CINXE.COM

Search results for: spatially random sampling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: spatially random sampling</title> <meta name="description" content="Search results for: spatially random sampling"> <meta name="keywords" content="spatially random sampling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spatially random sampling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spatially random sampling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4474</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spatially random sampling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4474</span> Spatially Random Sampling for Retail Food Risk Factors Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guilan%20Huang">Guilan Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors.&nbsp;This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors&rsquo; work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA&rsquo;s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geospatial%20technology" title="geospatial technology">geospatial technology</a>, <a href="https://publications.waset.org/abstracts/search?q=restaurant" title=" restaurant"> restaurant</a>, <a href="https://publications.waset.org/abstracts/search?q=retail%20food%20risk%20factor%20study" title=" retail food risk factor study"> retail food risk factor study</a>, <a href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling" title=" spatially random sampling"> spatially random sampling</a> </p> <a href="https://publications.waset.org/abstracts/48950/spatially-random-sampling-for-retail-food-risk-factors-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4473</span> Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid">M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title="successive sampling">successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a> </p> <a href="https://publications.waset.org/abstracts/78773/estimation-of-population-mean-under-random-non-response-in-two-phase-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4472</span> Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davies%20Obaromi">Davies Obaromi</a>, <a href="https://publications.waset.org/abstracts/search?q=Qin%20Yongsong"> Qin Yongsong</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Ndege"> James Ndege</a>, <a href="https://publications.waset.org/abstracts/search?q=Azeez%20Adeboye"> Azeez Adeboye</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinwumi%20Odeyemi"> Akinwumi Odeyemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Besag2" title="Besag2">Besag2</a>, <a href="https://publications.waset.org/abstracts/search?q=CAR%20models" title=" CAR models"> CAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20mapping" title=" disease mapping"> disease mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=INLA" title=" INLA"> INLA</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20models" title=" spatial models"> spatial models</a> </p> <a href="https://publications.waset.org/abstracts/77683/bayesian-flexibility-modelling-of-the-conditional-autoregressive-prior-in-a-disease-mapping-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4471</span> Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid">M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20exponential%20estimator" title="modified exponential estimator">modified exponential estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title=" successive sampling"> successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a> </p> <a href="https://publications.waset.org/abstracts/85408/estimation-of-population-mean-under-random-non-response-in-two-occasion-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4470</span> Probability Sampling in Matched Case-Control Study in Drug Abuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surya%20R.%20Niraula">Surya R. Niraula</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20B%20Chhetry"> Devendra B Chhetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Girish%20K.%20Singh"> Girish K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nagesh"> S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederick%20A.%20Connell"> Frederick A. Connell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20abuse" title="drug abuse">drug abuse</a>, <a href="https://publications.waset.org/abstracts/search?q=matched%20case-control%20study" title=" matched case-control study"> matched case-control study</a>, <a href="https://publications.waset.org/abstracts/search?q=non-probability%20sampling" title=" non-probability sampling"> non-probability sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20sampling" title=" probability sampling"> probability sampling</a> </p> <a href="https://publications.waset.org/abstracts/24612/probability-sampling-in-matched-case-control-study-in-drug-abuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4469</span> Investigating the Efficiency of Stratified Double Median Ranked Set Sample for Estimating the Population Mean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20I.