CINXE.COM
Search results for: stack performance
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stack performance</title> <meta name="description" content="Search results for: stack performance"> <meta name="keywords" content="stack performance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stack performance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stack performance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12929</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stack performance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12929</span> Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Na%20Li">Na Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Simon%20Araya"> Samuel Simon Araya</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%B8ren%20Knudsen%20K%C3%A6r"> Søren Knudsen Kær</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEM%20electrolysis%20stack" title="PEM electrolysis stack">PEM electrolysis stack</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20density" title=" current density"> current density</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/131951/effect-of-current-density-temperature-and-pressure-on-proton-exchange-membrane-electrolyser-stack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12928</span> A Study of Standing-Wave Thermoacoustic Refrigerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patcharin%20Saechan">Patcharin Saechan</a>, <a href="https://publications.waset.org/abstracts/search?q=Isares%20Dhuchakallaya"> Isares Dhuchakallaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoacoustic refrigerator is a cooling device which uses the acoustic waves to produce the cooling effect. The aim of this paper is to explore the experimental and numerical feasibility of a standing-wave thermoacoustic refrigerator. The effects of the stack length, position of stack and operating frequency on the cooling performance are carried out. The circular pore stacks are tested under the atmospheric pressure. A low-cost loudspeaker is used as an acoustic driver. The results show that the location of stack installed in resonator tube has a greater effect on the cooling performance than the stack length and operating frequency, respectively. The temperature difference across the ends of the stack can be generated up to 13.7°C, and the temperature of cold-end is dropped down by 5.3°C from the ambient temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20performance" title="cooling performance">cooling performance</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigerator" title=" refrigerator"> refrigerator</a>, <a href="https://publications.waset.org/abstracts/search?q=standing-wave" title=" standing-wave"> standing-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustics" title=" thermoacoustics"> thermoacoustics</a> </p> <a href="https://publications.waset.org/abstracts/39857/a-study-of-standing-wave-thermoacoustic-refrigerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12927</span> Impact of Stack Caches: Locality Awareness and Cost Effectiveness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20K.%20Alshegaifi">Abdulrahman K. Alshegaifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Hsi%20Huang"> Chun-Hsi Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hit%20rate" title="hit rate">hit rate</a>, <a href="https://publications.waset.org/abstracts/search?q=locality%20of%20program" title=" locality of program"> locality of program</a>, <a href="https://publications.waset.org/abstracts/search?q=stack%20cache" title=" stack cache"> stack cache</a>, <a href="https://publications.waset.org/abstracts/search?q=stack%20data" title=" stack data"> stack data</a> </p> <a href="https://publications.waset.org/abstracts/46309/impact-of-stack-caches-locality-awareness-and-cost-effectiveness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12926</span> Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nastaran%20Moosavi">Nastaran Moosavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mokhtari"> Mohammad Mokhtari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=p-impedance" title=" p-impedance"> p-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=s-impedance" title=" s-impedance"> s-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=post-stack%20seismic%20inversion" title=" post-stack seismic inversion"> post-stack seismic inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-stack%20seismic%20inversion" title=" pre-stack seismic inversion"> pre-stack seismic inversion</a> </p> <a href="https://publications.waset.org/abstracts/54295/application-of-post-stack-and-pre-stack-seismic-inversion-for-prediction-of-hydrocarbon-reservoirs-in-a-persian-gulf-gas-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12925</span> Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osayande%20Pascal%20Omondiagbe">Osayande Pascal Omondiagbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherlock%20a%20Licorish"> Sherlock a Licorish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20prediction" title=" modeling and prediction"> modeling and prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=stack%20overflow" title=" stack overflow"> stack overflow</a> </p> <a href="https://publications.waset.org/abstracts/143309/predicting-stack-overflow-accepted-answers-using-features-and-models-with-varying-degrees-of-complexity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12924</span> Study on the Effect of Bolt Locking Method on the Deformation of Bipolar Plate in PEMFC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Chen">Tao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=ShiHua%20Liu"> ShiHua Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=JiWei%20Zhang"> JiWei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assembly of the proton exchange membrane fuel cells (PEMFC) has a very important influence on its performance and efficiency. The various components of PEMFC stack are usually locked and fixed by bolts. Locking bolt will cause the deformation of the bipolar plate and the other components, which will affect directly the deformation degree of the integral parts of the PEMFC as well as the performance of PEMFC. This paper focuses on the object of three-cell stack of PEMFC. Finite element simulation is used to investigate the deformation of bipolar plate caused by quantity and layout of bolts, bolt locking pressure, and bolt locking sequence, etc. Finally, we made a conclusion that the optimal combination packaging scheme was adopted to assemble the fuel cell stack. The scheme was in use of 3.8 MPa locking pressure imposed on the fuel cell stack, type Ⅱ of four locking bolts and longitudinal locking method. The scheme was obtained by comparatively analyzing the overall displacement