CINXE.COM
Paul Dando | The Marine Biological Association of the UK - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Paul Dando | The Marine Biological Association of the UK - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="NDfDY9dydnarixQsv4PV1ZronOyeNAAt9pxZ3uvOUiN-wyTtFath7NzICQ2Z2h7vtnHxfPxRCJ8DP_BU9EOFRg" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Paul Dando","url":"https://mba.academia.edu/PaulDando","image":"https://0.academia-photos.com/31765584/82330458/70935111/s200_paul.dando.jpg","sameAs":[]},"dateCreated":"2015-06-01T13:35:57-07:00","dateModified":"2025-04-01T00:00:21-07:00","name":"Paul Dando","description":"Paul has worked as a marine scientist for over 55 years, mainly at the Marine Biological Association of the UK (MBA), in Plymouth, but with a period of 13 years as Professor of Marine Biology at Bangor University. His research interests include; the environmental effects of hydrothermal vents, hydrocarbon seeps and submarine ground water seeps, including their roles in geochemical cycles and benthic production: the behaviour, biochemistry and physiology of bivalves and frenulate pogonophores with methanotrophic and/or chemoautotrophic bacterial symbionts and the distribution and home ranges of fish in estuaries, including their spawning and nursery grounds. His research areas have ranged from the Mediterranean to mid-Atlantic and the Arctic and in the NE Pacific from Panama to the Gulf of California and northwards to the Canadian coast, using research vessels from 10 countries. Paul has coordinated three international projects and has been editor-in-chief of the Journal of the Marine Biological Association of the UK.","image":"https://0.academia-photos.com/31765584/82330458/70935111/s200_paul.dando.jpg","thumbnailUrl":"https://0.academia-photos.com/31765584/82330458/70935111/s65_paul.dando.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/31765584/82330458/70935111/s200_paul.dando.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/90444817/Study_of_food_chains_at_methane_seeps_in_the_North_Sea"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="paul dando" /> <meta name="description" content="Paul has worked as a marine scientist for over 55 years, mainly at the Marine Biological Association of the UK (MBA), in Plymouth, but with a period of 13…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '85098e0957720bbb645df3ee650328fcd06f3e44'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13879,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286697579,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1744231351000); window.Aedu.timeDifference = new Date().getTime() - 1744231351000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-e4a11c75ccedf64d34f117b334c28ebf40fe75db593398069c5640435b4cda98.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7d36841b83a7f1e8e8bee77199e3df42524ded8fb4aae118d9fbe6bb45fb6052.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-a5a92a7d7fd5e806e498818586e171b196d11c9bb64c0c2ba9e0ae84d2893cd5.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://mba.academia.edu/PaulDando" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-363b60fb50261f5d4db037e3effdfe57e5d5d9cd08d6d306c74bfe20b92c1eb0.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando","photo":"https://0.academia-photos.com/31765584/82330458/70935111/s65_paul.dando.jpg","has_photo":true,"department":{"id":1933662,"name":"None","url":"https://mba.academia.edu/Departments/None/Documents","university":{"id":75338,"name":"The Marine Biological Association of the UK","url":"https://mba.academia.edu/"}},"position":"Emeritus","position_id":6,"is_analytics_public":false,"interests":[{"id":14483,"name":"Animal Ecology","url":"https://www.academia.edu/Documents/in/Animal_Ecology"},{"id":25730,"name":"Behavioral Ecology","url":"https://www.academia.edu/Documents/in/Behavioral_Ecology"},{"id":11873,"name":"Fish Biology","url":"https://www.academia.edu/Documents/in/Fish_Biology"},{"id":626840,"name":"Estuarine Fish Ecology","url":"https://www.academia.edu/Documents/in/Estuarine_Fish_Ecology"},{"id":536028,"name":"Cold Seeps","url":"https://www.academia.edu/Documents/in/Cold_Seeps"},{"id":1145161,"name":"Hydrothermal Vents","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vents"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://mba.academia.edu/PaulDando","location":"/PaulDando","scheme":"https","host":"mba.academia.edu","port":null,"pathname":"/PaulDando","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-d0f70a20-2dbd-4bc8-8242-00bd4bea02fe"></div> <div id="ProfileCheckPaperUpdate-react-component-d0f70a20-2dbd-4bc8-8242-00bd4bea02fe"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Paul Dando" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/31765584/82330458/70935111/s200_paul.dando.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Paul Dando</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://mba.academia.edu/">The Marine Biological Association of the UK</a>, <a class="u-tcGrayDarker" href="https://mba.academia.edu/Departments/None/Documents">None</a>, <span class="u-tcGrayDarker">Emeritus</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Paul" data-follow-user-id="31765584" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="31765584"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">52</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">20</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">20</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Paul has worked as a marine scientist for over 55 years, mainly at the Marine Biological Association of the UK (MBA), in Plymouth, but with a period of 13 years as Professor of Marine Biology at Bangor University. His research interests include; the environmental effects of hydrothermal vents, hydrocarbon seeps and submarine ground water seeps, including their roles in geochemical cycles and benthic production: the behaviour, biochemistry and physiology of bivalves and frenulate pogonophores with methanotrophic and/or chemoautotrophic bacterial symbionts and the distribution and home ranges of fish in estuaries, including their spawning and nursery grounds. His research areas have ranged from the Mediterranean to mid-Atlantic and the Arctic and in the NE Pacific from Panama to the Gulf of California and northwards to the Canadian coast, using research vessels from 10 countries. Paul has coordinated three international projects and has been editor-in-chief of the Journal of the Marine Biological Association of the UK.<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://tcd.academia.edu/JulianReynolds"><img class="profile-avatar u-positionAbsolute" alt="Julian D Reynolds related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/10761/3636/3596/s200_julian.reynolds.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://tcd.academia.edu/JulianReynolds">Julian D Reynolds</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Trinity College Dublin</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://osu.academia.edu/KristenGremillion"><img class="profile-avatar u-positionAbsolute" alt="Kristen J Gremillion related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/36939/12253/11500/s200_kristen.gremillion.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://osu.academia.edu/KristenGremillion">Kristen J Gremillion</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Ohio State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://iastate.academia.edu/SajjadAkam"><img class="profile-avatar u-positionAbsolute" alt="Sajjad Akam related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/88123/198429/13822710/s200_sajjad.a.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://iastate.academia.edu/SajjadAkam">Sajjad Akam</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Iowa State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ksu.academia.edu/DavidSeamon"><img class="profile-avatar u-positionAbsolute" alt="David Seamon related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/93547/25922/29662134/s200_david.seamon.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ksu.academia.edu/DavidSeamon">David Seamon</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Kansas State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://cria.academia.edu/ArmandoMarquesGuedes"><img class="profile-avatar u-positionAbsolute" alt="Armando Marques-Guedes related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/134181/3401094/148494125/s200_armando.marques-guedes.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cria.academia.edu/ArmandoMarquesGuedes">Armando Marques-Guedes</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">UNL - New University of Lisbon</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uam-lerma.academia.edu/Jos%C3%A9FGonz%C3%A1lezMaya"><img class="profile-avatar u-positionAbsolute" alt="José F. González-Maya related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/180289/44588/2076096/s200_jos_f..gonz_lez-maya.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uam-lerma.academia.edu/Jos%C3%A9FGonz%C3%A1lezMaya">José F. González-Maya</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad Autónoma Metropolitana-Lerma</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://une-au.academia.edu/StephenWroe"><img class="profile-avatar u-positionAbsolute" alt="Stephen Wroe related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/191201/46213/1377632/s200_stephen.wroe.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://une-au.academia.edu/StephenWroe">Stephen Wroe</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of New England - Australia</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ufsc.academia.edu/GustavoCaponi"><img class="profile-avatar u-positionAbsolute" alt="Gustavo Caponi related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/298443/93094/171337455/s200_gustavo.caponi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ufsc.academia.edu/GustavoCaponi">Gustavo Caponi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade Federal de Santa Catarina - UFSC (Federal University of Santa Catarina)</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uttara.academia.edu/NKAgarwal"><img class="profile-avatar u-positionAbsolute" alt="N. K. Agarwal related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1010959/2007424/12951706/s200_n._k..agarwal.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uttara.academia.edu/NKAgarwal">N. K. Agarwal</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Hemwati Nandan Bahuguna Garhwal University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://unsoed.academia.edu/taufikbudhipramono"><img class="profile-avatar u-positionAbsolute" alt="taufik budhi pramono related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1156040/408303/500541/s200_taufik_budhi.pramono.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unsoed.academia.edu/taufikbudhipramono">taufik budhi pramono</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Jenderal Soedirman University</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31765584" href="https://www.academia.edu/Documents/in/Behavioral_Ecology"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://mba.academia.edu/PaulDando","location":"/PaulDando","scheme":"https","host":"mba.academia.edu","port":null,"pathname":"/PaulDando","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Behavioral Ecology"]}" data-trace="false" data-dom-id="Pill-react-component-96a6ff13-07b4-4d7c-abcf-40ceb66a4b7d"></div> <div id="Pill-react-component-96a6ff13-07b4-4d7c-abcf-40ceb66a4b7d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31765584" href="https://www.academia.edu/Documents/in/Fish_Biology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Fish Biology"]}" data-trace="false" data-dom-id="Pill-react-component-f07cc1e0-afc5-4895-8fa6-32fa4a9af123"></div> <div id="Pill-react-component-f07cc1e0-afc5-4895-8fa6-32fa4a9af123"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31765584" href="https://www.academia.edu/Documents/in/Estuarine_Fish_Ecology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Estuarine Fish Ecology"]}" data-trace="false" data-dom-id="Pill-react-component-837264bb-4be8-49af-a903-303936ccfb35"></div> <div id="Pill-react-component-837264bb-4be8-49af-a903-303936ccfb35"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31765584" href="https://www.academia.edu/Documents/in/Cold_Seeps"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Cold Seeps"]}" data-trace="false" data-dom-id="Pill-react-component-b8ad5a24-d258-497a-b326-4f8bc7cd5eca"></div> <div id="Pill-react-component-b8ad5a24-d258-497a-b326-4f8bc7cd5eca"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31765584" href="https://www.academia.edu/Documents/in/Hydrothermal_Vents"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Hydrothermal Vents"]}" data-trace="false" data-dom-id="Pill-react-component-8da778ec-11de-4772-837b-f85986f4eb01"></div> <div id="Pill-react-component-8da778ec-11de-4772-837b-f85986f4eb01"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Paul Dando</h3></div><div class="js-work-strip profile--work_container" data-work-id="90444817"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/90444817/Study_of_food_chains_at_methane_seeps_in_the_North_Sea"><img alt="Research paper thumbnail of Study of food chains at methane seeps in the North Sea" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Study of food chains at methane seeps in the North Sea</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">SIGLEAvailable from British Library Document Supply Centre-DSC:3614.6031(05) / BLDSC - British Li...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">SIGLEAvailable from British Library Document Supply Centre-DSC:3614.6031(05) / BLDSC - British Library Document Supply CentreGBUnited Kingdo</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90444817"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90444817"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90444817; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90444817]").text(description); $(".js-view-count[data-work-id=90444817]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90444817; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90444817']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=90444817]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90444817,"title":"Study of food chains at methane seeps in the North Sea","translated_title":"","metadata":{"abstract":"SIGLEAvailable from British Library Document Supply Centre-DSC:3614.6031(05) / BLDSC - British Library Document Supply CentreGBUnited Kingdo","publication_date":{"day":null,"month":null,"year":1990,"errors":{}}},"translated_abstract":"SIGLEAvailable from British Library Document Supply Centre-DSC:3614.6031(05) / BLDSC - British Library Document Supply CentreGBUnited Kingdo","internal_url":"https://www.academia.edu/90444817/Study_of_food_chains_at_methane_seeps_in_the_North_Sea","translated_internal_url":"","created_at":"2022-11-10T04:42:50.674-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Study_of_food_chains_at_methane_seeps_in_the_North_Sea","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"SIGLEAvailable from British Library Document Supply Centre-DSC:3614.6031(05) / BLDSC - British Library Document Supply CentreGBUnited Kingdo","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":90103,"name":"Sulphide","url":"https://www.academia.edu/Documents/in/Sulphide"},{"id":564110,"name":"Benthic","url":"https://www.academia.edu/Documents/in/Benthic"},{"id":3751483,"name":"Marine Fauna","url":"https://www.academia.edu/Documents/in/Marine_Fauna"}],"urls":[{"id":25791900,"url":"http://hdl.handle.net/10068/602884"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-90444817-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="90444816"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/90444816/The_Chemical_Biology_of_Fishes_Volume_2_"><img alt="Research paper thumbnail of The Chemical Biology of Fishes (Volume 2)" class="work-thumbnail" src="https://attachments.academia-assets.com/94006647/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/90444816/The_Chemical_Biology_of_Fishes_Volume_2_">The Chemical Biology of Fishes (Volume 2)</a></div><div class="wp-workCard_item"><span>Biochemical Society Transactions</span><span>, 1982</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This is the book to consult if you wish to know the concentration of silver or of sialic acid in ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This is the book to consult if you wish to know the concentration of silver or of sialic acid in different fish tissues and in different species of fish. Volume 2 continues the survey of</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="15acf0d2065dee99e5d0b89a6c378e53" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94006647,"asset_id":90444816,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94006647/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90444816"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90444816"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90444816; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90444816]").text(description); $(".js-view-count[data-work-id=90444816]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90444816; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90444816']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "15acf0d2065dee99e5d0b89a6c378e53" } } $('.js-work-strip[data-work-id=90444816]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90444816,"title":"The Chemical Biology of Fishes (Volume 2)","translated_title":"","metadata":{"publisher":"Portland Press Ltd.","ai_title_tag":"Chemical Biology of Fish: Volume 2 Insights","grobid_abstract":"This is the book to consult if you wish to know the concentration of silver or of sialic acid in different fish tissues and in different species of fish. Volume 2 continues the survey of","publication_date":{"day":null,"month":null,"year":1982,"errors":{}},"publication_name":"Biochemical Society Transactions","grobid_abstract_attachment_id":94006647},"translated_abstract":null,"internal_url":"https://www.academia.edu/90444816/The_Chemical_Biology_of_Fishes_Volume_2_","translated_internal_url":"","created_at":"2022-11-10T04:42:47.798-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":94006647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94006647/thumbnails/1.jpg","file_name":"bst010006320221110-1-x2iw5n.pdf","download_url":"https://www.academia.edu/attachments/94006647/download_file","bulk_download_file_name":"The_Chemical_Biology_of_Fishes_Volume_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94006647/bst010006320221110-1-x2iw5n-libre.pdf?1668087008=\u0026response-content-disposition=attachment%3B+filename%3DThe_Chemical_Biology_of_Fishes_Volume_2.pdf\u0026Expires=1744234951\u0026Signature=M3UO74-NwInpUfY~tFhmAPjHsm-2kEU2t-Pxr45SUPJSXAtdgxTgIs5QLz9gpi40bF7JsvHmMqa5rGrTFFiCNC6ay7hJ2oJHDv1KTGPzgaYh-oRw6cXL-r5JQ5ymQ01w8NVJ6l3Y93H28-K3dpB0GtvQ6eXemI6cQllrNbVl09pzxQPWa8jXe-ijL6VRuOurZTewYVqvjhfERfk4x6PH4hJDdhCaWUt-nY4EA81mX3k9Yj46oUAT1rzNiSJWdv8RNzCHRtj95P6tt581zzg2syWU-xZvVQIW5j7ksOufQjl4lgm9K1OdW08VF3dSRlvQS3touhHzYtLXHCJRxHy99Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Chemical_Biology_of_Fishes_Volume_2_","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"This is the book to consult if you wish to know the concentration of silver or of sialic acid in different fish tissues and in different species of fish. Volume 2 continues the survey of","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":94006647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94006647/thumbnails/1.jpg","file_name":"bst010006320221110-1-x2iw5n.pdf","download_url":"https://www.academia.edu/attachments/94006647/download_file","bulk_download_file_name":"The_Chemical_Biology_of_Fishes_Volume_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94006647/bst010006320221110-1-x2iw5n-libre.pdf?1668087008=\u0026response-content-disposition=attachment%3B+filename%3DThe_Chemical_Biology_of_Fishes_Volume_2.pdf\u0026Expires=1744234951\u0026Signature=M3UO74-NwInpUfY~tFhmAPjHsm-2kEU2t-Pxr45SUPJSXAtdgxTgIs5QLz9gpi40bF7JsvHmMqa5rGrTFFiCNC6ay7hJ2oJHDv1KTGPzgaYh-oRw6cXL-r5JQ5ymQ01w8NVJ6l3Y93H28-K3dpB0GtvQ6eXemI6cQllrNbVl09pzxQPWa8jXe-ijL6VRuOurZTewYVqvjhfERfk4x6PH4hJDdhCaWUt-nY4EA81mX3k9Yj46oUAT1rzNiSJWdv8RNzCHRtj95P6tt581zzg2syWU-xZvVQIW5j7ksOufQjl4lgm9K1OdW08VF3dSRlvQS3touhHzYtLXHCJRxHy99Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":21180,"name":"Chemical Biology","url":"https://www.academia.edu/Documents/in/Chemical_Biology"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":3789880,"name":"Medical biochemistry and metabolomics","url":"https://www.academia.edu/Documents/in/Medical_biochemistry_and_metabolomics"}],"urls":[{"id":25791899,"url":"https://portlandpress.com/biochemsoctrans/article-pdf/10/1/63/734915/bst0100063.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-90444816-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="90444759"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/90444759/In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea"><img alt="Research paper thumbnail of In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characteriz...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterized in terms of their flow of fluid, gas, heat and chemicals The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers. In situ measurements confirmed the shallow vent sites to be extreme environments of low pH and high temperature The outflow of gas or hot liquid through the permeable sediment induced a convection cell of pore-water entrainment from deeper in the sediment to the surface Nutrients and dissolved carbon dioxide were transported to the sediment surface across an area of 4m diameter around a single vent and ejected into the water column This outflow was compensated by an inflow of oxygen rich water over an area foaming a ring around the outflow region These geochemical conditions were reflected in the colour of the sediment and the type of precipitate or &amp;#39;mat&amp;#39; forming on the sediment surface. Gas and fluid flux measurements made at a number of vent sites indicate the mean flow of fluid discharge in Palaeochori Bay to be in the range 50 - 80 dm3 h -1. Despite the &amp;#39;nutrient pump&amp;#39; effect of the vent system, plankton biomass, photosynthesis and respiration remained low (&amp;lt; 0 1 mg m-3,&amp;lt; 1 mmol -3 -1 -3 -1 02 m d , 2-4 mmol 02 m d respectively) The water column was always dominated by respiring rather than photosynthesizing organisms No significant difference was found between plankton production at venting and non-venting sites despite a large range of ambient dissolved inorganic carbon concentration. By contrast, small changes in ambient temperature had a profound stimulatory effect on plankton respiration and a lesser effect on plankton photosynthesis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90444759"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90444759"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90444759; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90444759]").text(description); $(".js-view-count[data-work-id=90444759]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90444759; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90444759']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=90444759]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90444759,"title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea","translated_title":"","metadata":{"abstract":"ABSTRACT Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterized in terms of their flow of fluid, gas, heat and chemicals The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers. In situ measurements confirmed the shallow vent sites to be extreme environments of low pH and high temperature The outflow of gas or hot liquid through the permeable sediment induced a convection cell of pore-water entrainment from deeper in the sediment to the surface Nutrients and dissolved carbon dioxide were transported to the sediment surface across an area of 4m diameter around a single vent and ejected into the water column This outflow was compensated by an inflow of oxygen rich water over an area foaming a ring around the outflow region These geochemical conditions were reflected in the colour of the sediment and the type of precipitate or \u0026amp;#39;mat\u0026amp;#39; forming on the sediment surface. Gas and fluid flux measurements made at a number of vent sites indicate the mean flow of fluid discharge in Palaeochori Bay to be in the range 50 - 80 dm3 h -1. Despite the \u0026amp;#39;nutrient pump\u0026amp;#39; effect of the vent system, plankton biomass, photosynthesis and respiration remained low (\u0026amp;lt; 0 1 mg m-3,\u0026amp;lt; 1 mmol -3 -1 -3 -1 02 m d , 2-4 mmol 02 m d respectively) The water column was always dominated by respiring rather than photosynthesizing organisms No significant difference was found between plankton production at venting and non-venting sites despite a large range of ambient dissolved inorganic carbon concentration. By contrast, small changes in ambient temperature had a profound stimulatory effect on plankton respiration and a lesser effect on plankton photosynthesis.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}}},"translated_abstract":"ABSTRACT Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterized in terms of their flow of fluid, gas, heat and chemicals The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers. In situ measurements confirmed the shallow vent sites to be extreme environments of low pH and high temperature The outflow of gas or hot liquid through the permeable sediment induced a convection cell of pore-water entrainment from deeper in the sediment to the surface Nutrients and dissolved carbon dioxide were transported to the sediment surface across an area of 4m diameter around a single vent and ejected into the water column This outflow was compensated by an inflow of oxygen rich water over an area foaming a ring around the outflow region These geochemical conditions were reflected in the colour of the sediment and the type of precipitate or \u0026amp;#39;mat\u0026amp;#39; forming on the sediment surface. Gas and fluid flux measurements made at a number of vent sites indicate the mean flow of fluid discharge in Palaeochori Bay to be in the range 50 - 80 dm3 h -1. Despite the \u0026amp;#39;nutrient pump\u0026amp;#39; effect of the vent system, plankton biomass, photosynthesis and respiration remained low (\u0026amp;lt; 0 1 mg m-3,\u0026amp;lt; 1 mmol -3 -1 -3 -1 02 m d , 2-4 mmol 02 m d respectively) The water column was always dominated by respiring rather than photosynthesizing organisms No significant difference was found between plankton production at venting and non-venting sites despite a large range of ambient dissolved inorganic carbon concentration. By contrast, small changes in ambient temperature had a profound stimulatory effect on plankton respiration and a lesser effect on plankton photosynthesis.","internal_url":"https://www.academia.edu/90444759/In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea","translated_internal_url":"","created_at":"2022-11-10T04:41:37.480-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterized in terms of their flow of fluid, gas, heat and chemicals The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers. In situ measurements confirmed the shallow vent sites to be extreme environments of low pH and high temperature The outflow of gas or hot liquid through the permeable sediment induced a convection cell of pore-water entrainment from deeper in the sediment to the surface Nutrients and dissolved carbon dioxide were transported to the sediment surface across an area of 4m diameter around a single vent and ejected into the water column This outflow was compensated by an inflow of oxygen rich water over an area foaming a ring around the outflow region These geochemical conditions were reflected in the colour of the sediment and the type of precipitate or \u0026amp;#39;mat\u0026amp;#39; forming on the sediment surface. Gas and fluid flux measurements made at a number of vent sites indicate the mean flow of fluid discharge in Palaeochori Bay to be in the range 50 - 80 dm3 h -1. Despite the \u0026amp;#39;nutrient pump\u0026amp;#39; effect of the vent system, plankton biomass, photosynthesis and respiration remained low (\u0026amp;lt; 0 1 mg m-3,\u0026amp;lt; 1 mmol -3 -1 -3 -1 02 m d , 2-4 mmol 02 m d respectively) The water column was always dominated by respiring rather than photosynthesizing organisms No significant difference was found between plankton production at venting and non-venting sites despite a large range of ambient dissolved inorganic carbon concentration. By contrast, small changes in ambient temperature had a profound stimulatory effect on plankton respiration and a lesser effect on plankton photosynthesis.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":415,"name":"Oceanography","url":"https://www.academia.edu/Documents/in/Oceanography"},{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":1407728,"name":"Shallow Water","url":"https://www.academia.edu/Documents/in/Shallow_Water"},{"id":1660649,"name":"Bay","url":"https://www.academia.edu/Documents/in/Bay"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-90444759-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="77176210"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/77176210/Methane_venting_associated_with_submarine_groundwater_discharge_in_Eckernf%C3%B6rde_Bucht_Baltic_sea"><img alt="Research paper thumbnail of Methane venting associated with submarine groundwater discharge in Eckernförde Bucht, Baltic sea" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Methane venting associated with submarine groundwater discharge in Eckernförde Bucht, Baltic sea</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract:Submarine groundwater discharges are responsible for pockmark depressions on the bed ofE...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract:Submarine groundwater discharges are responsible for pockmark depressions on the bed ofEckernforde Bucht, Western Baltic. In these depressions there is an interface between almostfluid sediment and sea water that is typically about 1.5 2m below the surrounding seabed.Transects, made with a underwater digital video camera sled in October 1998 and September1999, showed that near the rims of the depressions the clay aquaclude was not covered byrecent methane generating organic sediment. Cracks could be seen in the clay indicating thatedges of the aquaclude layer are slowly collapsing into the steep sided depressions. Somesharply angular cobble sized clay clasts were seen just outside the pockmark rims suggestingthat blow-outs may occur. Acoustic turbidity is widespread in the sediments of the deeperparts of Eckernforde Bucht due to methane gas bubble formation within the sediment. Themethane seems to derive mainly from the decomposition of recent organic matter. Becausethe Buc...