CINXE.COM
Search results for: Higgs Boson
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Higgs Boson</title> <meta name="description" content="Search results for: Higgs Boson"> <meta name="keywords" content="Higgs Boson"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Higgs Boson" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Higgs Boson"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 24</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Higgs Boson</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Turk%20Cakir">Ilkay Turk Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Altinli"> Murat Altinli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zekeriya%20Uysal"> Zekeriya Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkadir%20Senol"> Abdulkadir Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Olcay%20Bolukbasi%20Yalcinkaya"> Olcay Bolukbasi Yalcinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Yilmaz"> Ali Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalos%20couplings" title="anomalos couplings">anomalos couplings</a>, <a href="https://publications.waset.org/abstracts/search?q=FCC-eh" title=" FCC-eh"> FCC-eh</a>, <a href="https://publications.waset.org/abstracts/search?q=Higgs" title=" Higgs"> Higgs</a>, <a href="https://publications.waset.org/abstracts/search?q=Z%20boson" title=" Z boson"> Z boson</a> </p> <a href="https://publications.waset.org/abstracts/82433/the-search-of-anomalous-higgs-boson-couplings-at-the-large-hadron-electron-collider-and-future-circular-electron-hadron-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Neutral Heavy Scalar Searches via Standard Model Gauge Boson Decays at the Large Hadron Electron Collider with Multivariate Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luigi%20Delle%20Rose">Luigi Delle Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Fischer"> Oliver Fischer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hammad"> Ahmed Hammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we study the prospects of the proposed Large Hadron electron Collider (LHeC) in the search for heavy neutral scalar particles. We consider a minimal model with one additional complex scalar singlet that interacts with the Standard Model (SM) via mixing with the Higgs doublet, giving rise to an SM-like Higgs boson and a heavy scalar particle. Both scalar particles are produced via vector boson fusion and can be tested via their decays into pairs of SM particles, analogously to the SM Higgs boson. Using multivariate techniques, we show that the LHeC is sensitive to heavy scalars with masses between 200 and 800 GeV down to scalar mixing of order 0.01. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beyond%20the%20standard%20model" title="beyond the standard model">beyond the standard model</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20hadron%20electron%20collider" title=" large hadron electron collider"> large hadron electron collider</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20analysis" title=" multivariate analysis"> multivariate analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=scalar%20singlet" title=" scalar singlet"> scalar singlet</a> </p> <a href="https://publications.waset.org/abstracts/102214/neutral-heavy-scalar-searches-via-standard-model-gauge-boson-decays-at-the-large-hadron-electron-collider-with-multivariate-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Supersymmetry versus Compositeness: 2-Higgs Doublet Models Tell the Story</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20De%20Curtis">S. De Curtis</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Delle%20Rose"> L. Delle Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moretti"> S. Moretti</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yagyu"> K. Yagyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersymmetry and compositeness are the two prevalent paradigms providing both a solution to the hierarchy problem and motivation for a light Higgs boson state. An open door towards the solution is found in the context of 2-Higgs Doublet Models (2HDMs), which are necessary to supersymmetry and natural within compositeness in order to enable Electro-Weak Symmetry Breaking. In scenarios of compositeness, the two isospin doublets arise as pseudo Nambu-Goldstone bosons from the breaking of SO(6). By calculating the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the global symmetry induced by the partial compositeness of fermions and gauge bosons, we derive the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider. These include modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We contrast the properties of this composite scenario to the well-known ones established in supersymmetry, with the MSSM being the most notorious example. We show how 2HDM spectra of masses and couplings accessible at the Large Hadron Collider may allow one to distinguish between the two paradigms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beyond%20the%20standard%20model" title="beyond the standard model">beyond the standard model</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20Higgs" title=" composite Higgs"> composite Higgs</a>, <a href="https://publications.waset.org/abstracts/search?q=supersymmetry" title=" supersymmetry"> supersymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Two-Higgs%20Doublet%20Model" title=" Two-Higgs Doublet Model"> Two-Higgs Doublet Model</a> </p> <a href="https://publications.waset.org/abstracts/102212/supersymmetry-versus-compositeness-2-higgs-doublet-models-tell-the-story" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> A Theoretical Study of Accelerating Neutrons in LINAC Using Magnetic Gradient Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chunduru%20Amareswara%20Prasad">Chunduru Amareswara Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this proposal it to reveal the secrets of the universe by accelerating neutrons. The proposal idea in its abridged version speaks about the possibility of making neutrons accelerate with help of thermal energy and magnetic energy under controlled conditions. Which is helpful in revealing the hidden secrets of the universe namely dark energy and in finding properties of Higgs boson. The paper mainly speaks about accelerating neutrons to near velocity of light in a LINAC, using magnetic energy by magnetic pressurizers. The center of mass energy of two colliding neutron beams is 94 GeV (~0.5c) can be achieved using