contour of PEMFC stack, absolute displacement curve of bipolar plate along the given three paths in the Z direction and the polarization curve of fuel cell. The research results are helpful for the fuel cell stack assembly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bipolar%20plate" title="bipolar plate">bipolar plate</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=locking%20bolt" title=" locking bolt"> locking bolt</a> </p> <a href="https://publications.waset.org/abstracts/89167/study-on-the-effect-of-bolt-locking-method-on-the-deformation-of-bipolar-plate-in-pemfc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12923</span> Stack Overflow Detection and Prevention on Operating Systems Using Machine Learning and Control-Flow Enforcement Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cao%20Jiayu">Cao Jiayu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lan%20Ximing"> Lan Ximing</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20Jingjia"> Huang Jingjia</a>, <a href="https://publications.waset.org/abstracts/search?q=Burra%20Venkata%20Durga%20Kumar"> Burra Venkata Durga Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first virus to attack personal computers was born in early 1986, called C-Brain, written by a pair of Pakistani brothers. In those days, people still used dos systems, manipulating computers with the most basic command lines. In the 21st century today, computer performance has grown geometrically. But computer viruses are also evolving and escalating. We never stop fighting against security problems. Stack overflow is one of the most common security vulnerabilities in operating systems. It may result in serious security issues for an operating system if a program in it has a vulnerability with administrator privileges. Certain viruses change the value of specific memory through a stack overflow, allowing computers to run harmful programs. This study developed a mechanism to detect and respond to time whenever a stack overflow occurs. We demonstrate the effectiveness of standard machine learning algorithms and control flow enforcement techniques in predicting computer OS security using generating suspicious vulnerability functions (SVFS) and associated suspect areas (SAS). The method can minimize the possibility of stack overflow attacks occurring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operating%20system" title="operating system">operating system</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=stack%20overflow" title=" stack overflow"> stack overflow</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20overflow" title=" buffer overflow"> buffer overflow</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=control-flow%20enforcement%20technology" title=" control-flow enforcement technology"> control-flow enforcement technology</a> </p> <a href="https://publications.waset.org/abstracts/153142/stack-overflow-detection-and-prevention-on-operating-systems-using-machine-learning-and-control-flow-enforcement-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12922</span> Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Ali">Majid Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinfang%20Jin"> Xinfang Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Eniola"> Victor Eniola</a>, <a href="https://publications.waset.org/abstracts/search?q=Henning%20Hoene"> Henning Hoene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane" title=" proton exchange membrane"> proton exchange membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20fluctuation" title=" power fluctuation"> power fluctuation</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a> </p> <a href="https://publications.waset.org/abstracts/164649/study-on-the-impact-of-power-fluctuation-hydrogen-utilization-and-fuel-cell-stack-orientation-on-the-performance-sensitivity-of-pem-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12921</span> Optimization of Temperature Difference Formula at Thermoacoustic Cryocooler Stack with Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Afsari">H. Afsari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand"> H. Shokouhmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When stack is placed in a thermoacoustic resonator in a cryocooler, one extremity of the stack heats up while the other cools down due to the thermoacoustic effect. In the present, with expression a formula by linear theory, will see this temperature difference depends on what factors. The computed temperature difference is compared to the one predicted by the formula. These discrepancies can not be attributed to non-linear effects, rather they exist because of thermal effects. Two correction factors are introduced for close up results among linear theory and computed and use these correction factors to modified linear theory. In fact, this formula, is optimized by GA (Genetic Algorithm). Finally, results are shown at different Mach numbers and stack location in resonator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustic%20cryocooler" title=" thermoacoustic cryocooler"> thermoacoustic cryocooler</a>, <a href="https://publications.waset.org/abstracts/search?q=stack" title=" stack"> stack</a>, <a href="https://publications.waset.org/abstracts/search?q=resonator" title=" resonator"> resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=mach%20number" title=" mach number"> mach number</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/39263/optimization-of-temperature-difference-formula-at-thermoacoustic-cryocooler-stack-with-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12920</span> Thermal Radiation and Noise Safety Assessment of an Offshore Platform Flare Stack as Sudden Emergency Relief Takes Place</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lai%20Xuejiang">Lai Xuejiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20Li"> Huang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yi"> Yang Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the potential hazards of the sudden emergency relief of flare stack, the thermal radiation and noise calculation of flare stack is carried out by using Flaresim program 2.0. Thermal radiation and noise analysis should be considered as the sudden emergency relief takes place. According to the Flaresim software simulation results, the thermal radiation and noise meet the requirement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flare%20stack" title="flare stack">flare stack</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20assessment" title=" safety assessment"> safety assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a> </p> <a href="https://publications.waset.org/abstracts/51004/thermal-radiation-and-noise-safety-assessment-of-an-offshore-platform-flare-stack-as-sudden-emergency-relief-takes-place" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12919</span> A