CINXE.COM
Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism | Nano-Micro Letters
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism | Nano-Micro Letters</title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism"/> <meta name="twitter:description" content="Nano-Micro Letters - Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize..."/> <meta name="twitter:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig1_HTML.gif"/> <meta name="journal_id" content="40820"/> <meta name="dc.title" content="Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism"/> <meta name="dc.source" content="Nano-Micro Letters 2015 7:3"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2015-04-19"/> <meta name="dc.type" content="ReviewPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2015 The Author(s)"/> <meta name="dc.rights" content="2015 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition."/> <meta name="prism.issn" content="2150-5551"/> <meta name="prism.publicationName" content="Nano-Micro Letters"/> <meta name="prism.publicationDate" content="2015-04-19"/> <meta name="prism.volume" content="7"/> <meta name="prism.number" content="3"/> <meta name="prism.section" content="ReviewPaper"/> <meta name="prism.startingPage" content="219"/> <meta name="prism.endingPage" content="242"/> <meta name="prism.copyright" content="2015 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1007/s40820-015-0040-x"/> <meta name="prism.doi" content="doi:10.1007/s40820-015-0040-x"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/s40820-015-0040-x.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1007/s40820-015-0040-x"/> <meta name="citation_journal_title" content="Nano-Micro Letters"/> <meta name="citation_journal_abbrev" content="Nano-Micro Lett."/> <meta name="citation_publisher" content="Springer Berlin Heidelberg"/> <meta name="citation_issn" content="2150-5551"/> <meta name="citation_title" content="Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism"/> <meta name="citation_volume" content="7"/> <meta name="citation_issue" content="3"/> <meta name="citation_publication_date" content="2015/07"/> <meta name="citation_online_date" content="2015/04/19"/> <meta name="citation_firstpage" content="219"/> <meta name="citation_lastpage" content="242"/> <meta name="citation_article_type" content="Review"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1007/s40820-015-0040-x"/> <meta name="DOI" content="10.1007/s40820-015-0040-x"/> <meta name="size" content="422601"/> <meta name="citation_doi" content="10.1007/s40820-015-0040-x"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/s40820-015-0040-x&api_key="/> <meta name="description" content="Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnolo"/> <meta name="dc.creator" content="Sirelkhatim, Amna"/> <meta name="dc.creator" content="Mahmud, Shahrom"/> <meta name="dc.creator" content="Seeni, Azman"/> <meta name="dc.creator" content="Kaus, Noor Haida Mohamad"/> <meta name="dc.creator" content="Ann, Ling Chuo"/> <meta name="dc.creator" content="Bakhori, Siti Khadijah Mohd"/> <meta name="dc.creator" content="Hasan, Habsah"/> <meta name="dc.creator" content="Mohamad, Dasmawati"/> <meta name="dc.subject" content="Nanotechnology and Microengineering"/> <meta name="dc.subject" content="Nanotechnology"/> <meta name="dc.subject" content="Nanoscale Science and Technology"/> <meta name="citation_reference" content="S. Sahoo, Socio-ethical issues and nanotechnology development: perspectives from India, in 2010 10th IEEE Conference on Nanotechnology (IEEE-NANO), Seoul, South Korea, USA, 17–20 August 2010 (IEEE, 2010), pp. 1205–1210. doi: 10.1109/NANO.2010.5697887 "/> <meta name="citation_reference" content="citation_journal_title=AEEE; citation_title=Nanotechnology, big things from a tiny world: a review; citation_author=V Yadav; citation_volume=3; citation_issue=6; citation_publication_date=2013; citation_pages=771-778; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=Appl. Environ. Microbiol.; citation_title=Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli ; citation_author=S Pal, YK Tak, JM Song; citation_volume=73; citation_issue=6; citation_publication_date=2007; citation_pages=1712-1720; citation_id=CR3"/> <meta name="citation_reference" content="B. Ashe, A Detail investigation to observe the effect of zinc oxide and Silver nanoparticles in biological system, M.Sc. (Roll NO-607bm004), National Institute of Technology, 2011"/> <meta name="citation_reference" content="citation_journal_title=Biointerphases; citation_title=Nanomaterials and nanoparticles: sources and toxicity; citation_author=C Buzea, II Pacheco, K Robbie; citation_volume=2; citation_issue=4; citation_publication_date=2007; citation_pages=MR17-MR71; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Expert Opin. Drug Deliv.; citation_title=Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications; citation_author=JW Rasmussen, E Martinez, P Louka, DG Wingett; citation_volume=7; citation_issue=9; citation_publication_date=2010; citation_pages=1063-1077; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=Nano Lett.; citation_title=Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium; citation_author=R Brayner, R Ferrari-Iliou, N Brivois, S Djediat, MF Benedetti, F Fiévet; citation_volume=6; citation_issue=4; citation_publication_date=2006; citation_pages=866-870; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=FEMS Microbiol. Lett.; citation_title=Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms; citation_author=N Jones, B Ray, KT Ranjit, AC Manna; citation_volume=279; citation_issue=1; citation_publication_date=2008; citation_pages=71-76; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Mater. Chem. Phys.; citation_title=ZnO nanofluids: green synthesis, characterization, and antibacterial activity; citation_author=R Jalal, EK Goharshadi, M Abareshi, M Moosavi, A