for the KMTNet high-magnification events has demonstrated its ability in detecting high-magnification planetary signals for $q &lt; 10^{-4}$ planets, which are challenging for the current microlensing surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06779v2-abstract-full').style.display = 'none'; document.getElementById('2301.06779v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.12054">arXiv:2102.12054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.12054">pdf</a>, <a href="https://arxiv.org/ps/2102.12054">ps</a>, <a href="https://arxiv.org/format/2102.12054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab226">10.1093/mnras/stab226 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A preliminary study about gravitational wave radiation and cosmic heat death </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+J">Jianming Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qian%2C+Q">Qiyue Qian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guo%2C+Y">Yiqing Guo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+X">Xiao-Dong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.12054v2-abstract-short" style="display: inline;"> We study the role of gravitational waves (GW) in the heat death of the universe. Due to the GW emission, in a very long period, dynamical systems in the universe suffer from persistent mechanical energy dissipation, evolving to a state of universal rest and death. With N-body simulations, we adopt a simple yet representative scheme to calculate the energy loss due to the GW emission. For current d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12054v2-abstract-full').style.display = 'inline'; document.getElementById('2102.12054v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.12054v2-abstract-full" style="display: none;"> We study the role of gravitational waves (GW) in the heat death of the universe. Due to the GW emission, in a very long period, dynamical systems in the universe suffer from persistent mechanical energy dissipation, evolving to a state of universal rest and death. With N-body simulations, we adopt a simple yet representative scheme to calculate the energy loss due to the GW emission. For current dark matter systems with mass $\sim10^{12}-10^{15} M_\odot$, we estimate their GW emission timescale as $\sim10^{19}-10^{25}$ years. This timescale is significantly larger than any baryon processes in the universe, but still $\sim10^{80}$ times shorter than that of the Hawking radiation. We stress that our analysis could be invalid due to many unknowns such as the dynamical chaos, the quadrupole momentum of halos, the angular momentum loss, the dynamic friction, the central black hole accretion, the dark matter decays or annihilations, the property of dark energy and the future evolution of the universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12054v2-abstract-full').style.display = 'none'; document.getElementById('2102.12054v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. 6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS 502 (2021) 2787 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.00487">arXiv:2008.00487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.00487">pdf</a>, <a href="https://arxiv.org/format/2008.00487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abc25f">10.3847/1538-4357/abc25f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reaffirming the Cosmic Acceleration without Supernova and CMB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Luo%2C+X">Xiaolin Luo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Z">Zhiqi Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qian%2C+Q">Qiyue Qian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+L">Lu Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.00487v2-abstract-short" style="display: inline;"> Recent discussions about supernova magnitude evolution have raised doubts about the robustness of the late-universe acceleration. In a previous letter, Huang did a null test of the cosmic acceleration by using a Parameterization based on the cosmic Age (PAge), which covers a broad class of cosmological models including the standard $螞$ cold dark matter model and its many extensions. In this work,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00487v2-abstract-full').style.display = 'inline'; document.getElementById('2008.00487v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.00487v2-abstract-full" style="display: none;"> Recent discussions about supernova magnitude evolution have raised doubts about the robustness of the late-universe acceleration. In a previous letter, Huang did a null test of the cosmic acceleration by using a Parameterization based on the cosmic Age (PAge), which covers a broad class of cosmological models including the standard $螞$ cold dark matter model and its many extensions. In this work, we continue to explore the cosmic expansion history with the PAge approximation. Using baryon acoustic oscillations ({\it without} a CMB prior on the acoustic scale), gravitational strong lens time delay, and passively evolving early galaxies as cosmic chronometers, we obtain $\gtrsim 4蟽$ detections of cosmic acceleration for both flat and nonflat PAge universes. In the nonflat case, we find a $\gtrsim 3蟽$ tension between the spatial curvatures derived from baryon acoustic oscillations and strong lens time delay. Implications and possible systematics are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00487v2-abstract-full').style.display = 'none'; document.getElementById('2008.00487v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages; 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> SYSU-SPA-2020 <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 83F05 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 905:53, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03150">arXiv:2007.03150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.03150">pdf</a>, <a href="https://arxiv.org/ps/2007.03150">ps</a>, <a href="https://arxiv.org/format/2007.03150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aba35b">10.3847/1538-4357/aba35b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using the Mark Weighted Correlation Functions to Improve the Constraints on Cosmological Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yizhao Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miao%2C+H">Haitao Miao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ma%2C+Q">Qinglin Ma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+M">Miaoxin Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sabiu%2C+C+G">Cristiano G. Sabiu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Forero-Romero%2C+J">Jaime Forero-Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yuanzhu Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lai%2C+L">Limin Lai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qian%2C+Q">Qiyue