CINXE.COM
Search results for: complex systems
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: complex systems</title> <meta name="description" content="Search results for: complex systems"> <meta name="keywords" content="complex systems"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="complex systems" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="complex systems"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13594</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: complex systems</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13594</span> Second-Order Complex Systems: Case Studies of Autonomy and Free Will</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Sanchis">Eric Sanchis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomy" title="autonomy">autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20will" title=" free will"> free will</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20property" title=" synthetic property"> synthetic property</a>, <a href="https://publications.waset.org/abstracts/search?q=vaporous%20complex%20systems" title=" vaporous complex systems"> vaporous complex systems</a> </p> <a href="https://publications.waset.org/abstracts/88132/second-order-complex-systems-case-studies-of-autonomy-and-free-will" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13593</span> Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Andrey%20Fajardo%20Fajardo">Luis Andrey Fajardo Fajardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Python" title="Python">Python</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title=" complex systems"> complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20systems" title=" dynamical systems"> dynamical systems</a> </p> <a href="https://publications.waset.org/abstracts/25768/implementation-in-python-of-a-method-to-transform-one-dimensional-signals-in-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13592</span> Revolutionary Solutions for Modeling and Visualization of Complex Software Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Xiong">Jay Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lin"> Li Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Existing software modeling and visualization approaches using UML are outdated, which are outcomes of reductionism and the superposition principle that the whole of a system is the sum of its parts, so that with them all tasks of software modeling and visualization are performed linearly, partially, and locally. This paper introduces revolutionary solutions for modeling and visualization of complex software systems, which make complex software systems much easy to understand, test, and maintain. The solutions are based on complexity science, offering holistic, automatic, dynamic, virtual, and executable approaches about thousand times more efficient than the traditional ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title="complex systems">complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20maintenance" title=" software maintenance"> software maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20modeling" title=" software modeling"> software modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20visualization" title=" software visualization"> software visualization</a> </p> <a href="https://publications.waset.org/abstracts/41451/revolutionary-solutions-for-modeling-and-visualization-of-complex-software-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13591</span> Handling Complexity of a Complex System Design: Paradigm, Formalism and Transformations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hycham%20Aboutaleb">Hycham Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Monsuez"> Bruno Monsuez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current systems' complexity has reached a degree that requires addressing conception and design issues while taking into account environmental, operational, social, legal, and financial aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponentially growing effort, cost, and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework, and an environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and suggests a graph-based formalism for modeling complex systems. Finally, a set of transformations are defined to handle the model complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=higraph-based" title="higraph-based">higraph-based</a>, <a href="https://publications.waset.org/abstracts/search?q=formalism" title=" formalism"> formalism</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20engineering%20paradigm" title=" system engineering paradigm"> system engineering paradigm</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20requirements" title=" modeling requirements"> modeling requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=graph-based%20transformations" title=" graph-based transformations"> graph-based transformations</a> </p> <a href="https://publications.waset.org/abstracts/25766/handling-complexity-of-a-complex-system-design-paradigm-formalism-and-transformations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13590</span> Parametric Design as an Approach to Respond to Complexity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20Jabbari%20Behnam">Sepideh Jabbari Behnam</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahrasadat%20Saide%20Zarabadi"> Zahrasadat Saide Zarabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A city is an intertwined texture from the relationship of different components in a whole which is united in a one, so designing the whole complex and its planning is not an easy matter. By considering that a city is a complex system with infinite components and communications, providing flexible layouts that can respond to the unpredictable character of the city, which is a result of its complexity, is inevitable. Parametric design approach as a new approach can produce flexible and transformative layouts in any stage of design. This study aimed to introduce parametric design as a modern approach to respond to complex urban issues by using descriptive and analytical methods. This paper firstly introduces complex systems and then giving a brief characteristic of complex systems. The flexible design and layout flexibility