Yousefi, P Nancarrow; citation_volume=121; citation_issue=1; citation_publication_date=2010; citation_pages=198-201; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Nanomed.; citation_title=Antimicrobial applications of nanotechnology: methods and literature; citation_author=JT Seil, TJ Webster; citation_volume=7; citation_publication_date=2012; citation_pages=2767-2781; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=Afr. J. Microbiol. Res.; citation_title=Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria; citation_author=Z Emami-Karvani, P Chehrazi; citation_volume=5; citation_issue=12; citation_publication_date=2011; citation_pages=1368-1373; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Sci. Technol. Adv. Mater.; citation_title=Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study; citation_author=N Padmavathy, R Vijayaraghavan; citation_volume=9; citation_issue=3; citation_publication_date=2008; citation_pages=035004; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Langmuir; citation_title=Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles; citation_author=KR Raghupathi, RT Koodali, AC Manna; citation_volume=27; citation_issue=7; citation_publication_date=2011; citation_pages=4020-4028; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=J. Biomed. Mater. Res.; citation_title=Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2 ; citation_author=G Colon, BC Ward, TJ Webster; citation_volume=78; citation_issue=3; citation_publication_date=2006; citation_pages=595-604; citation_id=CR14"/> <meta name="citation_reference" content="J.T. Seil, E.N. Taylor, T.J. Webster, Reduced activity of Staphylococcus epidermidis in the presence of sonicated piezoelectric zinc oxide nanoparticles, in 2009 IEEE 35th Annual Northeast Bioengineering Conference, Boston, MA, USA, 3–5 April 2009 (IEEE, 2009), pp. 1–2. doi: 10.1109/NEBC.2009.4967674 "/> <meta name="citation_reference" content="citation_journal_title=Bull. World Health Organ.; citation_title=Global burden of Shigella infections: implications for vaccine development and implementation of control strategies; citation_author=K Kotloff, J Winickoff, B Ivanoff, JD Clemens, D Swerdlow, P Sansonetti, G Adak, M Levine; citation_volume=77; citation_issue=8; citation_publication_date=1999; citation_pages=651-666; citation_id=CR16"/> <meta name="citation_reference" content="Y.G. Gertrude Neumark, I. Kuskovsky, in Springer Handbook of Electronic and Photonic Materials: Doping Aspects of Zn-Based Wide-Band-Gap Semiconductors, ed. by P.C. Safa Kasap (Springer, 2007), pp. 843–854. doi: 10.1007/978-0-387-29185-7_35 "/> <meta name="citation_reference" content="citation_journal_title=J. Nanosci. Nanotechnol.; citation_title=Zinc oxide nanostructures: synthesis and properties; citation_author=Z Fan, JG Lu; citation_volume=5; citation_issue=10; citation_publication_date=2005; citation_pages=1561-1573; citation_id=CR18"/> <meta name="citation_reference" content="citation_journal_title=J. Phys.: Condens. Matter; citation_title=Zinc oxide nanostructures: growth, properties and applications; citation_author=ZL Wang; citation_volume=16; citation_issue=25; citation_publication_date=2004; citation_pages=R829-R858; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Piezoelectric nanogenerators based on zinc oxide nanowire arrays; citation_author=ZL Wang, J Song; citation_volume=312; citation_issue=5771; citation_publication_date=2006; citation_pages=242-246; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=Rep. Prog. Phys.; citation_title=Fundamentals of zinc oxide as a semiconductor; citation_author=A Janotti, CG Walle; citation_volume=72; citation_issue=12; citation_publication_date=2009; citation_pages=126501; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=J. Nanomater.; citation_title=Synthesis, characterization, and applications of ZnO nanowires; citation_author=Y Zhang, MK Ram, EK Stefanakos, DY Goswami; citation_volume=2012; citation_publication_date=2012; citation_pages=1-22; citation_id=CR22"/> <meta name="citation_reference" content="citation_journal_title=Mater. Today; citation_title=ZnO-nanostructures, defects, and devices; citation_author=L Schmidt-Mende, JL MacManus-Driscoll; citation_volume=10; citation_issue=5; citation_publication_date=2007; citation_pages=40-48; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=Thin Solid Films; citation_title=Growth and characterisation of electrodeposited ZnO thin films; citation_author=J Wellings, N Chaure, S Heavens, I Dharmadasa; citation_volume=516; citation_issue=12; citation_publication_date=2008; citation_pages=3893-3898; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Biomed. Opt. Express; citation_title=Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport; citation_author=Z Song, TA Kelf, WH Sanchez, MS Roberts, J Rička, M Frenz, AV Zvyagin; citation_volume=2; citation_issue=12; citation_publication_date=2011; citation_pages=3321-3333; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=J. Appl. Phys.; citation_title=Crystal growth behaviour in Au–ZnO nanocomposite under different annealing environments and photoswitchability; citation_author=Y Mishra, V Chakravadhanula, V Hrkac, S Jebril, D Agarwal, S Mohapatra, D Avasthi, L Kienle, R Adelung; citation_volume=112; citation_issue=6; citation_publication_date=2012; citation_pages=064308; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=J. Nano Res.; citation_title=Application of ZnO nanoparticles EM wave detector prepared by sol–gel and self-combustion techniques; citation_author=N Yahya, H Daud, NA Tajuddin, HM Daud, A Shafie, P Puspitasari; citation_volume=11; citation_publication_date=2010; citation_pages=25-34; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=J. Alloys Compd.; citation_title=One-dimensional growth of zinc oxide nanostructures from large micro-particles in a highly rapid synthesis; citation_author=S