Qian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+X">Xiao-Dong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03150v2-abstract-short" style="display: inline;"> We used the mark weighted correlation functions (MCFs), $W(s)$, to study the large scale structure of the Universe. We studied five types of MCFs with the weighting scheme $蟻^伪$, where $蟻$ is the local density, and $伪$ is taken as $-1,\ -0.5,\ 0,\ 0.5$, and 1. We found that different MCFs have very different amplitudes and scale-dependence. Some of the MCFs exhibit distinctive peaks and valleys th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03150v2-abstract-full').style.display = 'inline'; document.getElementById('2007.03150v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03150v2-abstract-full" style="display: none;"> We used the mark weighted correlation functions (MCFs), $W(s)$, to study the large scale structure of the Universe. We studied five types of MCFs with the weighting scheme $蟻^伪$, where $蟻$ is the local density, and $伪$ is taken as $-1,\ -0.5,\ 0,\ 0.5$, and 1. We found that different MCFs have very different amplitudes and scale-dependence. Some of the MCFs exhibit distinctive peaks and valleys that do not exist in the standard correlation functions. Their locations are robust against the redshifts and the background geometry, however it is unlikely that they can be used as ``standard rulers&#39;&#39; to probe the cosmic expansion history. Nonetheless we find that these features may be used to probe parameters related with the structure formation history, such as the values of $蟽_8$ and the galaxy bias. Finally, after conducting a comprehensive analysis using the full shapes of the $W(s)$s and $W_{螖s}(渭)$s, we found that, combining different types of MCFs can significantly improve the cosmological parameter constraints. Compared with using only the standard correlation function, the combinations of MCFs with $伪=0,\ 0.5,\ 1$ and $伪=0,\ -1,\ -0.5,\ 0.5,\ 1$ can improve the constraints on $惟_m$ and $w$ by $\approx30\%$ and $50\%$, respectively. We find highly significant evidence that MCFs can improve cosmological parameter constraints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03150v2-abstract-full').style.display = 'none'; document.getElementById('2007.03150v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15pages, 17figures, APJ accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.10622">arXiv:1907.10622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.10622">pdf</a>, <a href="https://arxiv.org/format/1907.10622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab32e2">10.3847/1538-4357/ab32e2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GR-MHD disk winds and jets from black holes and resistive accretion disks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vourellis%2C+C">Christos Vourellis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fendt%2C+C">Christian Fendt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qian%2C+Q">Qian Qian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Noble%2C+S">Scott Noble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.10622v1-abstract-short" style="display: inline;"> We perform GR-MHD simulations of outflow launching from thin accretion disks. As in the non-relativistic case, resistivity is essential for the mass loading of the disk wind. We implemented resistivity in the ideal GR-MHD code HARM3D, extending previous works (Qian et al. 2017, 2018) for larger physical grids, higher spatial resolution, and longer simulation time. We consider an initially thin, re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10622v1-abstract-full').style.display = 'inline'; document.getElementById('1907.10622v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.10622v1-abstract-full" style="display: none;"> We perform GR-MHD simulations of outflow launching from thin accretion disks. As in the non-relativistic case, resistivity is essential for the mass loading of the disk wind. We implemented resistivity in the ideal GR-MHD code HARM3D, extending previous works (Qian et al. 2017, 2018) for larger physical grids, higher spatial resolution, and longer simulation time. We consider an initially thin, resistive disk orbiting the black hole, threaded by a large-scale magnetic flux. As the system evolves, outflows are launched from the black hole magnetosphere and the disk surface. We mainly focus on disk outflows, investigating their MHD structure and energy output in comparison with the Poynting-dominated black hole jet. The disk wind encloses two components -- a fast component dominated by the toroidal magnetic field and a slower component dominated by the poloidal field. The disk wind transitions from sub to super-Alfv茅nic speed, reaching velocities $\simeq 0.1c$. We provide parameter studies varying spin parameter and resistivity level, and measure the respective mass and energy fluxes. A higher spin strengthens the $B_蠁$-dominated disk wind along the inner jet. We disentangle a critical resistivity level that leads to a maximum matter and energy output for both, resulting from the interplay between re-connection and diffusion, which in combination govern the magnetic flux and the mass loading. For counter-rotating black holes the outflow structure shows a magnetic field reversal. We estimate the opacity of the inner-most accretion stream and the outflow structure around it. This stream may be critically opaque for a lensed signal, while the axial jet funnel remains optically thin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10622v1-abstract-full').style.display = 'none'; document.getElementById('1907.10622v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 31 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00986">arXiv:1807.00986</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> First detection of vibrationally excited Glycolaldehyde in the solar-type protostar IRAS 16293-2422 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhou%2C+Y">Yan Zhou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qin%2C+S">Sheng-Li Qin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sanchez-Monge%2C+A">Alvaro Sanchez-Monge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schilke%2C+P">Peter Schilke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+T">Tie Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zapata%2C+L+A">Luis A. Zapata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+D">Di Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+Y">Yuefang Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qian%2C+Q">Quan Qian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+X">Xianghua Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00986v2-abstract-short" style="display: inline;"> This paper was withdrawed from the ApJ after the comments from the referee, please be carefully. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00986v2-abstract-full" style="display: none;"> This paper was withdrawed from the ApJ after the comments from the referee, please be carefully. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00986v2-abstract-full').style.display = 'none'; document.getElementById('1807.00986v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper was withdrawed from the ApJ after the comments from the referee</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.09652">arXiv:1804.09652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.09652">pdf</a>, <a href="https://arxiv.org/ps/1804.09652">ps</a>, <a href="https://arxiv.org/format/1804.09652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aabd36">10.3847/1538-4357/aabd36 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Jet launching in resistive GR-MHD black hole - accretion disk systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Qian%2C+Q">Qian Qian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fendt%2C+C">Christian Fendt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vourellis%2C+C">Christos Vourellis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.09652v1-abstract-short" style="display: inline;"> We investigate the launching mechanism of relativistic jets from black hole sources, in particular the strong winds from the surrounding accretion disk. Numerical investigations of the disk wind launching - the simulation of the accretion-ejection transition - have so far almost only been done for non-relativistic systems. From these simulations we know that resistivity, or magnetic diffusivity, p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09652v1-abstract-full').style.display = 'inline'; document.getElementById('1804.09652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.09652v1-abstract-full" style="display: none;"> We investigate the launching mechanism of relativistic jets from black hole sources, in particular the strong winds from the surrounding accretion disk. Numerical investigations of the disk wind launching - the simulation of the accretion-ejection transition - have so far almost only been done for non-relativistic systems. From these simulations we know that resistivity, or magnetic diffusivity, plays an important role for the launching process. Here, we extend this treatment to general relativistic magnetohydrodynamics (GR-MHD) applying the resistive GR-MHD code rHARM. Our model setup considers a thin accretion disk threaded by a large-scale open magnetic field. We run a series of simulations with different Kerr parameter, field strength and diffusivity level. Indeed we find strong disk winds with, however, mildly relativistic speed, the latter most probably due to our limited computational domain. Further, we find that magnetic diffusivity lowers the efficiency of accretion and ejection, as it weakens the efficiency of the magnetic lever arm of the disk wind. As major driving force of the disk wind we disentangle the toroidal magnetic field pressure gradient, however,magneto-centrifugal driving may also contribute. Black hole rotation in our simulations suppresses the accretion rate due to an enhanced toroidal magnetic field pressure that seems to be induced by frame-dragging. Comparing the energy fluxes from the Blandford-Znajek-driven central spine and the surrounding disk wind, we find that the total electromagnetic energy flux is dominated by the total matter energy flux of the disk wind (by a factor 20). The kinetic energy flux of the matter outflow is comparatively small and comparable to the Blandford-Znajek electromagnetic energy flux. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09652v1-abstract-full').style.display = 'none'; document.getElementById('1804.09652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, many figures, ApJ accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.04445">arXiv:1610.04445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.04445">pdf</a>, <a href="https://arxiv.org/format/1610.04445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/834/1/29">10.3847/1538-4357/834/1/29 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> rHARM: Accretion and Ejection in Resistive GR-MHD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Qian%2C+Q">Qian Qian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fendt%2C+C">Christian Fendt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Noble%2C+S">Scott Noble</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bugli%2C+M">Matteo Bugli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.04445v1-abstract-short" style="display: inline;"> Turbulent magnetic diffusivity plays an important role for accretion disks and the launching of disk winds. We have implemented magnetic diffusivity, respective resistivity in the general relativistic MHD code HARM. This paper describes the theoretical background of our implementation, its numerical realization, our numerical tests and preliminary applications. The test simulations of the new code&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04445v1-abstract-full').style.display = 'inline'; document.getElementById('1610.04445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.04445v1-abstract-full" style="display: none;"> Turbulent magnetic diffusivity plays an important role for accretion disks and the launching of disk winds. We have implemented magnetic diffusivity, respective resistivity in the general relativistic MHD code HARM. This paper describes the theoretical background of our implementation, its numerical realization, our numerical tests and preliminary applications. The test simulations of the new code rHARM are compared with an analytic solution of the diffusion equation and a classical shock tube problem. We have further investigated the evolution of the magneto-rotational instability (MRI) in tori around black holes for a range of magnetic diffusivities. We find indication for a critical magnetic diffusivity (for our setup) beyond which no MRI develops in the linear regime and for which accretion of torus material to the black hole is delayed. Preliminary simulations of magnetically diffusive thin accretion disks around Schwarzschild black holes that are threaded by a large-scale poloidal magnetic field show the launching of disk winds with mass fluxes of about 50% of the accretion rate. The disk magnetic diffusivity allows for efficient disk accretion that replenishes the mass reservoir of the inner disk area and thus allows for long-term simulations of wind launching for more than 5000 time units. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04445v1-abstract-full').style.display = 'none'; document.getElementById('1610.04445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 43 figures, accepted by ApJ</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10