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77176210"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77176210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77176210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77176210]").text(description); $(".js-view-count[data-work-id=77176210]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77176210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77176210']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=77176210]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77176210,"title":"Methane venting associated with submarine groundwater discharge in Eckernförde Bucht, Baltic sea","translated_title":"","metadata":{"abstract":"Abstract:Submarine groundwater discharges are responsible for pockmark depressions on the bed ofEckernforde Bucht, Western Baltic. In these depressions there is an interface between almostfluid sediment and sea water that is typically about 1.5 2m below the surrounding seabed.Transects, made with a underwater digital video camera sled in October 1998 and September1999, showed that near the rims of the depressions the clay aquaclude was not covered byrecent methane generating organic sediment. Cracks could be seen in the clay indicating thatedges of the aquaclude layer are slowly collapsing into the steep sided depressions. Somesharply angular cobble sized clay clasts were seen just outside the pockmark rims suggestingthat blow-outs may occur. Acoustic turbidity is widespread in the sediments of the deeperparts of Eckernforde Bucht due to methane gas bubble formation within the sediment. Themethane seems to derive mainly from the decomposition of recent organic matter. Becausethe Buc...","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"Abstract:Submarine groundwater discharges are responsible for pockmark depressions on the bed ofEckernforde Bucht, Western Baltic. In these depressions there is an interface between almostfluid sediment and sea water that is typically about 1.5 2m below the surrounding seabed.Transects, made with a underwater digital video camera sled in October 1998 and September1999, showed that near the rims of the depressions the clay aquaclude was not covered byrecent methane generating organic sediment. Cracks could be seen in the clay indicating thatedges of the aquaclude layer are slowly collapsing into the steep sided depressions. Somesharply angular cobble sized clay clasts were seen just outside the pockmark rims suggestingthat blow-outs may occur. Acoustic turbidity is widespread in the sediments of the deeperparts of Eckernforde Bucht due to methane gas bubble formation within the sediment. Themethane seems to derive mainly from the decomposition of recent organic matter. Becausethe Buc...","internal_url":"https://www.academia.edu/77176210/Methane_venting_associated_with_submarine_groundwater_discharge_in_Eckernf%C3%B6rde_Bucht_Baltic_sea","translated_internal_url":"","created_at":"2022-04-21T05:37:43.184-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Methane_venting_associated_with_submarine_groundwater_discharge_in_Eckernförde_Bucht_Baltic_sea","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract:Submarine groundwater discharges are responsible for pockmark depressions on the bed ofEckernforde Bucht, Western Baltic. In these depressions there is an interface between almostfluid sediment and sea water that is typically about 1.5 2m below the surrounding seabed.Transects, made with a underwater digital video camera sled in October 1998 and September1999, showed that near the rims of the depressions the clay aquaclude was not covered byrecent methane generating organic sediment. Cracks could be seen in the clay indicating thatedges of the aquaclude layer are slowly collapsing into the steep sided depressions. Somesharply angular cobble sized clay clasts were seen just outside the pockmark rims suggestingthat blow-outs may occur. Acoustic turbidity is widespread in the sediments of the deeperparts of Eckernforde Bucht due to methane gas bubble formation within the sediment. Themethane seems to derive mainly from the decomposition of recent organic matter. Becausethe Buc...","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":469290,"name":"Submarine Groundwater Discharge","url":"https://www.academia.edu/Documents/in/Submarine_Groundwater_Discharge"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-77176210-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="77176209"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77176209/Seismicity_in_the_hellenic_volcanic_arc_hydrothermal_system_in_relation_to_geochemical_parameters"><img alt="Research paper thumbnail of Seismicity in the hellenic volcanic arc hydrothermal system in relation to geochemical parameters" class="work-thumbnail" src="https://attachments.academia-assets.com/84630977/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77176209/Seismicity_in_the_hellenic_volcanic_arc_hydrothermal_system_in_relation_to_geochemical_parameters">Seismicity in the hellenic volcanic arc hydrothermal system in relation to geochemical parameters</a></div><div class="wp-workCard_item"><span>Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of the paper is to study the microseismicity of the island of Milos, Greece, in order to ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of the paper is to study the microseismicity of the island of Milos, Greece, in order to relate the recorded earthquake signals to venting periodic@ and to understand better the role of episodic events. A seismic network of five three-component, triggering mode digital stations, installed on the island in the summer of 1996, recorded almost 400 local microearthquakes and 500 signals, tentatively associated with hydrothermal activity. The analysis indicates low seismic@, probably associated with the existing hydrothermal field of the area. The hydrothermal signals are of two types, with peak frequencies of 2-3 Hz and 20-30 Hz, respectively. Preliminary analysis of records from the same experiment in 1997 showed that a high concentration of seawater in particulates Mn was followed by a group of microearthquakes 6-8 hours later.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6b076775e998098f0f6c0a931a0bf4dd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84630977,"asset_id":77176209,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84630977/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77176209"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77176209"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77176209; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77176209]").text(description); $(".js-view-count[data-work-id=77176209]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77176209; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77176209']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6b076775e998098f0f6c0a931a0bf4dd" } } $('.js-work-strip[data-work-id=77176209]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77176209,"title":"Seismicity in the hellenic volcanic arc hydrothermal system in relation to geochemical parameters","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Microseismicity and Geochemical Relations in Milos Volcano","grobid_abstract":"The aim of the paper is to study the microseismicity of the island of Milos, Greece, in order to relate the recorded earthquake signals to venting periodic@ and to understand better the role of episodic events. A seismic network of five three-component, triggering mode digital stations, installed on the island in the summer of 1996, recorded almost 400 local microearthquakes and 500 signals, tentatively associated with hydrothermal activity. The analysis indicates low seismic@, probably associated with the existing hydrothermal field of the area. The hydrothermal signals are of two types, with peak frequencies of 2-3 Hz and 20-30 Hz, respectively. Preliminary analysis of records from the same experiment in 1997 showed that a high concentration of seawater in particulates Mn was followed by a group of microearthquakes 6-8 hours later.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere","grobid_abstract_attachment_id":84630977},"translated_abstract":null,"internal_url":"https://www.academia.edu/77176209/Seismicity_in_the_hellenic_volcanic_arc_hydrothermal_system_in_relation_to_geochemical_parameters","translated_internal_url":"","created_at":"2022-04-21T05:37:42.727-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84630977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84630977/thumbnails/1.jpg","file_name":"makro167.pdf","download_url":"https://www.academia.edu/attachments/84630977/download_file","bulk_download_file_name":"Seismicity_in_the_hellenic_volcanic_arc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84630977/makro167-libre.pdf?1650563329=\u0026response-content-disposition=attachment%3B+filename%3DSeismicity_in_the_hellenic_volcanic_arc.pdf\u0026Expires=1744234951\u0026Signature=IP8uOm1-wlEH2hNmxnCiz3lsninQMLLF2WDqdVgc4GvBF7~TbyuwbVbe6XoNUKyFbJcSz9e7sD1qIWX9TNOPZzKb04xA66Hg3wHAgEQYg6o87VRGqXK2mFow5PbrThkG7VcbXHX6Ic~DJozlgOguemDYdPEkvDp~W~xoOw0v7lv5SUUJRw15hdzA~M8KjeO9uu34gJ4Rfptpp5D0M-siUyAWo-fx~yIZP6MHzakzzelG9N7yxabpFejZLMXOVwg2JZum7x1vhyLvQXdK8BK4eagU-CsfHG7ckyj1~d39qo-QiWSatBus9mlWUX6K1ErT2MZc6IqpyUDHIbJzcv6EKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Seismicity_in_the_hellenic_volcanic_arc_hydrothermal_system_in_relation_to_geochemical_parameters","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"The aim of the paper is to study the microseismicity of the island of Milos, Greece, in order to relate the recorded earthquake signals to venting periodic@ and to understand better the role of episodic events. A seismic network of five three-component, triggering mode digital stations, installed on the island in the summer of 1996, recorded almost 400 local microearthquakes and 500 signals, tentatively associated with hydrothermal activity. The analysis indicates low seismic@, probably associated with the existing hydrothermal field of the area. The hydrothermal signals are of two types, with peak frequencies of 2-3 Hz and 20-30 Hz, respectively. Preliminary analysis of records from the same experiment in 1997 showed that a high concentration of seawater in particulates Mn was followed by a group of microearthquakes 6-8 hours later.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":84630977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84630977/thumbnails/1.jpg","file_name":"makro167.pdf","download_url":"https://www.academia.edu/attachments/84630977/download_file","bulk_download_file_name":"Seismicity_in_the_hellenic_volcanic_arc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84630977/makro167-libre.pdf?1650563329=\u0026response-content-disposition=attachment%3B+filename%3DSeismicity_in_the_hellenic_volcanic_arc.pdf\u0026Expires=1744234951\u0026Signature=IP8uOm1-wlEH2hNmxnCiz3lsninQMLLF2WDqdVgc4GvBF7~TbyuwbVbe6XoNUKyFbJcSz9e7sD1qIWX9TNOPZzKb04xA66Hg3wHAgEQYg6o87VRGqXK2mFow5PbrThkG7VcbXHX6Ic~DJozlgOguemDYdPEkvDp~W~xoOw0v7lv5SUUJRw15hdzA~M8KjeO9uu34gJ4Rfptpp5D0M-siUyAWo-fx~yIZP6MHzakzzelG9N7yxabpFejZLMXOVwg2JZum7x1vhyLvQXdK8BK4eagU-CsfHG7ckyj1~d39qo-QiWSatBus9mlWUX6K1ErT2MZc6IqpyUDHIbJzcv6EKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":108863,"name":"Volcano","url":"https://www.academia.edu/Documents/in/Volcano"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-77176209-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="77176073"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77176073/Biodiversity_and_Biogeography_of_Chthamalid_Barnacles_from_the_North_Eastern_Pacific_Crustacea_Cirripedia_"><img alt="Research paper thumbnail of Biodiversity and Biogeography of Chthamalid Barnacles from the North-Eastern Pacific (Crustacea Cirripedia)" class="work-thumbnail" src="https://attachments.academia-assets.com/84646483/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77176073/Biodiversity_and_Biogeography_of_Chthamalid_Barnacles_from_the_North_Eastern_Pacific_Crustacea_Cirripedia_">Biodiversity and Biogeography of Chthamalid Barnacles from the North-Eastern Pacific (Crustacea Cirripedia)</a></div><div class="wp-workCard_item"><span>PLOS ONE</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The biogeography and ecology of the species of Chthamalus present on the west coast of America ar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The biogeography and ecology of the species of Chthamalus present on the west coast of America are described, using data from 51 localities from Alaska to Panama, together with their zonation on the shore with respect to that of other barnacles. The species present were C.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b280735837510cf54e1e6917992b2b62" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84646483,"asset_id":77176073,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84646483/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77176073"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77176073"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77176073; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77176073]").text(description); $(".js-view-count[data-work-id=77176073]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77176073; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77176073']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b280735837510cf54e1e6917992b2b62" } } $('.js-work-strip[data-work-id=77176073]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77176073,"title":"Biodiversity and Biogeography of Chthamalid Barnacles from the North-Eastern Pacific (Crustacea Cirripedia)","translated_title":"","metadata":{"publisher":"Public Library of Science (PLoS)","ai_title_tag":"Chthamalid Barnacles: Biogeography and Ecology in the NE Pacific","grobid_abstract":"The biogeography and ecology of the species of Chthamalus present on the west coast of America are described, using data from 51 localities from Alaska to Panama, together with their zonation on the shore with respect to that of other barnacles. The species present were C.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"PLOS ONE","grobid_abstract_attachment_id":84646483},"translated_abstract":null,"internal_url":"https://www.academia.edu/77176073/Biodiversity_and_Biogeography_of_Chthamalid_Barnacles_from_the_North_Eastern_Pacific_Crustacea_Cirripedia_","translated_internal_url":"","created_at":"2022-04-21T05:36:41.149-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84646483,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84646483/thumbnails/1.jpg","file_name":"25594f7d79d67e0134a34f46e45bcae7a953.pdf","download_url":"https://www.academia.edu/attachments/84646483/download_file","bulk_download_file_name":"Biodiversity_and_Biogeography_of_Chthama.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84646483/25594f7d79d67e0134a34f46e45bcae7a953-libre.pdf?1650584281=\u0026response-content-disposition=attachment%3B+filename%3DBiodiversity_and_Biogeography_of_Chthama.pdf\u0026Expires=1744234951\u0026Signature=N~-cbEiyFzYODVBnBdKYF-khed9ihE8RdMIUWX-HkEQ7uvrB7OK1Y2BtMBwvVhIHGod3LQYEdQXI0Cs78yaEKAzKeJrF-akna9V~KF-T7S7K58dQWupyqDerEgCOwOPQyXHBJ59c~63DA86P~CLRhpqlIy~ptQrfrkFHuWv55FARV9N48WM~kcDDMgGeWRj2lcR4RBc7e0HYrXjzkNVShnn4SjAhlO4i8xzOSiMJEQ0wVNsVJrLB3icTN5VmRQTB3J1wKBrCPU3H3IWlagKk8fXEVB53vmjNPh62iTtwti3OnLrGX6nfR8lxLXuSMGuyCkM6OTv-~5b1ehokXYGlbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Biodiversity_and_Biogeography_of_Chthamalid_Barnacles_from_the_North_Eastern_Pacific_Crustacea_Cirripedia_","translated_slug":"","page_count":51,"language":"en","content_type":"Work","summary":"The biogeography and ecology of the species of Chthamalus present on the west coast of America are described, using data from 51 localities from Alaska to Panama, together with their zonation on the shore with respect to that of other barnacles. The species present were C.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":84646483,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84646483/thumbnails/1.jpg","file_name":"25594f7d79d67e0134a34f46e45bcae7a953.pdf","download_url":"https://www.academia.edu/attachments/84646483/download_file","bulk_download_file_name":"Biodiversity_and_Biogeography_of_Chthama.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84646483/25594f7d79d67e0134a34f46e45bcae7a953-libre.pdf?1650584281=\u0026response-content-disposition=attachment%3B+filename%3DBiodiversity_and_Biogeography_of_Chthama.pdf\u0026Expires=1744234951\u0026Signature=N~-cbEiyFzYODVBnBdKYF-khed9ihE8RdMIUWX-HkEQ7uvrB7OK1Y2BtMBwvVhIHGod3LQYEdQXI0Cs78yaEKAzKeJrF-akna9V~KF-T7S7K58dQWupyqDerEgCOwOPQyXHBJ59c~63DA86P~CLRhpqlIy~ptQrfrkFHuWv55FARV9N48WM~kcDDMgGeWRj2lcR4RBc7e0HYrXjzkNVShnn4SjAhlO4i8xzOSiMJEQ0wVNsVJrLB3icTN5VmRQTB3J1wKBrCPU3H3IWlagKk8fXEVB53vmjNPh62iTtwti3OnLrGX6nfR8lxLXuSMGuyCkM6OTv-~5b1ehokXYGlbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4206,"name":"Phylogeography","url":"https://www.academia.edu/Documents/in/Phylogeography"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":17823,"name":"Biogeography","url":"https://www.academia.edu/Documents/in/Biogeography"},{"id":17825,"name":"Biodiversity","url":"https://www.academia.edu/Documents/in/Biodiversity"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":39284,"name":"Panama","url":"https://www.academia.edu/Documents/in/Panama"},{"id":43881,"name":"Mexico","url":"https://www.academia.edu/Documents/in/Mexico"},{"id":50113,"name":"California","url":"https://www.academia.edu/Documents/in/California"},{"id":63093,"name":"Mitochondrial DNA","url":"https://www.academia.edu/Documents/in/Mitochondrial_DNA"},{"id":174666,"name":"Islands","url":"https://www.academia.edu/Documents/in/Islands"},{"id":205464,"name":"Crustacean","url":"https://www.academia.edu/Documents/in/Crustacean"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":554355,"name":"Pacific ocean","url":"https://www.academia.edu/Documents/in/Pacific_ocean"},{"id":617771,"name":"MEXICO","url":"https://www.academia.edu/Documents/in/MEXICO-2015"},{"id":784076,"name":"Species Specificity","url":"https://www.academia.edu/Documents/in/Species_Specificity"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":1191613,"name":"Likelihood Functions","url":"https://www.academia.edu/Documents/in/Likelihood_Functions"},{"id":1748976,"name":"Bays","url":"https://www.academia.edu/Documents/in/Bays"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-77176073-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143310"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47143310/The_history_of_the_Journal_of_the_Marine_Biological_Association_of_the_United_Kingdom_and_the_influence_of_the_publication_on_marine_research"><img alt="Research paper thumbnail of The history of the Journal of the Marine Biological Association of the United Kingdom and the influence of the publication on marine research" class="work-thumbnail" src="https://attachments.academia-assets.com/66392599/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47143310/The_history_of_the_Journal_of_the_Marine_Biological_Association_of_the_United_Kingdom_and_the_influence_of_the_publication_on_marine_research">The history of the Journal of the Marine Biological Association of the United Kingdom and the influence of the publication on marine research</a></div><div class="wp-workCard_item"><span>Journal of the Marine Biological Association of the United Kingdom</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The origin and development of the Journal of the Marine Biological Association of the United King...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The origin and development of the Journal of the Marine Biological Association of the United Kingdom is described on the occasion of the publication of the 100th volume. Papers in the Journal demonstrate how the techniques and approaches to the study of the marine environment have evolved over the 120 years of publication. The early papers provided a baseline description of the marine environment and of marine communities that allowed the effects of later perturbations of the environment to be determined. Both the early papers and the long time series of records have proved to be particularly relevant as marine scientists try to predict the long-term results of climatic and anthropogenic effects on the marine ecosystem. The Journal has now become increasingly international, with most papers coming from outside Europe.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-47143310-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-47143310-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893562/figure-1-from-heape-original-legend-fishing-map-of-plymouth"><img alt="Fig. 1. From Heape (1887), original legend: ‘Fishing Map of Plymouth Sound, after map published in G. and R. Books ‘General Guide to Sea Fishing’ No. 5. The depth is marked in feet thus 30. The best places to fish for pollock, bass and mackerel are shown by the dotted line. The crosses show places to fish in ebb tide. The stars show places to fish in flood tide.’ " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_001.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893582/figure-3-number-of-pages-printed-in-the-jmba-in-each-year"><img alt="Fig. 3. (A) Number of pages printed in the JMBA in each year since 1887. (B) Number of scientific papers published in the JMBA in the first year of each decade. " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_002.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893590/figure-2-line-drawing-reproduced-from-plate-in-browne"><img alt="Fig. 2. Line drawing reproduced from Plate | in E.T. Browne (1907). Bimeria biscayana n. sp. Portion of a branch drawn to show the arrangement of the hydranth and the auxiliary tubes. [Renamed and re-described as: Amphinema biscayana (Browne 1907) by Schuchert (2000).] " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_003.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893600/figure-4-jmba-covers-first-issue-old-series-cover-cover-from"><img alt="Fig. 4. JMBA covers. (A) First issue (old series) cover; (B) cover from June 1962 showing the enlarged laboratory; (C) cover from 1989; (D) cover from 1999; (E) first coloured cover (February 2004): (F) typical cover from December 2005. " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_004.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893610/figure-5-percentage-of-papers-published-in-the-jmba-from-the"><img alt="Fig. 5. Percentage of papers published in the JMBA, from the MBA, the rest of the UK or different regions of the world, in the first year of every decade, starting from 1900. North America includes Mexico. " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_005.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893620/figure-6-the-history-of-the-journal-of-the-marine-biological"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_006.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893631/table-1-editors-editors-in-chief-and-executive-editors-of"><img alt="Table 1. Editors, Editors-in-chief* and Executive Editors of the JMBA since its formation (** Acting Editor) " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/table_001.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893637/table-2-list-of-special-themed-issues-and-issue-sections"><img alt="Table 2. List of Special/Themed issues and issue sections with Conference Papers in the JMBA the long-term value of so many of the publications in the JMBA The 10 most cited papers in the JMBA during the first 60 years o publication are listed in Table 3 and the 10 most cited paper " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/table_002.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893644/table-3-top-citations-in-the-journal-of-the-marine"><img alt="Table 3. Top 10 citations in the Journal of the Marine Biological Association of the United Kingdom from 1887 to 1956 " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/table_003.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893653/table-4-top-citations-in-the-journal-of-the-marine"><img alt="Table 4. Top 10 citations in the Journal of the Marine Biological Association of the United Kingdom from 1957 to present " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/table_004.jpg" width="114" height="68" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-47143310-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb02b57f20d0bffe65e2b3a5313e056a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":66392599,"asset_id":47143310,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/66392599/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143310"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143310"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143310; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143310]").text(description); $(".js-view-count[data-work-id=47143310]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143310; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143310']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb02b57f20d0bffe65e2b3a5313e056a" } } $('.js-work-strip[data-work-id=47143310]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143310,"title":"The history of the Journal of the Marine Biological Association of the United Kingdom and the influence of the publication on marine research","translated_title":"","metadata":{"abstract":"The origin and development of the Journal of the Marine Biological Association of the United Kingdom is described on the occasion of the publication of the 100th volume. Papers in the Journal demonstrate how the techniques and approaches to the study of the marine environment have evolved over the 120 years of publication. The early papers provided a baseline description of the marine environment and of marine communities that allowed the effects of later perturbations of the environment to be determined. Both the early papers and the long time series of records have proved to be particularly relevant as marine scientists try to predict the long-term results of climatic and anthropogenic effects on the marine ecosystem. The Journal has now become increasingly international, with most papers coming from outside Europe.","publisher":"Cambridge University Press (CUP)","ai_title_tag":"Centennial Influence of Marine Biology Journal","publication_name":"Journal of the Marine Biological Association of the United Kingdom"},"translated_abstract":"The origin and development of the Journal of the Marine Biological Association of the United Kingdom is described on the occasion of the publication of the 100th volume. Papers in the Journal demonstrate how the techniques and approaches to the study of the marine environment have evolved over the 120 years of publication. The early papers provided a baseline description of the marine environment and of marine communities that allowed the effects of later perturbations of the environment to be determined. Both the early papers and the long time series of records have proved to be particularly relevant as marine scientists try to predict the long-term results of climatic and anthropogenic effects on the marine ecosystem. The Journal has now become increasingly international, with most papers coming from outside Europe.","internal_url":"https://www.academia.edu/47143310/The_history_of_the_Journal_of_the_Marine_Biological_Association_of_the_United_Kingdom_and_the_influence_of_the_publication_on_marine_research","translated_internal_url":"","created_at":"2021-04-21T01:14:25.709-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66392599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392599/thumbnails/1.jpg","file_name":"S0025315419001000.pdf","download_url":"https://www.academia.edu/attachments/66392599/download_file","bulk_download_file_name":"The_history_of_the_Journal_of_the_Marine.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392599/S0025315419001000-libre.pdf?1618992909=\u0026response-content-disposition=attachment%3B+filename%3DThe_history_of_the_Journal_of_the_Marine.pdf\u0026Expires=1744234951\u0026Signature=BsG3QrcYJ4Oy8GPrzCdxx~vr5CrSY21DyiPK8GitTph83wCxZL88M31IuKtQLsQf8Ia6aR54BT585YKVQGMWDShS3p~NMvgjTYoA6rNyG9SLYGY1Au8V7tSgqbg9pNpvOczzG4MAZP2J3rMx7F1I6auH4rQPeBE5AF6Pc4qIKHEhhS44-6Kh45Xvbw-vLEHa5z9gRkPAVx03Lg7nE80fPUCi-w-XYlD1ymtFTtPcLn0Ju-ex-sZ5P32wKPNTCO9GvQXM5afgm6imbYVx84rupMW343K0vk5UC6klL8JpNLPEdEv9Epp4LgugB4ZIo7qJalr7UPReJ-bkm5L~bJwbTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_history_of_the_Journal_of_the_Marine_Biological_Association_of_the_United_Kingdom_and_the_influence_of_the_publication_on_marine_research","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"The origin and development of the Journal of the Marine Biological Association of the United Kingdom is described on the occasion of the publication of the 100th volume. Papers in the Journal demonstrate how the techniques and approaches to the study of the marine environment have evolved over the 120 years of publication. The early papers provided a baseline description of the marine environment and of marine communities that allowed the effects of later perturbations of the environment to be determined. Both the early papers and the long time series of records have proved to be particularly relevant as marine scientists try to predict the long-term results of climatic and anthropogenic effects on the marine ecosystem. The Journal has now become increasingly international, with most papers coming from outside Europe.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":66392599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392599/thumbnails/1.jpg","file_name":"S0025315419001000.pdf","download_url":"https://www.academia.edu/attachments/66392599/download_file","bulk_download_file_name":"The_history_of_the_Journal_of_the_Marine.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392599/S0025315419001000-libre.pdf?1618992909=\u0026response-content-disposition=attachment%3B+filename%3DThe_history_of_the_Journal_of_the_Marine.pdf\u0026Expires=1744234951\u0026Signature=BsG3QrcYJ4Oy8GPrzCdxx~vr5CrSY21DyiPK8GitTph83wCxZL88M31IuKtQLsQf8Ia6aR54BT585YKVQGMWDShS3p~NMvgjTYoA6rNyG9SLYGY1Au8V7tSgqbg9pNpvOczzG4MAZP2J3rMx7F1I6auH4rQPeBE5AF6Pc4qIKHEhhS44-6Kh45Xvbw-vLEHa5z9gRkPAVx03Lg7nE80fPUCi-w-XYlD1ymtFTtPcLn0Ju-ex-sZ5P32wKPNTCO9GvQXM5afgm6imbYVx84rupMW343K0vk5UC6klL8JpNLPEdEv9Epp4LgugB4ZIo7qJalr7UPReJ-bkm5L~bJwbTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":173,"name":"Zoology","url":"https://www.academia.edu/Documents/in/Zoology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"}],"urls":[{"id":9719348,"url":"https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0025315419001000"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-47143310-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143308"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47143308/ObituaryAlan_J_Southward_1928_2007_"><img alt="Research paper thumbnail of ObituaryAlan J. Southward (1928�2007)" class="work-thumbnail" src="https://attachments.academia-assets.com/66393058/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47143308/ObituaryAlan_J_Southward_1928_2007_">ObituaryAlan J. Southward (1928�2007)</a></div><div class="wp-workCard_item"><span>Nature</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c7a76a0c4a3dd4d188969f088e6da8a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":66393058,"asset_id":47143308,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/66393058/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143308"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143308"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143308; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143308]").text(description); $(".js-view-count[data-work-id=47143308]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143308; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143308']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c7a76a0c4a3dd4d188969f088e6da8a0" } } $('.js-work-strip[data-work-id=47143308]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143308,"title":"ObituaryAlan J. Southward (1928�2007)","translated_title":"","metadata":{"ai_abstract":"This obituary honors Alan J. Southward, a prominent marine biologist known for his significant contributions to marine ecosystem studies, particularly through time series research. Central to his work was the examination of the effects of environmental changes on marine life, notably through his long-term monitoring of intertidal and planktonic organisms. Southward's innovative methodologies, including stable-isotope analysis, and his efforts in collaboration and mentorship, have left a lasting legacy in the field of marine science.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Nature"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143308/ObituaryAlan_J_Southward_1928_2007_","translated_internal_url":"","created_at":"2021-04-21T01:14:25.621-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66393058,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66393058/thumbnails/1.jpg","file_name":"451028a20210421-5703-t9gh3e.pdf","download_url":"https://www.academia.edu/attachments/66393058/download_file","bulk_download_file_name":"ObituaryAlan_J_Southward_1928_2007.