CINXE.COM

Search results for: natural frequency

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: natural frequency</title> <meta name="description" content="Search results for: natural frequency"> <meta name="keywords" content="natural frequency"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="natural frequency" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="natural frequency"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9445</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: natural frequency</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9445</span> Experimental Investigation of Natural Frequency and Forced Vibration of Euler-Bernoulli Beam under Displacement of Concentrated Mass and Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aref%20Aasi">Aref Aasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadegh%20Mehdi%20Aghaei"> Sadegh Mehdi Aghaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Balaji%20Panchapakesan"> Balaji Panchapakesan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to evaluate the free and forced vibration of a beam with two end joints subjected to a concentrated moving mass and a load using the Euler-Bernoulli method. The natural frequency is calculated for different locations of the concentrated mass and load on the beam. The analytical results are verified by the experimental data. The variations of natural frequency as a function of the location of the mass, the effect of the forced frequency on the vibrational amplitude, and the displacement amplitude versus time are investigated. It is discovered that as the concentrated mass moves toward the center of the beam, the natural frequency of the beam and the relative error between experimental and analytical data decreases. There is a close resemblance between analytical data and experimental observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Euler-Bernoulli%20beam" title="Euler-Bernoulli beam">Euler-Bernoulli beam</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20vibration" title=" forced vibration"> forced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20setup" title=" experimental setup"> experimental setup</a> </p> <a href="https://publications.waset.org/abstracts/144338/experimental-investigation-of-natural-frequency-and-forced-vibration-of-euler-bernoulli-beam-under-displacement-of-concentrated-mass-and-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9444</span> Dynamic Response of Structure-Raft-Pile-Soil with Respect to System Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Razmi">B. Razmi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rafiee"> F. Rafiee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Baziar"> M. Baziar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Saeedi%20Azizkandi"> A. Saeedi Azizkandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present research, a series of 3-D finite element numerical modeling was performed to study the effect of system frequency and excitation specifications on the internal forces of the piled raft (PR) system in a dry sand layer. The results of numerical simulations were first compared with those associated with centrifuge tests. The natural frequency of superstructure, modeled on the piled raft foundation, was smaller than the natural frequency of the fixed-base super-structure. This difference was greater for super-structures with higher frequencies. In PR systems, the excitation with a frequency close to the system frequency produced the largest responses. Furthermore, based on the results of presented numerical analyses, ignoring the interactions and characteristics of all components of a pile-raft-structure, may lead to highly uneconomical design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifuge%20test" title="centrifuge test">centrifuge test</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation%20frequency" title=" excitation frequency"> excitation frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency%20of%20super-structure" title=" natural frequency of super-structure"> natural frequency of super-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=piled%20raft%20foundation" title=" piled raft foundation"> piled raft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20finite%20element%20model" title=" 3-D finite element model"> 3-D finite element model</a> </p> <a href="https://publications.waset.org/abstracts/150187/dynamic-response-of-structure-raft-pile-soil-with-respect-to-system-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9443</span> Parametric Study on Dynamic Analysis of Composite Laminated Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Kameran%20Ahmed">Junaid Kameran Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A laminated plate composite of graphite/epoxy has been analyzed dynamically in the present work by using a quadratic element (8-node diso-parametric), and by depending on 1<sup>st</sup> order shear deformation theory, every node in this element has 6-degrees of freedom (displacement in x, y, and z axis and twist about x, y, and z axis). The dynamic analysis in the present work covered parametric studies on a composite laminated plate (square plate) to determine its effect on the natural frequency of the plate. The parametric study is represented by set of changes (plate thickness, number of layers, support conditions, layer orientation), and the plates have been simulated by using ANSYS package 12. The boundary conditions considered in this study, at all four edges of the plate, are simply supported and fixed boundary condition. The results obtained from ANSYS program show that the natural frequency for both fixed and simply supported increases with increasing the number of layers, but this increase in the natural frequency for the first five modes will be neglected after 10 layers. And it is observed that the natural frequency of a composite laminated plate will change with the change of ply orientation, the natural frequency increases and it will be at maximum with angle 45 of ply for simply supported laminated plate, and maximum natural frequency will be with cross-ply (0/90) for fixed laminated composite plate. It is also observed that the natural frequency increase is approximately doubled when the thickness is doubled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminated%20plate" title="laminated plate">laminated plate</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20plate" title=" orthotropic plate"> orthotropic plate</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20plate" title=" square plate"> square plate</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency%20%28free%20vibration%29" title=" natural frequency (free vibration)"> natural frequency (free