%20Syam">Mahmoud I. Syam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stratified double median ranked set sampling (SDMRSS) method is suggested for estimating the population mean. The SDMRSS is compared with the simple random sampling (SRS), stratified simple random sampling (SSRS), and stratified ranked set sampling (SRSS). It is shown that SDMRSS estimator is an unbiased of the population mean and more efficient than SRS, SSRS, and SRSS. Also, by SDMRSS, we can increase the efficiency of mean estimator for specific value of the sample size. SDMRSS is applied on real life examples, and the results of the example agreed the theoretical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20ranked%20set%20sampling" title=" double ranked set sampling"> double ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20ranked%20set%20sampling" title=" median ranked set sampling"> median ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified" title=" stratified"> stratified</a> </p> <a href="https://publications.waset.org/abstracts/56985/investigating-the-efficiency-of-stratified-double-median-ranked-set-sample-for-estimating-the-population-mean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4468</span> Different Sampling Schemes for Semi-Parametric Frailty Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nursel%20Koyuncu">Nursel Koyuncu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Ata%20Tutkun"> Nihal Ata Tutkun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frailty model is a survival model that takes into account the unobserved heterogeneity for exploring the relationship between the survival of an individual and several covariates. In the recent years, proposed survival models become more complex and this feature causes convergence problems especially in large data sets. Therefore selection of sample from these big data sets is very important for estimation of parameters. In sampling literature, some authors have defined new sampling schemes to predict the parameters correctly. For this aim, we try to see the effect of sampling design in semi-parametric frailty model. We conducted a simulation study in R programme to estimate the parameters of semi-parametric frailty model for different sample sizes, censoring rates under classical simple random sampling and ranked set sampling schemes. In the simulation study, we used data set recording 17260 male Civil Servants aged 40–64 years with complete 10-year follow-up as population. Time to death from coronary heart disease is treated as a survival-time and age, systolic blood pressure are used as covariates. We select the 1000 samples from population using different sampling schemes and estimate the parameters. From the simulation study, we concluded that ranked set sampling design performs better than simple random sampling for each scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frailty%20model" title="frailty model">frailty model</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20random%20sampling" title=" simple random sampling"> simple random sampling</a> </p> <a href="https://publications.waset.org/abstracts/76811/different-sampling-schemes-for-semi-parametric-frailty-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4467</span> Bayesian Approach for Moving Extremes Ranked Set Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Ali%20Al-Hadhrami">Said Ali Al-Hadhrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Ibrahim%20Al-Omari"> Amer Ibrahim Al-Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title="Bayesian">Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20extreme%20ranked%20set%20sampling" title=" moving extreme ranked set sampling"> moving extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a> </p> <a href="https://publications.waset.org/abstracts/30733/bayesian-approach-for-moving-extremes-ranked-set-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4466</span> Estimating The Population Mean by Using Stratified Double Extreme Ranked Set Sample</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20I.%20Syam">Mahmoud I. Syam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamarulzaman%20Ibrahim"> Kamarulzaman Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20I.%20Al-Omari"> Amer I. Al-Omari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stratified double extreme ranked set sampling (SDERSS) method is introduced and considered for estimating the population mean. The SDERSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple set sampling (SSRS). It is shown that the SDERSS estimator is an unbiased of the population mean and more efficient than the estimators using SRS, SRSS and SSRS when the underlying distribution of the variable of interest is symmetric or asymmetric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20extreme%20ranked%20set%20sampling" title="double extreme ranked set sampling">double extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20ranked%20set%20sampling" title=" extreme ranked set sampling"> extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20double%20extreme%20ranked%20set%20sampling" title=" stratified double extreme ranked set sampling"> stratified double extreme ranked set sampling</a> </p> <a href="https://publications.waset.org/abstracts/25207/estimating-the-population-mean-by-using-stratified-double-extreme-ranked-set-sample" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4465</span> Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaghoub%20Soraya">Chaghoub Soraya</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Xiaoyan"> Zhang Xiaoyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximation%20algorithms" title="approximation algorithms">approximation algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=buy-at-bulk" title=" buy-at-bulk"> buy-at-bulk</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization" title=" combinatorial optimization"> combinatorial optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20design" title=" network design"> network design</a>, <a href="https://publications.waset.org/abstracts/search?q=p-median" title=" p-median"> p-median</a> </p> <a href="https://publications.waset.org/abstracts/127337/constant-factor-approximation-algorithm-for-p-median-network-design-problem-with-multiple-cable-types" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4464</span> Some Generalized Multivariate Estimators for Population Mean under Multi Phase Stratified Systematic Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muqaddas%20Javed">Muqaddas Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hanif"> Muhammad Hanif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generalized multivariate ratio and regression type estimators for population mean are suggested under multi-phase stratified systematic sampling (MPSSS) using multi auxiliary information. Estimators are developed under the two different situations of availability of auxiliary information. The expressions of bias and mean square error (MSE) are developed. Special cases of suggested estimators are also discussed and simulation study is conducted to observe the performance of estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20estimators" title="generalized estimators">generalized estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20sampling" title=" multi-phase sampling"> multi-phase sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20random%20sampling" title=" stratified random sampling"> stratified random sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20sampling" title=" systematic sampling"> systematic sampling</a> </p> <a href="https://publications.waset.org/abstracts/27296/some-generalized-multivariate-estimators-for-population-mean-under-multi-phase-stratified-systematic-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">729</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4463</span> A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tan%20Zhang">Tan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongjian%20Wang"> Zhongjian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jack%20Xin"> Jack Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiwen%20Zhang"> Zhiwen Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KPP%20front%20speeds" title="KPP front speeds">KPP front speeds</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20flows" title=" random flows"> random flows</a>, <a href="https://publications.waset.org/abstracts/search?q=Feynman-Kac%20semigroups" title=" Feynman-Kac semigroups"> Feynman-Kac semigroups</a>, <a href="https://publications.waset.org/abstracts/search?q=interacting%20particle%20method" title=" interacting particle method"> interacting particle method</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence%20analysis" title=" convergence analysis"> convergence analysis</a> </p> <a href="https://publications.waset.org/abstracts/185128/a-convergent-interacting-particle-method-for-computing-kpp-front-speeds-in-random-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4462</span> Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Bii">Nelson Bii</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Ouma"> Christopher Ouma</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Odhiambo"> John Odhiambo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mean%20squared%20error" title="mean squared error">mean squared error</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stage%20cluster%20sampling" title=" two-stage cluster sampling"> two-stage cluster sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence%20interval%20lengths" title=" confidence interval lengths"> confidence interval lengths</a> </p> <a href="https://publications.waset.org/abstracts/117332/estimation-of-a-finite-population-mean-under-random-non-response-using-improved-nadaraya-and-watson-kernel-weights" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4461</span> A Proposal to Integrate Spatially Explicit Ecosystem Services with Urban Metabolic Modelling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Elliot">Thomas Elliot</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Babi%20Almenar"> Javier Babi Almenar</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedetto%20Rugani"> Benedetto Rugani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of urban metabolism (UM) with spatially explicit ecosystem service (ES) stocks has the potential to advance sustainable urban development. It will correct the lack of spatially specificity of current urban metabolism models. Furthermore, it will include into UM not only the physical properties of material and energy stocks and flows, but also the implications to the natural capital that provides and maintains human well-being. This paper presents the first stages of a modelling framework by which urban planners can assess spatially the trade-offs of ES flows resulting from urban interventions of different character and scale. This framework allows for a multi-region assessment which takes into account sustainability burdens consequent to an urban planning event occurring elsewhere in the environment. The urban boundary is defined as the Functional Urban Audit (FUA) method to account for trans-administrative ES flows. ES are mapped using CORINE land use within the FUA. These stocks and flows are incorporated into a UM assessment method to demonstrate the transfer and flux of ES arising from different urban planning implementations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20economics" title="ecological economics">ecological economics</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title=" ecosystem services"> ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20planning" title=" spatial planning"> spatial planning</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20metabolism" title=" urban metabolism"> urban metabolism</a> </p> <a href="https://publications.waset.org/abstracts/75964/a-proposal-to-integrate-spatially-explicit-ecosystem-services-with-urban-metabolic-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4460</span> A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Dey">S. Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Mukhopadhyay"> T. Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Adhikari"> S. Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20plate" title="composite plate">composite plate</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20regression%20model" title=" polynomial regression model"> polynomial regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20technique" title=" sampling technique"> sampling technique</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a> </p> <a href="https://publications.waset.org/abstracts/24714/a-comparative-study-on-sampling-techniques-of-polynomial-regression-model-based-stochastic-free-vibration-of-composite-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4459</span> Random Forest Classification for Population Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regina%20Chua">Regina Chua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20learning" title=" supervised learning"> supervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20modeling" title=" predictive modeling"> predictive modeling</a> </p> <a href="https://publications.waset.org/abstracts/154919/random-forest-classification-for-population-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4458</span> Stochastic Simulation of Random Numbers Using Linear Congruential Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melvin%20Ballera">Melvin Ballera</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldrich%20Olivar"> Aldrich Olivar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20Soriano"> Mary Soriano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital computers nowadays must be able to have a utility that is capable of generating random numbers. Usually, computer-generated random numbers are not random given predefined values such as starting point and end points, making the sequence almost predictable. There are many applications of random numbers such business simulation, manufacturing, services domain, entertainment sector and other equally areas making worthwhile to design a unique method and to allow unpredictable random numbers. Applying stochastic simulation using linear congruential algorithm, it shows that as it increases the numbers of the seed and range the number randomly produced or selected by the computer becomes unique. If this implemented in an environment where random numbers are very much needed, the reliability of the random number is guaranteed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation" title="stochastic simulation">stochastic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20numbers" title=" random numbers"> random numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20congruential%20algorithm" title=" linear congruential algorithm"> linear congruential algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudorandomness" title=" pseudorandomness"> pseudorandomness</a> </p> <a href="https://publications.waset.org/abstracts/52819/stochastic-simulation-of-random-numbers-using-linear-congruential-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4457</span> Spatially Referenced Checklist Model Dedicated to Professional Actors for a Good Evaluation and Management of Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdessalam%20Hijab">Abdessalam Hijab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafida%20Boulekbache"> Hafida Boulekbache</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Henry"> Eric Henry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this article is to explain the use of geographic information system (GIS) and information and communication technologies (ICTs) in the real-time processing and analysis of data on the status of an urban sanitation network by integrating professional actors in sanitation for sustainable management in urban areas. Indeed, it is a smart geo-collaboration based on the complementarity of ICTs and GIS. This multi-actor reflection was built with the objective of contributing to the development of complementary solutions to the existing technologies to better protect the urban environment, with the help of a checklist with the spatial reference "E-Géo-LD" dedicated to the "professional/professional" actors in sanitation, for intelligent monitoring of liquid sanitation networks in urban areas. In addition, this research provides a good understanding and assimilation of liquid sanitation schemes in the "Lamkansa" sampling area of the city of Casablanca, and spatially evaluates these schemes. Downstream, it represents a guide to assess the environmental impacts of the liquid sanitation scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICT" title="ICT">ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20checklist" title=" spatial checklist"> spatial checklist</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20sanitation" title=" liquid sanitation"> liquid sanitation</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/128808/spatially-referenced-checklist-model-dedicated-to-professional-actors-for-a-good-evaluation-and-management-of-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4456</span> Empirical Study of Running Correlations in Exam Marks: Same Statistical Pattern as Chance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weisi%20Guo">Weisi Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well established that there may be running correlations in sequential exam marks due to students sitting in the order of course registration patterns. As such, a random and non-sequential sampling of exam marks is a standard recommended practice. Here, the paper examines a large number of exam data stretching several years across different modules to see the degree to which it is true. Using the real mark distribution as a generative process, it was found that random simulated data had no more sequential randomness than the real data. That is to say, the running correlations that one often observes are statistically identical to chance. Digging deeper, it was found that some high running correlations have students that indeed share a common course history and make similar mistakes. However, at the statistical scale of a module question, the combined effect is statistically similar to the random shuffling of papers. As such, there may not be the need to take random samples for marks, but it still remains good practice to mark papers in a random sequence to reduce the repetitive marking bias and errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title="data