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66393058/451028a20210421-5703-t9gh3e-libre.pdf?1618997087=\u0026response-content-disposition=attachment%3B+filename%3DObituaryAlan_J_Southward_1928_2007.pdf\u0026Expires=1744234951\u0026Signature=AJpa9S7d13caJ~4MX37oWBU0ZEyQAH2cgjRs73lXJCC3MV4ZxZtJTiCCSyfMzfAijXimFDG332U9VfljrIajUgha639rQZXQHH7NLztDNqK1zWC-aDqj2XLX0aboUGjolGkh8wv2eg2fDeY1fWM1RBavdsCJ2vx5uVVv9MriA~IoPLWODyyVqVODbP1fDcZ8SKngVXkU0k0L5dKdxV3Hmhexz4pu8smnLE8a8UdNjGFiGNwDjtRKJqO4LXyKftoYlxO3mLOO8xPHvsjDDQv90N8rexaMu~8Lr7-L8NqJiRT4rAVIkNbnLT1EwSWeruip5OJV9d49EmZlblUwY6o9Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"ObituaryAlan_J_Southward_1928_2007_","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":66393058,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66393058/thumbnails/1.jpg","file_name":"451028a20210421-5703-t9gh3e.pdf","download_url":"https://www.academia.edu/attachments/66393058/download_file","bulk_download_file_name":"ObituaryAlan_J_Southward_1928_2007.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66393058/451028a20210421-5703-t9gh3e-libre.pdf?1618997087=\u0026response-content-disposition=attachment%3B+filename%3DObituaryAlan_J_Southward_1928_2007.pdf\u0026Expires=1744234951\u0026Signature=AJpa9S7d13caJ~4MX37oWBU0ZEyQAH2cgjRs73lXJCC3MV4ZxZtJTiCCSyfMzfAijXimFDG332U9VfljrIajUgha639rQZXQHH7NLztDNqK1zWC-aDqj2XLX0aboUGjolGkh8wv2eg2fDeY1fWM1RBavdsCJ2vx5uVVv9MriA~IoPLWODyyVqVODbP1fDcZ8SKngVXkU0k0L5dKdxV3Hmhexz4pu8smnLE8a8UdNjGFiGNwDjtRKJqO4LXyKftoYlxO3mLOO8xPHvsjDDQv90N8rexaMu~8Lr7-L8NqJiRT4rAVIkNbnLT1EwSWeruip5OJV9d49EmZlblUwY6o9Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":1083,"name":"Developmental Biology","url":"https://www.academia.edu/Documents/in/Developmental_Biology"},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":5398,"name":"Biotechnology","url":"https://www.academia.edu/Documents/in/Biotechnology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":9113,"name":"Cell Cycle","url":"https://www.academia.edu/Documents/in/Cell_Cycle"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":10640,"name":"Drug Discovery","url":"https://www.academia.edu/Documents/in/Drug_Discovery"},{"id":10882,"name":"Evolution","url":"https://www.academia.edu/Documents/in/Evolution"},{"id":23179,"name":"Astrophysics","url":"https://www.academia.edu/Documents/in/Astrophysics"},{"id":47599,"name":"Astronomy","url":"https://www.academia.edu/Documents/in/Astronomy"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":125784,"name":"Cell Signalling","url":"https://www.academia.edu/Documents/in/Cell_Signalling"},{"id":373754,"name":"Ecosystem","url":"https://www.academia.edu/Documents/in/Ecosystem"},{"id":1216203,"name":"Earth Science","url":"https://www.academia.edu/Documents/in/Earth_Science"}],"urls":[{"id":9719347,"url":"http://dx.doi.org/10.1038/451028a"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143308-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143307"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143307/Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California"><img alt="Research paper thumbnail of Bathymetric characterization of tectonically active basins in the northern Gulf of California" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Bathymetric characterization of tectonically active basins in the northern Gulf of California</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Wagner Basin can be considered a &quot;nascent spreading centre&quot; that evolved from a hal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Wagner Basin can be considered a &quot;nascent spreading centre&quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143307"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143307"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143307; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143307]").text(description); $(".js-view-count[data-work-id=47143307]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143307; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143307']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143307]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143307,"title":"Bathymetric characterization of tectonically active basins in the northern Gulf of California","translated_title":"","metadata":{"abstract":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","publication_date":{"day":1,"month":4,"year":2009,"errors":{}}},"translated_abstract":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","internal_url":"https://www.academia.edu/47143307/Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California","translated_internal_url":"","created_at":"2021-04-21T01:14:25.506-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":609455,"name":"Gulf of California","url":"https://www.academia.edu/Documents/in/Gulf_of_California"}],"urls":[{"id":9719346,"url":"http://adsabs.harvard.edu/abs/2009eguga..1111249p"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143307-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143306"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47143306/New_information_on_the_ecology_of_deep_sea_vent_communities_in_the_azores_triple_junction_area_preliminery_results_of_the_Diva_2_cruise_May_31_July_4_1994_"><img alt="Research paper thumbnail of New information on the ecology of deep-sea vent communities in the azores triple junction area : preliminery results of the Diva 2 cruise (May 31-July 4, 1994)" class="work-thumbnail" src="https://attachments.academia-assets.com/66392658/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47143306/New_information_on_the_ecology_of_deep_sea_vent_communities_in_the_azores_triple_junction_area_preliminery_results_of_the_Diva_2_cruise_May_31_July_4_1994_">New information on the ecology of deep-sea vent communities in the azores triple junction area : preliminery results of the Diva 2 cruise (May 31-July 4, 1994)</a></div><div class="wp-workCard_item"><span>Interridge News</span><span>, 1994</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1f3908a98e9490214831be935ce6c716" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":66392658,"asset_id":47143306,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/66392658/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143306"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143306"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143306; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143306]").text(description); $(".js-view-count[data-work-id=47143306]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143306; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143306']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1f3908a98e9490214831be935ce6c716" } } $('.js-work-strip[data-work-id=47143306]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143306,"title":"New information on the ecology of deep-sea vent communities in the azores triple junction area : preliminery results of the Diva 2 cruise (May 31-July 4, 1994)","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Interridge News"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143306/New_information_on_the_ecology_of_deep_sea_vent_communities_in_the_azores_triple_junction_area_preliminery_results_of_the_Diva_2_cruise_May_31_July_4_1994_","translated_internal_url":"","created_at":"2021-04-21T01:14:25.420-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66392658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392658/thumbnails/1.jpg","file_name":"27432.pdf","download_url":"https://www.academia.edu/attachments/66392658/download_file","bulk_download_file_name":"New_information_on_the_ecology_of_deep_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392658/27432-libre.pdf?1618997115=\u0026response-content-disposition=attachment%3B+filename%3DNew_information_on_the_ecology_of_deep_s.pdf\u0026Expires=1744234951\u0026Signature=IJ-~HcDPJcLM8l27KOh-AW42rZVxxiMfprq5r85RmiMK6dhjxgdOm-RniTAEop6gDAHXwMhkBHxW52nPY-W-nl5p~O-rR~fJEUqt7QbeB4ZDo4DL2BXiTeHqMx7Ne9~crAhXJk1hwhiPXtwvXXFKvkBV2JbckVWuWzg2kI6Jy-qRFZooAnxOSKTnTSUWYrT-jjPuw79hZwC2pFmRXVWuy9AvODvqcdOLbGouAOHyFihZeZ8KyyyXCCg48D0Ia616BHnGjSJRTBxrTdcW9Y2SoSWMaHOHsTGfBE8Y2SlkUPRcDFp6b4mh0JS0uQgjFyD~bqOZqBonsBYdv0VPFhx7-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"New_information_on_the_ecology_of_deep_sea_vent_communities_in_the_azores_triple_junction_area_preliminery_results_of_the_Diva_2_cruise_May_31_July_4_1994_","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":66392658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392658/thumbnails/1.jpg","file_name":"27432.pdf","download_url":"https://www.academia.edu/attachments/66392658/download_file","bulk_download_file_name":"New_information_on_the_ecology_of_deep_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392658/27432-libre.pdf?1618997115=\u0026response-content-disposition=attachment%3B+filename%3DNew_information_on_the_ecology_of_deep_s.pdf\u0026Expires=1744234951\u0026Signature=IJ-~HcDPJcLM8l27KOh-AW42rZVxxiMfprq5r85RmiMK6dhjxgdOm-RniTAEop6gDAHXwMhkBHxW52nPY-W-nl5p~O-rR~fJEUqt7QbeB4ZDo4DL2BXiTeHqMx7Ne9~crAhXJk1hwhiPXtwvXXFKvkBV2JbckVWuWzg2kI6Jy-qRFZooAnxOSKTnTSUWYrT-jjPuw79hZwC2pFmRXVWuy9AvODvqcdOLbGouAOHyFihZeZ8KyyyXCCg48D0Ia616BHnGjSJRTBxrTdcW9Y2SoSWMaHOHsTGfBE8Y2SlkUPRcDFp6b4mh0JS0uQgjFyD~bqOZqBonsBYdv0VPFhx7-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":9719345,"url":"http://archimer.ifremer.fr/doc/00179/29005/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143306-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143305"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143305/Preliminary_observations_on_biological_communities_at_shallow_hydrothermal_vents_in_the_Aegean_Sea"><img alt="Research paper thumbnail of Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea</div><div class="wp-workCard_item"><span>Geological Society London Special Publications</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... 1990) and off the coast of Kos and Yali (Varnavas &amp; Cronan 1991). Venting of gas bubbles,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... 1990) and off the coast of Kos and Yali (Varnavas &amp; Cronan 1991). Venting of gas bubbles, containing mainly carbon dioxide, has been described from the submerged caldera at Santorini (Holm 1987) and from several areas around Milos (Dando et al. in press). ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143305"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143305"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143305; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143305]").text(description); $(".js-view-count[data-work-id=47143305]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143305; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143305']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143305]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143305,"title":"Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea","translated_title":"","metadata":{"abstract":"... 1990) and off the coast of Kos and Yali (Varnavas \u0026amp; Cronan 1991). Venting of gas bubbles, containing mainly carbon dioxide, has been described from the submerged caldera at Santorini (Holm 1987) and from several areas around Milos (Dando et al. in press). ...","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Geological Society London Special Publications"},"translated_abstract":"... 1990) and off the coast of Kos and Yali (Varnavas \u0026amp; Cronan 1991). Venting of gas bubbles, containing mainly carbon dioxide, has been described from the submerged caldera at Santorini (Holm 1987) and from several areas around Milos (Dando et al. in press). ...","internal_url":"https://www.academia.edu/47143305/Preliminary_observations_on_biological_communities_at_shallow_hydrothermal_vents_in_the_Aegean_Sea","translated_internal_url":"","created_at":"2021-04-21T01:14:25.363-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preliminary_observations_on_biological_communities_at_shallow_hydrothermal_vents_in_the_Aegean_Sea","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... 1990) and off the coast of Kos and Yali (Varnavas \u0026amp; Cronan 1991). Venting of gas bubbles, containing mainly carbon dioxide, has been described from the submerged caldera at Santorini (Holm 1987) and from several areas around Milos (Dando et al. in press). ...","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":926279,"name":"GEological Society of London","url":"https://www.academia.edu/Documents/in/GEological_Society_of_London"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143305-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143304"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143304/Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel"><img alt="Research paper thumbnail of Long-Term Oceanographic and Ecological Research in the Western English Channel" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Long-Term Oceanographic and Ecological Research in the Western English Channel</div><div class="wp-workCard_item"><span>Advances in Marine Biology</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143304"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143304"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143304; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143304]").text(description); $(".js-view-count[data-work-id=47143304]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143304; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143304']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143304]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143304,"title":"Long-Term Oceanographic and Ecological Research in the Western English Channel","translated_title":"","metadata":{"publisher":"Elsevier","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Advances in Marine Biology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143304/Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel","translated_internal_url":"","created_at":"2021-04-21T01:14:25.310-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":158,"name":"Marine Biology","url":"https://www.academia.edu/Documents/in/Marine_Biology"},{"id":415,"name":"Oceanography","url":"https://www.academia.edu/Documents/in/Oceanography"},{"id":13701,"name":"Climate","url":"https://www.academia.edu/Documents/in/Climate"},{"id":18754,"name":"Global Environmental Change","url":"https://www.academia.edu/Documents/in/Global_Environmental_Change"},{"id":28157,"name":"Environmental Change","url":"https://www.academia.edu/Documents/in/Environmental_Change"},{"id":44265,"name":"North Atlantic Oscillation","url":"https://www.academia.edu/Documents/in/North_Atlantic_Oscillation"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":59546,"name":"New Technology","url":"https://www.academia.edu/Documents/in/New_Technology"},{"id":77900,"name":"Marine","url":"https://www.academia.edu/Documents/in/Marine"},{"id":82682,"name":"Food web","url":"https://www.academia.edu/Documents/in/Food_web"},{"id":108192,"name":"Anthropogenic Disturbance","url":"https://www.academia.edu/Documents/in/Anthropogenic_Disturbance"},{"id":117270,"name":"Fishes","url":"https://www.academia.edu/Documents/in/Fishes"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":373754,"name":"Ecosystem","url":"https://www.academia.edu/Documents/in/Ecosystem"},{"id":406850,"name":"Marine Environment","url":"https://www.academia.edu/Documents/in/Marine_Environment"},{"id":416782,"name":"Ocean Colour","url":"https://www.academia.edu/Documents/in/Ocean_Colour"},{"id":952994,"name":"Environmental Modelling","url":"https://www.academia.edu/Documents/in/Environmental_Modelling"},{"id":1795281,"name":"Oceans and Seas","url":"https://www.academia.edu/Documents/in/Oceans_and_Seas"},{"id":3061034,"name":"ecosystem model","url":"https://www.academia.edu/Documents/in/ecosystem_model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143304-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143303"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143303/Spermatogenesis_of_Bathymodiolus_azoricus_in_captivity_matching_reproductive_behaviour_at_deep_sea_hydrothermal_vents"><img alt="Research paper thumbnail of Spermatogenesis of Bathymodiolus azoricus in captivity matching reproductive behaviour at deep-sea hydrothermal vents" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Spermatogenesis of Bathymodiolus azoricus in captivity matching reproductive behaviour at deep-sea hydrothermal vents</div><div class="wp-workCard_item"><span>Journal of Experimental Marine Biology and Ecology</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This study aims to improve our knowledge on the reproduction cycles of invertebrates from deep-se...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This study aims to improve our knowledge on the reproduction cycles of invertebrates from deep-sea hydrothermal vents, which is fragmentary to date, owing to the prohibitive costs of regular time series sampling required for a complete assessment. However, new technologies ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143303"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143303"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143303; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143303]").text(description); $(".js-view-count[data-work-id=47143303]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143303; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143303']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143303]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143303,"title":"Spermatogenesis of Bathymodiolus azoricus in captivity matching reproductive behaviour at deep-sea hydrothermal vents","translated_title":"","metadata":{"abstract":"This study aims to improve our knowledge on the reproduction cycles of invertebrates from deep-sea hydrothermal vents, which is fragmentary to date, owing to the prohibitive costs of regular time series sampling required for a complete assessment. However, new technologies ...","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of Experimental Marine Biology and Ecology"},"translated_abstract":"This study aims to improve our knowledge on the reproduction cycles of invertebrates from deep-sea hydrothermal vents, which is fragmentary to date, owing to the prohibitive costs of regular time series sampling required for a complete assessment. However, new technologies ...","internal_url":"https://www.academia.edu/47143303/Spermatogenesis_of_Bathymodiolus_azoricus_in_captivity_matching_reproductive_behaviour_at_deep_sea_hydrothermal_vents","translated_internal_url":"","created_at":"2021-04-21T01:14:25.241-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Spermatogenesis_of_Bathymodiolus_azoricus_in_captivity_matching_reproductive_behaviour_at_deep_sea_hydrothermal_vents","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This study aims to improve our knowledge on the reproduction cycles of invertebrates from deep-sea hydrothermal vents, which is fragmentary to date, owing to the prohibitive costs of regular time series sampling required for a complete assessment. However, new technologies ...","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":2998,"name":"Reproductive Behaviour","url":"https://www.academia.edu/Documents/in/Reproductive_Behaviour"},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":59546,"name":"New Technology","url":"https://www.academia.edu/Documents/in/New_Technology"},{"id":75577,"name":"Spermatogenesis","url":"https://www.academia.edu/Documents/in/Spermatogenesis"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":329844,"name":"Experimental","url":"https://www.academia.edu/Documents/in/Experimental"},{"id":333080,"name":"Reproductive cycle","url":"https://www.academia.edu/Documents/in/Reproductive_cycle"},{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":966650,"name":"Endosymbiont","url":"https://www.academia.edu/Documents/in/Endosymbiont"},{"id":1214035,"name":"Feeding System","url":"https://www.academia.edu/Documents/in/Feeding_System"},{"id":1611316,"name":"Methane oxidizing bacteria","url":"https://www.academia.edu/Documents/in/Methane_oxidizing_bacteria"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143303-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143302"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47143302/Gas_seep_induced_interstitial_water_circulation_observations_and_environmental_implications"><img alt="Research paper thumbnail of Gas seep induced interstitial water circulation: observations and environmental implications" class="work-thumbnail" src="https://attachments.academia-assets.com/66392664/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47143302/Gas_seep_induced_interstitial_water_circulation_observations_and_environmental_implications">Gas seep induced interstitial water circulation: observations and environmental implications</a></div><div class="wp-workCard_item"><span>Continental Shelf Research</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ah&act-An interstitial water circulation, generated by gas flow through a permeable sediment, was...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ah&act-An interstitial water circulation, generated by gas flow through a permeable sediment, was observed at an intertidal site on the Kattegat coast of Denmark. Concentrations of methane dissolved in the interstitial water of the near-surface sediment decreased sharply only centimetres away from gas seeps venting almost pure methane (-99% methane). Water was driven out of the sediment by the rising bubbles of gas at the seep and was replaced by an equivalent draw-down of overlying, oxygenated water into the surrounding sediment. This process steepened the chemical gradients close to the gas flow channel, with the effects progressively diminishing with increasing distance from the seep. The position of the redox potential discontinuity (RPD) moved by as much as 7 cm deeper into the sediment close to the seep: this effect was less marked, but still detectable, 50 cm away. The degree of displacement from the "normal" sediment profiles depended on the magnitude of the interstitial flow rate. The distribution of pore water pH and sulphate: sodium ratios were also dependent on the flow rate of the circulating water. The concentrations of sulphide, thiosulphate and sulphite in the interstitial water from the top 10 cm of sediment, were high at a seep, decreased to a minimum at 20-30 cm distance, then increased again at 40-50 cm distance. Laboratory experiments confirmed that gas bubbling through a fluid filled permeable matrix generated a flow, out of the sediment at the gas exit and into the sediment over the peripheral surfaces surrounding the outlet. Experimentally determined rates of dispersion, for gas flow rates of 3-20 ml min-', for a 40 g 1-l sodium chloride solution, were 62.5 x 1r9 to 540 x W9 m* s-l, 4o-400 times the molecular diffusion coefficient. Linear interstitial fluid velocities of 3-12 mm mitt-', were recorded at 14-3 cm from the seep axis respectively, with a gas flow rate of 5 ml min-'. Two-dimensional modelhng of the experimental system confirmed the flow pattern determined visually with dye. Implications of this process with regard to the recycling rates of elements generally, and of nutrient and waste materials, in particular, are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dd941945631a1e8dbe387c9cd58b1818" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":66392664,"asset_id":47143302,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/66392664/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143302"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143302"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143302; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143302]").text(description); $(".js-view-count[data-work-id=47143302]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143302; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143302']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dd941945631a1e8dbe387c9cd58b1818" } } $('.js-work-strip[data-work-id=47143302]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143302,"title":"Gas seep induced interstitial water circulation: observations and environmental implications","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Ah\u0026act-An interstitial water circulation, generated by gas flow through a permeable sediment, was observed at an intertidal site on the Kattegat coast of Denmark. Concentrations of methane dissolved in the interstitial water of the near-surface sediment decreased sharply only centimetres away from gas seeps venting almost pure methane (-99% methane). Water was driven out of the sediment by the rising bubbles of gas at the seep and was replaced by an equivalent draw-down of overlying, oxygenated water into the surrounding sediment. This process steepened the chemical gradients close to the gas flow channel, with the effects progressively diminishing with increasing distance from the seep. The position of the redox potential discontinuity (RPD) moved by as much as 7 cm deeper into the sediment close to the seep: this effect was less marked, but still detectable, 50 cm away. The degree of displacement from the \"normal\" sediment profiles depended on the magnitude of the interstitial flow rate. The distribution of pore water pH and sulphate: sodium ratios were also dependent on the flow rate of the circulating water. The concentrations of sulphide, thiosulphate and sulphite in the interstitial water from the top 10 cm of sediment, were high at a seep, decreased to a minimum at 20-30 cm distance, then increased again at 40-50 cm distance. Laboratory experiments confirmed that gas bubbling through a fluid filled permeable matrix generated a flow, out of the sediment at the gas exit and into the sediment over the peripheral surfaces surrounding the outlet. Experimentally determined rates of dispersion, for gas flow rates of 3-20 ml min-', for a 40 g 1-l sodium chloride solution, were 62.5 x 1r9 to 540 x W9 m* s-l, 4o-400 times the molecular diffusion coefficient. Linear interstitial fluid velocities of 3-12 mm mitt-', were recorded at 14-3 cm from the seep axis respectively, with a gas flow rate of 5 ml min-'. Two-dimensional modelhng of the experimental system confirmed the flow pattern determined visually with dye. Implications of this process with regard to the recycling rates of elements generally, and of nutrient and waste materials, in particular, are discussed.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Continental Shelf Research","grobid_abstract_attachment_id":66392664},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143302/Gas_seep_induced_interstitial_water_circulation_observations_and_environmental_implications","translated_internal_url":"","created_at":"2021-04-21T01:14:25.164-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66392664,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392664/thumbnails/1.jpg","file_name":"0278-4343_2895_2980003-v20210421-16266-19cjm2p.pdf","download_url":"https://www.academia.edu/attachments/66392664/download_file","bulk_download_file_name":"Gas_seep_induced_interstitial_water_circ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392664/0278-4343_2895_2980003-v20210421-16266-19cjm2p-libre.pdf?1618997121=\u0026response-content-disposition=attachment%3B+filename%3DGas_seep_induced_interstitial_water_circ.pdf\u0026Expires=1744234951\u0026Signature=dgdlAC0OKyLFnaKK5RWqIdR4r0X8kcTQ53av976grDFI7XrqmYEX1x91-75gpyqXhpOxyIJjwgrvcYKZlr3GAUSKZq2R6uUoEM6XJBQX9Af6iBwtyREgEheWticxDfcg1i3Kgyv-9OQ9lucem~WHK-C0DPHrnRZxKnXckKHo8s58XywL8Yi0kWFRvExMvgv1mnHF3nLBtF4PJo3ofdGdWh~-U~HmvrbABmRzpisojINdUDB9LXaTMnfXIqu4cXpsglrCP7quTggw6HWwbPSVolLhb~CDtag3gCzPEyVHZjbA9D~N0DAM6bNsDcyDcPoXtn5M1eMDkVU8dRMSFIgMKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gas_seep_induced_interstitial_water_circulation_observations_and_environmental_implications","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"Ah\u0026act-An interstitial water circulation, generated by gas flow through a permeable sediment, was observed at an intertidal site on the Kattegat coast of Denmark. Concentrations of methane dissolved in the interstitial water of the near-surface sediment decreased sharply only centimetres away from gas seeps venting almost pure methane (-99% methane). Water was driven out of the sediment by the rising bubbles of gas at the seep and was replaced by an equivalent draw-down of overlying, oxygenated water into the surrounding sediment. This process steepened the chemical gradients close to the gas flow channel, with the effects progressively diminishing with increasing distance from the seep. The position of the redox potential discontinuity (RPD) moved by as much as 7 cm deeper into the sediment close to the seep: this effect was less marked, but still detectable, 50 cm away. The degree of displacement from the \"normal\" sediment profiles depended on the magnitude of the interstitial flow rate. The distribution of pore water pH and sulphate: sodium ratios were also dependent on the flow rate of the circulating water. The concentrations of sulphide, thiosulphate and sulphite in the interstitial water from the top 10 cm of sediment, were high at a seep, decreased to a minimum at 20-30 cm distance, then increased again at 40-50 cm distance. Laboratory experiments confirmed that gas bubbling through a fluid filled permeable matrix generated a flow, out of the sediment at the gas exit and into the sediment over the peripheral surfaces surrounding the outlet. Experimentally determined rates of dispersion, for gas flow rates of 3-20 ml min-', for a 40 g 1-l sodium chloride solution, were 62.5 x 1r9 to 540 x W9 m* s-l, 4o-400 times the molecular diffusion coefficient. Linear interstitial fluid velocities of 3-12 mm mitt-', were recorded at 14-3 cm from the seep axis respectively, with a gas flow rate of 5 ml min-'. Two-dimensional modelhng of the experimental system confirmed the flow pattern determined visually with dye. Implications of this process with regard to the recycling rates of elements generally, and of nutrient and waste materials, in particular, are discussed.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":66392664,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392664/thumbnails/1.jpg","file_name":"0278-4343_2895_2980003-v20210421-16266-19cjm2p.pdf","download_url":"https://www.academia.edu/attachments/66392664/download_file","bulk_download_file_name":"Gas_seep_induced_interstitial_water_circ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392664/0278-4343_2895_2980003-v20210421-16266-19cjm2p-libre.pdf?1618997121=\u0026response-content-disposition=attachment%3B+filename%3DGas_seep_induced_interstitial_water_circ.pdf\u0026Expires=1744234951\u0026Signature=dgdlAC0OKyLFnaKK5RWqIdR4r0X8kcTQ53av976grDFI7XrqmYEX1x91-75gpyqXhpOxyIJjwgrvcYKZlr3GAUSKZq2R6uUoEM6XJBQX9Af6iBwtyREgEheWticxDfcg1i3Kgyv-9OQ9lucem~WHK-C0DPHrnRZxKnXckKHo8s58XywL8Yi0kWFRvExMvgv1mnHF3nLBtF4PJo3ofdGdWh~-U~HmvrbABmRzpisojINdUDB9LXaTMnfXIqu4cXpsglrCP7quTggw6HWwbPSVolLhb~CDtag3gCzPEyVHZjbA9D~N0DAM6bNsDcyDcPoXtn5M1eMDkVU8dRMSFIgMKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":131994,"name":"Laboratory experiment","url":"https://www.academia.edu/Documents/in/Laboratory_experiment"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":230435,"name":"Continental shelf","url":"https://www.academia.edu/Documents/in/Continental_shelf"},{"id":309493,"name":"Diffusion Coefficient","url":"https://www.academia.edu/Documents/in/Diffusion_Coefficient"},{"id":891612,"name":"Flow Pattern","url":"https://www.academia.edu/Documents/in/Flow_Pattern"},{"id":897122,"name":"Gas Flow","url":"https://www.academia.edu/Documents/in/Gas_Flow"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate"},{"id":1223913,"name":"Sodium Chloride","url":"https://www.academia.edu/Documents/in/Sodium_Chloride"},{"id":2274884,"name":"Pore Water","url":"https://www.academia.edu/Documents/in/Pore_Water"},{"id":2418473,"name":"Redox Potential","url":"https://www.academia.edu/Documents/in/Redox_Potential"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143302-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143301"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47143301/Gas_venting_rates_from_submarine_hydrothermal_areas_around_the_island_of_Milos_Hellenic_Volcanic_Arc"><img alt="Research paper thumbnail of Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc" class="work-thumbnail" src="https://attachments.academia-assets.com/66392662/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47143301/Gas_venting_rates_from_submarine_hydrothermal_areas_around_the_island_of_Milos_Hellenic_Volcanic_Arc">Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc</a></div><div class="wp-workCard_item"><span>Continental Shelf Research</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gas seeps were located, by echo sounding, SCUBA divers and ROV observations, at hydrothermal site...