Study on ESD Protection Circuit Applying Silicon Controlled Rectifier-Based Stack Technology with High Holding Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee-Guk%20Chae">Hee-Guk Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Bae%20Song"> Bo-Bae Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Il%20Do"> Kyoung-Il Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Yun%20Seo"> Jeong-Yun Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Seo%20Koo"> Yong-Seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an improved Electrostatic Discharge (ESD) protection circuit with low trigger voltage and high holding voltage is proposed. ESD has become a serious problem in the semiconductor process because the semiconductor density has become very high these days. Therefore, much research has been done to prevent ESD. The proposed circuit is a stacked structure of the new unit structure combined by the Zener Triggering (SCR ZTSCR) and the High Holding Voltage SCR (HHVSCR). The simulation results show that the proposed circuit has low trigger voltage and high holding voltage. And the stack technology is applied to adjust the various operating voltage. As the results, the holding voltage is 7.7 V for 2-stack and 10.7 V for 3-stack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESD" title="ESD">ESD</a>, <a href="https://publications.waset.org/abstracts/search?q=SCR" title=" SCR"> SCR</a>, <a href="https://publications.waset.org/abstracts/search?q=latch-up" title=" latch-up"> latch-up</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20clamp" title=" power clamp"> power clamp</a>, <a href="https://publications.waset.org/abstracts/search?q=holding%20voltage" title=" holding voltage"> holding voltage</a> </p> <a href="https://publications.waset.org/abstracts/80537/a-study-on-esd-protection-circuit-applying-silicon-controlled-rectifier-based-stack-technology-with-high-holding-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12918</span> Analysis of Stacked SCR-Based ESD Protection Circuit with Low Trigger Voltage and Latch-Up Immunity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun-Geol%20Park">Jun-Geol Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Il%20Do"> Kyoung-Il Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Ju%20Kwon"> Min-Ju Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Hyun%20Park"> Kyung-Hyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Seo%20Koo"> Yong-Seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed the SCR (Silicon Controlled Rectifier)-based ESD (Electrostatic Discharge) protection circuit for latch-up immunity. The proposed circuit has a lower trigger voltage and a higher holding voltage characteristic by using the zener diode structure. These characteristics prevent latch-up problem in normal operating conditions. The proposed circuit was analyzed to figure out the electrical characteristics by the variations of design parameters D1, D2 and stack technology to obtain the n-fold electrical characteristics. The simulations are accomplished by using the Synopsys TCAD simulator. When using the stack technology, 2-stack has the holding voltage of 6.9V and 3-stack has the holding voltage of 10.9V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESD" title="ESD">ESD</a>, <a href="https://publications.waset.org/abstracts/search?q=SCR" title=" SCR"> SCR</a>, <a href="https://publications.waset.org/abstracts/search?q=trigger%20voltage" title=" trigger voltage"> trigger voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=holding%20voltage" title=" holding voltage"> holding voltage</a> </p> <a href="https://publications.waset.org/abstracts/56482/analysis-of-stacked-scr-based-esd-protection-circuit-with-low-trigger-voltage-and-latch-up-immunity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12917</span> Laser Welding Technique Effect for Proton Exchange Membrane Fuel Cell Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Chia%20Lin">Chih-Chia Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Ying%20Huang"> Ching-Ying Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Hong%20Liu"> Cheng-Hong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Lin%20Wang"> Wen-Lin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A complete fuel cell stack comprises several single cells with end plates, bipolar plates, gaskets and membrane electrode assembly (MEA) components. Electrons generated from cells are conducted through bipolar plates. The amount of cells' components increases as the stack voltage increases, complicating the fuel cell assembly process and mass production. Stack assembly error influence cell performance. PEM fuel cell stack importing laser welding technique could eliminate transverse deformation between bipolar plates to promote stress uniformity of cell components as bipolar plates and MEA. Simultaneously, bipolar plates were melted together using laser welding to decrease interface resistance. A series of experiments as through-plan and in-plan resistance measurement test was conducted to observe the laser welding effect. The result showed that the through-plane resistance with laser welding was a drop of 97.5-97.6% when the contact pressure was about 1MPa to 3 MPa, and the in-plane resistance was not significantly different for laser welding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEM%20fuel%20cell" title="PEM fuel cell">PEM fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20welding" title=" laser welding"> laser welding</a>, <a href="https://publications.waset.org/abstracts/search?q=through-plan" title=" through-plan"> through-plan</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plan" title=" in-plan"> in-plan</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/83737/laser-welding-technique-effect-for-proton-exchange-membrane-fuel-cell-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12916</span> Artificial Neural Network Reconstruction of Proton Exchange Membrane Fuel Cell Output Profile under Transient Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ge%20Zheng">Ge Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Peng"> Jun Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unbalanced power output from individual cells of Proton Exchange Membrane Fuel Cell (PEMFC) has direct effects on PEMFC stack performance, in particular under transient operation. In the paper, a multi-layer ANN (Artificial Neural Network) model Radial Basis Functions (RBF) has been developed for predicting cells' output profiles by applying gas supply parameters, cooling conditions, temperature measurement of individual cells, etc. The feed-forward ANN model was validated with experimental data. Influence of