analysis">data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20study" title=" empirical study"> empirical study</a>, <a href="https://publications.waset.org/abstracts/search?q=exams" title=" exams"> exams</a>, <a href="https://publications.waset.org/abstracts/search?q=marking" title=" marking"> marking</a> </p> <a href="https://publications.waset.org/abstracts/98644/empirical-study-of-running-correlations-in-exam-marks-same-statistical-pattern-as-chance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4455</span> Existence Result of Third Order Functional Random Integro-Differential Inclusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Palimkar">D. S. Palimkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The FRIGDI (functional random integrodifferential inclusion) seems to be new and includes several known random differential inclusions already studied in the literature as special cases have been discussed in the literature for various aspects of the solutions. In this paper, we prove the existence result for FIGDI under the non-convex case of multi-valued function involved in it.Using random fixed point theorem of B. C. Dhage and caratheodory condition. This result is new to the theory of differential inclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caratheodory%20condition" title="caratheodory condition">caratheodory condition</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20differential%20inclusion" title=" random differential inclusion"> random differential inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20solution" title=" random solution"> random solution</a>, <a href="https://publications.waset.org/abstracts/search?q=integro-differential%20inclusion" title=" integro-differential inclusion"> integro-differential inclusion</a> </p> <a href="https://publications.waset.org/abstracts/34570/existence-result-of-third-order-functional-random-integro-differential-inclusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4454</span> Method of Successive Approximations for Modeling of Distributed Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Torokhti">A. Torokhti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20system" title=" non-linear system"> non-linear system</a>, <a href="https://publications.waset.org/abstracts/search?q=spatially%20distributed%20sensors" title=" spatially distributed sensors"> spatially distributed sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion%20center" title=" fusion center"> fusion center</a> </p> <a href="https://publications.waset.org/abstracts/6226/method-of-successive-approximations-for-modeling-of-distributed-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4453</span> Rural Development through Women Participation in Livestock Care and Management in District Faisalabad</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arfan%20Riasat">Arfan Riasat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Iqbal%20Zafar"> M. Iqbal Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulfam%20Riasat"> Gulfam Riasat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pakistani women actively participate in livestock management activities, along with their normal domestic chores. The study was designed to measure the position and contribution of rural women, their constraints in livestock management activities and mainly how the rural women contribute for development in the district Faisalabad. It was envisioned that women participation in livestock activities have rarely been investigated. A multistage random sampling technique was used to collect the data from Tehsil Summandry of the district selected at random. Two union councils were taken by using simple random sampling technique. Four Chak (village) from each union council were selected at random and fifteen woman were further selected randomly from each selected chak. The results show that a vast majority of women were illiterate, having annual family income of one to two lac. They are living in joint family system. Their main occupation is agriculture and they spend long hours in whole livestock related activities to support their families. A large proportion of the respondents reported that they had to face problems and constraints in livestock activities in the context of decision making, medication, awareness, training along with social and economic issues. Analysis indicated that education level of women, income of household, age were significantly associated with level of participation. Women participation in livestock activities increased production and they were involved in income generating activities for better economic conditions of their families. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=women" title="women">women</a>, <a href="https://publications.waset.org/abstracts/search?q=participation" title=" participation"> participation</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock" title=" livestock"> livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20development" title=" rural development"> rural development</a> </p> <a href="https://publications.waset.org/abstracts/10170/rural-development-through-women-participation-in-livestock-care-and-management-in-district-faisalabad" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4452</span> Existence Theory for First Order Functional Random Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20N.%20Ingle">Rajkumar N. Ingle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Random%20Fixed%20Point%20Theorem" title="Random Fixed Point Theorem">Random Fixed Point Theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20random%20differential%20equation" title=" functional random differential equation"> functional random differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=N.F.R.D.E." title=" N.F.R.D.E."> N.F.R.D.E.