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gas seeps were located, by echo sounding, SCUBA divers and ROV observations, at hydrothermal sites around the island of Milos, in the Hellenic Volcanic Arc. Samples were collected by SCUBA divers and by a ROV from water depths between 3 and 110 m. Fifty-six flow rates from 39 individual seeps were measured and these ranged from 0.2 to 18.5 1 h-' at the depth of collection. The major component, 54.9-91.9% of the gas, was carbon dioxide. Hydrogen (~3%), methane (59.7%) and hydrogen sulphide (58.1%) were also measured. Hydrothermal free gas fluxes from the submarine hydrothermal areas around Milos were estimated to be greater than lOto moles y-l. It was concluded that submarine gas seeps along volcanic island arcs may be an important carbon dioxide source.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-47143301-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-47143301-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352129/figure-1-gas-venting-rates-from-submarine-hydrothermal-areas"><img alt="Gas venting rates from submarine hydrothermal areas " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_001.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352136/figure-2-gas-venting-rates-from-submarine-hydrothermal-areas"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_002.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352144/figure-2-low-vents-was-made-by-laying-transect-line-marked"><img alt="low, ~20°C, vents was made by laying a transect line, marked at 0.5 m intervals, between two such vents in 5 m water depth at site 2 in Paleohori Bay [Fig. 2(b)]. Gas vents were counted in 0.5 x 0.5 m quadrats along the line and sampled at intervals along this transect. The number of gas seeps in each 0.25 m? quadrat along the transect line were plotted against distance along the transect. Vent frequency increased in the first high temperature area but not in the second (Figs 6 and 7). Gas samples were collected from the vents closest to the transect line, along which the temperature measurements had been made. The gas analysis results (Fig. 7) confirmed the presence of hydrogen in the higher temperature areas. In contrast neither hydrogen sulphide nor methane showed a clear trend. " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_003.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352149/figure-2-from-seeps-sampled-in-the-areas-shown-in-gas-flow"><img alt="From 38 seeps sampled, in the areas shown in Fig. 2(a), 56 gas flow rates were measured. These are listed in Table 2 and plotted against water depth in Fig. 8. Flow rates measured repeatedly on a single seep during one dive were normally within 5% of each other. The variation of flow between days was considerably greater than this, for example between 3( May and 1 June vent 5 increased in flow by 39%, while vent 4 decreased in flow by 51%. There was no evidence for a major change in the degree of venting during the period ot observation, with the exception of a large eruptive release resulting from earthquakes on 20 March 1993 (Dando et al., 1995). In situ gas flow rates of > 101 h7! were only recorded in water depths of 10 m or less [Fig. 8(a)]. When corrected to STP there was no clea variation of flow with water depth [Fig. 8(b)]. The flow rates for the 38 individual seeps measured, corrected to STP, ranged from 0.16 to 26.23 | h~!, with a mean flow ot 8.561 h7!. ~~ ea ge ™ ?. .™! {rn -mX ae > ttre " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_004.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352153/figure-2-ow-has-in-the-most-active-areas-of-site-in"><img alt="Ow has In the most active areas of site 4 in Paleohori Bay (Fig. 2), continuous gas bubblin; caused sand and shell particles to be ejected 10 cm or more into the water. The re-sorting o the sediment caused continual minor changes in the position of the gas outlets, so that on vent outlet could erupt anywhere in a circle of approximately 30 cm diameter. It was no possible to measure the fiows from many of these vigorous seeps. The seabed over an are: of approximately 30 m? at site 4 resembled a fluid bed reactor, the sand appeared to “boil due to its suspension by the rising gas bubbles. SCUBA divers frequently observed individual gas bubble outlets to lie within a few cn " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_005.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352168/figure-6-gas-venting-rates-from-submarine-hydrothermal-areas"><img alt="Gas venting rates from submarine hydrothermal areas " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_006.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352177/figure-7-ig-variation-in-gas-flow-with-water-depth-in-situ"><img alt="‘ig. 8. Variation in gas flow with water depth: (a) in situ flow rate; (b) flow rate at STP. " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_007.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352189/table-2-flow-rate-and-chemical-composition-of-gas-from"><img alt="Table 2. Flow rate and chemical composition of gas from submarine vents " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/table_001.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352220/table-2-gas-venting-rates-from-submarine-hydrothermal-areas"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/66392662/table_002.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352235/table-3-gas-venting-rates-from-submarine-hydrothermal-areas"><img alt="Gas venting rates from submarine hydrothermal areas island, New Zealand, reach the surface from a depth of 170 m (Duncan and Pantin, 1969) are composed largely of CO, (Giggenbach et al., 1993). Gas bubbles have also beer observed from vents at 100 m depth north of Iceland (Fricke et al., 1989). Although the analysis of this submarine Icelandic gas was not recorded, analysis of volcanic gases fron iceland show that CO, is commonly the major component (Sigvaldson and Elisson, 1968 Poreda et al., 1992). Bubbles of CO, have also been observed rising from the seabed in 1! m water depth in Norton Sound, Alaska (Kvenvolden et al., 1979). In the mid-Pacific volcanic island arcs extensive gas venting, believed to be mainly CO, has been observed at Esmeralda Bank in the Mariana Arc (Stiiben et al. , 1992) and durin; ee ee ee . ee, ne: Ser, e. L .. ae Pe Sa Ley en, | Ti: ale ten Lhe meantime " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/table_003.jpg" width="114" height="68" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-47143301-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="eb2d98b468be635201347e1de51ad400" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":66392662,"asset_id":47143301,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/66392662/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143301"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143301"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143301; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143301]").text(description); $(".js-view-count[data-work-id=47143301]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143301; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143301']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "eb2d98b468be635201347e1de51ad400" } } $('.js-work-strip[data-work-id=47143301]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143301,"title":"Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Gas seeps were located, by echo sounding, SCUBA divers and ROV observations, at hydrothermal sites around the island of Milos, in the Hellenic Volcanic Arc. Samples were collected by SCUBA divers and by a ROV from water depths between 3 and 110 m. Fifty-six flow rates from 39 individual seeps were measured and these ranged from 0.2 to 18.5 1 h-' at the depth of collection. The major component, 54.9-91.9% of the gas, was carbon dioxide. Hydrogen (~3%), methane (59.7%) and hydrogen sulphide (58.1%) were also measured. Hydrothermal free gas fluxes from the submarine hydrothermal areas around Milos were estimated to be greater than lOto moles y-l. It was concluded that submarine gas seeps along volcanic island arcs may be an important carbon dioxide source.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Continental Shelf Research","grobid_abstract_attachment_id":66392662},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143301/Gas_venting_rates_from_submarine_hydrothermal_areas_around_the_island_of_Milos_Hellenic_Volcanic_Arc","translated_internal_url":"","created_at":"2021-04-21T01:14:25.091-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66392662,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392662/thumbnails/1.jpg","file_name":"0278-4343_2895_2980002-u20210421-5699-1osxvxh.pdf","download_url":"https://www.academia.edu/attachments/66392662/download_file","bulk_download_file_name":"Gas_venting_rates_from_submarine_hydroth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392662/0278-4343_2895_2980002-u20210421-5699-1osxvxh-libre.pdf?1618997121=\u0026response-content-disposition=attachment%3B+filename%3DGas_venting_rates_from_submarine_hydroth.pdf\u0026Expires=1744234951\u0026Signature=KZneoiPANJgsv9XeWIfrz9KpCvjy8zyz7yNrah6Y5bRttf3E3ljBHBmhMSJHDsbLlDkl7eF8xF4qcdcZZzU9NJ~pqPnDFwtwEoj~UWJR8630xz~v5~PQnSkXECnJr5800hQFDQ0szjkc18AQDziDvbXTsAxO1vXRGcfgER5UuYdyQihg33TifKuM2Fp~r1Q8KUj3U57REViRMHuVkJ6YUL5ed3tHKGJu4PmFQlMR~o732pw8z1nvN5nqBPxWZr9SQM6Yz6IxGcA0BHKmc6Ki7O8TFKWRX93PQdwVjZU619m6-~VuUUHQjGBEl-JwJRB3ejJomTL98cgaz6xw2ElfaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gas_venting_rates_from_submarine_hydrothermal_areas_around_the_island_of_Milos_Hellenic_Volcanic_Arc","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"Gas seeps were located, by echo sounding, SCUBA divers and ROV observations, at hydrothermal sites around the island of Milos, in the Hellenic Volcanic Arc. Samples were collected by SCUBA divers and by a ROV from water depths between 3 and 110 m. Fifty-six flow rates from 39 individual seeps were measured and these ranged from 0.2 to 18.5 1 h-' at the depth of collection. The major component, 54.9-91.9% of the gas, was carbon dioxide. Hydrogen (~3%), methane (59.7%) and hydrogen sulphide (58.1%) were also measured. Hydrothermal free gas fluxes from the submarine hydrothermal areas around Milos were estimated to be greater than lOto moles y-l. It was concluded that submarine gas seeps along volcanic island arcs may be an important carbon dioxide source.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":66392662,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392662/thumbnails/1.jpg","file_name":"0278-4343_2895_2980002-u20210421-5699-1osxvxh.pdf","download_url":"https://www.academia.edu/attachments/66392662/download_file","bulk_download_file_name":"Gas_venting_rates_from_submarine_hydroth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392662/0278-4343_2895_2980002-u20210421-5699-1osxvxh-libre.pdf?1618997121=\u0026response-content-disposition=attachment%3B+filename%3DGas_venting_rates_from_submarine_hydroth.pdf\u0026Expires=1744234951\u0026Signature=KZneoiPANJgsv9XeWIfrz9KpCvjy8zyz7yNrah6Y5bRttf3E3ljBHBmhMSJHDsbLlDkl7eF8xF4qcdcZZzU9NJ~pqPnDFwtwEoj~UWJR8630xz~v5~PQnSkXECnJr5800hQFDQ0szjkc18AQDziDvbXTsAxO1vXRGcfgER5UuYdyQihg33TifKuM2Fp~r1Q8KUj3U57REViRMHuVkJ6YUL5ed3tHKGJu4PmFQlMR~o732pw8z1nvN5nqBPxWZr9SQM6Yz6IxGcA0BHKmc6Ki7O8TFKWRX93PQdwVjZU619m6-~VuUUHQjGBEl-JwJRB3ejJomTL98cgaz6xw2ElfaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":4594,"name":"Carbon Dioxide","url":"https://www.academia.edu/Documents/in/Carbon_Dioxide"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":230435,"name":"Continental shelf","url":"https://www.academia.edu/Documents/in/Continental_shelf"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate"},{"id":1242196,"name":"Water Depth","url":"https://www.academia.edu/Documents/in/Water_Depth"},{"id":2993993,"name":"Hydrogen sulphide","url":"https://www.academia.edu/Documents/in/Hydrogen_sulphide"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-47143301-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143300"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143300/Retrievable_cages_open_up_new_era_in_deep_sea_vent_research"><img alt="Research paper thumbnail of Retrievable cages open up new era in deep-sea vent research" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Retrievable cages open up new era in deep-sea vent research</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To date, regulation of activities (including scientific research), in and around hydrothermal ven...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To date, regulation of activities (including scientific research), in and around hydrothermal vents under international law has been virtually non-existent. Two main international treaties are of direct relevance, namely the United Nations Convention on the Law of the Sea ( ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143300"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143300"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143300; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143300]").text(description); $(".js-view-count[data-work-id=47143300]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143300; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143300']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143300]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143300,"title":"Retrievable cages open up new era in deep-sea vent research","translated_title":"","metadata":{"abstract":"To date, regulation of activities (including scientific research), in and around hydrothermal vents under international law has been virtually non-existent. Two main international treaties are of direct relevance, namely the United Nations Convention on the Law of the Sea ( ...","publication_date":{"day":null,"month":null,"year":2001,"errors":{}}},"translated_abstract":"To date, regulation of activities (including scientific research), in and around hydrothermal vents under international law has been virtually non-existent. Two main international treaties are of direct relevance, namely the United Nations Convention on the Law of the Sea ( ...","internal_url":"https://www.academia.edu/47143300/Retrievable_cages_open_up_new_era_in_deep_sea_vent_research","translated_internal_url":"","created_at":"2021-04-21T01:14:25.032-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Retrievable_cages_open_up_new_era_in_deep_sea_vent_research","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"To date, regulation of activities (including scientific research), in and around hydrothermal vents under international law has been virtually non-existent. Two main international treaties are of direct relevance, namely the United Nations Convention on the Law of the Sea ( ...","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":796144,"name":"Deep Sea","url":"https://www.academia.edu/Documents/in/Deep_Sea"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143300-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143299"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143299/Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California"><img alt="Research paper thumbnail of Bathymetric characterization of tectonically active basins in the northern Gulf of California" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Bathymetric characterization of tectonically active basins in the northern Gulf of California</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Wagner Basin can be considered a &quot;nascent spreading centre&quot; that evolved from a hal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Wagner Basin can be considered a &quot;nascent spreading centre&quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143299"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143299"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143299; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143299]").text(description); $(".js-view-count[data-work-id=47143299]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143299; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143299']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143299]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143299,"title":"Bathymetric characterization of tectonically active basins in the northern Gulf of California","translated_title":"","metadata":{"abstract":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","internal_url":"https://www.academia.edu/47143299/Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California","translated_internal_url":"","created_at":"2021-04-21T01:14:24.974-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":609455,"name":"Gulf of California","url":"https://www.academia.edu/Documents/in/Gulf_of_California"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143299-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143112/Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel"><img alt="Research paper thumbnail of Long-Term Oceanographic and Ecological Research in the Western English Channel" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Long-Term Oceanographic and Ecological Research in the Western English Channel</div><div class="wp-workCard_item"><span>Advances in Marine Biology</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143112]").text(description); $(".js-view-count[data-work-id=47143112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143112,"title":"Long-Term Oceanographic and Ecological Research in the Western English Channel","translated_title":"","metadata":{"publisher":"Elsevier","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Advances in Marine Biology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143112/Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel","translated_internal_url":"","created_at":"2021-04-21T01:12:32.941-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":158,"name":"Marine Biology","url":"https://www.academia.edu/Documents/in/Marine_Biology"},{"id":415,"name":"Oceanography","url":"https://www.academia.edu/Documents/in/Oceanography"},{"id":13701,"name":"Climate","url":"https://www.academia.edu/Documents/in/Climate"},{"id":18754,"name":"Global Environmental Change","url":"https://www.academia.edu/Documents/in/Global_Environmental_Change"},{"id":28157,"name":"Environmental Change","url":"https://www.academia.edu/Documents/in/Environmental_Change"},{"id":44265,"name":"North Atlantic Oscillation","url":"https://www.academia.edu/Documents/in/North_Atlantic_Oscillation"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":59546,"name":"New Technology","url":"https://www.academia.edu/Documents/in/New_Technology"},{"id":77900,"name":"Marine","url":"https://www.academia.edu/Documents/in/Marine"},{"id":82682,"name":"Food web","url":"https://www.academia.edu/Documents/in/Food_web"},{"id":108192,"name":"Anthropogenic Disturbance","url":"https://www.academia.edu/Documents/in/Anthropogenic_Disturbance"},{"id":117270,"name":"Fishes","url":"https://www.academia.edu/Documents/in/Fishes"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":373754,"name":"Ecosystem","url":"https://www.academia.edu/Documents/in/Ecosystem"},{"id":406850,"name":"Marine Environment","url":"https://www.academia.edu/Documents/in/Marine_Environment"},{"id":416782,"name":"Ocean Colour","url":"https://www.academia.edu/Documents/in/Ocean_Colour"},{"id":952994,"name":"Environmental Modelling","url":"https://www.academia.edu/Documents/in/Environmental_Modelling"},{"id":1795281,"name":"Oceans and Seas","url":"https://www.academia.edu/Documents/in/Oceans_and_Seas"},{"id":3061034,"name":"ecosystem model","url":"https://www.academia.edu/Documents/in/ecosystem_model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143112-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="40721867"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/40721867/Interactions_between_sediment_chemistry_and_frenulate_pogonophores_Annelida_in_the_north_east_Atlantic"><img alt="Research paper thumbnail of Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic" class="work-thumbnail" src="https://attachments.academia-assets.com/61008170/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/40721867/Interactions_between_sediment_chemistry_and_frenulate_pogonophores_Annelida_in_the_north_east_Atlantic">Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PLamont1">P. Lamont</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://mba.academia.edu/PaulDando">Paul Dando</a></span></div><div class="wp-workCard_item"><span>Deep Sea Research Part I: Oceanographic Research Papers</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit mu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit muddy sediments on the continental slope, although a few species occur near hydrothermal vents and cold seeps. We present data on the distribution and habitat characteristics of several species on the European continental shelf and slope from 481N to 751N and show how the animals interact with the chemistry of the sediments. The environments inhabited include: shallow (30 m), organic-rich, fjord sediments; slope sediments (1000-2200 m) and methane seeps at 330 m depth. All the species studied obtain nutrition from endosymbiotic bacteria. They take up reduced sulphur species, or in one case, methane, through the posterior parts of their tubes buried in the anoxic sediment. We conclude that most species undertake sulphide 'mining', a mechanism previously demonstrated in the bivalves Lucinoma borealis and Thyasira sarsi. These pogonophores participate in the sulphur cycle and effectively lower the sulphide content of the sediments. Our results show that the abundance of frenulate pogonophores increases with increasing sedimentation and with decreasing abundance of other benthos, particularly bioturbating organisms. The maximum sustainable carrying capacity of non-seep sediments for frenulate pogonophores is limited by the rate of sulphate reduction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6b9810ab4d6f46ae2ba37a4122529730" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":61008170,"asset_id":40721867,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/61008170/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="40721867"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="40721867"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 40721867; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=40721867]").text(description); $(".js-view-count[data-work-id=40721867]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 40721867; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='40721867']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6b9810ab4d6f46ae2ba37a4122529730" } } $('.js-work-strip[data-work-id=40721867]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":40721867,"title":"Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit muddy sediments on the continental slope, although a few species occur near hydrothermal vents and cold seeps. We present data on the distribution and habitat characteristics of several species on the European continental shelf and slope from 481N to 751N and show how the animals interact with the chemistry of the sediments. The environments inhabited include: shallow (30 m), organic-rich, fjord sediments; slope sediments (1000-2200 m) and methane seeps at 330 m depth. All the species studied obtain nutrition from endosymbiotic bacteria. They take up reduced sulphur species, or in one case, methane, through the posterior parts of their tubes buried in the anoxic sediment. We conclude that most species undertake sulphide 'mining', a mechanism previously demonstrated in the bivalves Lucinoma borealis and Thyasira sarsi. These pogonophores participate in the sulphur cycle and effectively lower the sulphide content of the sediments. Our results show that the abundance of frenulate pogonophores increases with increasing sedimentation and with decreasing abundance of other benthos, particularly bioturbating organisms. The maximum sustainable carrying capacity of non-seep sediments for frenulate pogonophores is limited by the rate of sulphate reduction.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Deep Sea Research Part I: Oceanographic Research Papers","grobid_abstract_attachment_id":61008170},"translated_abstract":null,"internal_url":"https://www.academia.edu/40721867/Interactions_between_sediment_chemistry_and_frenulate_pogonophores_Annelida_in_the_north_east_Atlantic","translated_internal_url":"","created_at":"2019-10-24T12:53:13.381-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37328413,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":33197069,"work_id":40721867,"tagging_user_id":37328413,"tagged_user_id":31765584,"co_author_invite_id":null,"email":"p***o@mba.ac.uk","affiliation":"The Marine Biological Association of the UK","display_order":0,"name":"Paul Dando","title":"Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic"},{"id":33197070,"work_id":40721867,"tagging_user_id":37328413,"tagged_user_id":57770166,"co_author_invite_id":null,"email":"e***h@mba.ac.uk","display_order":4194304,"name":"E. Southward","title":"Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic"}],"downloadable_attachments":[{"id":61008170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/61008170/thumbnails/1.jpg","file_name":"j.dsr.2008.04.00220191024-28583-19d3gvz.pdf","download_url":"https://www.academia.edu/attachments/61008170/download_file","bulk_download_file_name":"Interactions_between_sediment_chemistry.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/61008170/j.dsr.2008.04.00220191024-28583-19d3gvz-libre.pdf?1571948753=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_between_sediment_chemistry.pdf\u0026Expires=1744234951\u0026Signature=G0TIvQGQ2CkNnsfWSHMdMpxEp5eaQtVpTRHuY8rpx6jj4-ctcZnHj4aZZ3yW6jnaGYxbgAMxxnVAlRgMPPlnHsJfzvEX61z-GERqol6clsvdQz5byq2BBQmkPLJFvmaQkHsBpRAT-s2LOfjTr1wNy2-iusgGhKagGEBPMpzH6yHPJCWn64UN6-d~FTGhJVk2Cb00rW6d4yzJvp1QKq3FZlszTuWbHduk3G67PMgvG4oTrXlwskx6515yBSM4rxoc1TmkGMgopGG6GNl9xheDQX9zW0RwgXx1XEFdIaTqwA33rbhJ9sYo-tuv51y7frzgHFth94bWPlpn9Qvc812eJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interactions_between_sediment_chemistry_and_frenulate_pogonophores_Annelida_in_the_north_east_Atlantic","translated_slug":"","page_count":31,"language":"en","content_type":"Work","summary":"The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit muddy sediments on the continental slope, although a few species occur near hydrothermal vents and cold seeps. We present data on the distribution and habitat characteristics of several species on the European continental shelf and slope from 481N to 751N and show how the animals interact with the chemistry of the sediments. The environments inhabited include: shallow (30 m), organic-rich, fjord sediments; slope sediments (1000-2200 m) and methane seeps at 330 m depth. All the species studied obtain nutrition from endosymbiotic bacteria. They take up reduced sulphur species, or in one case, methane, through the posterior parts of their tubes buried in the anoxic sediment. We conclude that most species undertake sulphide 'mining', a mechanism previously demonstrated in the bivalves Lucinoma borealis and Thyasira sarsi. These pogonophores participate in the sulphur cycle and effectively lower the sulphide content of the sediments. Our results show that the abundance of frenulate pogonophores increases with increasing sedimentation and with decreasing abundance of other benthos, particularly bioturbating organisms. The maximum sustainable carrying capacity of non-seep sediments for frenulate pogonophores is limited by the rate of sulphate reduction.","impression_tracking_id":null,"owner":{"id":37328413,"first_name":"P.","middle_initials":null,"last_name":"Lamont","page_name":"PLamont1","domain_name":"independent","created_at":"2015-10-31T04:12:09.188-07:00","display_name":"P. Lamont","url":"https://independent.academia.edu/PLamont1"},"attachments":[{"id":61008170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/61008170/thumbnails/1.jpg","file_name":"j.dsr.2008.04.00220191024-28583-19d3gvz.pdf","download_url":"https://www.academia.edu/attachments/61008170/download_file","bulk_download_file_name":"Interactions_between_sediment_chemistry.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/61008170/j.dsr.2008.04.00220191024-28583-19d3gvz-libre.pdf?1571948753=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_between_sediment_chemistry.pdf\u0026Expires=1744234951\u0026Signature=G0TIvQGQ2CkNnsfWSHMdMpxEp5eaQtVpTRHuY8rpx6jj4-ctcZnHj4aZZ3yW6jnaGYxbgAMxxnVAlRgMPPlnHsJfzvEX61z-GERqol6clsvdQz5byq2BBQmkPLJFvmaQkHsBpRAT-s2LOfjTr1wNy2-iusgGhKagGEBPMpzH6yHPJCWn64UN6-d~FTGhJVk2Cb00rW6d4yzJvp1QKq3FZlszTuWbHduk3G67PMgvG4oTrXlwskx6515yBSM4rxoc1TmkGMgopGG6GNl9xheDQX9zW0RwgXx1XEFdIaTqwA33rbhJ9sYo-tuv51y7frzgHFth94bWPlpn9Qvc812eJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":415,"name":"Oceanography","url":"https://www.academia.edu/Documents/in/Oceanography"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":169569,"name":"Cold Seep","url":"https://www.academia.edu/Documents/in/Cold_Seep"},{"id":230435,"name":"Continental shelf","url":"https://www.academia.edu/Documents/in/Continental_shelf"},{"id":239727,"name":"Continental Slope","url":"https://www.academia.edu/Documents/in/Continental_Slope"},{"id":330187,"name":"Carrying Capacity","url":"https://www.academia.edu/Documents/in/Carrying_Capacity"},{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":536028,"name":"Cold Seeps","url":"https://www.academia.edu/Documents/in/Cold_Seeps"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-40721867-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="25337651"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25337651/In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea"><img alt="Research paper thumbnail of In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea" class="work-thumbnail" src="https://attachments.academia-assets.com/45636543/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25337651/In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea">In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PLinke">P. Linke</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://mba.academia.edu/PaulDando">Paul Dando</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterised in ter...