is another matter in response and simulation of complex urban systems that should be considered in design, which is discussed in this study. In this regard, after describing the nature of the parametric approach as a flexible approach, as well as a tool and appropriate way to respond to features such as limited predictability, reciprocating nature, complex communications, and being sensitive to initial conditions and hierarchy, this paper introduces parametric design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complexity%20theory" title="complexity theory">complexity theory</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20system" title=" complex system"> complex system</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20design" title=" parametric design"> parametric design</a> </p> <a href="https://publications.waset.org/abstracts/62330/parametric-design-as-an-approach-to-respond-to-complexity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13589</span> Agent/Group/Role Organizational Model to Simulate an Industrial Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Seddari">Noureddine Seddari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Belaoued"> Mohamed Belaoued</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Bougueroua"> Salah Bougueroua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title="complex systems">complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20simulation" title=" modeling and simulation"> modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20control%20system" title=" industrial control system"> industrial control system</a>, <a href="https://publications.waset.org/abstracts/search?q=MAS" title=" MAS"> MAS</a>, <a href="https://publications.waset.org/abstracts/search?q=AALAADIN" title=" AALAADIN"> AALAADIN</a>, <a href="https://publications.waset.org/abstracts/search?q=AGR" title=" AGR"> AGR</a>, <a href="https://publications.waset.org/abstracts/search?q=MAD-KIT" title=" MAD-KIT"> MAD-KIT</a> </p> <a href="https://publications.waset.org/abstracts/77295/agentgrouprole-organizational-model-to-simulate-an-industrial-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13588</span> Modified Model-Based Systems Engineering Driven Approach for Defining Complex Energy Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshay%20S.%20Dalvi">Akshay S. Dalvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazim%20El-Mounayri"> Hazim El-Mounayri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The internal and the external interactions between the complex structural and behavioral characteristics of the complex energy system result in unpredictable emergent behaviors. These emergent behaviors are not well understood, especially when modeled using the traditional top-down systems engineering approach. The intrinsic nature of current complex energy systems has called for an elegant solution that provides an integrated framework in Model-Based Systems Engineering (MBSE). This paper mainly presents a MBSE driven approach to define and handle the complexity that arises due to emergent behaviors. The approach provides guidelines for developing system architecture that leverages in predicting the complexity index of the system at different levels of abstraction. A framework that integrates indefinite and definite modeling aspects is developed to determine the complexity that arises during the development phase of the system. This framework provides a workflow for modeling complex systems using Systems Modeling Language (SysML) that captures the system’s requirements, behavior, structure, and analytical aspects at both problem definition and solution levels. A system architecture for a district cooling plant is presented, which demonstrates the ability to predict the complexity index. The result suggests that complex energy systems like district cooling plant can be defined in an elegant manner using the unconventional modified MBSE driven approach that helps in estimating development time and cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=district%20cooling%20plant" title="district cooling plant">district cooling plant</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20systems" title=" energy systems"> energy systems</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a>, <a href="https://publications.waset.org/abstracts/search?q=MBSE" title=" MBSE"> MBSE</a> </p> <a href="https://publications.waset.org/abstracts/131175/modified-model-based-systems-engineering-driven-approach-for-defining-complex-energy-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13587</span> A Systems Approach to Modelling Emergent Behaviour in Maritime Control Systems Using the Composition, Environment, Structure, and Mechanisms Metamodel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odd%20Ivar%20Haugen">Odd Ivar Haugen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Society increasingly relies on complex systems whose behaviour is determined, not by the properties of each part, but by the interaction between them. The behaviour of such systems is emergent. Modelling emergent system behaviour requires a systems approach that incorporates the necessary concepts that are capable of determining such behaviour. The CESM metamodel is a model of system models. A set of system models needs to address the elements of CESM at different levels of abstraction to be able to model the behaviour of a complex system. Modern ships contain numerous sophisticated equipment, often accompanied by a local safety system to protect its integrity. These control systems are then connected into a larger integrated system in order to achieve the ship’s objective or mission. The integrated system becomes what is commonly known as a system of systems, which can be termed a complex system. Examples of such complex systems are the dynamic positioning system and the power management system. Three ship accidents are provided as examples of how system complexity may contribute to accidents. Then, the three accidents are discussed in terms of how the Multi-Level/Multi-Model Safety Analysis might catch scenarios such as those leading to the accidents described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergent%20properties" title="emergent properties">emergent properties</a>, <a