vibration)</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20%28graphite%20%2F%20epoxy%29" title=" composite (graphite / epoxy)"> composite (graphite / epoxy)</a> </p> <a href="https://publications.waset.org/abstracts/63332/parametric-study-on-dynamic-analysis-of-composite-laminated-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9442</span> Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Brozovsky">Jiri Brozovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20brick" title="calcium silicate brick">calcium silicate brick</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20method" title=" ultrasonic pulse method"> ultrasonic pulse method</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus%20of%20elasticity" title=" dynamic modulus of elasticity"> dynamic modulus of elasticity</a> </p> <a href="https://publications.waset.org/abstracts/12508/calcium-silicate-bricks-ultrasonic-pulse-method-effects-of-natural-frequency-of-transducers-on-measurement-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9441</span> The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Z.%20Mahmud">Emin Z. Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door &ndash; specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20of%20masonry%20structures" title="behaviour of masonry structures">behaviour of masonry structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode" title=" Eurocode"> Eurocode</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/117055/the-influence-of-strengthening-on-the-fundamental-frequency-and-stiffness-of-a-confined-masonry-wall-with-an-opening-for-a-door" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9440</span> Vibration Absorption Strategy for Multi-Frequency Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Der%20Chyan%20Lin">Der Chyan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin⁡(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bessel%20function" title="Bessel function">Bessel function</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20excitation" title=" frequency modulated excitation"> frequency modulated excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20absorber" title=" vibration absorber"> vibration absorber</a> </p> <a href="https://publications.waset.org/abstracts/132303/vibration-absorption-strategy-for-multi-frequency-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9439</span> The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Window</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Z.%20Mahmud">Emin Z. Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shaking table tests are planned in order to deepen the understanding of the behavior of confined masonry structures with or without openings. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) – Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP (Glass Fiber Reinforced Plastic) and re-tested. This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a window – specimens CMWuS (before strengthening) and CMWS (after strengthening). Frequency and stiffness changes before and after GFRP wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMWuS and CMWS are subjected to the same effects. The initial frequency of the undamaged model CMWuS is 18.79 Hz, while at the end of the testing, the frequency decreased to 12.96 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening the damaged wall, the natural frequency increases to 14.67 Hz. This highlights the beneficial effect of strengthening. After completion of dynamic testing at CMWS, the natural frequency is reduced to 10.75 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20of%20masonry%20structures" title="behaviour of masonry structures">behaviour of masonry structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode" title=" Eurocode"> Eurocode</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/117054/the-influence-of-strengthening-on-the-fundamental-frequency-and-stiffness-of-a-confined-masonry-wall-with-an-opening-for-a-window" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9438</span> Modal Analysis of Functionally Graded Materials Plates Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Shahidzadeh%20Tabatabaei">S. J. Shahidzadeh Tabatabaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Fattahi"> A. M. Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis of an FGM plate composed of Al2O3 ceramic phase and 304 stainless steel metal phases was performed in this paper by ABAQUS software with the assumption that the behavior of material is elastic and mechanical properties (Young's modulus and density) are variable in the thickness direction of the plate. Therefore, a sub-program was written in FORTRAN programming language and was linked with ABAQUS software. For modal analysis, a finite element analysis was carried out similar to the model of other researchers and the accuracy of results was evaluated after comparing the results. Comparison of natural frequencies and mode shapes reflected the compatibility of results and optimal performance of the program written in FORTRAN as well as high accuracy of finite element model used in this research. After validation of the results, it was evaluated the effect of material (n parameter) on the natural frequency. In this regard, finite element analysis was carried out for different values of n and in simply supported mode. About the effect of n parameter that indicates the effect of material on the natural frequency, it was observed that the natural frequency decreased as n increased; because by increasing n, the share of ceramic phase on FGM plate has decreased and the share of steel phase has increased and this led to reducing stiffness of FGM plate and thereby reduce in the natural frequency. That is because the Young's modulus of Al2O3 ceramic is equal to 380 GPa and Young's modulus of SUS304 steel is 207 GPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FGM%20plates" title="FGM plates">FGM plates</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/46792/modal-analysis-of-functionally-graded-materials-plates-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9437</span> Theoretical Investigation on the Dynamic Characteristics of One Degree of Freedom Vibration System Equipped with Inerter of Variable Inertance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiki%20Tsuji"> Yoshiki Tsuji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a theoretical investigation on the dynamic characteristics of one degree of freedom vibration system equipped with inerter of variable inertance, is presented. Differential equation of movement was solved under proper initial conditions in the case of free undamped/damped vibration, considered in the absence/presence of the inerter in the mechanical system. Influence of inertance on the amplitude of vibration, phase