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterised in terms of their flow of fluid, gas, heat and chemicals. The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4152361dae6d6631a000e233bee2c9e4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":45636543,"asset_id":25337651,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/45636543/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25337651"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25337651"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25337651; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25337651]").text(description); $(".js-view-count[data-work-id=25337651]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25337651; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25337651']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4152361dae6d6631a000e233bee2c9e4" } } $('.js-work-strip[data-work-id=25337651]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25337651,"title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea","translated_title":"","metadata":{"grobid_abstract":"Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterised in terms of their flow of fluid, gas, heat and chemicals. The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"grobid_abstract_attachment_id":45636543},"translated_abstract":null,"internal_url":"https://www.academia.edu/25337651/In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea","translated_internal_url":"","created_at":"2016-05-15T00:23:35.316-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32755955,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20266258,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":31765584,"co_author_invite_id":null,"email":"p***o@mba.ac.uk","affiliation":"The Marine Biological Association of the UK","display_order":0,"name":"Paul Dando","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"},{"id":20266259,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":38767762,"co_author_invite_id":null,"email":"w***s@usc.edu","display_order":4194304,"name":"Wiebke Ziebis","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"},{"id":20266260,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":null,"co_author_invite_id":2413599,"email":"s***s@upatras.gr","display_order":6291456,"name":"S. Varnavas","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"},{"id":20266261,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":20946979,"co_author_invite_id":null,"email":"p***l@upatras.gr","display_order":7340032,"name":"Panos Megalovasilis","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"},{"id":20266262,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":38878402,"co_author_invite_id":null,"email":"s***g@teipat.gr","display_order":7864320,"name":"D. Panagiotaras","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"},{"id":20266263,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":null,"co_author_invite_id":4573638,"email":"k***t@hydra-institute.com","display_order":8126464,"name":"K. Eichstaedt","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"}],"downloadable_attachments":[{"id":45636543,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45636543/thumbnails/1.jpg","file_name":"In_Situ_Investigations_Of_Shallow_Water_20160515-19108-oudqif.pdf","download_url":"https://www.academia.edu/attachments/45636543/download_file","bulk_download_file_name":"In_Situ_Investigations_Of_Shallow_Water.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45636543/In_Situ_Investigations_Of_Shallow_Water_20160515-19108-oudqif-libre.pdf?1463297344=\u0026response-content-disposition=attachment%3B+filename%3DIn_Situ_Investigations_Of_Shallow_Water.pdf\u0026Expires=1744234951\u0026Signature=POHgFGY8gybp2~3m2ItFRxQ-wDbZDzfHLUDwLDR13rM99IrF4Y7eo-cbx5AOPgmV~9ZxDTNSBLZDR5c2OF5ozMtpy-dhMBi4MTXWrx~gkhscxCejTUPtaDc4-hTKgdMbhCWMTpW6AdmyQ7dkKyNf72BRH2IQ2ATdB~e~xKTf1C-02R0-~98LaZ~qEvAEgkNxHW9jDlKaHbgwe13mIOKedtG-CYnjhZ6CyTKPEqj2drN2pzbBSeKKVV1JEQP8YyclJj~rOqF6MLp7DbLZ-HQsC9-r~dVaJ2hk-I76wgbklCuRkoIY8s1pNMiWV2aVbm5loOsvbxCqA1H4HFc-NL1mYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterised in terms of their flow of fluid, gas, heat and chemicals. The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers.","impression_tracking_id":null,"owner":{"id":32755955,"first_name":"P.","middle_initials":null,"last_name":"Linke","page_name":"PLinke","domain_name":"independent","created_at":"2015-07-02T23:38:59.778-07:00","display_name":"P. Linke","url":"https://independent.academia.edu/PLinke"},"attachments":[{"id":45636543,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45636543/thumbnails/1.jpg","file_name":"In_Situ_Investigations_Of_Shallow_Water_20160515-19108-oudqif.pdf","download_url":"https://www.academia.edu/attachments/45636543/download_file","bulk_download_file_name":"In_Situ_Investigations_Of_Shallow_Water.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45636543/In_Situ_Investigations_Of_Shallow_Water_20160515-19108-oudqif-libre.pdf?1463297344=\u0026response-content-disposition=attachment%3B+filename%3DIn_Situ_Investigations_Of_Shallow_Water.pdf\u0026Expires=1744234951\u0026Signature=POHgFGY8gybp2~3m2ItFRxQ-wDbZDzfHLUDwLDR13rM99IrF4Y7eo-cbx5AOPgmV~9ZxDTNSBLZDR5c2OF5ozMtpy-dhMBi4MTXWrx~gkhscxCejTUPtaDc4-hTKgdMbhCWMTpW6AdmyQ7dkKyNf72BRH2IQ2ATdB~e~xKTf1C-02R0-~98LaZ~qEvAEgkNxHW9jDlKaHbgwe13mIOKedtG-CYnjhZ6CyTKPEqj2drN2pzbBSeKKVV1JEQP8YyclJj~rOqF6MLp7DbLZ-HQsC9-r~dVaJ2hk-I76wgbklCuRkoIY8s1pNMiWV2aVbm5loOsvbxCqA1H4HFc-NL1mYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":1407728,"name":"Shallow Water","url":"https://www.academia.edu/Documents/in/Shallow_Water"}],"urls":[{"id":7109426,"url":"http://www.onepetro.org/mslib/servlet/onepetropreview?id=SUT-USS-97-085\u0026soc=SUT"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-25337651-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2995471" id="papers"><div class="js-work-strip profile--work_container" data-work-id="90444817"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/90444817/Study_of_food_chains_at_methane_seeps_in_the_North_Sea"><img alt="Research paper thumbnail of Study of food chains at methane seeps in the North Sea" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Study of food chains at methane seeps in the North Sea</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">SIGLEAvailable from British Library Document Supply Centre-DSC:3614.6031(05) / BLDSC - British Li...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">SIGLEAvailable from British Library Document Supply Centre-DSC:3614.6031(05) / BLDSC - British Library Document Supply CentreGBUnited Kingdo</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90444817"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90444817"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90444817; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90444817]").text(description); $(".js-view-count[data-work-id=90444817]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90444817; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90444817']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=90444817]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90444817,"title":"Study of food chains at methane seeps in the North Sea","translated_title":"","metadata":{"abstract":"SIGLEAvailable from British Library Document Supply Centre-DSC:3614.6031(05) / BLDSC - British Library Document Supply CentreGBUnited Kingdo","publication_date":{"day":null,"month":null,"year":1990,"errors":{}}},"translated_abstract":"SIGLEAvailable from British Library Document Supply Centre-DSC:3614.6031(05) / BLDSC - British Library Document Supply CentreGBUnited Kingdo","internal_url":"https://www.academia.edu/90444817/Study_of_food_chains_at_methane_seeps_in_the_North_Sea","translated_internal_url":"","created_at":"2022-11-10T04:42:50.674-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Study_of_food_chains_at_methane_seeps_in_the_North_Sea","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"SIGLEAvailable from British Library Document Supply Centre-DSC:3614.6031(05) / BLDSC - British Library Document Supply CentreGBUnited Kingdo","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":90103,"name":"Sulphide","url":"https://www.academia.edu/Documents/in/Sulphide"},{"id":564110,"name":"Benthic","url":"https://www.academia.edu/Documents/in/Benthic"},{"id":3751483,"name":"Marine Fauna","url":"https://www.academia.edu/Documents/in/Marine_Fauna"}],"urls":[{"id":25791900,"url":"http://hdl.handle.net/10068/602884"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-90444817-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="90444816"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/90444816/The_Chemical_Biology_of_Fishes_Volume_2_"><img alt="Research paper thumbnail of The Chemical Biology of Fishes (Volume 2)" class="work-thumbnail" src="https://attachments.academia-assets.com/94006647/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/90444816/The_Chemical_Biology_of_Fishes_Volume_2_">The Chemical Biology of Fishes (Volume 2)</a></div><div class="wp-workCard_item"><span>Biochemical Society Transactions</span><span>, 1982</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This is the book to consult if you wish to know the concentration of silver or of sialic acid in ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This is the book to consult if you wish to know the concentration of silver or of sialic acid in different fish tissues and in different species of fish. Volume 2 continues the survey of</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="15acf0d2065dee99e5d0b89a6c378e53" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94006647,"asset_id":90444816,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94006647/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90444816"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90444816"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90444816; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90444816]").text(description); $(".js-view-count[data-work-id=90444816]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90444816; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90444816']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "15acf0d2065dee99e5d0b89a6c378e53" } } $('.js-work-strip[data-work-id=90444816]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90444816,"title":"The Chemical Biology of Fishes (Volume 2)","translated_title":"","metadata":{"publisher":"Portland Press Ltd.","ai_title_tag":"Chemical Biology of Fish: Volume 2 Insights","grobid_abstract":"This is the book to consult if you wish to know the concentration of silver or of sialic acid in different fish tissues and in different species of fish. Volume 2 continues the survey of","publication_date":{"day":null,"month":null,"year":1982,"errors":{}},"publication_name":"Biochemical Society Transactions","grobid_abstract_attachment_id":94006647},"translated_abstract":null,"internal_url":"https://www.academia.edu/90444816/The_Chemical_Biology_of_Fishes_Volume_2_","translated_internal_url":"","created_at":"2022-11-10T04:42:47.798-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":94006647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94006647/thumbnails/1.jpg","file_name":"bst010006320221110-1-x2iw5n.pdf","download_url":"https://www.academia.edu/attachments/94006647/download_file","bulk_download_file_name":"The_Chemical_Biology_of_Fishes_Volume_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94006647/bst010006320221110-1-x2iw5n-libre.pdf?1668087008=\u0026response-content-disposition=attachment%3B+filename%3DThe_Chemical_Biology_of_Fishes_Volume_2.pdf\u0026Expires=1744234951\u0026Signature=M3UO74-NwInpUfY~tFhmAPjHsm-2kEU2t-Pxr45SUPJSXAtdgxTgIs5QLz9gpi40bF7JsvHmMqa5rGrTFFiCNC6ay7hJ2oJHDv1KTGPzgaYh-oRw6cXL-r5JQ5ymQ01w8NVJ6l3Y93H28-K3dpB0GtvQ6eXemI6cQllrNbVl09pzxQPWa8jXe-ijL6VRuOurZTewYVqvjhfERfk4x6PH4hJDdhCaWUt-nY4EA81mX3k9Yj46oUAT1rzNiSJWdv8RNzCHRtj95P6tt581zzg2syWU-xZvVQIW5j7ksOufQjl4lgm9K1OdW08VF3dSRlvQS3touhHzYtLXHCJRxHy99Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Chemical_Biology_of_Fishes_Volume_2_","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"This is the book to consult if you wish to know the concentration of silver or of sialic acid in different fish tissues and in different species of fish. Volume 2 continues the survey of","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":94006647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94006647/thumbnails/1.jpg","file_name":"bst010006320221110-1-x2iw5n.pdf","download_url":"https://www.academia.edu/attachments/94006647/download_file","bulk_download_file_name":"The_Chemical_Biology_of_Fishes_Volume_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94006647/bst010006320221110-1-x2iw5n-libre.pdf?1668087008=\u0026response-content-disposition=attachment%3B+filename%3DThe_Chemical_Biology_of_Fishes_Volume_2.pdf\u0026Expires=1744234951\u0026Signature=M3UO74-NwInpUfY~tFhmAPjHsm-2kEU2t-Pxr45SUPJSXAtdgxTgIs5QLz9gpi40bF7JsvHmMqa5rGrTFFiCNC6ay7hJ2oJHDv1KTGPzgaYh-oRw6cXL-r5JQ5ymQ01w8NVJ6l3Y93H28-K3dpB0GtvQ6eXemI6cQllrNbVl09pzxQPWa8jXe-ijL6VRuOurZTewYVqvjhfERfk4x6PH4hJDdhCaWUt-nY4EA81mX3k9Yj46oUAT1rzNiSJWdv8RNzCHRtj95P6tt581zzg2syWU-xZvVQIW5j7ksOufQjl4lgm9K1OdW08VF3dSRlvQS3touhHzYtLXHCJRxHy99Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":21180,"name":"Chemical Biology","url":"https://www.academia.edu/Documents/in/Chemical_Biology"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":3789880,"name":"Medical biochemistry and metabolomics","url":"https://www.academia.edu/Documents/in/Medical_biochemistry_and_metabolomics"}],"urls":[{"id":25791899,"url":"https://portlandpress.com/biochemsoctrans/article-pdf/10/1/63/734915/bst0100063.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-90444816-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="90444759"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/90444759/In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea"><img alt="Research paper thumbnail of In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characteriz...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterized in terms of their flow of fluid, gas, heat and chemicals The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers. In situ measurements confirmed the shallow vent sites to be extreme environments of low pH and high temperature The outflow of gas or hot liquid through the permeable sediment induced a convection cell of pore-water entrainment from deeper in the sediment to the surface Nutrients and dissolved carbon dioxide were transported to the sediment surface across an area of 4m diameter around a single vent and ejected into the water column This outflow was compensated by an inflow of oxygen rich water over an area foaming a ring around the outflow region These geochemical conditions were reflected in the colour of the sediment and the type of precipitate or &amp;#39;mat&amp;#39; forming on the sediment surface. Gas and fluid flux measurements made at a number of vent sites indicate the mean flow of fluid discharge in Palaeochori Bay to be in the range 50 - 80 dm3 h -1. Despite the &amp;#39;nutrient pump&amp;#39; effect of the vent system, plankton biomass, photosynthesis and respiration remained low (&amp;lt; 0 1 mg m-3,&amp;lt; 1 mmol -3 -1 -3 -1 02 m d , 2-4 mmol 02 m d respectively) The water column was always dominated by respiring rather than photosynthesizing organisms No significant difference was found between plankton production at venting and non-venting sites despite a large range of ambient dissolved inorganic carbon concentration. By contrast, small changes in ambient temperature had a profound stimulatory effect on plankton respiration and a lesser effect on plankton photosynthesis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90444759"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90444759"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90444759; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90444759]").text(description); $(".js-view-count[data-work-id=90444759]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90444759; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90444759']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=90444759]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90444759,"title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea","translated_title":"","metadata":{"abstract":"ABSTRACT Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterized in terms of their flow of fluid, gas, heat and chemicals The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers. In situ measurements confirmed the shallow vent sites to be extreme environments of low pH and high temperature The outflow of gas or hot liquid through the permeable sediment induced a convection cell of pore-water entrainment from deeper in the sediment to the surface Nutrients and dissolved carbon dioxide were transported to the sediment surface across an area of 4m diameter around a single vent and ejected into the water column This outflow was compensated by an inflow of oxygen rich water over an area foaming a ring around the outflow region These geochemical conditions were reflected in the colour of the sediment and the type of precipitate or \u0026amp;#39;mat\u0026amp;#39; forming on the sediment surface. Gas and fluid flux measurements made at a number of vent sites indicate the mean flow of fluid discharge in Palaeochori Bay to be in the range 50 - 80 dm3 h -1. Despite the \u0026amp;#39;nutrient pump\u0026amp;#39; effect of the vent system, plankton biomass, photosynthesis and respiration remained low (\u0026amp;lt; 0 1 mg m-3,\u0026amp;lt; 1 mmol -3 -1 -3 -1 02 m d , 2-4 mmol 02 m d respectively) The water column was always dominated by respiring rather than photosynthesizing organisms No significant difference was found between plankton production at venting and non-venting sites despite a large range of ambient dissolved inorganic carbon concentration. By contrast, small changes in ambient temperature had a profound stimulatory effect on plankton respiration and a lesser effect on plankton photosynthesis.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}}},"translated_abstract":"ABSTRACT Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterized in terms of their flow of fluid, gas, heat and chemicals The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers. In situ measurements confirmed the shallow vent sites to be extreme environments of low pH and high temperature The outflow of gas or hot liquid through the permeable sediment induced a convection cell of pore-water entrainment from deeper in the sediment to the surface Nutrients and dissolved carbon dioxide were transported to the sediment surface across an area of 4m diameter around a single vent and ejected into the water column This outflow was compensated by an inflow of oxygen rich water over an area foaming a ring around the outflow region These geochemical conditions were reflected in the colour of the sediment and the type of precipitate or \u0026amp;#39;mat\u0026amp;#39; forming on the sediment surface. Gas and fluid flux measurements made at a number of vent sites indicate the mean flow of fluid discharge in Palaeochori Bay to be in the range 50 - 80 dm3 h -1. Despite the \u0026amp;#39;nutrient pump\u0026amp;#39; effect of the vent system, plankton biomass, photosynthesis and respiration remained low (\u0026amp;lt; 0 1 mg m-3,\u0026amp;lt; 1 mmol -3 -1 -3 -1 02 m d , 2-4 mmol 02 m d respectively) The water column was always dominated by respiring rather than photosynthesizing organisms No significant difference was found between plankton production at venting and non-venting sites despite a large range of ambient dissolved inorganic carbon concentration. By contrast, small changes in ambient temperature had a profound stimulatory effect on plankton respiration and a lesser effect on plankton photosynthesis.","internal_url":"https://www.academia.edu/90444759/In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea","translated_internal_url":"","created_at":"2022-11-10T04:41:37.480-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterized in terms of their flow of fluid, gas, heat and chemicals The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers. In situ measurements confirmed the shallow vent sites to be extreme environments of low pH and high temperature The outflow of gas or hot liquid through the permeable sediment induced a convection cell of pore-water entrainment from deeper in the sediment to the surface Nutrients and dissolved carbon dioxide were transported to the sediment surface across an area of 4m diameter around a single vent and ejected into the water column This outflow was compensated by an inflow of oxygen rich water over an area foaming a ring around the outflow region These geochemical conditions were reflected in the colour of the sediment and the type of precipitate or \u0026amp;#39;mat\u0026amp;#39; forming on the sediment surface. Gas and fluid flux measurements made at a number of vent sites indicate the mean flow of fluid discharge in Palaeochori Bay to be in the range 50 - 80 dm3 h -1. Despite the \u0026amp;#39;nutrient pump\u0026amp;#39; effect of the vent system, plankton biomass, photosynthesis and respiration remained low (\u0026amp;lt; 0 1 mg m-3,\u0026amp;lt; 1 mmol -3 -1 -3 -1 02 m d , 2-4 mmol 02 m d respectively) The water column was always dominated by respiring rather than photosynthesizing organisms No significant difference was found between plankton production at venting and non-venting sites despite a large range of ambient dissolved inorganic carbon concentration. By contrast, small changes in ambient temperature had a profound stimulatory effect on plankton respiration and a lesser effect on plankton photosynthesis.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":415,"name":"Oceanography","url":"https://www.academia.edu/Documents/in/Oceanography"},{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":1407728,"name":"Shallow Water","url":"https://www.academia.edu/Documents/in/Shallow_Water"},{"id":1660649,"name":"Bay","url":"https://www.academia.edu/Documents/in/Bay"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-90444759-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="77176210"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/77176210/Methane_venting_associated_with_submarine_groundwater_discharge_in_Eckernf%C3%B6rde_Bucht_Baltic_sea"><img alt="Research paper thumbnail of Methane venting associated with submarine groundwater discharge in Eckernförde Bucht, Baltic sea" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Methane venting associated with submarine groundwater discharge in Eckernförde Bucht, Baltic sea</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract:Submarine groundwater discharges are responsible for pockmark depressions on the bed ofE...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract:Submarine groundwater discharges are responsible for pockmark depressions on the bed ofEckernforde Bucht, Western Baltic. In these depressions there is an interface between almostfluid sediment and sea water that is typically about 1.5 2m below the surrounding seabed.Transects, made with a underwater digital video camera sled in October 1998 and September1999, showed that near the rims of the depressions the clay aquaclude was not covered byrecent methane generating organic sediment. Cracks could be seen in the clay indicating thatedges of the aquaclude layer are slowly collapsing into the steep sided depressions. Somesharply angular cobble sized clay clasts were seen just outside the pockmark rims suggestingthat blow-outs may occur. Acoustic turbidity is widespread in the sediments of the deeperparts of Eckernforde Bucht due to methane gas bubble formation within the sediment. Themethane seems to derive mainly from the decomposition of recent organic matter. Becausethe Buc...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77176210"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77176210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77176210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77176210]").text(description); $(".js-view-count[data-work-id=77176210]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77176210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77176210']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=77176210]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77176210,"title":"Methane venting associated with submarine groundwater discharge in Eckernförde Bucht, Baltic sea","translated_title":"","metadata":{"abstract":"Abstract:Submarine groundwater discharges are responsible for pockmark depressions on the bed ofEckernforde Bucht, Western Baltic. In these depressions there is an interface between almostfluid sediment and sea water that is typically about 1.5 2m below the surrounding seabed.Transects, made with a underwater digital video camera sled in October 1998 and September1999, showed that near the rims of the depressions the clay aquaclude was not covered byrecent methane generating organic sediment. Cracks could be seen in the clay indicating thatedges of the aquaclude layer are slowly collapsing into the steep sided depressions. Somesharply angular cobble sized clay clasts were seen just outside the pockmark rims suggestingthat blow-outs may occur. Acoustic turbidity is widespread in the sediments of the deeperparts of Eckernforde Bucht due to methane gas bubble formation within the sediment. Themethane seems to derive mainly from the decomposition of recent organic matter. Becausethe Buc...","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"Abstract:Submarine groundwater discharges are responsible for pockmark depressions on the bed ofEckernforde Bucht, Western Baltic. In these depressions there is an interface between almostfluid sediment and sea water that is typically about 1.5 2m below the surrounding seabed.Transects, made with a underwater digital video camera sled in October 1998 and September1999, showed that near the rims of the depressions the clay aquaclude was not covered byrecent methane generating organic sediment. Cracks could be seen in the clay indicating thatedges of the aquaclude layer are slowly collapsing into the steep sided depressions. Somesharply angular cobble sized clay clasts were seen just outside the pockmark rims suggestingthat blow-outs may occur. Acoustic turbidity is widespread in the sediments of the deeperparts of Eckernforde Bucht due to methane gas bubble formation within the sediment. Themethane seems to derive mainly from the decomposition of recent organic matter. Becausethe Buc...","internal_url":"https://www.academia.edu/77176210/Methane_venting_associated_with_submarine_groundwater_discharge_in_Eckernf%C3%B6rde_Bucht_Baltic_sea","translated_internal_url":"","created_at":"2022-04-21T05:37:43.184-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Methane_venting_associated_with_submarine_groundwater_discharge_in_Eckernförde_Bucht_Baltic_sea","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract:Submarine groundwater discharges are responsible for pockmark depressions on the bed ofEckernforde Bucht, Western Baltic. In these depressions there is an interface between almostfluid sediment and sea water that is typically about 1.5 2m below the surrounding seabed.Transects, made with a underwater digital video camera sled in October 1998 and September1999, showed that near the rims of the depressions the clay aquaclude was not covered byrecent methane generating organic sediment. Cracks could be seen in the clay indicating thatedges of the aquaclude layer are slowly collapsing into the steep sided depressions. Somesharply angular cobble sized clay clasts were seen just outside the pockmark rims suggestingthat blow-outs may occur. Acoustic turbidity is widespread in the sediments of the deeperparts of Eckernforde Bucht due to methane gas bubble formation within the sediment. Themethane seems to derive mainly from the decomposition of recent organic matter. Becausethe Buc...","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":469290,"name":"Submarine Groundwater Discharge","url":"https://www.academia.edu/Documents/in/Submarine_Groundwater_Discharge"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-77176210-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="77176209"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77176209/Seismicity_in_the_hellenic_volcanic_arc_hydrothermal_system_in_relation_to_geochemical_parameters"><img alt="Research paper thumbnail of Seismicity in the hellenic volcanic arc hydrothermal system in relation to geochemical parameters" class="work-thumbnail" src="https://attachments.academia-assets.com/84630977/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77176209/Seismicity_in_the_hellenic_volcanic_arc_hydrothermal_system_in_relation_to_geochemical_parameters">Seismicity in the hellenic volcanic arc hydrothermal system in relation to geochemical parameters</a></div><div class="wp-workCard_item"><span>Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of the paper is to study the microseismicity of the island of Milos, Greece, in order to ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of the paper is to study the microseismicity of the island of Milos, Greece, in order to relate the recorded earthquake signals to venting periodic@ and to understand better the role of episodic events. A seismic network of five three-component, triggering mode digital stations, installed on the island in the summer of 1996, recorded almost 400 local microearthquakes and 500 signals, tentatively associated with hydrothermal activity. The analysis indicates low seismic@, probably associated with the existing hydrothermal field of the area. The hydrothermal signals are of two types, with peak frequencies of 2-3 Hz and 20-30 Hz, respectively. Preliminary analysis of records from the same experiment in 1997 showed that a high concentration of seawater in particulates Mn was followed by a group of microearthquakes 6-8 hours later.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6b076775e998098f0f6c0a931a0bf4dd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84630977,"asset_id":77176209,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84630977/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77176209"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77176209"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77176209; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77176209]").text(description); $(".js-view-count[data-work-id=77176209]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77176209; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77176209']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6b076775e998098f0f6c0a931a0bf4dd" } } $('.js-work-strip[data-work-id=77176209]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77176209,"title":"Seismicity in the hellenic volcanic arc hydrothermal system in relation to geochemical parameters","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Microseismicity and Geochemical Relations in Milos Volcano","grobid_abstract":"The aim of the paper is to study the microseismicity of the island of Milos, Greece, in order to relate the recorded earthquake signals to venting periodic@ and to understand better the role of episodic events. A seismic network of five three-component, triggering mode digital stations, installed on the island in the summer of 1996, recorded almost 400 local microearthquakes and 500 signals, tentatively associated with hydrothermal activity. The analysis indicates low seismic@, probably associated with the existing hydrothermal field of the area. The hydrothermal signals are of two types, with peak frequencies of 2-3 Hz and 20-30 Hz, respectively. Preliminary analysis of records from the same experiment in 1997 showed that a high concentration of seawater in particulates Mn was followed by a group of microearthquakes 6-8 hours later.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere","grobid_abstract_attachment_id":84630977},"translated_abstract":null,"internal_url":"https://www.academia.edu/77176209/Seismicity_in_the_hellenic_volcanic_arc_hydrothermal_system_in_relation_to_geochemical_parameters","translated_internal_url":"","created_at":"2022-04-21T05:37:42.727-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84630977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84630977/thumbnails/1.jpg","file_name":"makro167.pdf","download_url":"https://www.academia.edu/attachments/84630977/download_file","bulk_download_file_name":"Seismicity_in_the_hellenic_volcanic_arc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84630977/makro167-libre.pdf?1650563329=\u0026response-content-disposition=attachment%3B+filename%3DSeismicity_in_the_hellenic_volcanic_arc.pdf\u0026Expires=1744234951\u0026Signature=IP8uOm1-wlEH2hNmxnCiz3lsninQMLLF2WDqdVgc4GvBF7~TbyuwbVbe6XoNUKyFbJcSz9e7sD1qIWX9TNOPZzKb04xA66Hg3wHAgEQYg6o87VRGqXK2mFow5PbrThkG7VcbXHX6Ic~DJozlgOguemDYdPEkvDp~W~xoOw0v7lv5SUUJRw15hdzA~M8KjeO9uu34gJ4Rfptpp5D0M-siUyAWo-fx~yIZP6MHzakzzelG9N7yxabpFejZLMXOVwg2JZum7x1vhyLvQXdK8BK4eagU-CsfHG7ckyj1~d39qo-QiWSatBus9mlWUX6K1ErT2MZc6IqpyUDHIbJzcv6EKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Seismicity_in_the_hellenic_volcanic_arc_hydrothermal_system_in_relation_to_geochemical_parameters","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"The aim of the paper is to study the microseismicity of the island of Milos, Greece, in order to relate the recorded earthquake signals to venting periodic@ and to understand better the role of episodic events. A seismic network of five three-component, triggering mode digital stations, installed on the island in the summer of 1996, recorded almost 400 local microearthquakes and 500 signals, tentatively associated with hydrothermal activity. The analysis indicates low seismic@, probably associated with the existing hydrothermal field of the area. The hydrothermal signals are of two types, with peak frequencies of 2-3 Hz and 20-30 Hz, respectively. Preliminary analysis of records from the same experiment in 1997 showed that a high concentration of seawater in particulates Mn was followed by a group of microearthquakes 6-8 hours later.