href="https://publications.waset.org/abstracts/search?q=CESM%20metamodel" title=" CESM metamodel"> CESM metamodel</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-level%2Fmulti-model%20safety%20analysis" title=" multi-level/multi-model safety analysis"> multi-level/multi-model safety analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20complexity" title=" system complexity"> system complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20models" title=" system models"> system models</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20thinking" title=" systems thinking"> systems thinking</a> </p> <a href="https://publications.waset.org/abstracts/194527/a-systems-approach-to-modelling-emergent-behaviour-in-maritime-control-systems-using-the-composition-environment-structure-and-mechanisms-metamodel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13586</span> Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouahab%20Kadri">Ouahab Kadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Hayet%20Mouss"> Leila Hayet Mouss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20algorithms" title="ant colony algorithms">ant colony algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20and%20dynamic%20systems" title=" complex and dynamic systems"> complex and dynamic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/42293/fault-diagnosis-of-manufacturing-systems-using-anttreestoch-with-parameter-optimization-by-aco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13585</span> Logical-Probabilistic Modeling of the Reliability of Complex Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergo%20Tsiramua">Sergo Tsiramua</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulkhan%20Sulkhanishvili"> Sulkhan Sulkhanishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabed%20Asabashvili"> Elisabed Asabashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Lazare%20Kvirtia"> Lazare Kvirtia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents logical-probabilistic methods, models, and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. It is important to design systems based on structural analysis, research, and evaluation of efficiency indicators. One of the important efficiency criteria is the reliability of the system, which depends on the components of the structure. Quantifying the reliability of large-scale systems is a computationally complex process, and it is advisable to perform it with the help of a computer. Logical-probabilistic modeling is one of the effective means of describing the structure of a complex system and quantitatively evaluating its reliability, which was the basis of our application. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of “weights” of elements of system. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research, and designing of optimal structure systems are carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title="complex systems">complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=logical-probabilistic%20methods" title=" logical-probabilistic methods"> logical-probabilistic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonalization%20algorithm" title=" orthogonalization algorithm"> orthogonalization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20of%20systems" title=" reliability of systems"> reliability of systems</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%9Cweights%E2%80%9D%20of%20elements" title=" “weights” of elements"> “weights” of elements</a> </p> <a href="https://publications.waset.org/abstracts/174609/logical-probabilistic-modeling-of-the-reliability-of-complex-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13584</span> Logical-Probabilistic Modeling of the Reliability of Complex Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergo%20Tsiramua">Sergo Tsiramua</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulkhan%20Sulkhanishvili"> Sulkhan Sulkhanishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabed%20Asabashvili"> Elisabed Asabashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Lazare%20Kvirtia"> Lazare Kvirtia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents logical-probabilistic methods, models and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of weights of elements. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research and designing of optimal structure systems are carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Complex%20systems" title="Complex systems">Complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=logical-probabilistic%20methods" title=" logical-probabilistic methods"> logical-probabilistic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonalization%20algorithm" title=" orthogonalization algorithm"> orthogonalization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20of%20element" title=" weight of element"> weight of element</a> </p> <a href="https://publications.waset.org/abstracts/174834/logical-probabilistic-modeling-of-the-reliability-of-complex-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13583</span> Exploring the Compatibility of The Rhizome and Complex Adaptive System (CAS) Theory as a Hybrid Urban Strategy Via Aggregation, Nonlinearity, and Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudaff%20Mohammed">Sudaff Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahda%20Shuker%20Al-Hinkawi"> Wahda Shuker Al-Hinkawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nada%20Abdulmueen%20Hasan"> Nada Abdulmueen Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The compatibility of the Rhizome and Complex Adaptive system theory as a strategy within the urban context is the essential interest of this paper since there are only a few attempts to establish a hybrid, multi-scalar, and developable strategy based on the concept of the Rhizome and the CAS theory. This paper aims to establish a Rhizomic CAS strategy for different urban contexts by investigating the principles, characteristics, properties, and mechanisms of Rhizome and Complex Adaptive Systems. The research focused mainly on analyzing three properties: aggregation, non-linearity, and flow through the lens of Rhizome, Rhizomatization of CAS properties. The most intriguing result is that the principal and well-investigated characteristics of Complex