</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20random%20phenomenon" title=" universal random phenomenon "> universal random phenomenon </a> </p> <a href="https://publications.waset.org/abstracts/28934/existence-theory-for-first-order-functional-random-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4451</span> A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hamdi">M. Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rhouma"> R. Rhouma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Belghith"> S. Belghith </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo-random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Random%20Numbers" title="Random Numbers">Random Numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaotic%20map" title=" Chaotic map"> Chaotic map</a>, <a href="https://publications.waset.org/abstracts/search?q=S-box" title=" S-box"> S-box</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20tests" title=" statistical tests"> statistical tests</a> </p> <a href="https://publications.waset.org/abstracts/21757/a-very-efficient-pseudo-random-number-generator-based-on-chaotic-maps-and-s-box-tables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4450</span> The Effect of Spatial Variability on Axial Pile Design of Closed Ended Piles in Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cormac%20Reale">Cormac Reale</a>, <a href="https://publications.waset.org/abstracts/search?q=Luke%20J.%20Prendergast"> Luke J. Prendergast</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Gavin"> Kenneth Gavin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While significant improvements have been made in axial pile design methods over recent years, the influence of soils natural variability has not been adequately accounted for within them. Soil variability is a crucial parameter to consider as it can account for large variations in pile capacity across the same site. This paper seeks to address this knowledge deficit, by demonstrating how soil spatial variability can be accommodated into existing cone penetration test (CPT) based pile design methods, in the form of layered non-homogeneous random fields. These random fields model the scope of a given property’s variance and define how it varies spatially. A Monte Carlo analysis of the pile will be performed taking into account parameter uncertainty and spatial variability, described using the measured scales of fluctuation. The results will be discussed in light of Eurocode 7 and the effect of spatial averaging on design capacities will be analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pile%20axial%20design" title="pile axial design">pile axial design</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variability" title=" spatial variability"> spatial variability</a>, <a href="https://publications.waset.org/abstracts/search?q=CPT" title=" CPT "> CPT </a> </p> <a href="https://publications.waset.org/abstracts/75333/the-effect-of-spatial-variability-on-axial-pile-design-of-closed-ended-piles-in-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4449</span> Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjit%20Singh">Manjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG%20%28electrocardiogram%29" title="ECG (electrocardiogram)">ECG (electrocardiogram)</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability%20%28HRV%29" title=" heart rate variability (HRV)"> heart rate variability (HRV)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20entropy" title=" multiscale entropy"> multiscale entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20frequency" title=" sampling frequency"> sampling frequency</a> </p> <a href="https://publications.waset.org/abstracts/78603/optimal-ecg-sampling-frequency-for-multiscale-entropy-based-hrv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4448</span> A Geospatial Analysis of Residential Conservation-Attitude, Intention and Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prami%20Sengupta">Prami Sengupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Randall%20A.%20Cantrell"> Randall A. Cantrell</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracy%20Johns"> Tracy Johns</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A typical US household consumes more energy than households in other countries and is directly responsible for a considerable proportion of the atmospheric concentration of the greenhouse gases. This makes U.S. household a vital target group for energy conservation studies. Positive household behavior is central to residential energy conservation. However, for individuals to conserve energy they must not only know how to conserve energy but be also willing to do so. That is, a positive attitude towards residential conservation and an intention to conserve energy are two of the most important psychological determinants for energy conservation behavior. Most social science studies, to date, have studied the relationships between attitude, intention, and behavior by building upon socio-psychological theories of behavior. However, these frameworks, including the widely used Theory of Planned Behavior and Social Cognitive Theory, lack a spatial component. That is, these studies fail to capture the impact of the geographical locations of homeowners’ residences on their residential energy consumption and conservation practices. Therefore, the purpose of this study is to explore geospatial relationships between homeowners’ residential energy conservation-attitudes, conservation-intentions, and consumption behavior. The study analyzes residential conservation-attitudes and conservation-intentions of homeowners across 63 counties in Florida and compares it with quantifiable measures of residential energy consumption. Empirical findings revealed that the spatial distribution of high and/or low values of homeowners’ mean-score values of conservation-attitudes and conservation-intentions are more spatially clustered than would be expected if the underlying spatial processes were random. On the contrary, the spatial distribution of high and/or low values of households’ carbon footprints was found to be more spatially dispersed than assumed if the underlying spatial process were random. The study also examined the influence of potential spatial variables, such as urban or rural setting and presence of educational institutions and/or extension program, on the conservation-attitudes, intentions, and behaviors of homeowners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation-attitude" title="conservation-attitude">conservation-attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation-intention" title=" conservation-intention"> conservation-intention</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20analysis" title=" geospatial analysis"> geospatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption" title=" residential energy consumption"> residential energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20autocorrelation" title=" spatial autocorrelation "> spatial autocorrelation </a> </p> <a href="https://publications.waset.org/abstracts/93529/a-geospatial-analysis-of-residential-conservation-attitude-intention-and-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4447</span> Influence of Random Fibre Packing on the Compressive Strength of Fibre Reinforced Plastic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Wang">Y. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zhang"> S. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Chen"> X. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The longitudinal compressive strength of fibre reinforced plastic (FRP) possess a large stochastic variability, which limits efficient application of composite structures. This study aims to address how the random fibre packing affects the uncertainty of FRP compressive strength. An novel approach is proposed to generate random fibre packing status by a combination of Latin hypercube sampling and random sequential expansion. 3D nonlinear finite element model is built which incorporates both the matrix plasticity and fibre geometrical instability. The matrix is modeled by isotropic ideal elasto-plastic solid elements, and the fibres are modeled by linear-elastic rebar elements. Composite with a series of different nominal fibre volume fractions are studied. Premature fibre waviness at different magnitude and direction is introduced in the finite element model. Compressive tests on uni-directional CFRP (carbon fibre reinforced plastic) are conducted following the ASTM D6641. By a comparison of 3D FE models and compressive tests, it is clearly shown that the stochastic variation of compressive strength is partly caused by the random fibre packing, and normal or lognormal distribution tends to be a good fit the probabilistic compressive strength. Furthermore, it is also observed that different random fibre packing could trigger two different fibre micro-buckling modes while subjected to longitudinal compression: out-of-plane buckling and twisted buckling. The out-of-plane buckling mode results much larger compressive strength, and this is the major reason why the random fibre packing results a large uncertainty in the FRP compressive strength. This study would contribute to new approaches to the quality control of FRP considering higher compressive strength or lower uncertainty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-buckling" title=" micro-buckling"> micro-buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20fibre%20packing" title=" random fibre packing"> random fibre packing</a> </p> <a href="https://publications.waset.org/abstracts/86173/influence-of-random-fibre-packing-on-the-compressive-strength-of-fibre-reinforced-plastic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4446</span> A Non-parametric Clustering Approach for Multivariate Geostatistical Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francky%20Fouedjio">Francky Fouedjio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=geostatistics" title=" geostatistics"> geostatistics</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20data" title=" multivariate data"> multivariate data</a>, <a href="https://publications.waset.org/abstracts/search?q=non-parametric" title=" non-parametric"> non-parametric</a> </p> <a href="https://publications.waset.org/abstracts/46870/a-non-parametric-clustering-approach-for-multivariate-geostatistical-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4445</span> Heuristic to Generate Random X-Monotone Polygons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamaljit%20Pati">Kamaljit Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Manas%20Kumar%20Mohanty"> Manas Kumar Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjib%20Sadhu"> Sanjib Sadhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A heuristic has been designed to generate a random simple monotone polygon from a given set of ‘n’ points lying on a 2-Dimensional plane. Our heuristic generates a random monotone polygon in O(n) time after O(nℓogn) preprocessing time which is improved over the previous work where a random monotone polygon is produced in the same O(n) time but the preprocessing time is O(k) for n < k < n2. However, our heuristic does not generate all possible random polygons with uniform probability. The space complexity of our proposed heuristic is O(n). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sorting" title="sorting">sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=monotone%20polygon" title=" monotone polygon"> monotone polygon</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility" title=" visibility"> visibility</a>, <a href="https://publications.waset.org/abstracts/search?q=chain" title=" chain"> chain</a> </p> <a href="https://publications.waset.org/abstracts/19252/heuristic-to-generate-random-x-monotone-polygons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=149">149</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=150">150</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10