this method. The conventional ways to accelerate neutrons has some constraints in accelerating them electromagnetically as they need to be separated from the Tritium or Deuterium nuclei. This magnetic gradient method provides efficient and simple way to accelerate neutrons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron" title="neutron">neutron</a>, <a href="https://publications.waset.org/abstracts/search?q=acceleration" title=" acceleration"> acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy" title=" thermal energy"> thermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20energy" title=" magnetic energy"> magnetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Higgs%20boson" title=" Higgs boson"> Higgs boson</a> </p> <a href="https://publications.waset.org/abstracts/47270/a-theoretical-study-of-accelerating-neutrons-in-linac-using-magnetic-gradient-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Search for Flavour Changing Neutral Current Couplings of Higgs-up Sector Quarks at Future Circular Collider (FCC-eh)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Turk%20Cakir">I. Turk Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hacisahinoglu"> B. Hacisahinoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kartal"> S. Kartal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yilmaz"> A. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yilmaz"> A. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Uysal"> Z. Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Cakir"> O. Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the search for new physics beyond the Standard Model, Flavour Changing Neutral Current (FCNC) is a good research field in terms of the observability at future colliders. Increased Higgs production with higher energy and luminosity in colliders is essential for verification or falsification of our knowledge of physics and predictions, and the search for new physics. Prospective electron-proton collider constituent of the Future Circular Collider project is FCC-eh. It offers great sensitivity due to its high luminosity and low interference. In this work, thq FCNC interaction vertex with off-shell top quark decay at electron-proton colliders is studied. By using MadGraph5_aMC@NLO multi-purpose event generator, observability of tuh and tch couplings are obtained with equal coupling scenario. Upper limit on branching ratio of tree level top quark FCNC decay is determined as 0.012% at FCC-eh with 1 ab ^−1 luminosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FCC" title="FCC">FCC</a>, <a href="https://publications.waset.org/abstracts/search?q=FCNC" title=" FCNC"> FCNC</a>, <a href="https://publications.waset.org/abstracts/search?q=Higgs%20Boson" title=" Higgs Boson"> Higgs Boson</a>, <a href="https://publications.waset.org/abstracts/search?q=Top%20Quark" title=" Top Quark"> Top Quark</a> </p> <a href="https://publications.waset.org/abstracts/83207/search-for-flavour-changing-neutral-current-couplings-of-higgs-up-sector-quarks-at-future-circular-collider-fcc-eh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Analyzing Boson Star as a Candidate for Dark Galaxy Using ADM Formulation of General Relativity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aria%20Ratmandanu">Aria Ratmandanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boson stars can be viewed as zero temperature ground state, Bose-Einstein condensates, characterized by enormous occupation numbers. Time-dependent spherically symmetric spacetime can be a model of Boson Star. We use (3+1) split of Einstein equation (ADM formulation of general relativity) to solve Einstein field equation coupled to a complex scalar field (Einstein-Klein-Gordon Equation) on time-dependent spherically symmetric spacetime, We get the result that Boson stars are pulsating stars with the frequency of oscillation equal to its density. We search for interior solution of Boson stars and get the T.O.V. (Tollman-Oppenheimer-Volkoff) equation for Boson stars. Using T.O.V. equation, we get the equation of state and the relation between pressure and density, its total mass and along with its gravitational Mass. We found that the hypothetical particle Axion could form a Boson star with the size of a milky way galaxy and make it a candidate for a dark galaxy, (a galaxy that consists almost entirely of dark matter). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axion" title="axion">axion</a>, <a href="https://publications.waset.org/abstracts/search?q=boson%20star" title=" boson star"> boson star</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20galaxy" title=" dark galaxy"> dark galaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20spherically%20symmetric%20spacetime" title=" time-dependent spherically symmetric spacetime"> time-dependent spherically symmetric spacetime</a> </p> <a href="https://publications.waset.org/abstracts/70005/analyzing-boson-star-as-a-candidate-for-dark-galaxy-using-adm-formulation-of-general-relativity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Novel Ferroelectric Properties as Studied by Boson Mean Field Laser Radiation Induced from a Beer Bottle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadeus%20Atraskevic">Tadeus Atraskevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Asch%20Dalbajobas"> Asch Dalbajobas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazahistas%20Pukuotukas"> Mazahistas Pukuotukas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The novel ferroelectric properties appeared in the recent ten years. Many scientists consider them as non-statement science. Nevertheless, many papers are published. The Mean field theory takes an important place in the theory of ferroelectric materials which can be applied for Boson induced laser systems for ‘Star Track’ soldiers. The novel Laser, which was produced in The Vilnius Bambalio University is a ‘now-how’ among other laser systems. The laser can produce power of 30 kW during 15 seconds. Its size and compatibility distinguishes it among other devices and safety gadgets. Scientists of Bambalio University have already patented the device. The most interesting in this innovations is the process of operation. Merely it may be operated through a bottle a beer what makes the measurement so convenient, that an ordinary scientist can process all stuff without significant effort just by taking pleasure by drinking a bottle of beer. Here we would like to report on the laser system and present