Adaptive systems can be ‘Rhizomatized’ in two ways; highlighting commonalities between Rhizome and Complex Adaptive systems in addition to using Rhizome-related concepts. This paper attempts to emphasize the potency of the Rhizome as an apparently stochastic and barely anticipatable structure that can be developed to analyze cities of distinctive contexts for formulating better customized urban strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizome" title="rhizome">rhizome</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20adaptive%20system%20%28CAS%29" title=" complex adaptive system (CAS)"> complex adaptive system (CAS)</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20Theory" title=" system Theory"> system Theory</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20system" title=" urban system"> urban system</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizomatic%20CAS" title=" rhizomatic CAS"> rhizomatic CAS</a>, <a href="https://publications.waset.org/abstracts/search?q=assemblage" title=" assemblage"> assemblage</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20occupation%20impulses%20%28HOI%29" title=" human occupation impulses (HOI)"> human occupation impulses (HOI)</a> </p> <a href="https://publications.waset.org/abstracts/186434/exploring-the-compatibility-of-the-rhizome-and-complex-adaptive-system-cas-theory-as-a-hybrid-urban-strategy-via-aggregation-nonlinearity-and-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13582</span> Understanding Workplace Behavior through Organizational Culture and Complex Adaptive Systems Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P%C3%A9ter%20Rest%C3%A1s">Péter Restás</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Czibor"> Andrea Czibor</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20P%C3%A9ter%20Szab%C3%B3"> Zsolt Péter Szabó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This article aims to rethink the phenomena of employee behavior as a product of a system. Both organizational culture and Complex Adaptive Systems (CAS) theory emphasize that individual behavior depends on the specific system and the unique organizational culture. These two major theories are both represented in the field of organizational studies; however, they are rarely used together for the comprehensive understanding of workplace behavior. Methodology: By reviewing the literature we use key concepts stemming from organizational culture and CAS theory in order to show the similarities between these theories and create an enriched understanding of employee behavior. Findings: a) Workplace behavior is defined here as social cognition issue. b) Organizations are discussed here as complex systems, and cultures which drive and dictate the cognitive processes of agents in the system. c) Culture gives CAS theory a context which lets us see organizations not just as ever-changing and unpredictable, but as such systems that aim to create and maintain stability by recurring behavior. Conclusion: Applying the knowledge from culture and CAS theory sheds light on our present understanding of employee behavior, also emphasizes the importance of novel ways in organizational research and management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20adaptive%20systems%20theory" title="complex adaptive systems theory">complex adaptive systems theory</a>, <a href="https://publications.waset.org/abstracts/search?q=employee%20behavior" title=" employee behavior"> employee behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20culture" title=" organizational culture"> organizational culture</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/91151/understanding-workplace-behavior-through-organizational-culture-and-complex-adaptive-systems-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13581</span> Defining a Holistic Approach for Model-Based System Engineering: Paradigm and Modeling Requirements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hycham%20Aboutaleb">Hycham Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Monsuez"> Bruno Monsuez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current systems complexity has reached a degree that requires addressing conception and design issues while taking into account all the necessary aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponential growing effort, cost and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework and a environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and defines the refined functional as well as non functional requirements modeling tools needs to meet to be useful in model-based system engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20modeling" title="system modeling">system modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20language" title=" modeling language"> modeling language</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20requirements" title=" modeling requirements"> modeling requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a> </p> <a href="https://publications.waset.org/abstracts/25771/defining-a-holistic-approach-for-model-based-system-engineering-paradigm-and-modeling-requirements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13580</span> Integrating Assurance and Risk Management of Complex Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odd%20Ivar%20Haugen">Odd Ivar Haugen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the relationship between assurance, risk, and risk management in the context of complex safety-related systems. It introduces a nuanced understanding of assurance and argues that the foundation for grounds for justified confidence in claims made about a complex system is related to the system behaviour. It emphasises the importance of knowledge as the cornerstone of assurance. The paper addresses the challenges of epistemic and aleatory uncertainties inherent in safety-critical systems. A systems approach is proposed to model emergent properties and complexity using the composition, environment, structure, mechanisms (CESM) metamodel, offering a structured framework for analysing system behaviour. The interplay between assurance and risk management is conceptualised through two models: the domain model and the control model. Assurance and risk management are mutually