angle, natural frequency, damping ratio, and logarithmic decrement was clarified. It was mainly found that the inerter decreases the natural frequency of the undamped system and also of the damped system if the damping ratio is below 0.707. On the other hand, the inerter increases the natural frequency of the damped system if the damping ratio exceeds 0.707. Results obtained in this work are useful for the adequate design of inerters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping" title="damping">damping</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20control" title=" frequency control"> frequency control</a>, <a href="https://publications.waset.org/abstracts/search?q=inerter" title=" inerter"> inerter</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20degree%20of%20freedom%20vibration%20system" title=" one degree of freedom vibration system"> one degree of freedom vibration system</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20connection" title=" parallel connection"> parallel connection</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20inertance" title=" variable inertance"> variable inertance</a> </p> <a href="https://publications.waset.org/abstracts/65507/theoretical-investigation-on-the-dynamic-characteristics-of-one-degree-of-freedom-vibration-system-equipped-with-inerter-of-variable-inertance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9436</span> Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasudha%20Hegde">Vasudha Hegde</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Chaulagain"> Narendra Chaulagain</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Ravikumar"> H. M. Ravikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonu%20Mishra"> Sonu Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Yellampalli"> Siva Yellampalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 &micro;m radius and thickness of 30 &micro;m to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 &micro;m sandwiched between two aluminium electrodes of thickness 0.5 &micro;m and is coated on the diaphragm. Further, a channel with radius 3000 &micro;m radius and length 270 &micro;m is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20sensor" title="acoustic sensor">acoustic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm%20based" title=" diaphragm based"> diaphragm based</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20element%20modeling%20%28LEM%29" title=" lumped element modeling (LEM)"> lumped element modeling (LEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/87746/modeling-of-microelectromechanical-systems-diaphragm-based-acoustic-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9435</span> Evaluation of Beam Structure Using Non-Destructive Vibration-Based Damage Detection Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Ahmad%20Aasim">Bashir Ahmad Aasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Khaliq%20Karimi"> Abdul Khaliq Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Tomiyama"> Jun Tomiyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Material aging is one of the vital issues among all the civil, mechanical, and aerospace engineering societies. Sustenance and reliability of concrete, which is the widely used material in the world, is the focal point in civil engineering societies. For few decades, researchers have been able to present some form algorithms that could lead to evaluate a structure globally rather than locally without harming its serviceability and traffic interference. The algorithms could help presenting different methods for evaluating structures non-destructively. In this paper, a non-destructive vibration-based damage detection method is adopted to evaluate two concrete beams, one being in a healthy state while the second one contains a crack on its bottom vicinity. The study discusses that damage in a structure affects modal parameters (natural frequency, mode shape, and damping ratio), which are the function of physical properties (mass, stiffness, and damping). The assessment is carried out to acquire the natural frequency of the sound beam. Next, the vibration response is recorded from the cracked beam. Eventually, both results are compared to know the variation in the natural frequencies of both beams. The study concludes that damage can be detected using vibration characteristics of a structural member considering the decline occurred in the natural frequency of the cracked beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title="concrete beam">concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20characteristics" title=" vibration characteristics"> vibration characteristics</a> </p> <a href="https://publications.waset.org/abstracts/120706/evaluation-of-beam-structure-using-non-destructive-vibration-based-damage-detection-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9434</span> Inventory of Aromatic and Medicinal Plants Used in Natural Cosmetics in Western Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faiza%20Chaib">Faiza Chaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina-Nadia%20Bendahmane"> Yasmina-Nadia Bendahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Ghanemi"> Fatima Zohra Ghanemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to know the traditional use of aromatic and medicinal plants in natural cosmetics, we carried out an ethnobotanical study using an online quiz among the Algerian population residing mainly in western Algeria (Oran, Tlemcen, and Mostaganem). Our study identified 37 plant species used as cosmetic plants, divided into 9 botanical families. The families mainly used and the richest in species are the lamiaceae, the apiecea, and the rutaceae. Our study states that the 5 species with the highest frequency of use and highest citation value are lemon, chamomile, turmeric, garlic, and lavender. Lemon takes first place in the order of frequency. The plants listed have been listed in tables grouping the identification of plants by their scientific and vernacular names, frequency of use, parts used, parts of the body concerned, desired action, as well as the main traditional recipes. This study allowed us to highlight the importance of aromatic plants and to appreciate their traditional practices in natural cosmetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plants" title="aromatic plants">aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnobotanical%20survey" title=" ethnobotanical survey"> ethnobotanical survey</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20use" title=" traditional use"> traditional use</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20cosmetics" title=" natural cosmetics"> natural cosmetics</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=western%20Algeria" title=" western Algeria"> western Algeria</a> </p> <a href="https://publications.waset.org/abstracts/157765/inventory-of-aromatic-and-medicinal-plants-used-in-natural-cosmetics-in-western-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9433</span> Finite Element Method for Modal Analysis of FGM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Shahidzadeh%20Tabatabaei">S. J. Shahidzadeh Tabatabaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Fattahi"> A. M. Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis of a FGM plate containing the ceramic phase of Al<sub>2</sub>O<sub>3</sub> and metal phase of stainless steel 304 was performed using ABAQUS, with the assumptions that the material has an elastic mechanical behavior and its Young modulus and density are varying in thickness direction. For this purpose, a subroutine was written in FOTRAN and linked with ABAQUS. First, a simulation was performed in accordance to other researcher&rsquo;s model, and then after comparing the obtained results, the accuracy of the present study was verified. The obtained results for natural frequency and mode shapes indicate good performance of user-written subroutine as well as FEM model used in present study. After verification of obtained results, the effect of clamping condition and the material type (i.e. the parameter <em>n</em>) was investigated. In this respect, finite element analysis was carried out in fully clamped condition for different values of <em>n</em>. The results indicate that the natural frequency decreases with increase of <em>n</em>, since with increase of <em>n</em>, the amount of ceramic phase in FGM plate decreases, while the amount of metal phase increases, leading to decrease of the plate stiffness and hence, natural frequency, as the Young modulus of Al<sub>2</sub>O<sub>3</sub> is equal to 380 GPa and the Young modulus of stainless steel 304 is equal to 207 GPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FGM%20plates" title="FGM plates">FGM plates</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/47414/finite-element-method-for-modal-analysis-of-fgm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9432</span> Solutions for Large Diameter Piles Stifness Used in Offshore Wind Turbine Farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Aissa">M. H. Aissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Bouzid%20Dj"> Amar Bouzid Dj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As known, many countries are now planning to build new wind farms with high capacity up to 5MW. Consequently, the size of the foundation increase. These kinds of structures are subject to fatigue damage from environmental loading mainly due to wind and waves as well as from cyclic loading imposed through the rotational frequency (1P) through mass and aerodynamic imbalances and from the blade passing frequency (3P) of the wind turbine which make them behavior dynamically very sensitive. That is why natural frequency must be determined with accuracy from the existing data of the soil and the foundation stiffness sources of uncertainties, to avoid the resonance of the system. This paper presents analytical expressions of stiffness foundation with large diameter in linear soil behavior in different soil stiffness profile. To check the accuracy of the proposed formulas, a mathematical model approach based on non-dimensional parameters is used to calculate the natural frequency taking into account the soil structure interaction (SSI) compared with the p-y method and measured frequency in the North Sea Wind farms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20turbines" title="offshore wind turbines">offshore wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20analytical%20FE%20analysis" title=" semi analytical FE analysis"> semi analytical FE analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=p-y%20curves" title=" p-y curves"> p-y curves</a>, <a href="https://publications.waset.org/abstracts/search?q=piles%20foundations" title=" piles foundations"> piles foundations</a> </p> <a href="https://publications.waset.org/abstracts/33799/solutions-for-large-diameter-piles-stifness-used-in-offshore-wind-turbine-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9431</span> Modal Analysis of FGM Plates Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Shahidzadeh%20Tabatabaei">S. J. Shahidzadeh Tabatabaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Fattahi"> A. M. Fattahi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis of an FGM plate containing the ceramic phase of Al2O3 and metal phase of stainless steel 304 was performed using ABAQUS, with the assumptions that the material has an elastic mechanical behavior and its Young modulus and density are varying in thickness direction. For this purpose, a subroutine was written in FORTRAN and linked with ABAQUS. First, a simulation was performed in accordance to other researcher’s model, and then after comparing the obtained results, the accuracy of the present study was verified. The obtained results for natural frequency and mode shapes indicate good performance of user-written subroutine as well as FEM model used in present study. After verification of obtained results, the effect of clamping condition and the material type (i.e. the parameter n) was investigated. In this respect, finite element analysis was carried out in fully clamped condition for different values of n. The results indicate that the natural frequency decreases with increase of n, since with increase of n, the amount of ceramic phase in FGM plate decreases, while the amount of metal phase increases, leading to decrease of the plate stiffness and hence, natural frequency, as the Young modulus of Al2O3 is equal to 380 GPa and the Young modulus of stainless steel 304 is equal to 207 GPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FGM%20plates" title="FGM plates">FGM plates</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/48439/modal-analysis-of-fgm-plates-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9430</span> Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Foad%20Nazari">Foad Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mahmood%20Hosseini"> Seyed Mahmood Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Abolbashari"> Mohammad Hossein Abolbashari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hassan%20Abolbashari"> Mohammad Hassan Abolbashari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate&rsquo;s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title="optimal design">optimal design</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=FG%20plate" title=" FG plate"> FG plate</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20meshless%20method" title=" hybrid meshless method"> hybrid meshless method</a>, <a