relevant parameters of RBF on the network accuracy was investigated. After adequate model training, the modelling results show good correspondence between actual measurements and reconstructed output profiles. Finally, after the model was used to optimize the stack output performance under steady-state and transient operating conditions, it suggested that the developed ANN control model can help PEMFC stack to have obvious improvement on power output under fast acceleration process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane%20fuel%20cell" title="proton exchange membrane fuel cell">proton exchange membrane fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=PEMFC" title=" PEMFC"> PEMFC</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20output%20profile" title=" cell output profile"> cell output profile</a>, <a href="https://publications.waset.org/abstracts/search?q=transient" title=" transient"> transient</a> </p> <a href="https://publications.waset.org/abstracts/124051/artificial-neural-network-reconstruction-of-proton-exchange-membrane-fuel-cell-output-profile-under-transient-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12915</span> The Critical Velocity and Heat of Smoke Outflow in Z-shaped Passage Fires Under Weak Stack Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zekun%20Li">Zekun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bart%20Merci"> Bart Merci</a>, <a href="https://publications.waset.org/abstracts/search?q=Miaocheng%20Weng"> Miaocheng Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Liu"> Fang Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Z-shaped passage, widely used in metro entrance/exit passageways, inclined mining laneways, and other applications, features steep slopes and a combination of horizontal and inclined sections. These characteristics lead to notable differences in airflow patterns and temperature distributions compared to conventional confined passages. In fires occurring within Z-shaped passages under natural ventilation with a weak stack effect, the induced airflow may be insufficient to fully confined smoke downstream of the fire source. This can cause smoke back-layering upstream, with the possibility of smoke escaping from the lower entrance located upstream of the fire. Consequently, not all the heat from the fire source contributes to the stack effect. This study combines theoretical analysis and fire simulations to examine the influence of various heat release rates (HRR), passage structures, and fire source locations on the induced airflow velocity driven by the stack effect. An empirical equation is proposed to quantify the strength of the stack effect under different conditions. Additionally, predictive models have been developed to determine the critical induced airflow and to estimate the heat of smoke escaping from the lower entrance of the passage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stack%20effect" title="stack effect">stack effect</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20velocity" title=" critical velocity"> critical velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20outflow" title=" heat outflow"> heat outflow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/193173/the-critical-velocity-and-heat-of-smoke-outflow-in-z-shaped-passage-fires-under-weak-stack-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12914</span> Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Yi">Chao Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cunyue%20Lu"> Cunyue Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingwei%20Quan"> Lingwei Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20stack" title="piezoelectric stack">piezoelectric stack</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20motor" title=" linear motor"> linear motor</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20clamping" title=" rigid clamping"> rigid clamping</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptical%20trajectory" title=" elliptical trajectory"> elliptical trajectory</a> </p> <a href="https://publications.waset.org/abstracts/112842/design-and-analysis-of-a-piezoelectric-linear-motor-based-on-rigid-clamping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12913</span> SCR-Stacking Structure with High Holding Voltage for IO and Power Clamp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Young%20Kim">Hyun Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung%20Kwang%20Lee"> Chung Kwang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Hee%20Cho">Han Hee Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Woon%20Cho"> Sang Woon Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Seo%20Koo"> Yong Seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed a novel SCR (Silicon Controlled Rectifier) - based ESD (Electrostatic Discharge) protection device for I/O and power clamp. The proposed device has a higher holding voltage characteristic than conventional SCR. These characteristics enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. The proposed device was analyzed to figure out electrical characteristics and tolerance robustness in term of individual design parameters (D1, D2, D3). They are investigated by using the Synopsys TCAD simulator. As a result of simulation, holding voltage increased with different design parameters. The holding voltage of the proposed device changes from 3.3V to 7.9V. Also, N-Stack structure ESD device with the high holding voltage is proposed. In the simulation results, 2-stack has holding voltage of 6.8V and 3-stack has holding voltage of 10.5V. The simulation results show that holding voltage of stacking structure can be larger than the operation voltage of high-voltage application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESD" title="ESD">ESD</a>, <a href="https://publications.waset.org/abstracts/search?q=SCR" title=" SCR"> SCR</a>, <a href="https://publications.waset.org/abstracts/search?q=holding%20voltage" title=" holding voltage"> holding voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=stack" title=" stack"> stack</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20clamp" title=" power clamp"> power clamp</a> </p> <a href="https://publications.waset.org/abstracts/30148/scr-stacking-structure-with-high-holding-voltage-for-io-and-power-clamp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12912</span> Entropy Analysis of a Thermo-Acoustic Stack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Shirazytabar">Ahmadali Shirazytabar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Namazi"> Hamidreza Namazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inherent irreversibility of thermo-acoustics primarily in the stack region causes poor efficiency of thermo-acoustic engines which is the major