dependent on each other to reduce uncertainty and control risk levels. This work highlights the dual roles of assurance in risk management, acting as an epistemic actuator on the one side and providing feedback about the strength of the justification on the other. Assurance and risk management have inseparable roles in ensuring safety in complex systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assurance" title="assurance">assurance</a>, <a href="https://publications.waset.org/abstracts/search?q=CESM%20metamodel" title=" CESM metamodel"> CESM metamodel</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence" title=" confidence"> confidence</a>, <a href="https://publications.waset.org/abstracts/search?q=emergent%20properties" title=" emergent properties"> emergent properties</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=objectivity" title=" objectivity"> objectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20behaviour" title=" system behaviour"> system behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20safety" title=" system safety"> system safety</a> </p> <a href="https://publications.waset.org/abstracts/195043/integrating-assurance-and-risk-management-of-complex-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13579</span> Modal Density Influence on Modal Complexity Quantification in Dynamic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabrizio%20Iezzi">Fabrizio Iezzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Valente"> Claudio Valente</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viscous damping in dynamic systems can be proportional or non-proportional. In the first case, the mode shapes are real whereas in the second case they are complex. From an engineering point of view, the complexity of the mode shapes is important in order to quantify the non-proportional damping. Different indices exist to provide estimates of the modal complexity. These indices are or not zero, depending whether the mode shapes are not or are complex. The modal density problem arises in the experimental identification when the dynamic systems have close modal frequencies. Depending on the entity of this closeness, the mode shapes can hold fictitious imaginary quantities that affect the values of the modal complexity indices. The results are the failing in the identification of the real or complex mode shapes and then of the proportional or non-proportional damping. The paper aims to show the influence of the modal density on the values of these indices in case of both proportional and non-proportional damping. Theoretical and pseudo-experimental solutions are compared to analyze the problem according to an appropriate mechanical system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20mode%20shapes" title="complex mode shapes">complex mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20systems%20identification" title=" dynamic systems identification"> dynamic systems identification</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20density" title=" modal density"> modal density</a>, <a href="https://publications.waset.org/abstracts/search?q=non-proportional%20damping" title=" non-proportional damping"> non-proportional damping</a> </p> <a href="https://publications.waset.org/abstracts/52803/modal-density-influence-on-modal-complexity-quantification-in-dynamic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13578</span> English Complex Aspectuality: A Functional Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cunyu%20Zhang">Cunyu Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on Systemic Functional Linguistics, this paper aims to explore the complex aspectuality system of English. This study shows that the complex aspectuality is classified into complex viewpoint aspect which refers to the homogeneous or heterogeneous ways continuously viewing on the same situation by the speaker and complex situation aspect which is the combined configuration of the internal time schemata of situation. Through viewpoint shifting and repeating, the complex viewpoint aspect is formed in two combination ways. Complex situation aspect is combined by the way of hypotactic verbal complex and the limitation of participant and circumstance in a clause. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20series" title="aspect series">aspect series</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20situation%20aspect" title=" complex situation aspect"> complex situation aspect</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20viewpoint%20aspect" title=" complex viewpoint aspect"> complex viewpoint aspect</a>, <a href="https://publications.waset.org/abstracts/search?q=systemic%20functional%20linguistics" title=" systemic functional linguistics"> systemic functional linguistics</a> </p> <a href="https://publications.waset.org/abstracts/41687/english-complex-aspectuality-a-functional-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13577</span> Impulsive Synchronization of Periodically Forced Complex Duffing's Oscillators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaban%20Aly">Shaban Aly</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Al-Qahtani"> Ali Al-Qahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Houari%20B.%20Khenous"> Houari B. Khenous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synchronization is an important phenomenon commonly observed in nature. A system of periodically forced complex Duffings oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using impulsive synchronization techniques. We derive analytical expressions for impulsive control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20nonlinear%20oscillators" title="complex nonlinear oscillators">complex nonlinear oscillators</a>, <a href="https://publications.waset.org/abstracts/search?q=impulsive%20synchronization" title=" impulsive synchronization"> impulsive synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20systems" title=" chaotic systems"> chaotic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20exponential%20synchronization" title=" global exponential synchronization"> global exponential synchronization</a> </p> <a href="https://publications.waset.org/abstracts/41212/impulsive-synchronization-of-periodically-forced-complex-duffings-oscillators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13576</span> Complex