href="https://publications.waset.org/abstracts/search?q=MLPG%20method" title=" MLPG method"> MLPG method</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN%20approach" title=" ANN approach"> ANN approach</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/55056/parametric-analysis-and-optimal-design-of-functionally-graded-plates-using-particle-swarm-optimization-algorithm-and-a-hybrid-meshless-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9429</span> Damping and Stability Evaluation for the Dynamical Hunting Motion of the Bullet Train Wheel Axle Equipped with Cylindrical Wheel Treads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classical matrix calculus and Routh-Hurwitz stability conditions, applied to the snake-like motion of the conical wheel axle, lead to the conclusion that the hunting mode is inherently unstable, and its natural frequency is a complex number. In order to analytically solve such a complicated vibration model, either the inertia terms were neglected, in the model designated as geometrical, or restrictions on the creep coefficients and yawing diameter were imposed, in the so-called dynamical model. Here, an alternative solution is proposed to solve the hunting mode, based on the observation that the bullet train wheel axle is equipped with cylindrical wheels. One argues that for such wheel treads, the geometrical hunting is irrelevant, since its natural frequency becomes nil, but the dynamical hunting is significant since its natural frequency reduces to a real number. Moreover, one illustrates that the geometrical simplification of the wheel causes the stabilization of the hunting mode, since the characteristic quartic equation, derived for conical wheels, reduces to a quadratic equation of positive coefficients, for cylindrical wheels. Quite simple analytical expressions for the damping ratio and natural frequency are obtained, without applying restrictions into the model of contact. Graphs of the time-depending hunting lateral perturbation, including the maximal and inflexion points, are presented both for the critically-damped and the over-damped wheel axles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bullet%20train" title="bullet train">bullet train</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20wheels" title=" cylindrical wheels"> cylindrical wheels</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20hunting" title=" dynamical hunting"> dynamical hunting</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/96999/damping-and-stability-evaluation-for-the-dynamical-hunting-motion-of-the-bullet-train-wheel-axle-equipped-with-cylindrical-wheel-treads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9428</span> Natural Frequency Analysis of Spinning Functionally Graded Cylindrical Shells Subjected to Thermal Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Bahmyari">Esmaeil Bahmyari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural frequency analysis of the functionally graded (FG) rotating cylindrical shells subjected to thermal loads is studied based on the three-dimensional elasticity theory. The temperature-dependent assumption of the material properties is graded in the thickness direction, which varies based on the simple power law distribution. The governing equations and the appropriate boundary conditions, which include the effects of initial thermal stresses, are derived employing Hamilton’s principle. The initial thermo-mechanical stresses are obtained by the thermo-elastic equilibrium equation’s solution. As an efficient and accurate numerical tool, the differential quadrature method (DQM) is adopted to solve the thermo-elastic equilibrium equations, free vibration equations and natural frequencies are obtained. The high accuracy of the method is demonstrated by comparison studies with those existing solutions in the literature. Ultimately, the parametric studies are performed to demonstrate the effects of boundary conditions, temperature rise, material graded index, the thickness-to-length and the aspect ratios for the rotating cylindrical shells on the natural frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title="free vibration">free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=DQM" title=" DQM"> DQM</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity%20theory" title=" elasticity theory"> elasticity theory</a>, <a href="https://publications.waset.org/abstracts/search?q=FG%20shell" title=" FG shell"> FG shell</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20cylindrical%20shell" title=" rotating cylindrical shell"> rotating cylindrical shell</a> </p> <a href="https://publications.waset.org/abstracts/166131/natural-frequency-analysis-of-spinning-functionally-graded-cylindrical-shells-subjected-to-thermal-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9427</span> An Investigation on Hybrid Composite Drive Shaft for Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gizem%20Arslan%20%C3%96zgen">Gizem Arslan Özgen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kutay%20Y%C3%BCcet%C3%BCrk"> Kutay Yücetürk</a>, <a href="https://publications.waset.org/abstracts/search?q=Metin%20Tano%C4%9Flu"> Metin Tanoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Engin%20Akta%C5%9F"> Engin Aktaş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power transmitted from the engine to the final drive where useful work is applied through a system consisting of a gearbox, clutch, drive shaft and a differential in the rear-wheel-drive automobiles. It is well-known that the steel drive shaft is usually manufactured in two pieces to increase the fundamental bending natural frequency to ensure safe operation conditions. In this work, hybrid one-piece propeller shafts composed of carbon/epoxy and glass/epoxy composites have been designed for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Hybridization of carbon and glass fibers is being studied to optimize the cost/performance requirements. Composites shaft materials with various fiber orientation angles and stacking sequences are being fabricated and analyzed using finite element analysis (FEA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20propeller%20shaft" title="composite propeller shaft">composite propeller shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=hybridization" title=" hybridization"> hybridization</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20matrix" title=" epoxy matrix"> epoxy matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20torque%20transmission%20capability" title=" static torque transmission capability"> static torque transmission capability</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20buckling%20strength" title=" torsional buckling strength"> torsional buckling strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental%20natural%20bending%20frequency." title=" fundamental natural bending frequency."