Mahmud; citation_volume=509; citation_issue=9; citation_publication_date=2011; citation_pages=4035-4040; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=J. Biosens. Bioelectron.; citation_title=Nanostructured ZnO for electrochemical biosensors; citation_author=JE Ramirez-Vick; citation_publication_date=2012; citation_id=CR29"/> <meta name="citation_reference" content="citation_journal_title=J. Nanomater.; citation_title=Synthesis and characterization of ZnO nanorods based on a new gel pyrolysis method; citation_author=H Karami, E Fakoori; citation_volume=2011; citation_publication_date=2011; citation_pages=628203; citation_id=CR30"/> <meta name="citation_reference" content="citation_journal_title=JOM; citation_title=The characterization of various ZnO nanostructures using field-emission SEM; citation_author=Z Xu, J-Y Hwang, B Li, X Huang, H Wang; citation_volume=60; citation_issue=4; citation_publication_date=2008; citation_pages=29-32; citation_id=CR31"/> <meta name="citation_reference" content="citation_journal_title=Mater. Res. Bull.; citation_title=Low temperature solution synthesis and characterization of ZnO nano-flowers; citation_author=R Wahab, S Ansari, Y Kim, H Seo, G Kim, G Khang, H-S Shin; citation_volume=42; citation_issue=9; citation_publication_date=2007; citation_pages=1640-1648; citation_id=CR32"/> <meta name="citation_reference" content="citation_journal_title=Chem. Mater.; citation_title=Control of ZnO morphology via a simple solution route; citation_author=J Zhang, L Sun, J Yin, H Su, C Liao, C Yan; citation_volume=14; citation_issue=10; citation_publication_date=2002; citation_pages=4172-4177; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=Appl. Microbiol. Biotechnol.; citation_title=Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route; citation_author=R Wahab, A Mishra, S-I Yun, Y-S Kim, H-S Shin; citation_volume=87; citation_issue=5; citation_publication_date=2010; citation_pages=1917-1925; citation_id=CR34"/> <meta name="citation_reference" content="citation_journal_title=Colloids Surf. B; citation_title=ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity; citation_author=R Wahab, MA Siddiqui, Q Saquib, S Dwivedi, J Ahmad, J Musarrat, AA Al-Khedhairy, H-S Shin; citation_volume=117; citation_publication_date=2014; citation_pages=267-276; citation_id=CR35"/> <meta name="citation_reference" content="citation_journal_title=Colloids Surf. B; citation_title=Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents; citation_author=A Stanković, S Dimitrijević, D Uskoković; citation_volume=102; citation_publication_date=2013; citation_pages=21-28; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=J. Phys. Chem. C; citation_title=Heterojunction nanowires of AgxZn1−xO–ZnO photocatalytic and antibacterial activities under visible-light and dark conditions; citation_author=JM Wu; citation_volume=119; citation_issue=3; citation_publication_date=2015; citation_pages=1433-1441; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Nanomed.; citation_title=Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria; citation_author=JI Tariq Jan, M Ismail, M Zakaullah, SH Naqvi, N Badshah; citation_volume=8; citation_issue=1; citation_publication_date=2013; citation_pages=3679-3687; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=Adv. Funct. Mater.; citation_title=Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(n-isopropylacrylamide) hydrogel surface layers; citation_author=VB Schwartz, F Thétiot, S Ritz, S Pütz, L Choritz, A Lappas, R Förch, K Landfester, U Jonas; citation_volume=22; citation_issue=11; citation_publication_date=2012; citation_pages=2376-2386; citation_id=CR39"/> <meta name="citation_reference" content="citation_journal_title=J. Nanopart. Res.; citation_title=Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids); citation_author=L Zhang, Y Jiang, Y Ding, M Povey, D York; citation_volume=9; citation_issue=3; citation_publication_date=2007; citation_pages=479-489; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=J. Appl. Phys.; citation_title=A comprehensive review of ZnO materials and devices; citation_author=U Ozgur, YI Alivov, C Liu, A Teke, M Reshchikov, S Dogan, V Avrutin, SJ Cho, H Morkoc; citation_volume=98; citation_issue=4; citation_publication_date=2005; citation_pages=041301-041301-103; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Chem. Eng. J.; citation_title=Zinc oxide particles: synthesis, properties and applications; citation_author=A Moezzi, AM McDonagh, MB Cortie; citation_volume=185; citation_publication_date=2012; citation_pages=1-22; citation_id=CR42"/> <meta name="citation_reference" content="citation_journal_title=ACS Nano; citation_title=Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping; citation_author=S George, S Pokhrel, T Xia, B Gilbert, Z Ji, M Schowalter, A Rosenauer, R Damoiseaux, KA Bradley, L Mädler; citation_volume=4; citation_issue=1; citation_publication_date=2009; citation_pages=15-29; citation_id=CR43"/> <meta name="citation_reference" content="citation_journal_title=J. Phys. Chem. B; citation_title=Anatase TiO2 nanocomposites for antimicrobial coatings; citation_author=G Fu, PS Vary, C-T Lin; citation_volume=109; citation_issue=18; citation_publication_date=2005; citation_pages=8889-8898; citation_id=CR44"/> <meta name="citation_reference" content="J.V.A. Edwards, K.J. Edwards, Bacteria Cell, http://www.alken-murray.com/BioInfo1-05.html . Accessed 9 July 2010"/> <meta name="citation_reference" content="citation_journal_title=Nanoscale Res. Lett.; citation_title=Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity; citation_author=R Wahab, Y-S Kim, A Mishra, S-I Yun, H-S Shin; citation_volume=5; citation_issue=10; citation_publication_date=2010; citation_pages=1675-1681; citation_id=CR46"/> <meta name="citation_reference" content="citation_journal_title=Nanomed. Nanotechnol. Biol. Med.; citation_title=Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation; citation_author=M