weakness of these devices. In view of the above, this study examines entropy generation in the stack of a thermo-acoustic system. For this purpose two parallel plates representative of the stack is considered. A general equation for entropy generation is derived based on the Second Law of thermodynamics. Assumptions such as Rott’s linear thermo-acoustic approximation, boundary layer type flow, etc. are made to simplify the governing continuity, momentum and energy equations to achieve analytical solutions for velocity and temperature. The entropy generation equation is also simplified based on the same assumptions and then is converted to dimensionless form by using characteristic entropy generation. A time averaged entropy generation rate followed by a global entropy generation rate are calculated and graphically represented for further analysis and inspecting the effect of different parameters on the entropy generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermo-acoustics" title="thermo-acoustics">thermo-acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law%20of%20thermodynamics" title=" second law of thermodynamics"> second law of thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Rott%E2%80%99s%20linear%20thermo-acoustic%20approximation" title=" Rott’s linear thermo-acoustic approximation"> Rott’s linear thermo-acoustic approximation</a> </p> <a href="https://publications.waset.org/abstracts/32388/entropy-analysis-of-a-thermo-acoustic-stack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12911</span> A Named Data Networking Stack for Contiki-NG-OS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Bilgili">Sedat Bilgili</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20K.%20Demir"> Alper K. Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things%20%28IoT%29" title="internet of things (IoT)">internet of things (IoT)</a>, <a href="https://publications.waset.org/abstracts/search?q=named-data" title=" named-data"> named-data</a>, <a href="https://publications.waset.org/abstracts/search?q=named%20data%20networking%20%28NDN%29" title=" named data networking (NDN)"> named data networking (NDN)</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20system" title=" operating system"> operating system</a> </p> <a href="https://publications.waset.org/abstracts/146125/a-named-data-networking-stack-for-contiki-ng-os" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12910</span> Impact of Alternative Fuel Feeding on Fuel Cell Performance and Durability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Rodosik">S. Rodosik</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Poirot-Crouvezier"> J. P. Poirot-Crouvezier</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Bultel"> Y. Bultel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the expansion of the hydrogen economy, Proton Exchange Membrane Fuel Cell (PEMFC) systems are often presented as promising energy converters suitable for transport applications. However, reaching a durability of 5000 h recommended by the U.S. Department of Energy and decreasing system cost are still major hurdles to their development. In order to increase the system efficiency and simplify the system without affecting the fuel cell lifetime, an architecture called alternative fuel feeding has been developed. It consists in a fuel cell stack divided into two parts, alternatively fed, implemented on a 5-kW system for real scale testing. The operation strategy can be considered close to Dead End Anode (DEA) with specific modifications to avoid water and nitrogen accumulation in the cells. The two half-stacks are connected in series to enable each stack to be alternatively fed. Water and nitrogen accumulated can be shifted from one half-stack to the other one according to the alternative feeding frequency. Thanks to the homogenization of water vapor along the stack, water management was improved. The operating conditions obtained at system scale are close to recirculation without the need of a pump or an ejector. In a first part, a performance comparison with the DEA strategy has been performed. At high temperature and low pressure (80°C, 1.2 bar), performance of alternative fuel feeding was higher, and the system efficiency increased. In a second part, in order to highlight the benefits of the architecture on the fuel cell lifetime, two durability tests, lasting up to 1000h, have been conducted. A test on the 5-kW system has been compared to a reference test performed on a test bench with a shorter stack, conducted with well-controlled operating parameters and flow-through hydrogen strategy. The durability test is based upon the Fuel Cell Dynamic Load Cycle (FC-DLC) protocol but adapted to the system limitations: without OCV steps and a maximum current density of 0.4 A/cm². In situ local measurements with a segmented S++® plate performed all along the tests, showed a more homogeneous distribution of the current density with alternative fuel feeding than in flow-through strategy. Tests performed in this work enabled the understanding of this architecture advantages and drawbacks. Alternative fuel feeding architecture appeared to be a promising solution to ensure the humidification function at the anode side with a simplified fuel cell system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20conditions" title="automotive conditions">automotive conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell%20system" title=" fuel cell system"> fuel cell system</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane%20fuel%20cell" title=" proton exchange membrane fuel cell"> proton exchange membrane fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=stack%20architecture" title=" stack architecture"> stack architecture</a> </p> <a href="https://publications.waset.org/abstracts/99771/impact-of-alternative-fuel-feeding-on-fuel-cell-performance-and-durability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12909</span> Air Conditioning Variation of 1kW Open-Cathode Proton Exchange Membrane (PEM) Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Syahirin%20Aisha">Mohammad Syahirin Aisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Imran%20Sainan"> Khairul Imran Sainan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The PEM fuel cell is a device that generate electric by electrochemical reaction between hydrogen fuel and oxygen in the fuel cell stack. PEM fuel cell consists of an anode (hydrogen supply), a cathode (oxygen supply) and an electrolyte that allow charges move between the two positions of the fuel cell. The only product being developed after the reaction is water (H2O) and heat as the waste which does not emit greenhouse gasses. The performance of fuel cell affected by numerous parameters. This study is restricted