> fundamental natural bending frequency.</a> </p> <a href="https://publications.waset.org/abstracts/90888/an-investigation-on-hybrid-composite-drive-shaft-for-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9426</span> Estimation of the Effect of Initial Damping Model and Hysteretic Model on Dynamic Characteristics of Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinji%20Ukita">Shinji Ukita</a>, <a href="https://publications.waset.org/abstracts/search?q=Naohiro%20Nakamura"> Naohiro Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Miyazu"> Yuji Miyazu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In considering the dynamic characteristics of structure, natural frequency and damping ratio are useful indicator. When performing dynamic design, it's necessary to select an appropriate initial damping model and hysteretic model. In the linear region, the setting of initial damping model influences the response, and in the nonlinear region, the combination of initial damping model and hysteretic model influences the response. However, the dynamic characteristics of structure in the nonlinear region remain unclear. In this paper, we studied the effect of setting of initial damping model and hysteretic model on the dynamic characteristics of structure. On initial damping model setting, Initial stiffness proportional, Tangent stiffness proportional, and Rayleigh-type were used. On hysteretic model setting, TAKEDA model and Normal-trilinear model were used. As a study method, dynamic analysis was performed using a lumped mass model of base-fixed. During analysis, the maximum acceleration of input earthquake motion was gradually increased from 1 to 600 gal. The dynamic characteristics were calculated using the ARX model. Then, the characteristics of 1st and 2nd natural frequency and 1st damping ratio were evaluated. Input earthquake motion was simulated wave that the Building Center of Japan has published. On the building model, an RC building with 30×30m planes on each floor was assumed. The story height was 3m and the maximum height was 18m. Unit weight for each floor was 1.0t/m2. The building natural period was set to 0.36sec, and the initial stiffness of each floor was calculated by assuming the 1st mode to be an inverted triangle. First, we investigated the difference of the dynamic characteristics depending on the difference of initial damping model setting. With the increase in the maximum acceleration of the input earthquake motions, the 1st and 2nd natural frequency decreased, and the 1st damping ratio increased. Then, in the natural frequency, the difference due to initial damping model setting was small, but in the damping ratio, a significant difference was observed (Initial stiffness proportional≒Rayleigh type>Tangent stiffness proportional). The acceleration and the displacement of the earthquake response were largest in the tangent stiffness proportional. In the range where the acceleration response increased, the damping ratio was constant. In the range where the acceleration response was constant, the damping ratio increased. Next, we investigated the difference of the dynamic characteristics depending on the difference of hysteretic model setting. With the increase in the maximum acceleration of the input earthquake motions, the natural frequency decreased in TAKEDA model, but in Normal-trilinear model, the natural frequency didn’t change. The damping ratio in TAKEDA model was higher than that in Normal-trilinear model, although, both in TAKEDA model and Normal-trilinear model, the damping ratio increased. In conclusion, in initial damping model setting, the tangent stiffness proportional was evaluated the most. In the hysteretic model setting, TAKEDA model was more appreciated than the Normal-trilinear model in the nonlinear region. Our results would provide useful indicator on dynamic design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=initial%20damping%20model" title="initial damping model">initial damping model</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title=" damping ratio"> damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteretic%20model" title=" hysteretic model"> hysteretic model</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a> </p> <a href="https://publications.waset.org/abstracts/84895/estimation-of-the-effect-of-initial-damping-model-and-hysteretic-model-on-dynamic-characteristics-of-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9425</span> Finite Element Analysis of Resonance Frequency Shift of Laminated Composite Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Yang%20Kwa">Cheng Yang Kwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoke%20Rung%20Wong"> Yoke Rung Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laminated composite materials are widely employed in automotive, aerospace, and other industries. These materials provide distinct benefits due to their high specific strength, high specific modulus, and ability to be customized for a specific function. However, delamination of laminated composite materials is one of the main defects which can occur during manufacturing, regular operations, or maintenance. Delamination can bring about considerable internal damage, unobservable by visual check, that causes significant loss in strength and stability, leading to composite structure catastrophic failure. Structural health monitoring (SHM) is known to be the automated method for monitoring and evaluating the condition of a monitored object. There are several ways to conduct SHM in aerospace. One of the effective methods is to monitor the natural frequency shift of structure due to the presence of defect. This study investigated the mechanical resonance frequency shift of a multi-layer composite cantilever beam due to interlaminar delamination. ANSYS Workbench® was used to create a 4-plies laminated composite cantilever finite element model with [90/0]s fiber setting. Epoxy Carbon UD (230GPA) Prepreg was chosen, and the thickness was 2.5mm for each ply. The natural frequencies of the finite element model with various degree of delamination were simulated based on modal analysis and then validated by using literature. It was shown that the model without delamination had natural frequency of 40.412 Hz, which was 1.55% different from the calculated result (41.050 Hz). Thereafter, the various degree of delamination was mimicked by changing the frictional conditions at the middle ply-to-ply interface. The results suggested that delamination in the laminated composite cantilever induced a change in its stiffness which alters its mechanical resonance frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title="structural health monitoring">structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever" title=" cantilever"> cantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=laminate" title=" laminate"> laminate</a> </p> <a href="https://publications.waset.org/abstracts/148092/finite-element-analysis-of-resonance-frequency-shift-of-laminated-composite-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9424</span> Analysis of Building Response from Vertical Ground Motions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20C.