Network Approach to International Trade of Fossil Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semanur%20Soyyigit%20Kaya">Semanur Soyyigit Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ercan%20Eren"> Ercan Eren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weakness and strength of the system. On the other side, it is commonly believed that international trade has complex network properties. Complex network is a tool for the analysis of complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex systems such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20network%20approach" title="complex network approach">complex network approach</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20fuel" title=" fossil fuel"> fossil fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20trade" title=" international trade"> international trade</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20theory" title=" network theory"> network theory</a> </p> <a href="https://publications.waset.org/abstracts/42251/complex-network-approach-to-international-trade-of-fossil-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13575</span> All at Sea: Why OT / IT Infrastructure Is So Complex and the Challenges of Securing These on a Cruise Ship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ken%20Munro">Ken Munro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cruise ships are possibly the most complex collection of systems it is possible to find in one physical, moving location. Propulsion, navigation, power generation and more, combined with a hotel, restaurant, casino, theatre etc, with safety and fire control systems to boot. That complexity creates huge challenges with keeping OT and IT systems apart. Ships engines are often remotely managed, network segregation is often defeated through troubleshooting when at sea. This session will refer to multiple entertaining and informative tales of taking control of ships, including accessing a ships Azipods via a game simulator for passengers. Fortunately, genuine attacks against vessels are very rare, but the effects and impacts to world trade are becoming increasingly obvious. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maritime%20security" title="maritime security">maritime security</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=OT" title=" OT"> OT</a>, <a href="https://publications.waset.org/abstracts/search?q=IT" title=" IT"> IT</a>, <a href="https://publications.waset.org/abstracts/search?q=networks" title=" networks"> networks</a> </p> <a href="https://publications.waset.org/abstracts/188528/all-at-sea-why-ot-it-infrastructure-is-so-complex-and-the-challenges-of-securing-these-on-a-cruise-ship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13574</span> Conception of a Reliable Low Cost, Autonomous Explorative Hovercraft 1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brand">A. Brand</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Burgalat"> S. Burgalat</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Chastel"> E. Chastel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jumeline"> M. Jumeline</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Teilhac"> L. Teilhac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents actual benefits and drawbacks of a multidirectional Hovercraft conceived with limited resources and designed for indoor exploration. Recent developments in the field have led to apparition of very powerful automotive systems capable of very high calculation and exploration in complex unknown environments. They usually propose very complex algorithms, high precision/cost sensors and sometimes have heavy calculation consumption with complex data fusion. Those systems are usually powerful but have a certain price and the benefits may not be worth the cost, especially considering their hardware limitations and their power consumption. Present approach is to build a compromise between cost, power consumption and results preciseness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hovercraft" title="Hovercraft">Hovercraft</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20exploration" title=" indoor exploration"> indoor exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous" title=" autonomous"> autonomous</a>, <a href="https://publications.waset.org/abstracts/search?q=multidirectional" title=" multidirectional"> multidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20control" title=" wireless control"> wireless control</a> </p> <a href="https://publications.waset.org/abstracts/11016/conception-of-a-reliable-low-cost-autonomous-explorative-hovercraft-1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13573</span> Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Korkmaz%20Tan">Rabia Korkmaz Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eebnem%20Bora"> Şebnem Bora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parameter%20tuning" title="parameter tuning">parameter tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation" title=" agent based modeling and simulation"> agent based modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic%20algorithms" title=" metaheuristic algorithms"> metaheuristic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title=" complex systems"> complex systems</a> </p> <a href="https://publications.waset.org/abstracts/77307/parameter-tuning-of-complex-systems-modeled-in-agent-based-modeling-and-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13572</span> Conception of a Reliable Low Cost and Autonomous Explorative Hovercraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Burgalat">S. Burgalat</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Teilhac"> L. Teilhac</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Brand"> A. Brand</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Chastel"> E. Chastel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jumeline"> M. Jumeline</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents actual benefits and drawbacks of a multidirectional autonomous hovercraft conceived with limited resources and designed for indoor exploration. Recent developments in the field have led to the apparition of very powerful