our unique developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=boson" title=" boson"> boson</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroelectrics" title=" ferroelectrics"> ferroelectrics</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20field%20theory" title=" mean field theory"> mean field theory</a> </p> <a href="https://publications.waset.org/abstracts/75540/novel-ferroelectric-properties-as-studied-by-boson-mean-field-laser-radiation-induced-from-a-beer-bottle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> About the Number of Fundamental Physical Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Angorsky">Andrey Angorsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article an issue about the possible number of fundamental physical interactions is studied. The theory of similarity on the dimensionless quantity as the damping ratio serves as the instrument of analysis. The structure with the features of Higgs field comes out from non-commutative expression for this ratio. The experimentally checked up supposition about the nature of dark energy is spoken out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title="damping ratio">damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionless%20quantity" title=" dimensionless quantity"> dimensionless quantity</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental%20physical%20interactions" title=" fundamental physical interactions"> fundamental physical interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Higgs%20field" title=" Higgs field"> Higgs field</a>, <a href="https://publications.waset.org/abstracts/search?q=non-commutative%20expression" title=" non-commutative expression"> non-commutative expression</a> </p> <a href="https://publications.waset.org/abstracts/129144/about-the-number-of-fundamental-physical-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Consideration of Starlight Waves Redshift as Produced by Friction of These Waves on Its Way through Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1929, a light redshift was discovered in distant galaxies and was interpreted as produced by galaxies moving away from each other at high speed. This interpretation led to the consideration of a new source of energy, which was called Dark Energy. Redshift is a loss of light wave frequency produced by galaxies moving away at high speed, but the loss of frequency can also be produced by the friction of light waves on their way to Earth. This friction is impossible because outer space is empty, but if it were not empty and a medium existed in this empty space, it would be possible. The consequences would be extraordinary because Universe acceleration and Dark Energy would be in doubt. This article presents evidence that empty space is actually a medium occupied by different particles, among them the most significant would-be Graviton or Higgs Boson, because let's not forget that gravity also affects empty space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Big%20Bang" title="Big Bang">Big Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a>, <a href="https://publications.waset.org/abstracts/search?q=doppler%20effect" title=" doppler effect"> doppler effect</a>, <a href="https://publications.waset.org/abstracts/search?q=redshift" title=" redshift"> redshift</a>, <a href="https://publications.waset.org/abstracts/search?q=starlight%20frequency%20reduction" title=" starlight frequency reduction"> starlight frequency reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=universe%20acceleration" title=" universe acceleration"> universe acceleration</a> </p> <a href="https://publications.waset.org/abstracts/173854/consideration-of-starlight-waves-redshift-as-produced-by-friction-of-these-waves-on-its-way-through-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Standard Model-Like Higgs Decay into Displaced Heavy Neutrino Pairs in U(1)' Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Accomando">E. Accomando</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Delle%20Rose"> L. Delle Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moretti"> S. Moretti</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Olaiya"> E. Olaiya</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shepherd-Themistocleous"> C. Shepherd-Themistocleous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy sterile neutrinos are almost ubiquitous in the class of Beyond Standard Model scenarios aimed at addressing the puzzle that emerged from the discovery of neutrino flavour oscillations, hence the need to explain their masses. In particular, they are necessary in a U(1)’ enlarged Standard Model (SM). We show that these heavy neutrinos can be rather long-lived producing distinctive displaced vertices and tracks. Indeed, depending on the actual decay length, they can decay inside a Large Hadron Collider (LHC) detector far from the main interaction point and can be identified in the inner tracking system or the muon chambers, emulated here through the Compact Muon Solenoid (CMS) detector parameters. Among the possible production modes of such heavy neutrino, we focus on their pair production mechanism in the SM Higgs decay, eventually yielding displaced lepton signatures following the heavy neutrino decays into weak gauge bosons. By employing well-established triggers available for the CMS detector and using the data collected by the end of the LHC Run 2, these signatures would prove to be accessible with negligibly small background. Finally, we highlight the importance that the exploitation of new triggers, specifically, displaced tri-lepton ones, could have for this displaced vertex search. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beyond%20the%20standard%20model" title="beyond the standard model">beyond the standard model</a>, <a href="https://publications.waset.org/abstracts/search?q=displaced%20vertex" title=" displaced vertex"> displaced vertex</a>, <a href="https://publications.waset.org/abstracts/search?q=Higgs%20physics" title=" Higgs physics"> Higgs physics</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrino%20physics" title=" neutrino physics"> neutrino physics</a> </p> <a href="https://publications.waset.org/abstracts/102211/standard-model-like-higgs-decay-into-displaced-heavy-neutrino-pairs-in-u1-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Turk%20Cakir">I. Turk Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Senol"> A. Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Tasci"> A. T. Tasci</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Cakir"> O. Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the anomalous WWγ and WWZ couplings by calculating total cross sections of the ep→νqγX and ep→νqZX processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (Δκγ,λγ) and (Δκz,λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101,0.065) and (0.320,0.002) at an integrated luminosity of Lint=100 fb-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalous%20couplings" title="anomalous couplings">anomalous couplings</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20circular%20collider" title=" future circular collider"> future circular collider</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20hadron%20electron%20collider" title=" large hadron electron collider"> large hadron electron collider</a>, <a href="https://publications.waset.org/abstracts/search?q=W-boson%20and%20Z-boson" title=" W-boson and Z-boson"> W-boson and Z-boson</a> </p> <a href="https://publications.waset.org/abstracts/17408/probing-anomalous-ww-gh-and-wwz-couplings-with-polarized-electron-beam-at-the-lhec-and-fcc-ep-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> The Dressing Field Method of Gauge Symmetries Reduction: Presentation and Examples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Attard">Jeremy Attard</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan%20Fran%C3%A7ois"> Jordan François</a>, <a href="https://publications.waset.org/abstracts/search?q=Serge%20Lazzarini"> Serge Lazzarini</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Masson"> Thierry Masson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gauge theories are the natural background for describing geometrically fundamental interactions using principal and associated fiber bundles as dynamical entities. The central notion of these theories is their local gauge symmetry implemented by the local action of a Lie group H. There exist several methods used to reduce the symmetry of a gauge theory, like gauge fixing, bundle reduction theorem or spontaneous symmetry breaking mechanism (SSBM). This paper is a presentation of another method of gauge symmetry reduction, distinct from those three. Given a symmetry group H acting on a fiber bundle and its naturally associated fields (Ehresmann (or Cartan) connection, curvature, matter fields, etc.) there sometimes exists a way to erase (in whole or in part) the H-action by just reconfiguring these fields, i.e. by making a mere change of field variables in order to get new (‘composite‘) fields on which H (in whole or in part) does not act anymore. Two examples: the re-interpretation of the BEHGHK (Higgs) mechanism, on the one hand, and the top-down construction of Tractor and Penrose's Twistor spaces and connections in the framework of conformal Cartan geometry, one the other, will be discussed. They have, of course, nothing to do with each other but the dressing field method can be applied on both to get a new insight. In the first example, it turns out, indeed, that generation of masses in the Standard Model can be separated from the symmetry breaking, the latter being a mere change of field variables, i.e. a dressing. This offers an interpretation in opposition with the one usually found in textbooks. In the second case, the dressing field method applied to the conformal Cartan geometry offer a way of understanding the deep geometric nature of the so-called Tractors and Twistors. The dressing field method, distinct from a gauge transformation (even if it can have apparently the same form), is a systematic way of finding and erasing artificial symmetries of a theory, by a mere change of field variables which redistributes the degrees of freedom of the theories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BEHGHK%20%28Higgs%29%20mechanism" title="BEHGHK (Higgs) mechanism">BEHGHK (Higgs) mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=conformal%20gravity" title=" conformal gravity"> conformal gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=gauge%20theory" title=" gauge theory"> gauge theory</a>, <a href="https://publications.waset.org/abstracts/search?q=spontaneous%20symmetry%20breaking" title=" spontaneous symmetry breaking"> spontaneous symmetry breaking</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetry%20reduction" title=" symmetry reduction"> symmetry reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=twistors%20and%20tractors" title=" twistors and tractors"> twistors and tractors</a> </p> <a href="https://publications.waset.org/abstracts/74557/the-dressing-field-method-of-gauge-symmetries-reduction-presentation-and-examples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Simulation of the Large Hadrons Collisions Using Monte Carlo Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Al%20Daoud">E. Al Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many cases, theoretical treatments are available for models for which there is no perfect physical realization. In this situation, the only possible test for an approximate theoretical solution is to compare with data generated from a computer simulation. In this paper, Monte Carlo tools are used to study and compare the elementary particles models. All the experiments are implemented using 10000 events, and the simulated energy is 13 TeV. The mean and the curves of several variables are calculated for each model using MadAnalysis 5. Anomalies in the results can be seen in the muons masses of the minimal supersymmetric standard model and the two Higgs doublet model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feynman%20rules" title="Feynman rules">Feynman rules</a>, <a href="https://publications.waset.org/abstracts/search?q=hadrons" title=" hadrons"> hadrons</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian" title=" Lagrangian"> Lagrangian</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/63496/simulation-of-the-large-hadrons-collisions-using-monte-carlo-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Nondecoupling Signatures of Supersymmetry and an Lμ-Lτ Gauge Boson at Belle-II</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heerak%20Banerjee">Heerak Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sourov%20Roy"> Sourov Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersymmetry, one of the most celebrated fields of study for explaining experimental observations where the standard model (SM) falls short, is