%20Yao">George C. Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Yu%20Tu"> Chao-Yu Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Chung%20Chen"> Wei-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fung-Wen%20Kuo"> Fung-Wen Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shan%20Chang"> Yu-Shan Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building structures are subjected to both horizontal and vertical ground motions during earthquakes, but only the horizontal ground motion has been extensively studied and considered in design. Most of the prevailing seismic codes assume the vertical component to be 1/2 to 2/3 of the horizontal one. In order to understand the building responses from vertical ground motions, many earthquakes records are studied in this paper. System identification methods (ARX Model) are used to analyze the strong motions and to find out the characteristics of the vertical amplification factors and the natural frequencies of buildings. Analysis results show that the vertical amplification factors for high-rise buildings and low-rise building are 1.78 and 2.52 respectively, and the average vertical amplification factor of all buildings is about 2. The relationship between the vertical natural frequency and building height was regressed to a suggested formula in this study. The result points out an important message; the taller the building is, the greater chance of resonance of vertical vibration on the building will be. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20ground%20motion" title="vertical ground motion">vertical ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20amplification%20factor" title=" vertical amplification factor"> vertical amplification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=component" title=" component"> component</a> </p> <a href="https://publications.waset.org/abstracts/73421/analysis-of-building-response-from-vertical-ground-motions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9423</span> Steady State Rolling and Dynamic Response of a Tire at Low Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Monir%20Hossain">Md Monir Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Staples"> Anne Staples</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuya%20Takami"> Kuya Takami</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomonari%20Furukawa"> Tomonari Furukawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title="natural frequency">natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20motion" title=" rotational motion"> rotational motion</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state%20rolling" title=" steady state rolling"> steady state rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=subspace-based%20steady%20state%20dynamic%20analysis" title=" subspace-based steady state dynamic analysis"> subspace-based steady state dynamic analysis</a> </p> <a href="https://publications.waset.org/abstracts/85238/steady-state-rolling-and-dynamic-response-of-a-tire-at-low-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9422</span> A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Dey">S. Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Mukhopadhyay"> T. Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Adhikari"> S. Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20plate" title="composite plate">composite plate</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20regression%20model" title=" polynomial regression model"> polynomial regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20technique" title=" sampling technique"> sampling technique</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a> </p> <a href="https://publications.waset.org/abstracts/24714/a-comparative-study-on-sampling-techniques-of-polynomial-regression-model-based-stochastic-free-vibration-of-composite-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9421</span> Experimental Modal Analysis of Reinforced Concrete Square Slabs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ahmed">M. S. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Mohammad"> F. A. Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square specimens (0.6m x 0.6m with 40 mm). Experimental analysis is based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to perform the dynamic behavior of RC slabs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title="natural frequencies">natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shapes" title=" mode shapes"> mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20slabs" title=" RC slabs"> RC slabs</a> </p> <a href="https://publications.waset.org/abstracts/16946/experimental-modal-analysis-of-reinforced-concrete-square-slabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9420</span> Vibration Based Damage Detection and Stiffness Reduction of Bridges: Experimental Study on a Small Scale Concrete Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirco%20Tarozzi">Mirco Tarozzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Pignagnoli"> Giacomo Pignagnoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Benedetti"> Andrea Benedetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural systems are often subjected to degradation processes due to different kind of phenomena like unexpected loadings, ageing of the materials and fatigue cycles. This is true especially for bridges, in which their safety evaluation is crucial for the purpose of a design of planning maintenance. This paper discusses the experimental evaluation of the stiffness reduction from frequency changes due to uniform damage scenario. For this purpose, a 1:4 scaled bridge has been built in the laboratory of the University of Bologna. It is made of concrete and its cross section is composed by a slab linked to four beams. This concrete deck is 6 m long and 3 m wide, and its natural frequencies have been identified dynamically by exciting it with an impact hammer, a dropping weight, or by walking on it randomly. After that, a set of loading cycles has been applied to this bridge in order to produce a uniformly distributed crack pattern. During the loading phase, either cracking moment and yielding moment has been reached. In order to define the relationship between frequency