Premanathan, K Karthikeyan, K Jeyasubramanian, G Manivannan; citation_volume=7; citation_issue=2; citation_publication_date=2011; citation_pages=184-192; citation_id=CR47"/> <meta name="citation_reference" content="citation_journal_title=J. Microbiol. Methods; citation_title=Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay; citation_author=J Sawai; citation_volume=54; citation_issue=2; citation_publication_date=2003; citation_pages=177-182; citation_id=CR48"/> <meta name="citation_reference" content="S.O. Sukon Phanichphantand, Antimicrobial nanomaterials in the textile industry, in Bionanotechnology II Global Prospects, ed. by D.E. Reisner (CRC Press, Boca Raton, 2011), p. 2"/> <meta name="citation_reference" content="citation_journal_title=Appl. Phys. Lett.; citation_title=Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems; citation_author=KM Reddy, K Feris, J Bell, DG Wingett, C Hanley, A Punnoose; citation_volume=90; citation_issue=21; citation_publication_date=2007; citation_pages=213902; citation_id=CR50"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Inorg. Mater.; citation_title=Influence of particle size on the antibacterial activity of zinc oxide; citation_author=O Yamamoto; citation_volume=3; citation_issue=7; citation_publication_date=2001; citation_pages=643-646; citation_id=CR51"/> <meta name="citation_reference" content="citation_journal_title=J. Mater. Sci. Mater. Med.; citation_title=Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells; citation_author=S Nair, A Sasidharan, VD Rani, D Menon, S Nair, K Manzoor, S Raina; citation_volume=20; citation_issue=1; citation_publication_date=2009; citation_pages=235-241; citation_id=CR52"/> <meta name="citation_reference" content="A.L. Barry, W.A. Craig, H. Nadler, L.B. Reller, C.C. Sanders, J.M. Swenson, in Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline, vol. 19, 18th edn. (National Committee for Clinical Laboratory Standards, CLSI, Wayne, 1999)"/> <meta name="citation_reference" content="citation_journal_title=Med. Chem. Drug Discov.; citation_title=Synthesis, antibacterial, lipoxygenase and urease inhibitory activities of 2-aminophenol derivatives; citation_author=M Aslam, I Anis, N Afza, MT Hussain, L Iqbal, A Hussain, S Iqbal, TH Bokhari, M Khalid; citation_volume=3; citation_issue=2; citation_publication_date=2012; citation_pages=80-86; citation_id=CR54"/> <meta name="citation_reference" content="R. Prasad, D. Basavaraju, K. Rao, C. Naveen, J. Endrino, A. Phani, Nanostructured TiO2 and TiO2–Ag antimicrobial thin films, in Proceedings of the 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI), Bhubaneswar, USA, 8–10 December 2011 (IEEE, 2011), pp. 1–6. doi: 10.1109/NSTSI.2011.6111808 "/> <meta name="citation_reference" content="citation_journal_title=Water Res.; citation_title=Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions; citation_author=LK Adams, DY Lyon, PJ Alvarez; citation_volume=40; citation_issue=19; citation_publication_date=2006; citation_pages=3527-3532; citation_id=CR56"/> <meta name="citation_reference" content="citation_journal_title=Toxicol. In Vitro; citation_title=Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae ; citation_author=K Kasemets, A Ivask, H-C Dubourguier, A Kahru; citation_volume=23; citation_issue=6; citation_publication_date=2009; citation_pages=1116-1122; citation_id=CR57"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility; citation_author=TJ Brunner, P Wick, P Manser, P Spohn, RN Grass, LK Limbach, A Bruinink, WJ Stark; citation_volume=40; citation_issue=14; citation_publication_date=2006; citation_pages=4374-4381; citation_id=CR58"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components; citation_author=M Li, L Zhu, D Lin; citation_volume=45; citation_issue=5; citation_publication_date=2011; citation_pages=1977-1983; citation_id=CR59"/> <meta name="citation_reference" content="citation_journal_title=J. Ferment. Bioeng.; citation_title=Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry; citation_author=J Sawai, S Shoji, H Igarashi, A Hashimoto, T Kokugan, M Shimizu, H Kojima; citation_volume=86; citation_issue=5; citation_publication_date=1998; citation_pages=521-522; citation_id=CR60"/> <meta name="citation_reference" content="citation_journal_title=Nanotechnology; citation_title=Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury; citation_author=A Lipovsky, Y Nitzan, A Gedanken, R Lubart; citation_volume=22; citation_issue=10; citation_publication_date=2011; citation_pages=105101; citation_id=CR61"/> <meta name="citation_reference" content="citation_journal_title=Prog. Nat. Sci.; citation_title=ZnO nanofluids—a potential antibacterial agent; citation_author=L Zhang, Y Ding, M Povey, D York; citation_volume=18; citation_issue=8; citation_publication_date=2008; citation_pages=939-944; citation_id=CR62"/> <meta name="citation_reference" content="J. Zhang, Silver-coated zinc oxide nanoantibacterial synthesis and antibacterial activity characterization, in 2011 International Conference on Electronics and Optoelectronics (ICEOE), vol. 3, Dalian, Liaoning, USA, 29–31 July 2011 (IEEE, 2011), pp. V3-94–V3-98. doi: 10.1109/ICEOE.2011.6013309 "/> <meta name="citation_reference" content="citation_journal_title=Afr. J. Basic Appl. Sci.; citation_title=Photocatalytic activity of ZnO nanopowders synthesized by DC thermal plasma; citation_author=M Nirmala, MG Nair, K Rekha, A Anukaliani, S Samdarshi, RG Nair; citation_volume=2; citation_issue=5–6; citation_publication_date=2010; citation_pages=161-166; citation_id=CR64"/> <meta name="citation_reference" content="M. E, Proceedings of the photoconductivity conference, photoconductivity conference, Atlantic City, Pennsylvania (4-6 Nov. 1956): John Wiley and Sons, Inc, New York (1956)"/> <meta name="citation_reference" content="citation_journal_title=Nanoscale