reeling from the lack of experimental vindication. At the same time, the idea of additional gauge symmetry, in particular, the gauged Lμ-Lτ symmetric models have also generated significant interest. They have been extensively proposed in order to explain the tantalizing discrepancy in the predicted and measured value of the muon anomalous magnetic moment alongside several other issues plaguing the SM. While very little parameter space within these models remain unconstrained, this work finds that the γ + Missing Energy (ME) signal at the Belle-II detector will be a smoking gun for supersymmetry (SUSY) in the presence of a gauged U(1)Lμ-Lτ symmetry. A remarkable consequence of breaking the enhanced symmetry appearing in the limit of degenerate (s)leptons is the nondecoupling of the radiative contribution of heavy charged sleptons to the γ-Z΄ kinetic mixing. The signal process, e⁺e⁻ →γZ΄→γ+ME, is an outcome of this ubiquitous feature. Taking the severe constraints on gauged Lμ-Lτ models by several low energy observables into account, it is shown that any significant excess in all but the highest photon energy bin would be an undeniable signature of such heavy scalar fields in SUSY coupling to the additional gauge boson Z΄. The number of signal events depends crucially on the logarithm of the ratio of stau to smuon mass in the presence of SUSY. In addition, the number is also inversely proportional to the e⁺e⁻ collision energy, making a low-energy, high-luminosity collider like Belle-II an ideal testing ground for this channel. This process can probe large swathes of the hitherto free slepton mass ratio vs. additional gauge coupling (gₓ) parameter space. More importantly, it can explore the narrow slice of Z΄ mass (MZ΄) vs. gₓ parameter space still allowed in gauged U(1)Lμ-Lτ models for superheavy sparticles. The spectacular finding that the signal significance is independent of individual slepton masses is an exciting prospect indeed. Further, the prospect that signatures of even superheavy SUSY particles that may have escaped detection at the LHC may show up at the Belle-II detector is an invigorating revelation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additional%20gauge%20symmetry" title="additional gauge symmetry">additional gauge symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-positron%20collider" title=" electron-positron collider"> electron-positron collider</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20mixing" title=" kinetic mixing"> kinetic mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=nondecoupling%20radiative%20effect" title=" nondecoupling radiative effect"> nondecoupling radiative effect</a>, <a href="https://publications.waset.org/abstracts/search?q=supersymmetry" title=" supersymmetry"> supersymmetry</a> </p> <a href="https://publications.waset.org/abstracts/109101/nondecoupling-signatures-of-supersymmetry-and-an-lm-lt-gauge-boson-at-belle-ii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Ground States of Structure of Even ¹⁰⁴-¹⁰⁶ Ru Isotopes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Hossain">I. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20H.%20Kassim"> Huda H. Kassim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadhil%20I.%20Sharrad"> Fadhil I. Sharrad</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20A.%20Mansour"> Said A. Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this conference, we apply the interacting boson model-1 (IBM-1) formula for U(5) symmetry in order to calculate the energy levels and reduced transition probabilities for a few yrast transitions in Ru with neutron N=60, 62. The neutron rich even-even isotopes of Ru are very interesting to investigate using IBM-1, because even 104,106Ru isotopes are great consequence due to excited near the magic number 50. The calculation of ground state band and B(E2) values using IBM-1 for Z=44 are not calculated to describe the valuable information of nuclear structure by U(5) limit. The parameters in the formula are deduced based on the experimental energy level and value of B(E2, 2+->0+). The yrast states and transition strength B(E2) from 1st 4+ to 1st 2+, 1st 6+ to 1st 4+ and 1st 8+ to 1st 6+ states of Ru for even N= 60, 62 were calculated. The quadrupole moments, deformation parameters and U(5) limit were discussed for those nuclei. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%28E2%29" title="B(E2)">B(E2)</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20level" title=" energy level"> energy level</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B0%E2%81%B4Ru" title=" ¹⁰⁴Ru"> ¹⁰⁴Ru</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B0%E2%81%B6Ru" title=" ¹⁰⁶Ru"> ¹⁰⁶Ru</a> </p> <a href="https://publications.waset.org/abstracts/56470/ground-states-of-structure-of-even-14-16-ru-isotopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Extending Early High Energy Physics Studies with a Tri-Preon Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Riley">Peter J. Riley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introductory courses in High Energy Physics (HEP) can be extended with the Tri-Preon (TP) model to both supplements and challenge the Standard Model (SM) theory. TP supplements by simplifying the tracking of Conserved Quantum Numbers at an interaction vertex, e.g., the lepton number can be seen as a di-preon current. TP challenges by proposing extended particle families to three generations of particle triplets for leptons, quarks, and weak bosons. There are extensive examples discussed at an introductory level in six arXiv publications, including supersymmetry, hyper color, and the Higgs. Interesting exercises include pion decay, kaon-antikaon mixing, neutrino oscillations, and K+ decay to muons. It is a revealing exercise for students to weigh the pros and cons of parallel theories at an early stage in their HEP journey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEP" title="HEP">HEP</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20physics" title=" particle physics"> particle physics</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20model" title=" standard model"> standard model</a>, <a href="https://publications.waset.org/abstracts/search?q=Tri-Preon%20model" title=" Tri-Preon model"> Tri-Preon model</a> </p> <a href="https://publications.waset.org/abstracts/165666/extending-early-high-energy-physics-studies-with-a-tri-preon-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Induced-Gravity