variation and loss in stiffness, the identification of the natural frequencies of the bridge has been performed, before and after the occurrence of the damage, corresponding to each load step. The behavior of breathing cracks and its effect on the natural frequencies has been taken into account in the analytical calculations. By using a sort of exponential function given from the study of lot of experimental tests in the literature, it has been possible to predict the stiffness reduction through the frequency variation measurements. During the load test also crack opening and middle span vertical displacement has been monitored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20bridge" title="concrete bridge">concrete bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20test" title=" dynamic test"> dynamic test</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20shifts" title=" frequency shifts"> frequency shifts</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20modal%20analysis" title=" operational modal analysis"> operational modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/99651/vibration-based-damage-detection-and-stiffness-reduction-of-bridges-experimental-study-on-a-small-scale-concrete-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9419</span> Comparison of Frequency-Domain Contention Schemes in Wireless LANs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Feng">Li Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we survey the latest research progress on the weighed frequency-domain contention. We present the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=802.11" title="802.11">802.11</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20LANs" title=" wireless LANs"> wireless LANs</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-domain%20contention" title=" frequency-domain contention"> frequency-domain contention</a>, <a href="https://publications.waset.org/abstracts/search?q=T2F" title=" T2F"> T2F</a> </p> <a href="https://publications.waset.org/abstracts/42959/comparison-of-frequency-domain-contention-schemes-in-wireless-lans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9418</span> Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ardalan%20Sabamehr">Ardalan Sabamehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20vibration" title="ambient vibration">ambient vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain%20decomposition" title=" frequency domain decomposition"> frequency domain decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20subspace%20identification" title=" stochastic subspace identification"> stochastic subspace identification</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20wavelet%20transform" title=" continuous wavelet transform"> continuous wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/56951/frequency-domain-decomposition-stochastic-subspace-identification-and-continuous-wavelet-transform-for-operational-modal-analysis-of-three-story-steel-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9417</span> Structural Health Monitoring of Buildings and Infrastructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Valinejadshoubi">Mojtaba Valinejadshoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Moselhi"> Osama Moselhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title="structural health monitoring">structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model%20updating" title=" finite element model updating"> finite element model updating</a> </p> <a href="https://publications.waset.org/abstracts/50371/structural-health-monitoring-of-buildings-and-infrastructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9416</span> Fundamental Natural Frequency of Chromite Composite Floor System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Abbas%20Gandomkar">Farhad Abbas Gandomkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Danesh"> Mona Danesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to determine Fundamental Natural Frequency (FNF) of a structural composite floor system known as Chromite. To achieve this purpose, FNFs of studied panels are determined by development of Finite Element Models (FEMs) in ABAQUS program. American Institute of Steel Construction (AISC) code in Steel Design Guide Series 11, presents a fundamental formula to calculate FNF of a steel framed floor system. This formula has been used to verify results of the FEMs. The variability in the FNF of the studied system under various parameters such as dimensions of floor, boundary conditions, rigidity of main and secondary beams around the floor, thickness of concrete slab, height of composite joists, distance between composite joists, thickness of top and bottom flanges of the open web steel joists, and adding tie beam perpendicular on the composite joists, is determined. The results show that changing in dimensions of the system, its boundary conditions, rigidity of main beam, and also adding tie beam, significant changes the FNF of the system up to 452.9%, 50.8%, -52.2%, %52.6%, respectively. In addition, increasing thickness of concrete slab increases the FNF of the system up to 10.8%. Furthermore, the results demonstrate that variation in rigidity of secondary beam, height of composite joist, and distance between composite joists, and thickness of top and bottom flanges of open web steel joists insignificant changes the FNF of the studied system up to -0.02%, -3%, -6.1%, and 0.96%, respectively. Finally, the results of this study help designer predict occurrence of resonance, comfortableness, and design criteria of the studied system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fundamental%20Natural%20Frequency" title="Fundamental Natural Frequency">Fundamental Natural Frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=Chromite%20Composite%20Floor%20System" title=" Chromite Composite Floor System"> Chromite Composite Floor System</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method" title=" Finite Element Method"> Finite Element Method</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20and%20high%20frequency%20floors" title=" low and high frequency floors"> low and high frequency floors</a>, <a href="https://publications.waset.org/abstracts/search?q=Comfortableness" title=" Comfortableness"> Comfortableness</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance." title=" resonance."> resonance.</a> </p> <a href="https://publications.waset.org/abstracts/32885/fundamental-natural-frequency-of-chromite-composite-floor-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=314">314</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=315">315</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20frequency&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10