Res. Lett.; citation_title=Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires; citation_author=ISJ Bao, Z Su, R Gurwitz, F Capasso, X Wang, Z Ren; citation_volume=6; citation_issue=404; citation_publication_date=2011; citation_pages=1-7; citation_id=CR66"/> <meta name="citation_reference" content="citation_journal_title=Beilstein J. Nanotechnol.; citation_title=Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods; citation_author=S Baruah, MA Mahmood, MTZ Myint, T Bora, J Dutta; citation_volume=1; citation_issue=1; citation_publication_date=2010; citation_pages=14-20; citation_id=CR67"/> <meta name="citation_reference" content="citation_journal_title=Biomaterials; citation_title=A strategy for ZnO nanorod mediated multi-mode cancer treatment; citation_author=H Zhang, B Chen, H Jiang, C Wang, H Wang, X Wang; citation_volume=32; citation_issue=7; citation_publication_date=2011; citation_pages=1906-1914; citation_id=CR68"/> <meta name="citation_reference" content="citation_journal_title=J. Photochem. Photobiol. A; citation_title=Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara Desert dust; citation_author=O Seven, B Dindar, S Aydemir, D Metin, M Ozinel, S Icli; citation_volume=165; citation_issue=1; citation_publication_date=2004; citation_pages=103-107; citation_id=CR69"/> <meta name="citation_reference" content="citation_journal_title=Desalination; citation_title=Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments; citation_author=S Ahmed, M Rasul, WN Martens, R Brown, M Hashib; citation_volume=261; citation_issue=1; citation_publication_date=2010; citation_pages=3-18; citation_id=CR70"/> <meta name="citation_reference" content="citation_journal_title=Food Bioprocess Technol.; citation_title=Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications; citation_author=PJP Espitia, NdFF Soares, JS Reis Coimbra, NJ Andrade, RS Cruz, EAA Medeiros; citation_volume=5; citation_issue=5; citation_publication_date=2012; citation_pages=1447-1464; citation_id=CR71"/> <meta name="citation_reference" content="citation_journal_title=J. Biomed. Mater. Res. A; citation_title=Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex; citation_author=G Zhou, Y Li, W Xiao, L Zhang, Y Zuo, J Xue, JA Jansen; citation_volume=85; citation_issue=4; citation_publication_date=2008; citation_pages=929-937; citation_id=CR72"/> <meta name="citation_reference" content="citation_journal_title=J. Nanosci. Nanotechnol.; citation_title=Role of surface adsorbed anionic species in antibacterial activity of ZnO quantum dots against Escherichia coli ; citation_author=P Joshi, S Chakraborti, P Chakrabarti, D Haranath, V Shanker, Z Ansari, SP Singh, V Gupta; citation_volume=9; citation_issue=11; citation_publication_date=2009; citation_pages=6427-6433; citation_id=CR73"/> <meta name="citation_reference" content="citation_journal_title=Ceram. Int.; citation_title=Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions; citation_author=K Hirota, M Sugimoto, M Kato, K Tsukagoshi, T Tanigawa, H Sugimoto; citation_volume=36; citation_issue=2; citation_publication_date=2010; citation_pages=497-506; citation_id=CR74"/> <meta name="citation_reference" content="citation_journal_title=Appl. Surf. Sci.; citation_title=Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder; citation_author=LC Ann, S Mahmud, SKM Bakhori, A Sirelkhatim, D Mohamad, H Hasan, A Seeni, RA Rahman; citation_volume=292; citation_publication_date=2014; citation_pages=405-412; citation_id=CR75"/> <meta name="citation_reference" content="citation_journal_title=Semin. Cell Dev. Biol.; citation_title=Reactive oxygen species and mitochondrial diseases; citation_author=IG Kirkinezos, CT Moraes; citation_volume=12; citation_issue=6; citation_publication_date=2001; citation_pages=449-457; citation_id=CR76"/> <meta name="citation_reference" content="citation_journal_title=J. Photochem. Photobiol.; citation_title=Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties; citation_author=N Talebian, SM Amininezhad, M Doudi; citation_volume=120; citation_publication_date=2013; citation_pages=66-73; citation_id=CR77"/> <meta name="citation_reference" content="citation_journal_title=Ceram. Int.; citation_title=Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property; citation_author=J Ma, J Liu, Y Bao, Z Zhu, X Wang, J Zhang; citation_volume=39; citation_issue=3; citation_publication_date=2013; citation_pages=2803-2810; citation_id=CR78"/> <meta name="citation_reference" content="citation_journal_title=Colloids Surf. B; citation_title=Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity; citation_author=M Ramani, S Ponnusamy, C Muthamizhchelvan, E Marsili; citation_volume=117; citation_publication_date=2014; citation_pages=233-239; citation_id=CR79"/> <meta name="citation_reference" content="citation_journal_title=J. Appl. Toxicol.; citation_title=Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition; citation_author=H Yang, C Liu, D Yang, H Zhang, Z Xi; citation_volume=29; citation_issue=1; citation_publication_date=2009; citation_pages=69-78; citation_id=CR80"/> <meta name="citation_reference" content="citation_journal_title=J. Phys. Chem. C; citation_title=Morphology–function relationship of ZnO: polar planes, oxygen vacancies, and activity; citation_author=G Li, T Hu, G Pan, T Yan, X Gao, H Zhu; citation_volume=112; citation_issue=31; citation_publication_date=2008; citation_pages=11859-11864; citation_id=CR81"/> <meta name="citation_reference" content="citation_journal_title=J. Mater. Chem. B; citation_title=Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity; citation_author=G-X Tong, F-F Du, Y Liang, Q Hu, R-N Wu, J-G Guan, X Hu; citation_volume=1; citation_issue=4; citation_publication_date=2013; citation_pages=454-463; citation_id=CR82"/> <meta name="citation_reference" content="citation_journal_title=Ceram. Int.; citation_title=Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes ; citation_author=LC Ann, S Mahmud, SKM Bakhori, A Sirelkhatim, D Mohamad, H Hasan, A Seeni, RA Rahman; citation_volume=40; citation_issue=2; citation_publication_date=2014; citation_pages=2993-3001; citation_id=CR83"/> <meta name="citation_reference" content="citation_journal_title=Jpn. J. Appl. Phys.; citation_title=Performance of an ultraviolet photoconductive sensor using well-aligned aluminium-doped zinc-oxide nanorod arrays annealed in an air and oxygen environment; citation_author=MH Mamat, Z Khusaimi, MM Zahidi, MR Mahmood; citation_volume=50; citation_issue=6; citation_publication_date=2011; citation_pages=06GF05–06GF05-4; citation_id=CR84"/> <meta name="citation_reference" content="citation_journal_title=Nanotechnology; citation_title=Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination; citation_author=Y Leung, C Chan, A Ng, H Chan, M Chiang, A Djurišić, Y Ng, W Jim, M Guo, F Leung; citation_volume=23; citation_issue=47; citation_publication_date=2012; citation_pages=475703; citation_id=CR85"/> <meta name="citation_reference" content="citation_journal_title=Nanoscale; citation_title=Is the effect of surface modifying molecules on antibacterial activity universal for a given material?; citation_author=A Hsu, F Liu, YH Leung, AP Ma, AB Djurišić, FC Leung, WK Chan, HK Lee; citation_volume=6; citation_issue=17; citation_publication_date=2014; citation_pages=10323-10331; citation_id=CR86"/> <meta name="citation_reference" content="citation_journal_title=Aquat. Toxicol.; citation_title=Effect of morphology of ZnO nanostructures on their toxicity to marine algae; citation_author=X Peng, S Palma, NS Fisher, SS Wong; citation_volume=102; citation_issue=3; citation_publication_date=2011; citation_pages=186-196; citation_id=CR87"/> <meta name="citation_reference" content="citation_journal_title=J. Chem. Eng. Jpn.; citation_title=Detection of active oxygen generated from ceramic powders having antibacterial activity; citation_author=J Sawai, E Kawada, F Kanou, H Igarashi, A Hashimoto, T Kokugan, M Shimizu; citation_volume=29; citation_issue=4; citation_publication_date=1996; citation_pages=627-633; citation_id=CR88"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility; citation_author=NM Franklin, NJ Rogers, SC Apte, GE Batley, GE Gadd, PS Casey; citation_volume=41; citation_issue=24; citation_publication_date=2007; citation_pages=8484-8490; citation_id=CR89"/> <meta name="citation_reference" content="citation_journal_title=J. Environ. Sci. Health. A; citation_title=Toxicity of metal oxide nanoparticles in mammalian cells; citation_author=HA Jeng, J Swanson; citation_volume=41; citation_issue=12; citation_publication_date=2006; citation_pages=2699-2711; citation_id=CR90"/> <meta name="citation_reference" content="citation_journal_title=Appl. Environ. Microbiol.; citation_title=Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni ; citation_author=Y Xie, Y He, PL Irwin, T Jin, X Shi; citation_volume=77; citation_issue=7; citation_publication_date=2011; citation_pages=2325-2331; citation_id=CR91"/> <meta name="citation_reference" content="citation_journal_title=IET Nanobiotechnol.; citation_title=Size-dependent antimicrobial response of zinc oxide nanoparticles; citation_author=L Palanikumar, SN Ramasamy, C Balachandran; citation_volume=8; citation_issue=2; citation_publication_date=2014; citation_pages=111-117; citation_id=CR92"/> <meta name="citation_reference" content="citation_journal_title=Turk. J. Med. Sci.; citation_title=The effect of zinc on microbial growth; citation_author=S Atmaca, K Gül, R Cicek; citation_volume=28; citation_issue=6; citation_publication_date=1998; citation_pages=595-598; citation_id=CR93"/> <meta name="citation_reference" content="citation_journal_title=Acta Biomater.; citation_title=Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium; citation_author=H Hu, W Zhang, Y Qiao, X Jiang, X Liu, C Ding; citation_volume=8; citation_issue=2; citation_publication_date=2012; citation_pages=904-915; citation_id=CR94"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Med. Microbiol.; citation_title=Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli ; citation_author=W Salem, DR Leitner, FG Zingl, G Schratter, R Prassl, W Goessler, J Reidl, S Schild; citation_volume=305; citation_issue=1; citation_publication_date=2015; citation_pages=85-95; citation_id=CR95"/> <meta name="citation_reference" content="F. Kroger, The Chemistry of Imperfect Crystals. Vol. 2. Imperfection Chemistry of Crystalline Solids (Elsevier, New York, 1974)"/> <meta name="citation_reference" content="citation_journal_title=Chem. Commun.; citation_title=A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface; citation_author=X Wang, F Yang, W Yang, X Yang; citation_volume=42; citation_publication_date=2007; citation_pages=4419-4421; citation_id=CR97"/> <meta name="citation_reference" content="citation_journal_title=Thin Solid Films; citation_title=Antibacterial activity of ZnO nanorods prepared by a hydrothermal method; citation_author=K Tam, A Djurišić, C Chan, Y Xi, C Tse, Y Leung, W Chan, F Leung, D Au; citation_volume=516; citation_issue=18; citation_publication_date=2008; citation_pages=6167-6174; citation_id=CR98"/> <meta name="citation_reference" content="citation_journal_title=Biointerface Res. Appl. Chem.; citation_title=Bactericidal action of N doped ZnO in sunlight; citation_author=R Karmali, A Bartakke, V Borker, K Rane; citation_volume=1; citation_issue=2; citation_publication_date=2011; citation_pages=57-63; citation_id=CR99"/> <meta name="citation_reference" content="citation_journal_title=Langmuir; citation_title=Metal oxide nanoparticles as bactericidal agents; citation_author=PK Stoimenov, RL Klinger, GL Marchin, KJ Klabunde; citation_volume=18; citation_issue=17; citation_publication_date=2002; citation_pages=6679-6686; citation_id=CR100"/> <meta