Inflation in View of the Bicep2 Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Pallis">C. Pallis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Induced-Gravity inflation is a model of chaotic inflation where the inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling between the inflaton and the Ricci scalar curvature, inflation is attained even for subplanckian values of the inflaton with the corresponding effective theory being valid up to the Planck scale. In its simplest realization, induced-gravity inflation is based on a quatric potential and a quadratic non-minimal coupling and the inflationary observables turn out to be in agreement with the Planck data. Its supersymmetrization can be formulated within no-scale Supergravity employing two gauge singlet chiral superfields and applying a continuous $R$ and a discrete Zn symmetry to the proposed superpotential and Kahler potential. Modifying slightly the non-minimal coupling to Gravity, the model can account for the recent results of BICEP2. These modifications can be also accommodated beyond the no-scale SUGRA considering the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field and small deviations from the prefactor $-3$ encountered in the adopted Kahler potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmology" title="cosmology">cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=supersymmetric%20models" title=" supersymmetric models"> supersymmetric models</a>, <a href="https://publications.waset.org/abstracts/search?q=supergravity" title=" supergravity"> supergravity</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20gravity" title=" modified gravity"> modified gravity</a> </p> <a href="https://publications.waset.org/abstracts/13667/induced-gravity-inflation-in-view-of-the-bicep2-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">715</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> V0 Physics at LHCb. RIVET Analysis Module for Z Boson Decay to Di-Electron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Dumitriu">A. E. Dumitriu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The LHCb experiment is situated at one of the four points around CERN’s Large Hadron Collider, being a single-arm forward spectrometer covering 10 mrad to 300 (250) mrad in the bending (non-bending) plane, designed primarily to study particles containing b and c quarks. Each one of LHCb’s sub-detectors specializes in measuring a different characteristic of the particles produced by colliding protons, its significant detection characteristics including a high precision tracking system and 2 ring-imaging Cherenkov detectors for particle identification. The major two topics that I am currently concerned in are: the RIVET project (Robust Independent Validation of Experiment and Theory) which is an efficient and portable tool kit of C++ class library useful for validation and tuning of Monte Carlo (MC) event generator models by providing a large collection of standard experimental analyses useful for High Energy Physics MC generator development, validation, tuning and regression testing and V0 analysis for 2013 LHCb NoBias type data (trigger on bunch + bunch crossing) at √s=2.76 TeV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LHCb%20physics" title="LHCb physics">LHCb physics</a>, <a href="https://publications.waset.org/abstracts/search?q=RIVET%20plug-in" title=" RIVET plug-in"> RIVET plug-in</a>, <a href="https://publications.waset.org/abstracts/search?q=RIVET" title=" RIVET"> RIVET</a>, <a href="https://publications.waset.org/abstracts/search?q=CERN" title=" CERN"> CERN</a> </p> <a href="https://publications.waset.org/abstracts/27948/v0-physics-at-lhcb-rivet-analysis-module-for-z-boson-decay-to-di-electron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Ground State Phases in Two-Mode Quantum Rabi Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suren%20Chilingaryan">Suren Chilingaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20optics" title="quantum optics">quantum optics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20phase%20transition" title=" quantum phase transition"> quantum phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20QED" title=" cavity QED"> cavity QED</a>, <a href="https://publications.waset.org/abstracts/search?q=circuit%20QED" title=" circuit QED"> circuit QED</a> </p> <a href="https://publications.waset.org/abstracts/53277/ground-state-phases-in-two-mode-quantum-rabi-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Introducing Transcending Pedagogies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wajeehah%20Aayeshah">Wajeehah Aayeshah</a>, <a href="https://publications.waset.org/abstracts/search?q=Joy%20Higgs"> Joy Higgs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The term “transcending pedagogies” has been created to refer to teaching and learning strategies that transcend the mode of student enrolment, the needs of different students, and different learning spaces. The value of such pedagogies in the current arena when learning spaces, technologies and preferences are more volatile than ever before, is a key focus of this paper. The paper will examine current and emerging pedagogies that transcend the learning spaces and enrollment modes of on campus, distance, virtual and workplace learning contexts. A further point of interest is how academics in professional and higher education settings interpret and implement pedagogies in the current global conversation space and re-creation of higher education. This study questioned how the notion and practice of transcending pedagogies enables us to re-imagine and reshape university curricula. It explored the nature of teaching and learning spaces and those professional and higher education (current and emerging) pedagogies that can be implemented across these spaces. We set out to identify how transcending pedagogies can assist students in learning to deal with complexity, uncertainty and change in the practice worlds and better appeal to students who are making decisions on where to enrol. The data for this study was collected through in-depth interviews and focus groups with academics and policy makers within academia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Transcending%20Pedagogies" title="Transcending Pedagogies">Transcending Pedagogies</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20and%20learning%20strategies" title=" teaching and learning strategies"> teaching and learning strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20spaces" title=" learning spaces"> learning spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogies" title=" pedagogies"> pedagogies</a> </p> <a href="https://publications.waset.org/abstracts/20609/introducing-transcending-pedagogies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Investigating the Impact of Job-Related and Organisational Factors on Employee Engagement: An Emotionally Relevant Approach Based on Psychological Climate and Organisational Emotional Intelligence (OEI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuno%20Da%20Camara">Nuno Da Camara</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Dulewicz"> Victor Dulewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Malcolm%20Higgs"> Malcolm Higgs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Factors on employee engagement: In particular, although theorists have described the critical role of emotional cognition of the workplace environment as antecedents to employee engagement, empirical research on the impact of emotional cognition on employee engagement is limited. However, previous researchers have typically provided evidence of the link between emotional cognition of the workplace environment and workplace attitudes such as job satisfaction and organisational commitment. This study therefore aims to investigate the impact of emotional cognition of job, role, leader and organisation domains of the work environment – as represented by measures of psychological climate and organizational emotional intelligence (OEI) - on employee engagement. The research is based on a quantitative cross-sectional survey of employees in a UK charity organization (n=174). The research instruments applied include the psychological climate scale, the organisational emotional intelligence questionnaire (OEIQ) and the Utrecht Work Engagement Scale (UWES). The data were analysed using hierarchical regression and partial least squares (PLS) analytical techniques. The results of the study show that both psychological climate and OEI, which represent emotional cognition of job, role, leader and organisation domains in the workplace are significant drivers of employee engagement. In particular, the study found that a sense of contribution and challenge at work are the strongest drivers of vigour, dedication and absorption and highlights the importance of emotionally relevant approaches in furthering our understanding of workplace engagement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=employee%20engagement" title="employee engagement">employee engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=organisational%20emotional%20intelligence" title=" organisational emotional intelligence"> organisational emotional intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20climate" title=" psychological climate"> psychological climate</a>, <a href="https://publications.waset.org/abstracts/search?q=workplace%20attitudes" title=" workplace attitudes"> workplace attitudes</a> </p> <a href="https://publications.waset.org/abstracts/23879/investigating-the-impact-of-job-related-and-organisational-factors-on-employee-engagement-an-emotionally-relevant-approach-based-on-psychological-climate-and-organisational-emotional-intelligence-oei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Computer Simulation of Hydrogen Superfluidity through Binary Mixing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sea%20Hoon%20Lim">Sea Hoon Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A superfluid is a fluid of bosons that flows without resistance. In order to be a superfluid, a substance’s particles must behave like bosons, yet remain mobile enough to be considered a superfluid. Bosons are low-temperature particles that can be in all energy states at the same time. If bosons were to be cooled down, then the particles will all try to be on the lowest energy state, which is called the Bose Einstein condensation. The temperature when bosons start to matter is when the temperature has reached its critical temperature. For example, when Helium reaches its critical temperature of 2.17K, the liquid density drops and becomes a superfluid with zero viscosity. However, most materials will solidify -and thus not remain fluids- at temperatures well above the temperature at which they would otherwise become a superfluid. Only a few substances currently known to man are capable of at once remaining a fluid and manifesting boson statistics. The most well-known of these is helium and its isotopes. Because hydrogen is lighter than helium, and thus expected to manifest Bose statistics at higher temperatures than helium, one might expect hydrogen to also be a superfluid. As of today, however, no one has yet been able to produce a bulk, hydrogen superfluid. The reason why hydrogen did not form a superfluid in the past is its intermolecular interactions. As a result, hydrogen molecules are much more likely to crystallize than their helium counterparts. The key to creating a hydrogen superfluid is therefore finding a way to reduce the effect of the interactions among hydrogen molecules, postponing the solidification to lower temperature. In this work, we attempt via computer simulation to produce bulk superfluid hydrogen through binary mixing. Binary mixture is a technique of mixing two pure substances in order to avoid crystallization and enhance super fluidity. Our mixture here is KALJ H2. We then sample the partition function using this Path Integral Monte Carlo (PIMC), which is well-suited for the equilibrium properties of low-temperature bosons and captures not only the statistics but also the dynamics of Hydrogen. Via this sampling, we will then produce a time evolution of the substance and see if it exhibits superfluid properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superfluidity" title="superfluidity">superfluidity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20mixture" title=" binary mixture"> binary mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=physics" title=" physics"> physics</a> </p> <a href="https://publications.waset.org/abstracts/5797/computer-simulation-of-hydrogen-superfluidity-through-binary-mixing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Humans as Enrichment: Human-Animal Interactions and the Perceived Benefit to the Cheetah (Acinonyx jubatus), Human and Zoological Establishment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Higgs">S. J. Higgs</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Van%20Eck"> E. Van