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":84630977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84630977/thumbnails/1.jpg","file_name":"makro167.pdf","download_url":"https://www.academia.edu/attachments/84630977/download_file","bulk_download_file_name":"Seismicity_in_the_hellenic_volcanic_arc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84630977/makro167-libre.pdf?1650563329=\u0026response-content-disposition=attachment%3B+filename%3DSeismicity_in_the_hellenic_volcanic_arc.pdf\u0026Expires=1744234951\u0026Signature=IP8uOm1-wlEH2hNmxnCiz3lsninQMLLF2WDqdVgc4GvBF7~TbyuwbVbe6XoNUKyFbJcSz9e7sD1qIWX9TNOPZzKb04xA66Hg3wHAgEQYg6o87VRGqXK2mFow5PbrThkG7VcbXHX6Ic~DJozlgOguemDYdPEkvDp~W~xoOw0v7lv5SUUJRw15hdzA~M8KjeO9uu34gJ4Rfptpp5D0M-siUyAWo-fx~yIZP6MHzakzzelG9N7yxabpFejZLMXOVwg2JZum7x1vhyLvQXdK8BK4eagU-CsfHG7ckyj1~d39qo-QiWSatBus9mlWUX6K1ErT2MZc6IqpyUDHIbJzcv6EKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":108863,"name":"Volcano","url":"https://www.academia.edu/Documents/in/Volcano"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-77176209-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="77176073"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77176073/Biodiversity_and_Biogeography_of_Chthamalid_Barnacles_from_the_North_Eastern_Pacific_Crustacea_Cirripedia_"><img alt="Research paper thumbnail of Biodiversity and Biogeography of Chthamalid Barnacles from the North-Eastern Pacific (Crustacea Cirripedia)" class="work-thumbnail" src="https://attachments.academia-assets.com/84646483/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77176073/Biodiversity_and_Biogeography_of_Chthamalid_Barnacles_from_the_North_Eastern_Pacific_Crustacea_Cirripedia_">Biodiversity and Biogeography of Chthamalid Barnacles from the North-Eastern Pacific (Crustacea Cirripedia)</a></div><div class="wp-workCard_item"><span>PLOS ONE</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The biogeography and ecology of the species of Chthamalus present on the west coast of America ar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The biogeography and ecology of the species of Chthamalus present on the west coast of America are described, using data from 51 localities from Alaska to Panama, together with their zonation on the shore with respect to that of other barnacles. The species present were C.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b280735837510cf54e1e6917992b2b62" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84646483,"asset_id":77176073,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84646483/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77176073"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77176073"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77176073; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77176073]").text(description); $(".js-view-count[data-work-id=77176073]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77176073; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77176073']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b280735837510cf54e1e6917992b2b62" } } $('.js-work-strip[data-work-id=77176073]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77176073,"title":"Biodiversity and Biogeography of Chthamalid Barnacles from the North-Eastern Pacific (Crustacea Cirripedia)","translated_title":"","metadata":{"publisher":"Public Library of Science (PLoS)","ai_title_tag":"Chthamalid Barnacles: Biogeography and Ecology in the NE Pacific","grobid_abstract":"The biogeography and ecology of the species of Chthamalus present on the west coast of America are described, using data from 51 localities from Alaska to Panama, together with their zonation on the shore with respect to that of other barnacles. The species present were C.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"PLOS ONE","grobid_abstract_attachment_id":84646483},"translated_abstract":null,"internal_url":"https://www.academia.edu/77176073/Biodiversity_and_Biogeography_of_Chthamalid_Barnacles_from_the_North_Eastern_Pacific_Crustacea_Cirripedia_","translated_internal_url":"","created_at":"2022-04-21T05:36:41.149-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84646483,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84646483/thumbnails/1.jpg","file_name":"25594f7d79d67e0134a34f46e45bcae7a953.pdf","download_url":"https://www.academia.edu/attachments/84646483/download_file","bulk_download_file_name":"Biodiversity_and_Biogeography_of_Chthama.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84646483/25594f7d79d67e0134a34f46e45bcae7a953-libre.pdf?1650584281=\u0026response-content-disposition=attachment%3B+filename%3DBiodiversity_and_Biogeography_of_Chthama.pdf\u0026Expires=1744234951\u0026Signature=N~-cbEiyFzYODVBnBdKYF-khed9ihE8RdMIUWX-HkEQ7uvrB7OK1Y2BtMBwvVhIHGod3LQYEdQXI0Cs78yaEKAzKeJrF-akna9V~KF-T7S7K58dQWupyqDerEgCOwOPQyXHBJ59c~63DA86P~CLRhpqlIy~ptQrfrkFHuWv55FARV9N48WM~kcDDMgGeWRj2lcR4RBc7e0HYrXjzkNVShnn4SjAhlO4i8xzOSiMJEQ0wVNsVJrLB3icTN5VmRQTB3J1wKBrCPU3H3IWlagKk8fXEVB53vmjNPh62iTtwti3OnLrGX6nfR8lxLXuSMGuyCkM6OTv-~5b1ehokXYGlbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Biodiversity_and_Biogeography_of_Chthamalid_Barnacles_from_the_North_Eastern_Pacific_Crustacea_Cirripedia_","translated_slug":"","page_count":51,"language":"en","content_type":"Work","summary":"The biogeography and ecology of the species of Chthamalus present on the west coast of America are described, using data from 51 localities from Alaska to Panama, together with their zonation on the shore with respect to that of other barnacles. The species present were C.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":84646483,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84646483/thumbnails/1.jpg","file_name":"25594f7d79d67e0134a34f46e45bcae7a953.pdf","download_url":"https://www.academia.edu/attachments/84646483/download_file","bulk_download_file_name":"Biodiversity_and_Biogeography_of_Chthama.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84646483/25594f7d79d67e0134a34f46e45bcae7a953-libre.pdf?1650584281=\u0026response-content-disposition=attachment%3B+filename%3DBiodiversity_and_Biogeography_of_Chthama.pdf\u0026Expires=1744234951\u0026Signature=N~-cbEiyFzYODVBnBdKYF-khed9ihE8RdMIUWX-HkEQ7uvrB7OK1Y2BtMBwvVhIHGod3LQYEdQXI0Cs78yaEKAzKeJrF-akna9V~KF-T7S7K58dQWupyqDerEgCOwOPQyXHBJ59c~63DA86P~CLRhpqlIy~ptQrfrkFHuWv55FARV9N48WM~kcDDMgGeWRj2lcR4RBc7e0HYrXjzkNVShnn4SjAhlO4i8xzOSiMJEQ0wVNsVJrLB3icTN5VmRQTB3J1wKBrCPU3H3IWlagKk8fXEVB53vmjNPh62iTtwti3OnLrGX6nfR8lxLXuSMGuyCkM6OTv-~5b1ehokXYGlbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4206,"name":"Phylogeography","url":"https://www.academia.edu/Documents/in/Phylogeography"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":17823,"name":"Biogeography","url":"https://www.academia.edu/Documents/in/Biogeography"},{"id":17825,"name":"Biodiversity","url":"https://www.academia.edu/Documents/in/Biodiversity"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":39284,"name":"Panama","url":"https://www.academia.edu/Documents/in/Panama"},{"id":43881,"name":"Mexico","url":"https://www.academia.edu/Documents/in/Mexico"},{"id":50113,"name":"California","url":"https://www.academia.edu/Documents/in/California"},{"id":63093,"name":"Mitochondrial DNA","url":"https://www.academia.edu/Documents/in/Mitochondrial_DNA"},{"id":174666,"name":"Islands","url":"https://www.academia.edu/Documents/in/Islands"},{"id":205464,"name":"Crustacean","url":"https://www.academia.edu/Documents/in/Crustacean"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":554355,"name":"Pacific ocean","url":"https://www.academia.edu/Documents/in/Pacific_ocean"},{"id":617771,"name":"MEXICO","url":"https://www.academia.edu/Documents/in/MEXICO-2015"},{"id":784076,"name":"Species Specificity","url":"https://www.academia.edu/Documents/in/Species_Specificity"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":1191613,"name":"Likelihood Functions","url":"https://www.academia.edu/Documents/in/Likelihood_Functions"},{"id":1748976,"name":"Bays","url":"https://www.academia.edu/Documents/in/Bays"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-77176073-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143310"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47143310/The_history_of_the_Journal_of_the_Marine_Biological_Association_of_the_United_Kingdom_and_the_influence_of_the_publication_on_marine_research"><img alt="Research paper thumbnail of The history of the Journal of the Marine Biological Association of the United Kingdom and the influence of the publication on marine research" class="work-thumbnail" src="https://attachments.academia-assets.com/66392599/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47143310/The_history_of_the_Journal_of_the_Marine_Biological_Association_of_the_United_Kingdom_and_the_influence_of_the_publication_on_marine_research">The history of the Journal of the Marine Biological Association of the United Kingdom and the influence of the publication on marine research</a></div><div class="wp-workCard_item"><span>Journal of the Marine Biological Association of the United Kingdom</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The origin and development of the Journal of the Marine Biological Association of the United King...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The origin and development of the Journal of the Marine Biological Association of the United Kingdom is described on the occasion of the publication of the 100th volume. Papers in the Journal demonstrate how the techniques and approaches to the study of the marine environment have evolved over the 120 years of publication. The early papers provided a baseline description of the marine environment and of marine communities that allowed the effects of later perturbations of the environment to be determined. Both the early papers and the long time series of records have proved to be particularly relevant as marine scientists try to predict the long-term results of climatic and anthropogenic effects on the marine ecosystem. The Journal has now become increasingly international, with most papers coming from outside Europe.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-47143310-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-47143310-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893562/figure-1-from-heape-original-legend-fishing-map-of-plymouth"><img alt="Fig. 1. From Heape (1887), original legend: ‘Fishing Map of Plymouth Sound, after map published in G. and R. Books ‘General Guide to Sea Fishing’ No. 5. The depth is marked in feet thus 30. The best places to fish for pollock, bass and mackerel are shown by the dotted line. The crosses show places to fish in ebb tide. The stars show places to fish in flood tide.’ " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_001.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893582/figure-3-number-of-pages-printed-in-the-jmba-in-each-year"><img alt="Fig. 3. (A) Number of pages printed in the JMBA in each year since 1887. (B) Number of scientific papers published in the JMBA in the first year of each decade. " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_002.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893590/figure-2-line-drawing-reproduced-from-plate-in-browne"><img alt="Fig. 2. Line drawing reproduced from Plate | in E.T. Browne (1907). Bimeria biscayana n. sp. Portion of a branch drawn to show the arrangement of the hydranth and the auxiliary tubes. [Renamed and re-described as: Amphinema biscayana (Browne 1907) by Schuchert (2000).] " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_003.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893600/figure-4-jmba-covers-first-issue-old-series-cover-cover-from"><img alt="Fig. 4. JMBA covers. (A) First issue (old series) cover; (B) cover from June 1962 showing the enlarged laboratory; (C) cover from 1989; (D) cover from 1999; (E) first coloured cover (February 2004): (F) typical cover from December 2005. " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_004.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893610/figure-5-percentage-of-papers-published-in-the-jmba-from-the"><img alt="Fig. 5. Percentage of papers published in the JMBA, from the MBA, the rest of the UK or different regions of the world, in the first year of every decade, starting from 1900. North America includes Mexico. " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_005.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893620/figure-6-the-history-of-the-journal-of-the-marine-biological"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/66392599/figure_006.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893631/table-1-editors-editors-in-chief-and-executive-editors-of"><img alt="Table 1. Editors, Editors-in-chief* and Executive Editors of the JMBA since its formation (** Acting Editor) " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/table_001.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893637/table-2-list-of-special-themed-issues-and-issue-sections"><img alt="Table 2. List of Special/Themed issues and issue sections with Conference Papers in the JMBA the long-term value of so many of the publications in the JMBA The 10 most cited papers in the JMBA during the first 60 years o publication are listed in Table 3 and the 10 most cited paper " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/table_002.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893644/table-3-top-citations-in-the-journal-of-the-marine"><img alt="Table 3. Top 10 citations in the Journal of the Marine Biological Association of the United Kingdom from 1887 to 1956 " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/table_003.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48893653/table-4-top-citations-in-the-journal-of-the-marine"><img alt="Table 4. Top 10 citations in the Journal of the Marine Biological Association of the United Kingdom from 1957 to present " class="figure-slide-image" src="https://figures.academia-assets.com/66392599/table_004.jpg" width="114" height="68" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-47143310-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb02b57f20d0bffe65e2b3a5313e056a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":66392599,"asset_id":47143310,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/66392599/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143310"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143310"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143310; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143310]").text(description); $(".js-view-count[data-work-id=47143310]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143310; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143310']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb02b57f20d0bffe65e2b3a5313e056a" } } $('.js-work-strip[data-work-id=47143310]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143310,"title":"The history of the Journal of the Marine Biological Association of the United Kingdom and the influence of the publication on marine research","translated_title":"","metadata":{"abstract":"The origin and development of the Journal of the Marine Biological Association of the United Kingdom is described on the occasion of the publication of the 100th volume. Papers in the Journal demonstrate how the techniques and approaches to the study of the marine environment have evolved over the 120 years of publication. The early papers provided a baseline description of the marine environment and of marine communities that allowed the effects of later perturbations of the environment to be determined. Both the early papers and the long time series of records have proved to be particularly relevant as marine scientists try to predict the long-term results of climatic and anthropogenic effects on the marine ecosystem. The Journal has now become increasingly international, with most papers coming from outside Europe.","publisher":"Cambridge University Press (CUP)","ai_title_tag":"Centennial Influence of Marine Biology Journal","publication_name":"Journal of the Marine Biological Association of the United Kingdom"},"translated_abstract":"The origin and development of the Journal of the Marine Biological Association of the United Kingdom is described on the occasion of the publication of the 100th volume. Papers in the Journal demonstrate how the techniques and approaches to the study of the marine environment have evolved over the 120 years of publication. The early papers provided a baseline description of the marine environment and of marine communities that allowed the effects of later perturbations of the environment to be determined. Both the early papers and the long time series of records have proved to be particularly relevant as marine scientists try to predict the long-term results of climatic and anthropogenic effects on the marine ecosystem. The Journal has now become increasingly international, with most papers coming from outside Europe.","internal_url":"https://www.academia.edu/47143310/The_history_of_the_Journal_of_the_Marine_Biological_Association_of_the_United_Kingdom_and_the_influence_of_the_publication_on_marine_research","translated_internal_url":"","created_at":"2021-04-21T01:14:25.709-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66392599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392599/thumbnails/1.jpg","file_name":"S0025315419001000.pdf","download_url":"https://www.academia.edu/attachments/66392599/download_file","bulk_download_file_name":"The_history_of_the_Journal_of_the_Marine.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392599/S0025315419001000-libre.pdf?1618992909=\u0026response-content-disposition=attachment%3B+filename%3DThe_history_of_the_Journal_of_the_Marine.pdf\u0026Expires=1744234951\u0026Signature=BsG3QrcYJ4Oy8GPrzCdxx~vr5CrSY21DyiPK8GitTph83wCxZL88M31IuKtQLsQf8Ia6aR54BT585YKVQGMWDShS3p~NMvgjTYoA6rNyG9SLYGY1Au8V7tSgqbg9pNpvOczzG4MAZP2J3rMx7F1I6auH4rQPeBE5AF6Pc4qIKHEhhS44-6Kh45Xvbw-vLEHa5z9gRkPAVx03Lg7nE80fPUCi-w-XYlD1ymtFTtPcLn0Ju-ex-sZ5P32wKPNTCO9GvQXM5afgm6imbYVx84rupMW343K0vk5UC6klL8JpNLPEdEv9Epp4LgugB4ZIo7qJalr7UPReJ-bkm5L~bJwbTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_history_of_the_Journal_of_the_Marine_Biological_Association_of_the_United_Kingdom_and_the_influence_of_the_publication_on_marine_research","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"The origin and development of the Journal of the Marine Biological Association of the United Kingdom is described on the occasion of the publication of the 100th volume. Papers in the Journal demonstrate how the techniques and approaches to the study of the marine environment have evolved over the 120 years of publication. The early papers provided a baseline description of the marine environment and of marine communities that allowed the effects of later perturbations of the environment to be determined. Both the early papers and the long time series of records have proved to be particularly relevant as marine scientists try to predict the long-term results of climatic and anthropogenic effects on the marine ecosystem. The Journal has now become increasingly international, with most papers coming from outside Europe.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":66392599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392599/thumbnails/1.jpg","file_name":"S0025315419001000.pdf","download_url":"https://www.academia.edu/attachments/66392599/download_file","bulk_download_file_name":"The_history_of_the_Journal_of_the_Marine.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392599/S0025315419001000-libre.pdf?1618992909=\u0026response-content-disposition=attachment%3B+filename%3DThe_history_of_the_Journal_of_the_Marine.pdf\u0026Expires=1744234951\u0026Signature=BsG3QrcYJ4Oy8GPrzCdxx~vr5CrSY21DyiPK8GitTph83wCxZL88M31IuKtQLsQf8Ia6aR54BT585YKVQGMWDShS3p~NMvgjTYoA6rNyG9SLYGY1Au8V7tSgqbg9pNpvOczzG4MAZP2J3rMx7F1I6auH4rQPeBE5AF6Pc4qIKHEhhS44-6Kh45Xvbw-vLEHa5z9gRkPAVx03Lg7nE80fPUCi-w-XYlD1ymtFTtPcLn0Ju-ex-sZ5P32wKPNTCO9GvQXM5afgm6imbYVx84rupMW343K0vk5UC6klL8JpNLPEdEv9Epp4LgugB4ZIo7qJalr7UPReJ-bkm5L~bJwbTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":173,"name":"Zoology","url":"https://www.academia.edu/Documents/in/Zoology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"}],"urls":[{"id":9719348,"url":"https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0025315419001000"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-47143310-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143308"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47143308/ObituaryAlan_J_Southward_1928_2007_"><img alt="Research paper thumbnail of ObituaryAlan J. Southward (1928�2007)" class="work-thumbnail" src="https://attachments.academia-assets.com/66393058/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47143308/ObituaryAlan_J_Southward_1928_2007_">ObituaryAlan J. Southward (1928�2007)</a></div><div class="wp-workCard_item"><span>Nature</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c7a76a0c4a3dd4d188969f088e6da8a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":66393058,"asset_id":47143308,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/66393058/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143308"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143308"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143308; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143308]").text(description); $(".js-view-count[data-work-id=47143308]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143308; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143308']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c7a76a0c4a3dd4d188969f088e6da8a0" } } $('.js-work-strip[data-work-id=47143308]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143308,"title":"ObituaryAlan J. Southward (1928�2007)","translated_title":"","metadata":{"ai_abstract":"This obituary honors Alan J. Southward, a prominent marine biologist known for his significant contributions to marine ecosystem studies, particularly through time series research. Central to his work was the examination of the effects of environmental changes on marine life, notably through his long-term monitoring of intertidal and planktonic organisms. Southward's innovative methodologies, including stable-isotope analysis, and his efforts in collaboration and mentorship, have left a lasting legacy in the field of marine science.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Nature"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143308/ObituaryAlan_J_Southward_1928_2007_","translated_internal_url":"","created_at":"2021-04-21T01:14:25.621-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66393058,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66393058/thumbnails/1.jpg","file_name":"451028a20210421-5703-t9gh3e.pdf","download_url":"https://www.academia.edu/attachments/66393058/download_file","bulk_download_file_name":"ObituaryAlan_J_Southward_1928_2007.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66393058/451028a20210421-5703-t9gh3e-libre.pdf?1618997087=\u0026response-content-disposition=attachment%3B+filename%3DObituaryAlan_J_Southward_1928_2007.pdf\u0026Expires=1744234951\u0026Signature=AJpa9S7d13caJ~4MX37oWBU0ZEyQAH2cgjRs73lXJCC3MV4ZxZtJTiCCSyfMzfAijXimFDG332U9VfljrIajUgha639rQZXQHH7NLztDNqK1zWC-aDqj2XLX0aboUGjolGkh8wv2eg2fDeY1fWM1RBavdsCJ2vx5uVVv9MriA~IoPLWODyyVqVODbP1fDcZ8SKngVXkU0k0L5dKdxV3Hmhexz4pu8smnLE8a8UdNjGFiGNwDjtRKJqO4LXyKftoYlxO3mLOO8xPHvsjDDQv90N8rexaMu~8Lr7-L8NqJiRT4rAVIkNbnLT1EwSWeruip5OJV9d49EmZlblUwY6o9Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"ObituaryAlan_J_Southward_1928_2007_","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":66393058,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66393058/thumbnails/1.jpg","file_name":"451028a20210421-5703-t9gh3e.pdf","download_url":"https://www.academia.edu/attachments/66393058/download_file","bulk_download_file_name":"ObituaryAlan_J_Southward_1928_2007.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66393058/451028a20210421-5703-t9gh3e-libre.pdf?1618997087=\u0026response-content-disposition=attachment%3B+filename%3DObituaryAlan_J_Southward_1928_2007.pdf\u0026Expires=1744234951\u0026Signature=AJpa9S7d13caJ~4MX37oWBU0ZEyQAH2cgjRs73lXJCC3MV4ZxZtJTiCCSyfMzfAijXimFDG332U9VfljrIajUgha639rQZXQHH7NLztDNqK1zWC-aDqj2XLX0aboUGjolGkh8wv2eg2fDeY1fWM1RBavdsCJ2vx5uVVv9MriA~IoPLWODyyVqVODbP1fDcZ8SKngVXkU0k0L5dKdxV3Hmhexz4pu8smnLE8a8UdNjGFiGNwDjtRKJqO4LXyKftoYlxO3mLOO8xPHvsjDDQv90N8rexaMu~8Lr7-L8NqJiRT4rAVIkNbnLT1EwSWeruip5OJV9d49EmZlblUwY6o9Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":1083,"name":"Developmental Biology","url":"https://www.academia.edu/Documents/in/Developmental_Biology"},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":5398,"name":"Biotechnology","url":"https://www.academia.edu/Documents/in/Biotechnology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":9113,"name":"Cell Cycle","url":"https://www.academia.edu/Documents/in/Cell_Cycle"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":10640,"name":"Drug Discovery","url":"https://www.academia.edu/Documents/in/Drug_Discovery"},{"id":10882,"name":"Evolution","url":"https://www.academia.edu/Documents/in/Evolution"},{"id":23179,"name":"Astrophysics","url":"https://www.academia.edu/Documents/in/Astrophysics"},{"id":47599,"name":"Astronomy","url":"https://www.academia.edu/Documents/in/Astronomy"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":125784,"name":"Cell Signalling","url":"https://www.academia.edu/Documents/in/Cell_Signalling"},{"id":373754,"name":"Ecosystem","url":"https://www.academia.edu/Documents/in/Ecosystem"},{"id":1216203,"name":"Earth Science","url":"https://www.academia.edu/Documents/in/Earth_Science"}],"urls":[{"id":9719347,"url":"http://dx.doi.org/10.1038/451028a"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143308-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143307"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143307/Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California"><img alt="Research paper thumbnail of Bathymetric characterization of tectonically active basins in the northern Gulf of California" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Bathymetric characterization of tectonically active basins in the northern Gulf of California</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Wagner Basin can be considered a &quot;nascent spreading centre&quot; that evolved from a hal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Wagner Basin can be considered a &quot;nascent spreading centre&quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143307"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143307"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143307; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143307]").text(description); $(".js-view-count[data-work-id=47143307]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143307; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143307']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143307]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143307,"title":"Bathymetric characterization of tectonically active basins in the northern Gulf of California","translated_title":"","metadata":{"abstract":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","publication_date":{"day":1,"month":4,"year":2009,"errors":{}}},"translated_abstract":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","internal_url":"https://www.academia.edu/47143307/Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California","translated_internal_url":"","created_at":"2021-04-21T01:14:25.506-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":609455,"name":"Gulf of California","url":"https://www.academia.edu/Documents/in/Gulf_of_California"}],"urls":[{"id":9719346,"url":"http://adsabs.harvard.edu/abs/2009eguga..1111249p"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143307-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143306"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47143306/New_information_on_the_ecology_of_deep_sea_vent_communities_in_the_azores_triple_junction_area_preliminery_results_of_the_Diva_2_cruise_May_31_July_4_1994_"><img alt="Research paper thumbnail of New information on the ecology of deep-sea vent communities in the azores triple junction area : preliminery results of the Diva 2 cruise (May 31-July 4, 1994)" class="work-thumbnail" src="https://attachments.academia-assets.com/66392658/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47143306/New_information_on_the_ecology_of_deep_sea_vent_communities_in_the_azores_triple_junction_area_preliminery_results_of_the_Diva_2_cruise_May_31_July_4_1994_">New information on the ecology of deep-sea vent communities in the azores triple junction area : preliminery results of the Diva 2 cruise (May 31-July 4, 1994)</a></div><div class="wp-workCard_item"><span>Interridge News</span><span>, 1994</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1f3908a98e9490214831be935ce6c716" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":66392658,"asset_id":47143306,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/66392658/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143306"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143306"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143306; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143306]").text(description); $(".js-view-count[data-work-id=47143306]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143306; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143306']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1f3908a98e9490214831be935ce6c716" } } $('.js-work-strip[data-work-id=47143306]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143306,"title":"New information on the ecology of deep-sea vent communities in the azores triple junction area : preliminery results of the Diva 2 cruise (May 31-July 4, 1994)","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Interridge News"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143306/New_information_on_the_ecology_of_deep_sea_vent_communities_in_the_azores_triple_junction_area_preliminery_results_of_the_Diva_2_cruise_May_31_July_4_1994_","translated_internal_url":"","created_at":"2021-04-21T01:14:25.420-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66392658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392658/thumbnails/1.jpg","file_name":"27432.pdf","download_url":"https://www.academia.edu/attachments/66392658/download_file","bulk_download_file_name":"New_information_on_the_ecology_of_deep_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392658/27432-libre.pdf?1618997115=\u0026response-content-disposition=attachment%3B+filename%3DNew_information_on_the_ecology_of_deep_s.pdf\u0026Expires=1744234951\u0026Signature=IJ-~HcDPJcLM8l27KOh-AW42rZVxxiMfprq5r85RmiMK6dhjxgdOm-RniTAEop6gDAHXwMhkBHxW52nPY-W-nl5p~O-rR~fJEUqt7QbeB4ZDo4DL2BXiTeHqMx7Ne9~crAhXJk1hwhiPXtwvXXFKvkBV2JbckVWuWzg2kI6Jy-qRFZooAnxOSKTnTSUWYrT-jjPuw79hZwC2pFmRXVWuy9AvODvqcdOLbGouAOHyFihZeZ8KyyyXCCg48D0Ia616BHnGjSJRTBxrTdcW9Y2SoSWMaHOHsTGfBE8Y2SlkUPRcDFp6b4mh0JS0uQgjFyD~bqOZqBonsBYdv0VPFhx7-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"New_information_on_the_ecology_of_deep_sea_vent_communities_in_the_azores_triple_junction_area_preliminery_results_of_the_Diva_2_cruise_May_31_July_4_1994_","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":66392658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392658/thumbnails/1.jpg","file_name":"27432.pdf","download_url":"https://www.academia.edu/attachments/66392658/download_file","bulk_download_file_name":"New_information_on_the_ecology_of_deep_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392658/27432-libre.pdf?1618997115=\u0026response-content-disposition=attachment%3B+filename%3DNew_information_on_the_ecology_of_deep_s.pdf\u0026Expires=1744234951\u0026Signature=IJ-~HcDPJcLM8l27KOh-AW42rZVxxiMfprq5r85RmiMK6dhjxgdOm-RniTAEop6gDAHXwMhkBHxW52nPY-W-nl5p~O-rR~fJEUqt7QbeB4ZDo4DL2BXiTeHqMx7Ne9~crAhXJk1hwhiPXtwvXXFKvkBV2JbckVWuWzg2kI6Jy-qRFZooAnxOSKTnTSUWYrT-jjPuw79hZwC2pFmRXVWuy9AvODvqcdOLbGouAOHyFihZeZ8KyyyXCCg48D0Ia616BHnGjSJRTBxrTdcW9Y2SoSWMaHOHsTGfBE8Y2SlkUPRcDFp6b4mh0JS0uQgjFyD~bqOZqBonsBYdv0VPFhx7-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":9719345,"url":"http://archimer.ifremer.fr/doc/00179/29005/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143306-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143305"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143305/Preliminary_observations_on_biological_communities_at_shallow_hydrothermal_vents_in_the_Aegean_Sea"><img alt="Research paper thumbnail of Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea</div><div class="wp-workCard_item"><span>Geological Society London Special Publications</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... 