to cathode parameters that affect fuel cell performance. At the anode side, the reactant is not going through any changes. Experiments with variation in air velocity (3m/s, 6m/s and 9m/s), temperature (10oC, 20oC, 35oC) and relative humidity (50%, 60%, and 70%) have been carried out. The experiments results are presented in the form of fuel cell stack power output over time, which demonstrate the impacts of the various air condition on the execution of the PEM fuel cell. In this study, the experimental analysis shows that with variation of air conditions, it gives different fuel cell performance behavior. The maximum power output of the experiment was measured at an ambient temperature of 25oC with relative humidity and 9m/s velocity of air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-breathing%20PEM%20fuel%20cell" title="air-breathing PEM fuel cell">air-breathing PEM fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=cathode%20side" title=" cathode side"> cathode side</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=variation%20in%20air%20condition" title=" variation in air condition"> variation in air condition</a> </p> <a href="https://publications.waset.org/abstracts/24926/air-conditioning-variation-of-1kw-open-cathode-proton-exchange-membrane-pem-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12908</span> Low Trigger Voltage Silicon Controlled Rectifier Stacking Structure with High Holding Voltage for High Voltage Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Il%20Do">Kyoung-Il Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Geol%20Park"> Jun-Geol Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Guk%20Chae"> Hee-Guk Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Yun%20Seo"> Jeong-Yun Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Seo%20Koo"> Yong-Seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A SCR stacking structure is proposed to have improved Latch-up immunity. In comparison with conventional SCR (Silicon Controlled Rectifier), the proposed Electrostatic Discharge (ESD) protection circuit has a lower trigger characteristic by using the LVTSCR (Low Voltage Trigger) structure. Also the proposed ESD protection circuit has improved Holding Voltage Characteristic by using N-stack technique. These characteristics enable to have latch-up immunity in operating conditions. The simulations are accomplished by using the Synopsys TCAD. It has a trigger voltage of 8.9V and a holding voltage of 1.8V in a single structure. And when applying the stack technique, 2-stack has the holding voltage of 3.8V and 3-stack has the holding voltage of 5.1 V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20discharge%20%28ESD%29" title="electrostatic discharge (ESD)">electrostatic discharge (ESD)</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20voltage%20trigger%20silicon%20controlled%20rectifier%20%28LVTSCR%29" title=" low voltage trigger silicon controlled rectifier (LVTSCR)"> low voltage trigger silicon controlled rectifier (LVTSCR)</a>, <a href="https://publications.waset.org/abstracts/search?q=MVTSCR" title=" MVTSCR"> MVTSCR</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20clamp" title=" power clamp"> power clamp</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20controlled%20rectifier%20%28SCR%29" title=" silicon controlled rectifier (SCR)"> silicon controlled rectifier (SCR)</a>, <a href="https://publications.waset.org/abstracts/search?q=latch-up" title=" latch-up"> latch-up</a> </p> <a href="https://publications.waset.org/abstracts/73702/low-trigger-voltage-silicon-controlled-rectifier-stacking-structure-with-high-holding-voltage-for-high-voltage-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12907</span> Study of Pressure and Air Mass Flow Effect on Output Power of PEM Fuel Cell Powertrains in Vehicles and Airplanes- A Simulation-based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdiye%20Khorasani">Mahdiye Khorasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Arjun%20Vijay"> Arjun Vijay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mashayekh"> Ali Mashayekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Trapp"> Christian Trapp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of Proton Exchange Membrane Fuel Cell (PEMFC) is highly dependent on the pressure and mass flow of media (Hydrogen and air) throughout the cells and the stack. Higher pressure, on the one hand, results in higher output power of the stack but, on the other hand, increases the electrical power demand of the compressor. In this work, a simulation model of a PEMFC system for vehicle and airplane applications is developed. With this new model, the effect of different pressures and air mass flow rates are investigated to discover the optimum operating point in a PEMFC system, and innovative operation strategies are implemented to optimize reactants flow while minimizing electrical power demand of the compressor for optimum performance. Additionally, a fuel cell system test bench is set up, which contains not only all the auxiliary components for conditioning the gases, reactants, and flows but also a dynamic titling table for testing different orientations of the stack to simulate the flight conditions during take-off and landing and off-road-vehicle scenarios. The results of simulation will be tested and validated on the test bench for future works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20mass%20flow%20effect" title="air mass flow effect">air mass flow effect</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20of%20operation" title=" optimization of operation"> optimization of operation</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20effect" title=" pressure effect"> pressure effect</a>, <a href="https://publications.waset.org/abstracts/search?q=PEMFC%20system" title=" PEMFC system"> PEMFC system</a>, <a href="https://publications.waset.org/abstracts/search?q=PEMFC%20system%20simulation" title=" PEMFC system simulation"> PEMFC system simulation</a> </p> <a href="https://publications.waset.org/abstracts/144163/study-of-pressure-and-air-mass-flow-effect-on-output-power-of-pem-fuel-cell-powertrains-in-vehicles-and-airplanes-a-simulation-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12906</span> A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dominic%20Wentworth-Linton">Dominic Wentworth-Linton</a>, <a href="https://publications.waset.org/abstracts/search?q=Shian%20Gao"> Shian Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title="CFD simulation">CFD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Internal%20combustion%20engine" title=" Internal combustion engine"> Internal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=Intake%20system" title=" Intake system"> Intake system</a>, <a