name="citation_reference" content="citation_journal_title=Nanomed. Nanotechnol. Biol. Med.; citation_title=Antimicrobial effects of silver nanoparticles; citation_author=JS Kim, E Kuk, KN Yu, J-H Kim, SJ Park, HJ Lee, SH Kim, YK Park, YH Park, C-Y Hwang; citation_volume=3; citation_issue=1; citation_publication_date=2007; citation_pages=95-101; citation_id=CR101"/> <meta name="citation_reference" content="citation_journal_title=Nanoscale; citation_title=The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes; citation_author=L Liu, J Yang, J Xie, Z Luo, J Jiang, YY Yang, S Liu; citation_volume=5; citation_issue=9; citation_publication_date=2013; citation_pages=3834-3840; citation_id=CR102"/> <meta name="citation_reference" content="citation_journal_title=Environ. Eng. Res.; citation_title=Developing a testing method for antimicrobial efficacy on TiO2 photocatalytic products; citation_author=JY Kim, JY Yoon; citation_volume=13; citation_issue=3; citation_publication_date=2008; citation_pages=136-140; citation_id=CR103"/> <meta name="citation_reference" content="citation_journal_title=Sci. Total Environ.; citation_title=Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells; citation_author=I-L Hsiao, Y-J Huang; citation_volume=409; citation_issue=7; citation_publication_date=2011; citation_pages=1219-1228; citation_id=CR104"/> <meta name="citation_reference" content="citation_journal_title=ACS Nano; citation_title=P25–graphene composite as a high performance photocatalyst; citation_author=H Zhang, X Lv, Y Li, Y Wang, J Li; citation_volume=4; citation_issue=1; citation_publication_date=2009; citation_pages=380-386; citation_id=CR105"/> <meta name="citation_reference" content="citation_journal_title=Langmuir; citation_title=Toxicological effect of ZnO nanoparticles based on bacteria; citation_author=Z Huang, X Zheng, D Yan, G Yin, X Liao, Y Kang, Y Yao, D Huang, B Hao; citation_volume=24; citation_issue=8; citation_publication_date=2008; citation_pages=4140-4144; citation_id=CR106"/> <meta name="citation_reference" content="citation_journal_title=ACS Nano; citation_title=Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties; citation_author=T Xia, M Kovochich, M Liong, L Mädler, B Gilbert, H Shi, JI Yeh, JI Zink, AE Nel; citation_volume=2; citation_issue=10; citation_publication_date=2008; citation_pages=2121-2134; citation_id=CR107"/> <meta name="citation_reference" content="R. Prasad, D. Basavaraju, K. Rao, C. Naveen, J. Endrino, A. Phani, Nanostructured TiO2 and TiO2–Ag antimicrobial thin films, in 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI), Bhubaneswar, USA, 8–10 December 2011 (IEEE, 2011), pp. 1–6. doi: 10.1109/NSTSI.2011.6111808 "/> <meta name="citation_reference" content="citation_journal_title=PLoS ONE; citation_title=Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination; citation_author=S Dwivedi, R Wahab, F Khan, YK Mishra, J Musarrat, AA Al-Khedhairy; citation_volume=9; citation_issue=11; citation_publication_date=2014; citation_pages=e111289; citation_id=CR109"/> <meta name="citation_reference" content="citation_journal_title=Toxicol. Lett.; citation_title=Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles; citation_author=W Song, J Zhang, J Guo, J Zhang, F Ding, L Li, Z Sun; citation_volume=199; citation_issue=3; citation_publication_date=2010; citation_pages=389-397; citation_id=CR110"/> <meta name="citation_reference" content="citation_journal_title=Free Radic. Biol. Med.; citation_title=Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations; citation_author=B Kalyanaraman, V Darley-Usmar, KJ Davies, PA Dennery, HJ Forman, MB Grisham, GE Mann, K Moore, LJ Roberts, H Ischiropoulos; citation_volume=52; citation_issue=1; citation_publication_date=2012; citation_pages=1-6; citation_id=CR111"/> <meta name="citation_reference" content="citation_journal_title=Toxicol. In Vitro; citation_title=Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells; citation_author=D Guo, H Bi, B Liu, Q Wu, D Wag, Y Cui; citation_volume=27; citation_issue=2; citation_publication_date=2012; citation_pages=731-738; citation_id=CR112"/> <meta name="citation_reference" content="citation_journal_title=J. Biomed. Nanotechnol.; citation_title=ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells; citation_author=R Wahab, NK Kaushik, N Kaushik, EH Choi, A Umar, S Dwivedi, J Musarrat, AA Al-Khedhairy; citation_volume=9; citation_issue=7; citation_publication_date=2013; citation_pages=1181-1189; citation_id=CR113"/> <meta name="citation_reference" content="citation_journal_title=Appl. Environ. Microbiol.; citation_title=Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate; citation_author=Y Matsumura, K Yoshikata, S-I Kunisaki, T Tsuchido; citation_volume=69; citation_issue=7; citation_publication_date=2003; citation_pages=4278-4281; citation_id=CR114"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli ; citation_author=KR Messner, JA Imlay; citation_volume=274; citation_issue=15; citation_publication_date=1999; citation_pages=10119-10128; citation_id=CR115"/> <meta name="citation_reference" content="citation_journal_title=Toxicol. Lett.; citation_title=Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line; citation_author=L Yuan, Y Wang, J Wang, H Xiao, X Liu; citation_volume=225; citation_issue=2; citation_publication_date=2014; citation_pages=294-304; citation_id=CR116"/> <meta name="citation_reference" content="citation_journal_title=Chemosphere; citation_title=Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus ; citation_author=M Heinlaan, A Ivask, I Blinova, H-C Dubourguier, A Kahru; citation_volume=71; citation_issue=7; citation_publication_date=2008; citation_pages=1308-1316; citation_id=CR117"/> <meta name="citation_reference" content="citation_journal_title=J. Biomed. Mater. Res. B; citation_title=Antibacterial activity of dental composites containing