Eck</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Heynis"> K. Heynis</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Broadberry"> S. H. Broadberry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engagement with non-human animals is a rapidly-growing field of study within the animal science and social science sectors, with human-interactions occurring in many forms; interactions, encounters and animal-assisted therapy. To our knowledge, there has been a wide array of research published on domestic and livestock human-animal interactions, however, there appear to be fewer publications relating to zoo animals and the effect these interactions have on the animal, human and establishment. The aim of this study was to identify if there were any perceivable benefits from the human-animal interaction for the cheetah, the human and the establishment. Behaviour data were collected before, during and after the interaction on the behaviour of the cheetah and the human participants to highlight any trends with nine interactions conducted. All 35 participants were asked to fill in a questionnaire prior to the interaction and immediately after to ascertain if their perceptions changed following an interaction with the cheetah. An online questionnaire was also distributed for three months to gain an understanding of the perceptions of human-animal interactions from members of the public, gaining 229 responses. Both questionnaires contained qualitative and quantitative questions to allow for specific definitive answers to be analysed, but also expansion on the participants perceived perception of human-animal interactions. In conclusion, it was found that participants’ perceptions of human-animal interactions saw a positive change, with 64% of participants altering their opinion and viewing the interaction as beneficial for the cheetah (reduction in stress assumed behaviours) following participation in a 15-minute interaction. However, it was noted that many participants felt the interaction lacked educational values and therefore this is an area in which zoological establishments can work to further improve upon. The results highlighted many positive benefits for the human, animal and establishment, however, the study does indicate further areas for research in order to promote positive perceptions of human-animal interactions and to further increase the welfare of the animal during these interactions, with recommendations to create and regulate legislation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acinonyx%20jubatus" title="Acinonyx jubatus">Acinonyx jubatus</a>, <a href="https://publications.waset.org/abstracts/search?q=encounters" title=" encounters"> encounters</a>, <a href="https://publications.waset.org/abstracts/search?q=human-animal%20interactions" title=" human-animal interactions"> human-animal interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptions" title=" perceptions"> perceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=zoological%20establishments" title=" zoological establishments"> zoological establishments</a> </p> <a href="https://publications.waset.org/abstracts/88177/humans-as-enrichment-human-animal-interactions-and-the-perceived-benefit-to-the-cheetah-acinonyx-jubatus-human-and-zoological-establishment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Dual Duality for Unifying Spacetime and Internal Symmetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20C.%20Ni">David C. Ni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current efforts for Grand Unification Theory (GUT) can be classified into General Relativity, Quantum Mechanics, String Theory and the related formalisms. In the geometric approaches for extending General Relativity, the efforts are establishing global and local invariance embedded into metric formalisms, thereby additional dimensions are constructed for unifying canonical formulations, such as Hamiltonian and Lagrangian formulations. The approaches of extending Quantum Mechanics adopt symmetry principle to formulate algebra-group theories, which evolved from Maxwell formulation to Yang-Mills non-abelian gauge formulation, and thereafter manifested the Standard model. This thread of efforts has been constructing super-symmetry for mapping fermion and boson as well as gluon and graviton. The efforts of String theory currently have been evolving to so-called gauge/gravity correspondence, particularly the equivalence between type IIB string theory compactified on AdS5 × S5 and N = 4 supersymmetric Yang-Mills theory. Other efforts are also adopting cross-breeding approaches of above three formalisms as well as competing formalisms, nevertheless, the related symmetries, dualities, and correspondences are outlined as principles and techniques even these terminologies are defined diversely and often generally coined as duality. In this paper, we firstly classify these dualities from the perspective of physics. Then examine the hierarchical structure of classes from mathematical perspective referring to Coleman-Mandula theorem, Hidden Local Symmetry, Groupoid-Categorization and others. Based on Fundamental Theorems of Algebra, we argue that rather imposing effective constraints on different algebras and the related extensions, which are mainly constructed by self-breeding or self-mapping methodologies for sustaining invariance, we propose a new addition, momentum-angular momentum duality at the level of electromagnetic duality, for rationalizing the duality algebras, and then characterize this duality numerically with attempt for addressing some unsolved problems in physics and astrophysics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20theory" title=" string theory"> string theory</a>, <a href="https://publications.waset.org/abstracts/search?q=duality" title=" duality"> duality</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetry" title=" symmetry"> symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=correspondence" title=" correspondence"> correspondence</a>, <a href="https://publications.waset.org/abstracts/search?q=algebra" title=" algebra"> algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum-angular-momentum" title=" momentum-angular-momentum"> momentum-angular-momentum</a> </p> <a href="https://publications.waset.org/abstracts/45918/dual-duality-for-unifying-spacetime-and-internal-symmetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>