href="https://publications.waset.org/abstracts/search?q=Dynamometer%20test" title=" Dynamometer test"> Dynamometer test</a> </p> <a href="https://publications.waset.org/abstracts/70308/a-computational-study-of-the-effect-of-intake-design-on-volumetric-efficiency-for-best-performance-in-motorsport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12905</span> Online Measurement of Fuel Stack Elongation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Ahn">Sung Ho Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintae%20Hong"> Jintae Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Young%20Joung"> Chang Young Joung</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Ho%20Yang"> Tae Ho Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Heo"> Sung Ho Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seo%20Yun%20Jang"> Seo Yun Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performances of nuclear fuels and materials are qualified at an irradiation system in research reactors operating under the commercial nuclear power plant conditions. Fuel centerline temperature, coolant temperature, neutron flux, deformations of fuel stack and swelling are important parameters needed to analyze the nuclear fuel performances. The dimensional stability of nuclear fuels is a key parameter measuring the fuel densification and swelling. In this study, the fuel stack elongation is measured using a LVDT. A mockup LVDT instrumented fuel rod is developed. The performances of mockup LVDT instrumented fuel rod is evaluated by experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20deformation" title="axial deformation">axial deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=elongation%20measurement" title=" elongation measurement"> elongation measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=in-pile%20instrumentation" title=" in-pile instrumentation"> in-pile instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=LVDT" title=" LVDT"> LVDT</a> </p> <a href="https://publications.waset.org/abstracts/46795/online-measurement-of-fuel-stack-elongation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12904</span> Study of the Hysteretic I-V Characteristics in a Polystyrene/ZnO-Nanorods Stack Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=You-Lin%20Wu">You-Lin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Hsing%20Sung"> Yi-Hsing Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Hung%20Lin"> Shih-Hung Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Jenn%20Lin"> Jing-Jenn Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance improvement in optoelectronic devices such as solar cells and photodetectors has been reported when a polymer/ZnO nanorods stack is used. Resistance switching of polymer/ZnO nanocrystals (or nanorods) hybrid has also gained a lot of research interests recently. It has been reported that high- and low-resistance states of a metal/insulator/metal (MIM) structure diode with a polystyrene (PS) and ZnO hybrid as the insulator layer can be switched by applied bias after a high-voltage forming process, while the same device structure merely with a PS layer does not show any forming behavior. In this work, we investigated the current-voltage (I-V) characteristics of an MIM device with a PS/ZnO nanorods stack deposited on fluorine-doped tin oxide (FTO) glass substrate. The ZnO nanorods were grown by a hydrothermal method using a mixture of zinc nitrate, hexamethylenetetramine, and DI water. Following that, a PS layer was deposited by spin coating. Finally, the device with a structure of Ti/ PS/ZnO nanorods/FTO was completed by e-gun evaporated Ti layer on top of the PS layer. Semiconductor parameters analyzer Agilent 4156C was then used to measure the I-V characteristics of the device by applying linear ramp sweep voltage with sweep sequence of 0V → 4V → 0V → 3V → 0V → 2V → 0V → 1V → 0V in both positive and negative directions. It is interesting to find that the I-V characteristics are bias dependent and hysteretic, indicating that the device Ti/PS/ZnO nanorods/FTO structure has ferroelectricity. Our results also show that the maximum hysteresis loop height of the I-V characteristics as well as the voltage at which the maximum hysteresis loop height of each scan occurs increase with increasing maximum sweep voltage. It should be noticed that, although ferroelectricity has been found in ZnO at its melting temperature (1975℃) and in Li- or Co-doped ZnO, neither PS nor ZnO has ferroelectricity at room temperature. Using the same structure but with a PS or ZnO layer only as the insulator does not give and hysteretic I-V characteristics. It is believed that a charge polarization layer is induced near the PS/ZnO nanorods stack interface and thus causes the ferroelectricity in the device with Ti/PS/ZnO nanorods/FTO structure. Our results show that the PS/ZnO stack can find a potential application in a resistive switching memory device with MIM structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferroelectricity" title="ferroelectricity">ferroelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis" title=" hysteresis"> hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20switching" title=" resistance switching"> resistance switching</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanorods" title=" ZnO nanorods"> ZnO nanorods</a> </p> <a href="https://publications.waset.org/abstracts/49163/study-of-the-hysteretic-i-v-characteristics-in-a-polystyrenezno-nanorods-stack-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12903</span> Vibration and Freeze-Thaw Cycling Tests on Fuel Cells for Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gema%20M.%20Rodado">Gema M. Rodado</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20M.%20Olavarrieta"> Jose M. Olavarrieta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen fuel cell technologies have experienced a great boost in the last decades, significantly increasing the production of these devices for both stationary and portable (mainly automotive) applications; these are influenced by two main factors: environmental pollution and energy shortage. A fuel cell is an electrochemical device that converts chemical energy directly into electricity by using hydrogen and oxygen gases as reactive components and obtaining water and heat as byproducts of the chemical reaction. Fuel cells, specifically those of Proton Exchange Membrane (PEM) technology, are considered an alternative to internal combustion engines, mainly because of the low emissions they produce (almost zero), high efficiency and low operating temperatures (< 373 K). The introduction and use of fuel cells in the automotive market requires the development of standardized and validated procedures to test and evaluate their performance in different