1990) and off the coast of Kos and Yali (Varnavas &amp; Cronan 1991). Venting of gas bubbles,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... 1990) and off the coast of Kos and Yali (Varnavas &amp; Cronan 1991). Venting of gas bubbles, containing mainly carbon dioxide, has been described from the submerged caldera at Santorini (Holm 1987) and from several areas around Milos (Dando et al. in press). ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143305"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143305"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143305; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143305]").text(description); $(".js-view-count[data-work-id=47143305]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143305; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143305']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143305]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143305,"title":"Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea","translated_title":"","metadata":{"abstract":"... 1990) and off the coast of Kos and Yali (Varnavas \u0026amp; Cronan 1991). Venting of gas bubbles, containing mainly carbon dioxide, has been described from the submerged caldera at Santorini (Holm 1987) and from several areas around Milos (Dando et al. in press). ...","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Geological Society London Special Publications"},"translated_abstract":"... 1990) and off the coast of Kos and Yali (Varnavas \u0026amp; Cronan 1991). Venting of gas bubbles, containing mainly carbon dioxide, has been described from the submerged caldera at Santorini (Holm 1987) and from several areas around Milos (Dando et al. in press). ...","internal_url":"https://www.academia.edu/47143305/Preliminary_observations_on_biological_communities_at_shallow_hydrothermal_vents_in_the_Aegean_Sea","translated_internal_url":"","created_at":"2021-04-21T01:14:25.363-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preliminary_observations_on_biological_communities_at_shallow_hydrothermal_vents_in_the_Aegean_Sea","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... 1990) and off the coast of Kos and Yali (Varnavas \u0026amp; Cronan 1991). Venting of gas bubbles, containing mainly carbon dioxide, has been described from the submerged caldera at Santorini (Holm 1987) and from several areas around Milos (Dando et al. in press). ...","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":926279,"name":"GEological Society of London","url":"https://www.academia.edu/Documents/in/GEological_Society_of_London"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143305-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143304"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143304/Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel"><img alt="Research paper thumbnail of Long-Term Oceanographic and Ecological Research in the Western English Channel" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Long-Term Oceanographic and Ecological Research in the Western English Channel</div><div class="wp-workCard_item"><span>Advances in Marine Biology</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143304"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143304"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143304; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143304]").text(description); $(".js-view-count[data-work-id=47143304]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143304; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143304']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143304]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143304,"title":"Long-Term Oceanographic and Ecological Research in the Western English Channel","translated_title":"","metadata":{"publisher":"Elsevier","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Advances in Marine Biology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143304/Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel","translated_internal_url":"","created_at":"2021-04-21T01:14:25.310-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":158,"name":"Marine Biology","url":"https://www.academia.edu/Documents/in/Marine_Biology"},{"id":415,"name":"Oceanography","url":"https://www.academia.edu/Documents/in/Oceanography"},{"id":13701,"name":"Climate","url":"https://www.academia.edu/Documents/in/Climate"},{"id":18754,"name":"Global Environmental Change","url":"https://www.academia.edu/Documents/in/Global_Environmental_Change"},{"id":28157,"name":"Environmental Change","url":"https://www.academia.edu/Documents/in/Environmental_Change"},{"id":44265,"name":"North Atlantic Oscillation","url":"https://www.academia.edu/Documents/in/North_Atlantic_Oscillation"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":59546,"name":"New Technology","url":"https://www.academia.edu/Documents/in/New_Technology"},{"id":77900,"name":"Marine","url":"https://www.academia.edu/Documents/in/Marine"},{"id":82682,"name":"Food web","url":"https://www.academia.edu/Documents/in/Food_web"},{"id":108192,"name":"Anthropogenic Disturbance","url":"https://www.academia.edu/Documents/in/Anthropogenic_Disturbance"},{"id":117270,"name":"Fishes","url":"https://www.academia.edu/Documents/in/Fishes"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":373754,"name":"Ecosystem","url":"https://www.academia.edu/Documents/in/Ecosystem"},{"id":406850,"name":"Marine Environment","url":"https://www.academia.edu/Documents/in/Marine_Environment"},{"id":416782,"name":"Ocean Colour","url":"https://www.academia.edu/Documents/in/Ocean_Colour"},{"id":952994,"name":"Environmental Modelling","url":"https://www.academia.edu/Documents/in/Environmental_Modelling"},{"id":1795281,"name":"Oceans and Seas","url":"https://www.academia.edu/Documents/in/Oceans_and_Seas"},{"id":3061034,"name":"ecosystem model","url":"https://www.academia.edu/Documents/in/ecosystem_model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143304-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143303"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143303/Spermatogenesis_of_Bathymodiolus_azoricus_in_captivity_matching_reproductive_behaviour_at_deep_sea_hydrothermal_vents"><img alt="Research paper thumbnail of Spermatogenesis of Bathymodiolus azoricus in captivity matching reproductive behaviour at deep-sea hydrothermal vents" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Spermatogenesis of Bathymodiolus azoricus in captivity matching reproductive behaviour at deep-sea hydrothermal vents</div><div class="wp-workCard_item"><span>Journal of Experimental Marine Biology and Ecology</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This study aims to improve our knowledge on the reproduction cycles of invertebrates from deep-se...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This study aims to improve our knowledge on the reproduction cycles of invertebrates from deep-sea hydrothermal vents, which is fragmentary to date, owing to the prohibitive costs of regular time series sampling required for a complete assessment. However, new technologies ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143303"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143303"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143303; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143303]").text(description); $(".js-view-count[data-work-id=47143303]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143303; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143303']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143303]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143303,"title":"Spermatogenesis of Bathymodiolus azoricus in captivity matching reproductive behaviour at deep-sea hydrothermal vents","translated_title":"","metadata":{"abstract":"This study aims to improve our knowledge on the reproduction cycles of invertebrates from deep-sea hydrothermal vents, which is fragmentary to date, owing to the prohibitive costs of regular time series sampling required for a complete assessment. However, new technologies ...","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of Experimental Marine Biology and Ecology"},"translated_abstract":"This study aims to improve our knowledge on the reproduction cycles of invertebrates from deep-sea hydrothermal vents, which is fragmentary to date, owing to the prohibitive costs of regular time series sampling required for a complete assessment. However, new technologies ...","internal_url":"https://www.academia.edu/47143303/Spermatogenesis_of_Bathymodiolus_azoricus_in_captivity_matching_reproductive_behaviour_at_deep_sea_hydrothermal_vents","translated_internal_url":"","created_at":"2021-04-21T01:14:25.241-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Spermatogenesis_of_Bathymodiolus_azoricus_in_captivity_matching_reproductive_behaviour_at_deep_sea_hydrothermal_vents","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This study aims to improve our knowledge on the reproduction cycles of invertebrates from deep-sea hydrothermal vents, which is fragmentary to date, owing to the prohibitive costs of regular time series sampling required for a complete assessment. However, new technologies ...","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":2998,"name":"Reproductive Behaviour","url":"https://www.academia.edu/Documents/in/Reproductive_Behaviour"},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":59546,"name":"New Technology","url":"https://www.academia.edu/Documents/in/New_Technology"},{"id":75577,"name":"Spermatogenesis","url":"https://www.academia.edu/Documents/in/Spermatogenesis"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":329844,"name":"Experimental","url":"https://www.academia.edu/Documents/in/Experimental"},{"id":333080,"name":"Reproductive cycle","url":"https://www.academia.edu/Documents/in/Reproductive_cycle"},{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":966650,"name":"Endosymbiont","url":"https://www.academia.edu/Documents/in/Endosymbiont"},{"id":1214035,"name":"Feeding System","url":"https://www.academia.edu/Documents/in/Feeding_System"},{"id":1611316,"name":"Methane oxidizing bacteria","url":"https://www.academia.edu/Documents/in/Methane_oxidizing_bacteria"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143303-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143302"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47143302/Gas_seep_induced_interstitial_water_circulation_observations_and_environmental_implications"><img alt="Research paper thumbnail of Gas seep induced interstitial water circulation: observations and environmental implications" class="work-thumbnail" src="https://attachments.academia-assets.com/66392664/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47143302/Gas_seep_induced_interstitial_water_circulation_observations_and_environmental_implications">Gas seep induced interstitial water circulation: observations and environmental implications</a></div><div class="wp-workCard_item"><span>Continental Shelf Research</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ah&act-An interstitial water circulation, generated by gas flow through a permeable sediment, was...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ah&act-An interstitial water circulation, generated by gas flow through a permeable sediment, was observed at an intertidal site on the Kattegat coast of Denmark. Concentrations of methane dissolved in the interstitial water of the near-surface sediment decreased sharply only centimetres away from gas seeps venting almost pure methane (-99% methane). Water was driven out of the sediment by the rising bubbles of gas at the seep and was replaced by an equivalent draw-down of overlying, oxygenated water into the surrounding sediment. This process steepened the chemical gradients close to the gas flow channel, with the effects progressively diminishing with increasing distance from the seep. The position of the redox potential discontinuity (RPD) moved by as much as 7 cm deeper into the sediment close to the seep: this effect was less marked, but still detectable, 50 cm away. The degree of displacement from the "normal" sediment profiles depended on the magnitude of the interstitial flow rate. The distribution of pore water pH and sulphate: sodium ratios were also dependent on the flow rate of the circulating water. The concentrations of sulphide, thiosulphate and sulphite in the interstitial water from the top 10 cm of sediment, were high at a seep, decreased to a minimum at 20-30 cm distance, then increased again at 40-50 cm distance. Laboratory experiments confirmed that gas bubbling through a fluid filled permeable matrix generated a flow, out of the sediment at the gas exit and into the sediment over the peripheral surfaces surrounding the outlet. Experimentally determined rates of dispersion, for gas flow rates of 3-20 ml min-', for a 40 g 1-l sodium chloride solution, were 62.5 x 1r9 to 540 x W9 m* s-l, 4o-400 times the molecular diffusion coefficient. Linear interstitial fluid velocities of 3-12 mm mitt-', were recorded at 14-3 cm from the seep axis respectively, with a gas flow rate of 5 ml min-'. Two-dimensional modelhng of the experimental system confirmed the flow pattern determined visually with dye. Implications of this process with regard to the recycling rates of elements generally, and of nutrient and waste materials, in particular, are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dd941945631a1e8dbe387c9cd58b1818" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":66392664,"asset_id":47143302,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/66392664/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143302"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143302"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143302; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143302]").text(description); $(".js-view-count[data-work-id=47143302]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143302; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143302']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dd941945631a1e8dbe387c9cd58b1818" } } $('.js-work-strip[data-work-id=47143302]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143302,"title":"Gas seep induced interstitial water circulation: observations and environmental implications","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Ah\u0026act-An interstitial water circulation, generated by gas flow through a permeable sediment, was observed at an intertidal site on the Kattegat coast of Denmark. Concentrations of methane dissolved in the interstitial water of the near-surface sediment decreased sharply only centimetres away from gas seeps venting almost pure methane (-99% methane). Water was driven out of the sediment by the rising bubbles of gas at the seep and was replaced by an equivalent draw-down of overlying, oxygenated water into the surrounding sediment. This process steepened the chemical gradients close to the gas flow channel, with the effects progressively diminishing with increasing distance from the seep. The position of the redox potential discontinuity (RPD) moved by as much as 7 cm deeper into the sediment close to the seep: this effect was less marked, but still detectable, 50 cm away. The degree of displacement from the \"normal\" sediment profiles depended on the magnitude of the interstitial flow rate. The distribution of pore water pH and sulphate: sodium ratios were also dependent on the flow rate of the circulating water. The concentrations of sulphide, thiosulphate and sulphite in the interstitial water from the top 10 cm of sediment, were high at a seep, decreased to a minimum at 20-30 cm distance, then increased again at 40-50 cm distance. Laboratory experiments confirmed that gas bubbling through a fluid filled permeable matrix generated a flow, out of the sediment at the gas exit and into the sediment over the peripheral surfaces surrounding the outlet. Experimentally determined rates of dispersion, for gas flow rates of 3-20 ml min-', for a 40 g 1-l sodium chloride solution, were 62.5 x 1r9 to 540 x W9 m* s-l, 4o-400 times the molecular diffusion coefficient. Linear interstitial fluid velocities of 3-12 mm mitt-', were recorded at 14-3 cm from the seep axis respectively, with a gas flow rate of 5 ml min-'. Two-dimensional modelhng of the experimental system confirmed the flow pattern determined visually with dye. Implications of this process with regard to the recycling rates of elements generally, and of nutrient and waste materials, in particular, are discussed.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Continental Shelf Research","grobid_abstract_attachment_id":66392664},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143302/Gas_seep_induced_interstitial_water_circulation_observations_and_environmental_implications","translated_internal_url":"","created_at":"2021-04-21T01:14:25.164-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66392664,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392664/thumbnails/1.jpg","file_name":"0278-4343_2895_2980003-v20210421-16266-19cjm2p.pdf","download_url":"https://www.academia.edu/attachments/66392664/download_file","bulk_download_file_name":"Gas_seep_induced_interstitial_water_circ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392664/0278-4343_2895_2980003-v20210421-16266-19cjm2p-libre.pdf?1618997121=\u0026response-content-disposition=attachment%3B+filename%3DGas_seep_induced_interstitial_water_circ.pdf\u0026Expires=1744234951\u0026Signature=dgdlAC0OKyLFnaKK5RWqIdR4r0X8kcTQ53av976grDFI7XrqmYEX1x91-75gpyqXhpOxyIJjwgrvcYKZlr3GAUSKZq2R6uUoEM6XJBQX9Af6iBwtyREgEheWticxDfcg1i3Kgyv-9OQ9lucem~WHK-C0DPHrnRZxKnXckKHo8s58XywL8Yi0kWFRvExMvgv1mnHF3nLBtF4PJo3ofdGdWh~-U~HmvrbABmRzpisojINdUDB9LXaTMnfXIqu4cXpsglrCP7quTggw6HWwbPSVolLhb~CDtag3gCzPEyVHZjbA9D~N0DAM6bNsDcyDcPoXtn5M1eMDkVU8dRMSFIgMKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gas_seep_induced_interstitial_water_circulation_observations_and_environmental_implications","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"Ah\u0026act-An interstitial water circulation, generated by gas flow through a permeable sediment, was observed at an intertidal site on the Kattegat coast of Denmark. Concentrations of methane dissolved in the interstitial water of the near-surface sediment decreased sharply only centimetres away from gas seeps venting almost pure methane (-99% methane). Water was driven out of the sediment by the rising bubbles of gas at the seep and was replaced by an equivalent draw-down of overlying, oxygenated water into the surrounding sediment. This process steepened the chemical gradients close to the gas flow channel, with the effects progressively diminishing with increasing distance from the seep. The position of the redox potential discontinuity (RPD) moved by as much as 7 cm deeper into the sediment close to the seep: this effect was less marked, but still detectable, 50 cm away. The degree of displacement from the \"normal\" sediment profiles depended on the magnitude of the interstitial flow rate. The distribution of pore water pH and sulphate: sodium ratios were also dependent on the flow rate of the circulating water. The concentrations of sulphide, thiosulphate and sulphite in the interstitial water from the top 10 cm of sediment, were high at a seep, decreased to a minimum at 20-30 cm distance, then increased again at 40-50 cm distance. Laboratory experiments confirmed that gas bubbling through a fluid filled permeable matrix generated a flow, out of the sediment at the gas exit and into the sediment over the peripheral surfaces surrounding the outlet. Experimentally determined rates of dispersion, for gas flow rates of 3-20 ml min-', for a 40 g 1-l sodium chloride solution, were 62.5 x 1r9 to 540 x W9 m* s-l, 4o-400 times the molecular diffusion coefficient. Linear interstitial fluid velocities of 3-12 mm mitt-', were recorded at 14-3 cm from the seep axis respectively, with a gas flow rate of 5 ml min-'. Two-dimensional modelhng of the experimental system confirmed the flow pattern determined visually with dye. Implications of this process with regard to the recycling rates of elements generally, and of nutrient and waste materials, in particular, are discussed.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":66392664,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392664/thumbnails/1.jpg","file_name":"0278-4343_2895_2980003-v20210421-16266-19cjm2p.pdf","download_url":"https://www.academia.edu/attachments/66392664/download_file","bulk_download_file_name":"Gas_seep_induced_interstitial_water_circ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392664/0278-4343_2895_2980003-v20210421-16266-19cjm2p-libre.pdf?1618997121=\u0026response-content-disposition=attachment%3B+filename%3DGas_seep_induced_interstitial_water_circ.pdf\u0026Expires=1744234951\u0026Signature=dgdlAC0OKyLFnaKK5RWqIdR4r0X8kcTQ53av976grDFI7XrqmYEX1x91-75gpyqXhpOxyIJjwgrvcYKZlr3GAUSKZq2R6uUoEM6XJBQX9Af6iBwtyREgEheWticxDfcg1i3Kgyv-9OQ9lucem~WHK-C0DPHrnRZxKnXckKHo8s58XywL8Yi0kWFRvExMvgv1mnHF3nLBtF4PJo3ofdGdWh~-U~HmvrbABmRzpisojINdUDB9LXaTMnfXIqu4cXpsglrCP7quTggw6HWwbPSVolLhb~CDtag3gCzPEyVHZjbA9D~N0DAM6bNsDcyDcPoXtn5M1eMDkVU8dRMSFIgMKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":131994,"name":"Laboratory experiment","url":"https://www.academia.edu/Documents/in/Laboratory_experiment"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":230435,"name":"Continental shelf","url":"https://www.academia.edu/Documents/in/Continental_shelf"},{"id":309493,"name":"Diffusion Coefficient","url":"https://www.academia.edu/Documents/in/Diffusion_Coefficient"},{"id":891612,"name":"Flow Pattern","url":"https://www.academia.edu/Documents/in/Flow_Pattern"},{"id":897122,"name":"Gas Flow","url":"https://www.academia.edu/Documents/in/Gas_Flow"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate"},{"id":1223913,"name":"Sodium Chloride","url":"https://www.academia.edu/Documents/in/Sodium_Chloride"},{"id":2274884,"name":"Pore Water","url":"https://www.academia.edu/Documents/in/Pore_Water"},{"id":2418473,"name":"Redox Potential","url":"https://www.academia.edu/Documents/in/Redox_Potential"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143302-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143301"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47143301/Gas_venting_rates_from_submarine_hydrothermal_areas_around_the_island_of_Milos_Hellenic_Volcanic_Arc"><img alt="Research paper thumbnail of Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc" class="work-thumbnail" src="https://attachments.academia-assets.com/66392662/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47143301/Gas_venting_rates_from_submarine_hydrothermal_areas_around_the_island_of_Milos_Hellenic_Volcanic_Arc">Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc</a></div><div class="wp-workCard_item"><span>Continental Shelf Research</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gas seeps were located, by echo sounding, SCUBA divers and ROV observations, at hydrothermal site...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gas seeps were located, by echo sounding, SCUBA divers and ROV observations, at hydrothermal sites around the island of Milos, in the Hellenic Volcanic Arc. Samples were collected by SCUBA divers and by a ROV from water depths between 3 and 110 m. Fifty-six flow rates from 39 individual seeps were measured and these ranged from 0.2 to 18.5 1 h-' at the depth of collection. The major component, 54.9-91.9% of the gas, was carbon dioxide. Hydrogen (~3%), methane (59.7%) and hydrogen sulphide (58.1%) were also measured. Hydrothermal free gas fluxes from the submarine hydrothermal areas around Milos were estimated to be greater than lOto moles y-l. It was concluded that submarine gas seeps along volcanic island arcs may be an important carbon dioxide source.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-47143301-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-47143301-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352129/figure-1-gas-venting-rates-from-submarine-hydrothermal-areas"><img alt="Gas venting rates from submarine hydrothermal areas " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_001.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352136/figure-2-gas-venting-rates-from-submarine-hydrothermal-areas"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_002.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352144/figure-2-low-vents-was-made-by-laying-transect-line-marked"><img alt="low, ~20°C, vents was made by laying a transect line, marked at 0.5 m intervals, between two such vents in 5 m water depth at site 2 in Paleohori Bay [Fig. 2(b)]. Gas vents were counted in 0.5 x 0.5 m quadrats along the line and sampled at intervals along this transect. The number of gas seeps in each 0.25 m? quadrat along the transect line were plotted against distance along the transect. Vent frequency increased in the first high temperature area but not in the second (Figs 6 and 7). Gas samples were collected from the vents closest to the transect line, along which the temperature measurements had been made. The gas analysis results (Fig. 7) confirmed the presence of hydrogen in the higher temperature areas. In contrast neither hydrogen sulphide nor methane showed a clear trend. " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_003.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352149/figure-2-from-seeps-sampled-in-the-areas-shown-in-gas-flow"><img alt="From 38 seeps sampled, in the areas shown in Fig. 2(a), 56 gas flow rates were measured. These are listed in Table 2 and plotted against water depth in Fig. 8. Flow rates measured repeatedly on a single seep during one dive were normally within 5% of each other. The variation of flow between days was considerably greater than this, for example between 3( May and 1 June vent 5 increased in flow by 39%, while vent 4 decreased in flow by 51%. There was no evidence for a major change in the degree of venting during the period ot observation, with the exception of a large eruptive release resulting from earthquakes on 20 March 1993 (Dando et al., 1995). In situ gas flow rates of > 101 h7! were only recorded in water depths of 10 m or less [Fig. 8(a)]. When corrected to STP there was no clea variation of flow with water depth [Fig. 8(b)]. The flow rates for the 38 individual seeps measured, corrected to STP, ranged from 0.16 to 26.23 | h~!, with a mean flow ot 8.561 h7!. ~~ ea ge ™ ?. .™! {rn -mX ae > ttre " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_004.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352153/figure-2-ow-has-in-the-most-active-areas-of-site-in"><img alt="Ow has In the most active areas of site 4 in Paleohori Bay (Fig. 2), continuous gas bubblin; caused sand and shell particles to be ejected 10 cm or more into the water. The re-sorting o the sediment caused continual minor changes in the position of the gas outlets, so that on vent outlet could erupt anywhere in a circle of approximately 30 cm diameter. It was no possible to measure the fiows from many of these vigorous seeps. The seabed over an are: of approximately 30 m? at site 4 resembled a fluid bed reactor, the sand appeared to “boil due to its suspension by the rising gas bubbles. SCUBA divers frequently observed individual gas bubble outlets to lie within a few cn " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_005.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352168/figure-6-gas-venting-rates-from-submarine-hydrothermal-areas"><img alt="Gas venting rates from submarine hydrothermal areas " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_006.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352177/figure-7-ig-variation-in-gas-flow-with-water-depth-in-situ"><img alt="‘ig. 8. Variation in gas flow with water depth: (a) in situ flow rate; (b) flow rate at STP. " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/figure_007.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352189/table-2-flow-rate-and-chemical-composition-of-gas-from"><img alt="Table 2. Flow rate and chemical composition of gas from submarine vents " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/table_001.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352220/table-2-gas-venting-rates-from-submarine-hydrothermal-areas"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/66392662/table_002.jpg" width="114" height="68" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/49352235/table-3-gas-venting-rates-from-submarine-hydrothermal-areas"><img alt="Gas venting rates from submarine hydrothermal areas island, New Zealand, reach the surface from a depth of 170 m (Duncan and Pantin, 1969) are composed largely of CO, (Giggenbach et al., 1993). Gas bubbles have also beer observed from vents at 100 m depth north of Iceland (Fricke et al., 1989). Although the analysis of this submarine Icelandic gas was not recorded, analysis of volcanic gases fron iceland show that CO, is commonly the major component (Sigvaldson and Elisson, 1968 Poreda et al., 1992). Bubbles of CO, have also been observed rising from the seabed in 1! m water depth in Norton Sound, Alaska (Kvenvolden et al., 1979). In the mid-Pacific volcanic island arcs extensive gas venting, believed to be mainly CO, has been observed at Esmeralda Bank in the Mariana Arc (Stiiben et al. , 1992) and durin; ee ee ee . ee, ne: Ser, e. L .. ae Pe Sa Ley en, | Ti: ale ten Lhe meantime " class="figure-slide-image" src="https://figures.academia-assets.com/66392662/table_003.jpg" width="114" height="68" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-47143301-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="eb2d98b468be635201347e1de51ad400" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":66392662,"asset_id":47143301,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/66392662/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143301"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143301"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143301; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143301]").text(description); $(".js-view-count[data-work-id=47143301]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143301; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143301']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "eb2d98b468be635201347e1de51ad400" } } $('.js-work-strip[data-work-id=47143301]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143301,"title":"Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Gas seeps were located, by echo sounding, SCUBA divers and ROV observations, at hydrothermal sites around the island of Milos, in the Hellenic Volcanic Arc. Samples were collected by SCUBA divers and by a ROV from water depths between 3 and 110 m. Fifty-six flow rates from 39 individual seeps were measured and these ranged from 0.2 to 18.5 1 h-' at the depth of collection. The major component, 54.9-91.9% of the gas, was carbon dioxide. Hydrogen (~3%), methane (59.7%) and hydrogen sulphide (58.1%) were also measured. Hydrothermal free gas fluxes from the submarine hydrothermal areas around Milos were estimated to be greater than lOto moles y-l. It was concluded that submarine gas seeps along volcanic island arcs may be an important carbon dioxide source.