automotive systems capable of very high calculation and exploration in complex unknown environments. They usually propose very complex algorithms, high precision/cost sensors and sometimes have heavy calculation consumption with complex data fusion. These systems are usually powerful but have a certain price, and the benefits may not be worth the cost, especially considering their hardware limitations and their power consumption. The present approach is to build a compromise between cost, power consumption and results preciseness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hovercraft" title="hovercraft">hovercraft</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20exploration" title=" indoor exploration"> indoor exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous" title=" autonomous"> autonomous</a>, <a href="https://publications.waset.org/abstracts/search?q=multidirectional" title=" multidirectional"> multidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20control" title=" wireless control"> wireless control</a> </p> <a href="https://publications.waset.org/abstracts/11015/conception-of-a-reliable-low-cost-and-autonomous-explorative-hovercraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13571</span> Research on the Application of Flexible and Programmable Systems in Electronic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xiaodong">Yang Xiaodong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article explores the application and structural characteristics of flexible and programmable systems in electronic systems, with a focus on analyzing their advantages and architectural differences in dealing with complex environments. By introducing mathematical models and simulation experiments, the performance of dynamic module combination in flexible systems and fixed path selection in programmable systems in resource utilization and performance optimization was demonstrated. This article also discusses the mutual transformation between the two in practical applications and proposes a solution to improve system flexibility and performance through dynamic reconfiguration technology. This study provides theoretical reference for the design and optimization of flexible and programmable systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexibility" title="flexibility">flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable" title=" programmable"> programmable</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20systems" title=" electronic systems"> electronic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20architecture" title=" system architecture"> system architecture</a> </p> <a href="https://publications.waset.org/abstracts/193856/research-on-the-application-of-flexible-and-programmable-systems-in-electronic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13570</span> Design Channel Non Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20A.%20Aref">Ibrahim A. Aref</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20El-Mihoub"> Tarek El-Mihoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadiga%20Ben%20Musa"> Khadiga Ben Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents Carrier Sense Multiple Access (CSMA) communication model based on SoC design methodology. Such model can be used to support the modelling of the complex wireless communication systems, therefore use of such communication model is an important technique in the construction of high performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=systemC" title="systemC">systemC</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=CSMA" title=" CSMA"> CSMA</a> </p> <a href="https://publications.waset.org/abstracts/3340/design-channel-non-persistent-csma-mac-protocol-model-for-complex-wireless-systems-based-on-soc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13569</span> Uncovering the Complex Structure of Building Design Process Based on Royal Institute of British Architects Plan of Work</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawaz%20A.%20Binsarra">Fawaz A. Binsarra</a>, <a href="https://publications.waset.org/abstracts/search?q=Halim%20Boussabaine"> Halim Boussabaine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The notion of complexity science has been attracting the interest of researchers and professionals due to the need of enhancing the efficiency of understanding complex systems dynamic and structure of interactions. In addition, complexity analysis has been used as an approach to investigate complex systems that contains a large number of components interacts with each other to accomplish specific outcomes and emerges specific behavior. The design process is considered as a complex action that involves large number interacted components, which are ranked as design tasks, design team, and the components of the design process. Those three main aspects of the building design process consist of several components that interact with each other as a dynamic system with complex information flow. In this paper, the goal is to uncover the complex structure of information interactions in building design process. The Investigating of Royal Institute of British Architects Plan Of Work 2013 information interactions as a case study to uncover the structure and building design process complexity using network analysis software to model the information interaction will significantly enhance the efficiency of the building design process outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complexity" title="complexity">complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20desgin" title=" building desgin"> building desgin</a>, <a href="https://publications.waset.org/abstracts/search?q=Riba" title=" Riba"> Riba</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20complexity" title=" design complexity"> design complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20analysis" title=" network analysis"> network analysis</a> </p> <a href="https://publications.waset.org/abstracts/26370/uncovering-the-complex-structure-of-building-design-process-based-on-royal-institute-of-british-architects-plan-of-work" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13568</span> Complex Fuzzy Evolution Equation with Nonlocal Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelati%20El%20Allaoui">Abdelati El Allaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Melliani"> Said Melliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalla%20Saadia%20Chadli"> Lalla Saadia Chadli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Complex%20fuzzy%20evolution%20equations" title="Complex fuzzy evolution equations">Complex fuzzy evolution equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20conditions" title=" nonlocal conditions"> nonlocal conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20solution" title=" mild solution"> mild solution</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20fuzzy%20semigroups" title=" complex fuzzy semigroups"> complex fuzzy semigroups</a> </p> <a href="https://publications.waset.org/abstracts/59900/complex-fuzzy-evolution-equation-with-nonlocal-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13567</span> Integration of Knowledge and Metadata for Complex Data Warehouses and Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean%20Christian%20Ralaivao">Jean Christian Ralaivao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabrice%20Razafindraibe"> Fabrice Razafindraibe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasina%20Rakotonirainy"> Hasina Rakotonirainy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This document constitutes a resumption of work carried out in the field of complex data warehouses (DW) relating to the management and formalization of knowledge and metadata. It offers a methodological approach for integrating two concepts, knowledge and metadata, within the framework of a complex DW architecture. The objective of the work considers the use of the technique of knowledge representation by description logics and the extension of Common Warehouse Metamodel (CWM) specifications. This will lead to a fallout in terms of the performance of a complex DW. Three essential aspects of this work are expected, including the representation of knowledge in description logics and the declination of this knowledge into consistent UML diagrams while respecting or extending the CWM specifications and using XML as pivot. The field of application is large but will be adapted to systems with heteroge-neous, complex and unstructured content and moreover requiring a great (re)use of knowledge such as medical data warehouses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20warehouse" title="data warehouse">data warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=description%20logics" title=" description logics"> description logics</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=metadata" title=" metadata"> metadata</a> </p> <a href="https://publications.waset.org/abstracts/128659/integration-of-knowledge-and-metadata-for-complex-data-warehouses-and-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13566</span> An Historical Revision of Change and Configuration Management Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Expedito%20Pinto%20De%20Paula%20Junior">Expedito Pinto De Paula Junior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current systems such as artificial satellites, airplanes, automobiles, turbines, power systems and air traffic controls are becoming increasingly more complex and/or highly integrated as defined in SAE-ARP-4754A (Society Automotive Engineering - Certification considerations for highly-integrated or complex aircraft systems standard). Among other processes, the development of such systems requires careful Change and Configuration Management (CCM) to establish and maintain product integrity. Understand the maturity of CCM process based in historical approach is crucial for better implementation in hardware and software lifecycle. The sense of work organization, in all fields of development is directly related to the order and interrelation of the parties, changes in time, and record of these changes. Generally, is observed that engineers, administrators and managers invest more time in technical activities than in organization of work. More these professionals are focused in solving complex problems with a purely technical bias. CCM process is fundamental for development, production and operation of new products specially in the safety critical systems. The objective of this paper is open a discussion about the historical revision based in standards focus of CCM around the world in order to understand and reflect the importance across the years, the contribution of this process for technology evolution, to understand the mature of organizations in the system lifecycle project and the benefits of CCM to avoid errors and mistakes during the Lifecycle Product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=changes" title="changes">changes</a>, <a href="https://publications.waset.org/abstracts/search?q=configuration%20management" title=" configuration management"> configuration management</a>, <a href="https://publications.waset.org/abstracts/search?q=historical" title=" historical"> historical</a>, <a href="https://publications.waset.org/abstracts/search?q=revision" title=" revision"> revision</a> </p> <a href="https://publications.waset.org/abstracts/133427/an-historical-revision-of-change-and-configuration-management-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13565</span> Parameter Estimation in Dynamical Systems Based on Latent Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov">Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20law%20of%20mass%20action" title="generalized law of mass action">generalized law of mass action</a>, <a href="https://publications.waset.org/abstracts/search?q=metamodels" title=" metamodels"> metamodels</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20components" title=" principal components"> principal components</a>, <a href="https://publications.waset.org/abstracts/search?q=synergetic%20systems" title=" synergetic systems"> synergetic systems</a> </p> <a href="https://publications.waset.org/abstracts/42041/parameter-estimation-in-dynamical-systems-based-on-latent-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=453">453</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=454">454</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=complex%20systems&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>