environmental conditions including vibrations and freeze-thaw cycles. These situations of vibration and extremely low/high temperatures can affect the physical integrity or even the excellent operation or performance of the fuel cell stack placed in a vehicle in circulation or in different climatic conditions. The main objective of this work is the development and validation of vibration and freeze-thaw cycling test procedures for fuel cell stacks that can be used in a vehicle in order to consolidate their safety, performance, and durability. In this context, different experimental tests were carried out at the facilities of the National Hydrogen Centre (CNH2). The experimental equipment used was: A vibration platform (shaker) for vibration test analysis on fuel cells in three axes directions with different vibration profiles. A walk-in climatic chamber to test the starting, operating, and stopping behavior of fuel cells under defined extreme conditions. A test station designed and developed by the CNH2 to test and characterize PEM fuel cell stacks up to 10 kWe. A 5 kWe PEM fuel cell stack in off-operation mode was used to carry out two independent experimental procedures. On the one hand, the fuel cell was subjected to a sinusoidal vibration test on the shaker in the three axes directions. It was defined by acceleration and amplitudes in the frequency range of 7 to 200 Hz for a total of three hours in each direction. On the other hand, the climatic chamber was used to simulate freeze-thaw cycles by defining a temperature range between +313 K and -243 K with an average relative humidity of 50% and a recommended ramp up and rump down of 1 K/min. The polarization curve and gas leakage rate were determined before and after the vibration and freeze-thaw tests at the fuel cell stack test station to evaluate the robustness of the stack. The results were very similar, which indicates that the tests did not affect the fuel cell stack structure and performance. The proposed procedures were verified and can be used as an initial point to perform other tests with different fuel cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climatic%20chamber" title="climatic chamber">climatic chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-thaw%20cycles" title=" freeze-thaw cycles"> freeze-thaw cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=PEM%20fuel%20cell" title=" PEM fuel cell"> PEM fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=shaker" title=" shaker"> shaker</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20tests" title=" vibration tests"> vibration tests</a> </p> <a href="https://publications.waset.org/abstracts/118812/vibration-and-freeze-thaw-cycling-tests-on-fuel-cells-for-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12902</span> Design Optimization of Doubly Fed Induction Generator Performance by Differential Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamidi%20Ramakrishna%20Rao">Mamidi Ramakrishna Rao </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doubly-fed induction generators (DFIG) due to their advantages like speed variation and four-quadrant operation, find its application in wind turbines. DFIG besides supplying power to the grid has to support reactive power (kvar) under grid voltage variations, should contribute minimum fault current during faults, have high efficiency, minimum weight, adequate rotor protection during crow-bar-operation from +20% to -20% of rated speed. To achieve the optimum performance, a good electromagnetic design of DFIG is required. In this paper, a simple and heuristic global optimization – Differential Evolution has been used. Variables considered are lamination details such as slot dimensions, stack diameters, air gap length, and generator stator and rotor stack length. Two operating conditions have been considered - voltage and speed variations. Constraints included were reactive power supplied to the grid and limiting fault current and torque. The optimization has been executed separately for three objective functions - maximum efficiency, weight reduction, and grid fault stator currents. Subsequent calculations led to the conclusion that designs determined through differential evolution help in determining an optimum electrical design for each objective function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20optimization" title="design optimization">design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=DFIG" title=" DFIG"> DFIG</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20evolution" title=" differential evolution"> differential evolution</a> </p> <a href="https://publications.waset.org/abstracts/97491/design-optimization-of-doubly-fed-induction-generator-performance-by-differential-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12901</span> Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Jui%20Kou">Kai-Jui Kou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Ling%20Shen"> Tzu-Ling Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Fang%20Wang"> Ying-Fang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20emission" title=" particle emission"> particle emission</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20concentration" title=" number concentration"> number concentration</a> </p> <a href="https://publications.waset.org/abstracts/96276/characterizing-nanoparticles-generated-from-the-different-working-type-and-the-stack-flue-during-3d-printing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12900</span> Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Mun%20Lee">Young Mun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seon%20Ho%20Kim"> Seon Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Min%20Choi"> Seok Min Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=JeongJu%20Kim"> JeongJu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungyeong%20Choi"> Seungyeong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heating%20element" title="heating element">heating element</a>, <a href="https://publications.waset.org/abstracts/search?q=plugging" title=" plugging"> plugging</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20heat%20exchanger" title=" rotary heat exchanger"> rotary heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20fluid%20characteristics" title=" thermal fluid characteristics"> thermal fluid characteristics</a> </p> <a href="https://publications.waset.org/abstracts/80525/thermal-fluid-characteristics-of-heating-element-in-rotary-heat-exchanger-in-accordance-with-fouling-phenomena" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=430">430</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=431">431</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stack%20performance&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>