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Continental Shelf Research","grobid_abstract_attachment_id":66392662},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143301/Gas_venting_rates_from_submarine_hydrothermal_areas_around_the_island_of_Milos_Hellenic_Volcanic_Arc","translated_internal_url":"","created_at":"2021-04-21T01:14:25.091-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66392662,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392662/thumbnails/1.jpg","file_name":"0278-4343_2895_2980002-u20210421-5699-1osxvxh.pdf","download_url":"https://www.academia.edu/attachments/66392662/download_file","bulk_download_file_name":"Gas_venting_rates_from_submarine_hydroth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392662/0278-4343_2895_2980002-u20210421-5699-1osxvxh-libre.pdf?1618997121=\u0026response-content-disposition=attachment%3B+filename%3DGas_venting_rates_from_submarine_hydroth.pdf\u0026Expires=1744234951\u0026Signature=KZneoiPANJgsv9XeWIfrz9KpCvjy8zyz7yNrah6Y5bRttf3E3ljBHBmhMSJHDsbLlDkl7eF8xF4qcdcZZzU9NJ~pqPnDFwtwEoj~UWJR8630xz~v5~PQnSkXECnJr5800hQFDQ0szjkc18AQDziDvbXTsAxO1vXRGcfgER5UuYdyQihg33TifKuM2Fp~r1Q8KUj3U57REViRMHuVkJ6YUL5ed3tHKGJu4PmFQlMR~o732pw8z1nvN5nqBPxWZr9SQM6Yz6IxGcA0BHKmc6Ki7O8TFKWRX93PQdwVjZU619m6-~VuUUHQjGBEl-JwJRB3ejJomTL98cgaz6xw2ElfaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gas_venting_rates_from_submarine_hydrothermal_areas_around_the_island_of_Milos_Hellenic_Volcanic_Arc","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"Gas seeps were located, by echo sounding, SCUBA divers and ROV observations, at hydrothermal sites around the island of Milos, in the Hellenic Volcanic Arc. Samples were collected by SCUBA divers and by a ROV from water depths between 3 and 110 m. Fifty-six flow rates from 39 individual seeps were measured and these ranged from 0.2 to 18.5 1 h-' at the depth of collection. The major component, 54.9-91.9% of the gas, was carbon dioxide. Hydrogen (~3%), methane (59.7%) and hydrogen sulphide (58.1%) were also measured. Hydrothermal free gas fluxes from the submarine hydrothermal areas around Milos were estimated to be greater than lOto moles y-l. It was concluded that submarine gas seeps along volcanic island arcs may be an important carbon dioxide source.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[{"id":66392662,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66392662/thumbnails/1.jpg","file_name":"0278-4343_2895_2980002-u20210421-5699-1osxvxh.pdf","download_url":"https://www.academia.edu/attachments/66392662/download_file","bulk_download_file_name":"Gas_venting_rates_from_submarine_hydroth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66392662/0278-4343_2895_2980002-u20210421-5699-1osxvxh-libre.pdf?1618997121=\u0026response-content-disposition=attachment%3B+filename%3DGas_venting_rates_from_submarine_hydroth.pdf\u0026Expires=1744234951\u0026Signature=KZneoiPANJgsv9XeWIfrz9KpCvjy8zyz7yNrah6Y5bRttf3E3ljBHBmhMSJHDsbLlDkl7eF8xF4qcdcZZzU9NJ~pqPnDFwtwEoj~UWJR8630xz~v5~PQnSkXECnJr5800hQFDQ0szjkc18AQDziDvbXTsAxO1vXRGcfgER5UuYdyQihg33TifKuM2Fp~r1Q8KUj3U57REViRMHuVkJ6YUL5ed3tHKGJu4PmFQlMR~o732pw8z1nvN5nqBPxWZr9SQM6Yz6IxGcA0BHKmc6Ki7O8TFKWRX93PQdwVjZU619m6-~VuUUHQjGBEl-JwJRB3ejJomTL98cgaz6xw2ElfaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":4594,"name":"Carbon Dioxide","url":"https://www.academia.edu/Documents/in/Carbon_Dioxide"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":230435,"name":"Continental shelf","url":"https://www.academia.edu/Documents/in/Continental_shelf"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate"},{"id":1242196,"name":"Water Depth","url":"https://www.academia.edu/Documents/in/Water_Depth"},{"id":2993993,"name":"Hydrogen sulphide","url":"https://www.academia.edu/Documents/in/Hydrogen_sulphide"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-47143301-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143300"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143300/Retrievable_cages_open_up_new_era_in_deep_sea_vent_research"><img alt="Research paper thumbnail of Retrievable cages open up new era in deep-sea vent research" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Retrievable cages open up new era in deep-sea vent research</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To date, regulation of activities (including scientific research), in and around hydrothermal ven...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To date, regulation of activities (including scientific research), in and around hydrothermal vents under international law has been virtually non-existent. Two main international treaties are of direct relevance, namely the United Nations Convention on the Law of the Sea ( ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143300"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143300"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143300; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143300]").text(description); $(".js-view-count[data-work-id=47143300]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143300; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143300']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143300]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143300,"title":"Retrievable cages open up new era in deep-sea vent research","translated_title":"","metadata":{"abstract":"To date, regulation of activities (including scientific research), in and around hydrothermal vents under international law has been virtually non-existent. Two main international treaties are of direct relevance, namely the United Nations Convention on the Law of the Sea ( ...","publication_date":{"day":null,"month":null,"year":2001,"errors":{}}},"translated_abstract":"To date, regulation of activities (including scientific research), in and around hydrothermal vents under international law has been virtually non-existent. Two main international treaties are of direct relevance, namely the United Nations Convention on the Law of the Sea ( ...","internal_url":"https://www.academia.edu/47143300/Retrievable_cages_open_up_new_era_in_deep_sea_vent_research","translated_internal_url":"","created_at":"2021-04-21T01:14:25.032-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Retrievable_cages_open_up_new_era_in_deep_sea_vent_research","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"To date, regulation of activities (including scientific research), in and around hydrothermal vents under international law has been virtually non-existent. Two main international treaties are of direct relevance, namely the United Nations Convention on the Law of the Sea ( ...","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":796144,"name":"Deep Sea","url":"https://www.academia.edu/Documents/in/Deep_Sea"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143300-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143299"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143299/Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California"><img alt="Research paper thumbnail of Bathymetric characterization of tectonically active basins in the northern Gulf of California" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Bathymetric characterization of tectonically active basins in the northern Gulf of California</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Wagner Basin can be considered a &quot;nascent spreading centre&quot; that evolved from a hal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Wagner Basin can be considered a &quot;nascent spreading centre&quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143299"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143299"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143299; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143299]").text(description); $(".js-view-count[data-work-id=47143299]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143299; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143299']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143299]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143299,"title":"Bathymetric characterization of tectonically active basins in the northern Gulf of California","translated_title":"","metadata":{"abstract":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","internal_url":"https://www.academia.edu/47143299/Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California","translated_internal_url":"","created_at":"2021-04-21T01:14:24.974-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Bathymetric_characterization_of_tectonically_active_basins_in_the_northern_Gulf_of_California","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The Wagner Basin can be considered a \u0026quot;nascent spreading centre\u0026quot; that evolved from a half graben with a thick sediment cover that may mask magmatic activity at depth. The 200-210 m deep Wagner and Consag Basins are the northernmost of the 8 active extensional basins within the Gulf of California rift system and have been assumed to be mostly hydrothermally inactive; however, bathymetric data show dense deep faulting, mainly on the SE edge of the basins; additionally, the presence of extensive gas venting and heated sediments along the Wagner Fault was observed. Detailed bathymetry of the Wagner and Consag Basins shows the steep eastern edge of the basins bordered by the Wagner Fault. Bathymetry and profiler data revealed large vertical displacements due to faulting that disrupted the sedimentary column. More than 246 bubble plumes were mapped on the echo-sounder profiles, many rising to the surface from 65 -150 m depth and the area affected by low bottom pH, due to CO2 discharge, was in excess of 365 km2. Bubbles were observed breaking the sea surface from some large plumes. Only a minority of the vents present were mapped with the echo-sounders, since the closest survey lines were 1km apart. Based on the bottom coverage of the acoustic beam we estimate that there are at least 15,000 individual gas vents along the Wagner fault. Profiler images showed gas channels and chimneys associated with sedimentary layers. The gas plumes originated from sites of intense disruptions of the upper sediments (synsedimentary faults, pockmarks, mud domes and diapirs and raised irregular hard reflectors). Beneath the plumes, there were enhanced sedimentary reflectors and acoustic blanking indicative of subsurface gas accumulation. One of the strongest vents was associated with a mud diapir. Cemented sediments were common inside pockmarks and around gas outlets; 13 (22%) of grab and box core samples in the outgassing area contained these but in many cases the grab was empty after hitting a hard bottom. The nodules analyzed contained on average 83% of quartz and barite, and 12% of pyrite and gypsum. Calcite contributed only a small percentage of the total minerals found.","impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":609455,"name":"Gulf of California","url":"https://www.academia.edu/Documents/in/Gulf_of_California"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143299-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="47143112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/47143112/Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel"><img alt="Research paper thumbnail of Long-Term Oceanographic and Ecological Research in the Western English Channel" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Long-Term Oceanographic and Ecological Research in the Western English Channel</div><div class="wp-workCard_item"><span>Advances in Marine Biology</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47143112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47143112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47143112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47143112]").text(description); $(".js-view-count[data-work-id=47143112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47143112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47143112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47143112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47143112,"title":"Long-Term Oceanographic and Ecological Research in the Western English Channel","translated_title":"","metadata":{"publisher":"Elsevier","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Advances in Marine Biology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47143112/Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel","translated_internal_url":"","created_at":"2021-04-21T01:12:32.941-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31765584,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Long_Term_Oceanographic_and_Ecological_Research_in_the_Western_English_Channel","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":31765584,"first_name":"Paul","middle_initials":null,"last_name":"Dando","page_name":"PaulDando","domain_name":"mba","created_at":"2015-06-01T13:35:57.717-07:00","display_name":"Paul Dando","url":"https://mba.academia.edu/PaulDando"},"attachments":[],"research_interests":[{"id":158,"name":"Marine Biology","url":"https://www.academia.edu/Documents/in/Marine_Biology"},{"id":415,"name":"Oceanography","url":"https://www.academia.edu/Documents/in/Oceanography"},{"id":13701,"name":"Climate","url":"https://www.academia.edu/Documents/in/Climate"},{"id":18754,"name":"Global Environmental Change","url":"https://www.academia.edu/Documents/in/Global_Environmental_Change"},{"id":28157,"name":"Environmental Change","url":"https://www.academia.edu/Documents/in/Environmental_Change"},{"id":44265,"name":"North Atlantic Oscillation","url":"https://www.academia.edu/Documents/in/North_Atlantic_Oscillation"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":59546,"name":"New Technology","url":"https://www.academia.edu/Documents/in/New_Technology"},{"id":77900,"name":"Marine","url":"https://www.academia.edu/Documents/in/Marine"},{"id":82682,"name":"Food web","url":"https://www.academia.edu/Documents/in/Food_web"},{"id":108192,"name":"Anthropogenic Disturbance","url":"https://www.academia.edu/Documents/in/Anthropogenic_Disturbance"},{"id":117270,"name":"Fishes","url":"https://www.academia.edu/Documents/in/Fishes"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":373754,"name":"Ecosystem","url":"https://www.academia.edu/Documents/in/Ecosystem"},{"id":406850,"name":"Marine Environment","url":"https://www.academia.edu/Documents/in/Marine_Environment"},{"id":416782,"name":"Ocean Colour","url":"https://www.academia.edu/Documents/in/Ocean_Colour"},{"id":952994,"name":"Environmental Modelling","url":"https://www.academia.edu/Documents/in/Environmental_Modelling"},{"id":1795281,"name":"Oceans and Seas","url":"https://www.academia.edu/Documents/in/Oceans_and_Seas"},{"id":3061034,"name":"ecosystem model","url":"https://www.academia.edu/Documents/in/ecosystem_model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-47143112-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="40721867"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/40721867/Interactions_between_sediment_chemistry_and_frenulate_pogonophores_Annelida_in_the_north_east_Atlantic"><img alt="Research paper thumbnail of Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic" class="work-thumbnail" src="https://attachments.academia-assets.com/61008170/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/40721867/Interactions_between_sediment_chemistry_and_frenulate_pogonophores_Annelida_in_the_north_east_Atlantic">Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PLamont1">P. Lamont</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://mba.academia.edu/PaulDando">Paul Dando</a></span></div><div class="wp-workCard_item"><span>Deep Sea Research Part I: Oceanographic Research Papers</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit mu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit muddy sediments on the continental slope, although a few species occur near hydrothermal vents and cold seeps. We present data on the distribution and habitat characteristics of several species on the European continental shelf and slope from 481N to 751N and show how the animals interact with the chemistry of the sediments. The environments inhabited include: shallow (30 m), organic-rich, fjord sediments; slope sediments (1000-2200 m) and methane seeps at 330 m depth. All the species studied obtain nutrition from endosymbiotic bacteria. They take up reduced sulphur species, or in one case, methane, through the posterior parts of their tubes buried in the anoxic sediment. We conclude that most species undertake sulphide 'mining', a mechanism previously demonstrated in the bivalves Lucinoma borealis and Thyasira sarsi. These pogonophores participate in the sulphur cycle and effectively lower the sulphide content of the sediments. Our results show that the abundance of frenulate pogonophores increases with increasing sedimentation and with decreasing abundance of other benthos, particularly bioturbating organisms. The maximum sustainable carrying capacity of non-seep sediments for frenulate pogonophores is limited by the rate of sulphate reduction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6b9810ab4d6f46ae2ba37a4122529730" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":61008170,"asset_id":40721867,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/61008170/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="40721867"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="40721867"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 40721867; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=40721867]").text(description); $(".js-view-count[data-work-id=40721867]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 40721867; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='40721867']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6b9810ab4d6f46ae2ba37a4122529730" } } $('.js-work-strip[data-work-id=40721867]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":40721867,"title":"Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit muddy sediments on the continental slope, although a few species occur near hydrothermal vents and cold seeps. We present data on the distribution and habitat characteristics of several species on the European continental shelf and slope from 481N to 751N and show how the animals interact with the chemistry of the sediments. The environments inhabited include: shallow (30 m), organic-rich, fjord sediments; slope sediments (1000-2200 m) and methane seeps at 330 m depth. All the species studied obtain nutrition from endosymbiotic bacteria. They take up reduced sulphur species, or in one case, methane, through the posterior parts of their tubes buried in the anoxic sediment. We conclude that most species undertake sulphide 'mining', a mechanism previously demonstrated in the bivalves Lucinoma borealis and Thyasira sarsi. These pogonophores participate in the sulphur cycle and effectively lower the sulphide content of the sediments. Our results show that the abundance of frenulate pogonophores increases with increasing sedimentation and with decreasing abundance of other benthos, particularly bioturbating organisms. The maximum sustainable carrying capacity of non-seep sediments for frenulate pogonophores is limited by the rate of sulphate reduction.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Deep Sea Research Part I: Oceanographic Research Papers","grobid_abstract_attachment_id":61008170},"translated_abstract":null,"internal_url":"https://www.academia.edu/40721867/Interactions_between_sediment_chemistry_and_frenulate_pogonophores_Annelida_in_the_north_east_Atlantic","translated_internal_url":"","created_at":"2019-10-24T12:53:13.381-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37328413,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":33197069,"work_id":40721867,"tagging_user_id":37328413,"tagged_user_id":31765584,"co_author_invite_id":null,"email":"p***o@mba.ac.uk","affiliation":"The Marine Biological Association of the UK","display_order":0,"name":"Paul Dando","title":"Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic"},{"id":33197070,"work_id":40721867,"tagging_user_id":37328413,"tagged_user_id":57770166,"co_author_invite_id":null,"email":"e***h@mba.ac.uk","display_order":4194304,"name":"E. Southward","title":"Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic"}],"downloadable_attachments":[{"id":61008170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/61008170/thumbnails/1.jpg","file_name":"j.dsr.2008.04.00220191024-28583-19d3gvz.pdf","download_url":"https://www.academia.edu/attachments/61008170/download_file","bulk_download_file_name":"Interactions_between_sediment_chemistry.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/61008170/j.dsr.2008.04.00220191024-28583-19d3gvz-libre.pdf?1571948753=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_between_sediment_chemistry.pdf\u0026Expires=1744234951\u0026Signature=G0TIvQGQ2CkNnsfWSHMdMpxEp5eaQtVpTRHuY8rpx6jj4-ctcZnHj4aZZ3yW6jnaGYxbgAMxxnVAlRgMPPlnHsJfzvEX61z-GERqol6clsvdQz5byq2BBQmkPLJFvmaQkHsBpRAT-s2LOfjTr1wNy2-iusgGhKagGEBPMpzH6yHPJCWn64UN6-d~FTGhJVk2Cb00rW6d4yzJvp1QKq3FZlszTuWbHduk3G67PMgvG4oTrXlwskx6515yBSM4rxoc1TmkGMgopGG6GNl9xheDQX9zW0RwgXx1XEFdIaTqwA33rbhJ9sYo-tuv51y7frzgHFth94bWPlpn9Qvc812eJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interactions_between_sediment_chemistry_and_frenulate_pogonophores_Annelida_in_the_north_east_Atlantic","translated_slug":"","page_count":31,"language":"en","content_type":"Work","summary":"The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit muddy sediments on the continental slope, although a few species occur near hydrothermal vents and cold seeps. We present data on the distribution and habitat characteristics of several species on the European continental shelf and slope from 481N to 751N and show how the animals interact with the chemistry of the sediments. The environments inhabited include: shallow (30 m), organic-rich, fjord sediments; slope sediments (1000-2200 m) and methane seeps at 330 m depth. All the species studied obtain nutrition from endosymbiotic bacteria. They take up reduced sulphur species, or in one case, methane, through the posterior parts of their tubes buried in the anoxic sediment. We conclude that most species undertake sulphide 'mining', a mechanism previously demonstrated in the bivalves Lucinoma borealis and Thyasira sarsi. These pogonophores participate in the sulphur cycle and effectively lower the sulphide content of the sediments. Our results show that the abundance of frenulate pogonophores increases with increasing sedimentation and with decreasing abundance of other benthos, particularly bioturbating organisms. The maximum sustainable carrying capacity of non-seep sediments for frenulate pogonophores is limited by the rate of sulphate reduction.","impression_tracking_id":null,"owner":{"id":37328413,"first_name":"P.","middle_initials":null,"last_name":"Lamont","page_name":"PLamont1","domain_name":"independent","created_at":"2015-10-31T04:12:09.188-07:00","display_name":"P. Lamont","url":"https://independent.academia.edu/PLamont1"},"attachments":[{"id":61008170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/61008170/thumbnails/1.jpg","file_name":"j.dsr.2008.04.00220191024-28583-19d3gvz.pdf","download_url":"https://www.academia.edu/attachments/61008170/download_file","bulk_download_file_name":"Interactions_between_sediment_chemistry.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/61008170/j.dsr.2008.04.00220191024-28583-19d3gvz-libre.pdf?1571948753=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_between_sediment_chemistry.pdf\u0026Expires=1744234951\u0026Signature=G0TIvQGQ2CkNnsfWSHMdMpxEp5eaQtVpTRHuY8rpx6jj4-ctcZnHj4aZZ3yW6jnaGYxbgAMxxnVAlRgMPPlnHsJfzvEX61z-GERqol6clsvdQz5byq2BBQmkPLJFvmaQkHsBpRAT-s2LOfjTr1wNy2-iusgGhKagGEBPMpzH6yHPJCWn64UN6-d~FTGhJVk2Cb00rW6d4yzJvp1QKq3FZlszTuWbHduk3G67PMgvG4oTrXlwskx6515yBSM4rxoc1TmkGMgopGG6GNl9xheDQX9zW0RwgXx1XEFdIaTqwA33rbhJ9sYo-tuv51y7frzgHFth94bWPlpn9Qvc812eJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":415,"name":"Oceanography","url":"https://www.academia.edu/Documents/in/Oceanography"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":169569,"name":"Cold Seep","url":"https://www.academia.edu/Documents/in/Cold_Seep"},{"id":230435,"name":"Continental shelf","url":"https://www.academia.edu/Documents/in/Continental_shelf"},{"id":239727,"name":"Continental Slope","url":"https://www.academia.edu/Documents/in/Continental_Slope"},{"id":330187,"name":"Carrying Capacity","url":"https://www.academia.edu/Documents/in/Carrying_Capacity"},{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":536028,"name":"Cold Seeps","url":"https://www.academia.edu/Documents/in/Cold_Seeps"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-40721867-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="25337651"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25337651/In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea"><img alt="Research paper thumbnail of In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea" class="work-thumbnail" src="https://attachments.academia-assets.com/45636543/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25337651/In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea">In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PLinke">P. Linke</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://mba.academia.edu/PaulDando">Paul Dando</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterised in ter...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterised in terms of their flow of fluid, gas, heat and chemicals. The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4152361dae6d6631a000e233bee2c9e4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":45636543,"asset_id":25337651,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/45636543/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25337651"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25337651"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25337651; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25337651]").text(description); $(".js-view-count[data-work-id=25337651]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25337651; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25337651']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4152361dae6d6631a000e233bee2c9e4" } } $('.js-work-strip[data-work-id=25337651]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25337651,"title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea","translated_title":"","metadata":{"grobid_abstract":"Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterised in terms of their flow of fluid, gas, heat and chemicals. The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"grobid_abstract_attachment_id":45636543},"translated_abstract":null,"internal_url":"https://www.academia.edu/25337651/In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea","translated_internal_url":"","created_at":"2016-05-15T00:23:35.316-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32755955,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20266258,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":31765584,"co_author_invite_id":null,"email":"p***o@mba.ac.uk","affiliation":"The Marine Biological Association of the UK","display_order":0,"name":"Paul Dando","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"},{"id":20266259,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":38767762,"co_author_invite_id":null,"email":"w***s@usc.edu","display_order":4194304,"name":"Wiebke Ziebis","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"},{"id":20266260,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":null,"co_author_invite_id":2413599,"email":"s***s@upatras.gr","display_order":6291456,"name":"S. Varnavas","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"},{"id":20266261,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":20946979,"co_author_invite_id":null,"email":"p***l@upatras.gr","display_order":7340032,"name":"Panos Megalovasilis","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"},{"id":20266262,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":38878402,"co_author_invite_id":null,"email":"s***g@teipat.gr","display_order":7864320,"name":"D. Panagiotaras","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"},{"id":20266263,"work_id":25337651,"tagging_user_id":32755955,"tagged_user_id":null,"co_author_invite_id":4573638,"email":"k***t@hydra-institute.com","display_order":8126464,"name":"K. Eichstaedt","title":"In Situ Investigations Of Shallow Water Hydrothermal Vent Systems, Palaeochori Bay, Milos, Aegean Sea"}],"downloadable_attachments":[{"id":45636543,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45636543/thumbnails/1.jpg","file_name":"In_Situ_Investigations_Of_Shallow_Water_20160515-19108-oudqif.pdf","download_url":"https://www.academia.edu/attachments/45636543/download_file","bulk_download_file_name":"In_Situ_Investigations_Of_Shallow_Water.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45636543/In_Situ_Investigations_Of_Shallow_Water_20160515-19108-oudqif-libre.pdf?1463297344=\u0026response-content-disposition=attachment%3B+filename%3DIn_Situ_Investigations_Of_Shallow_Water.pdf\u0026Expires=1744234951\u0026Signature=POHgFGY8gybp2~3m2ItFRxQ-wDbZDzfHLUDwLDR13rM99IrF4Y7eo-cbx5AOPgmV~9ZxDTNSBLZDR5c2OF5ozMtpy-dhMBi4MTXWrx~gkhscxCejTUPtaDc4-hTKgdMbhCWMTpW6AdmyQ7dkKyNf72BRH2IQ2ATdB~e~xKTf1C-02R0-~98LaZ~qEvAEgkNxHW9jDlKaHbgwe13mIOKedtG-CYnjhZ6CyTKPEqj2drN2pzbBSeKKVV1JEQP8YyclJj~rOqF6MLp7DbLZ-HQsC9-r~dVaJ2hk-I76wgbklCuRkoIY8s1pNMiWV2aVbm5loOsvbxCqA1H4HFc-NL1mYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"In_Situ_Investigations_Of_Shallow_Water_Hydrothermal_Vent_Systems_Palaeochori_Bay_Milos_Aegean_Sea","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Shallow hydrothermal vent systems in Palaeochori Bay, Milos, Aegean Sea were characterised in terms of their flow of fluid, gas, heat and chemicals. The chemistry and fluid flow through the sediments around the vents and the activity of micro-organisms inhabiting the ambient seawater were studied using equipment accurately positioned by scientific divers.","impression_tracking_id":null,"owner":{"id":32755955,"first_name":"P.","middle_initials":null,"last_name":"Linke","page_name":"PLinke","domain_name":"independent","created_at":"2015-07-02T23:38:59.778-07:00","display_name":"P. Linke","url":"https://independent.academia.edu/PLinke"},"attachments":[{"id":45636543,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45636543/thumbnails/1.jpg","file_name":"In_Situ_Investigations_Of_Shallow_Water_20160515-19108-oudqif.pdf","download_url":"https://www.academia.edu/attachments/45636543/download_file","bulk_download_file_name":"In_Situ_Investigations_Of_Shallow_Water.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45636543/In_Situ_Investigations_Of_Shallow_Water_20160515-19108-oudqif-libre.pdf?1463297344=\u0026response-content-disposition=attachment%3B+filename%3DIn_Situ_Investigations_Of_Shallow_Water.pdf\u0026Expires=1744234951\u0026Signature=POHgFGY8gybp2~3m2ItFRxQ-wDbZDzfHLUDwLDR13rM99IrF4Y7eo-cbx5AOPgmV~9ZxDTNSBLZDR5c2OF5ozMtpy-dhMBi4MTXWrx~gkhscxCejTUPtaDc4-hTKgdMbhCWMTpW6AdmyQ7dkKyNf72BRH2IQ2ATdB~e~xKTf1C-02R0-~98LaZ~qEvAEgkNxHW9jDlKaHbgwe13mIOKedtG-CYnjhZ6CyTKPEqj2drN2pzbBSeKKVV1JEQP8YyclJj~rOqF6MLp7DbLZ-HQsC9-r~dVaJ2hk-I76wgbklCuRkoIY8s1pNMiWV2aVbm5loOsvbxCqA1H4HFc-NL1mYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":405062,"name":"Hydrothermal Vent","url":"https://www.academia.edu/Documents/in/Hydrothermal_Vent"},{"id":1407728,"name":"Shallow Water","url":"https://www.academia.edu/Documents/in/Shallow_Water"}],"urls":[{"id":7109426,"url":"http://www.onepetro.org/mslib/servlet/onepetropreview?id=SUT-USS-97-085\u0026soc=SUT"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-25337651-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "0dcfc7df02184c8888a3d7430bb83453fe94d32e66a04ab8c3f9120610f596e8", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="S1kpdkBlWg8yNhMQ6eUv5O4ShxSsDObfuwp61XhICa8Brc74grxNlUV1DjHPvOTewovqhM5p7m1OqdNfZ8Xeyg" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://mba.academia.edu/PaulDando" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="OU6OC_xreoLBFa3BiKZVYUUgpsOGf_inKvj_Jr3gl4xzummFPrJtGLZWsOCu_55babnLU-Qa8BXfW1asom1A6Q" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li><a rel="nofollow" href="https://www.academia.edu/content_policy">Content Policy</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>