zinc oxide nanoparticles; citation_author=B Aydin Sevinç, L Hanley; citation_volume=94; citation_issue=1; citation_publication_date=2010; citation_pages=22-31; citation_id=CR118"/> <meta name="citation_reference" content="citation_journal_title=Anal. Bioanal. Chem.; citation_title=Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility; citation_author=SW Wong, PT Leung, A Djurišić, KM Leung; citation_volume=396; citation_issue=2; citation_publication_date=2010; citation_pages=609-618; citation_id=CR119"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes; citation_author=B Wu, Y Wang, Y-H Lee, A Horst, Z Wang, D-R Chen, R Sureshkumar, YJ Tang; citation_volume=44; citation_issue=4; citation_publication_date=2010; citation_pages=1484-1489; citation_id=CR120"/> <meta name="citation_reference" content="citation_journal_title=Environ. Pollut.; citation_title=Bacterial toxicity comparison between nano- and micro-scaled oxide particles; citation_author=W Jiang, H Mashayekhi, B Xing; citation_volume=157; citation_issue=5; citation_publication_date=2009; citation_pages=1619-1625; citation_id=CR121"/> <meta name="citation_reference" content="citation_journal_title=Colloids Surf. A; citation_title=The contribution of zinc ions to the antimicrobial activity of zinc oxide; citation_author=J Pasquet, Y Chevalier, J Pelletier, E Couval, D Bouvier, M-A Bolzinger; citation_volume=457; citation_publication_date=2014; citation_pages=263-274; citation_id=CR122"/> <meta name="citation_reference" content="citation_journal_title=Langmuir; citation_title=Shape-dependent antibacterial activities of Ag2O polyhedral particles; citation_author=X Wang, H-F Wu, Q Kuang, R-B Huang, Z-X Xie, L-S Zheng; citation_volume=26; citation_issue=4; citation_publication_date=2009; citation_pages=2774-2778; citation_id=CR123"/> <meta name="citation_reference" content="citation_journal_title=J. Mater. Sci. Mater. Med.; citation_title=Effect of lattice constant of zinc oxide on antibacterial characteristics; citation_author=O Yamamoto, M Komatsu, J Sawai, Z-E Nakagawa; citation_volume=15; citation_issue=8; citation_publication_date=2004; citation_pages=847-851; citation_id=CR124"/> <meta name="citation_reference" content="L.V. Ana Stanković, S. Marković, S. Dimitrijević, S.D. Škapin, D. Uskoković, Morphology Controlled hydrothermal synthesis of ZnO particles and examination of their antibacterial properties on Escherichia coli and Staphylococcus aureus bacterial cultures, in Tenth Young Researchers’ Conference—Materials Science and Engineering, Belgrade, Serbia, 21–23 December 2011 (Institute of Technical Sciences of SASA, Belgrade, 2011), p. 62"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems; citation_author=V Berry, A Gole, S Kundu, CJ Murphy, RF Saraf; citation_volume=127; citation_issue=50; citation_publication_date=2005; citation_pages=17600-17601; citation_id=CR126"/> <meta name="citation_reference" content="citation_journal_title=J. Phys. Chem. C; citation_title=EPR study of visible light-induced ROS generation by nanoparticles of ZnO; citation_author=A Lipovsky, Z Tzitrinovich, H Friedmann, G Applerot, A Gedanken, R Lubart; citation_volume=113; citation_issue=36; citation_publication_date=2009; citation_pages=15997-16001; citation_id=CR127"/> <meta name="citation_reference" content="citation_inbook_title=Science and Technology Against Microbial Pathogens Communicating Current Research and Technological Advances: Metal Nanostructures as Antibacterial Agents; citation_publication_date=2011; citation_pages=210-218; citation_id=CR128; citation_author=J Díaz-Visurraga; citation_author=C Gutiérrez; citation_author=C Plessing; citation_author=A García; citation_publisher=Formatex"/> <meta name="citation_reference" content="citation_journal_title=Mater. Sci. Eng. C; citation_title=From zinc oxide nanoparticles to microflowers: a study of growth kinetics and biocidal activity; citation_author=M Ramani, S Ponnusamy, C Muthamizhchelvan; citation_volume=32; citation_issue=8; citation_publication_date=2012; citation_pages=2381-2389; citation_id=CR129"/> <meta name="citation_reference" content="citation_journal_title=J. Proteome Res.; citation_title=Proteomic analysis of the mode of antibacterial action of silver nanoparticles; citation_author=C-N Lok, C-M Ho, R Chen, Q-Y He, W-Y Yu, H Sun, PK-H Tam, J-F Chiu, C-M Che; citation_volume=5; citation_issue=4; citation_publication_date=2006; citation_pages=916-924; citation_id=CR130"/> <meta name="citation_reference" content="citation_journal_title=J. Rasayan Chem.; citation_title=Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli ; citation_author=H Meruvu, M Vangalapati, SC Chippada, SR Bammidi; citation_volume=4; citation_issue=1; citation_publication_date=2011; citation_pages=217-222; citation_id=CR131"/> <meta name="citation_reference" content="citation_journal_title=Langmuir; citation_title=High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability; citation_author=NA Amro, LP Kotra, K Wadu-Mesthrige, A Bulychev, S Mobashery, G-Y Liu; citation_volume=16; citation_issue=6; citation_publication_date=2000; citation_pages=2789-2796; citation_id=CR132"/> <meta name="citation_reference" content="M.L.M. Francisco Javier Gutiérrez, P. Gatón, R. Rojo, in Scientific, Health and Social Aspects of the Food Industry: Nanotechnology and Food Industry, ed. by B. Valdez (InTech Europe, Rijeka, 2012), pp. 95–128. doi: 10.5772/1869 "/> <meta name="citation_reference" content="citation_journal_title=Trends Food Sci. Technol.; citation_title=Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries; citation_author=Q Chaudhry, L Castle; citation_volume=22; citation_issue=11; citation_publication_date=2011; citation_pages=595-603; citation_id=CR134"/> <meta name="citation_reference" content="citation_journal_title=Prog. Polym. Sci.; citation_title=Food packaging based on polymer nanomaterials; citation_author=C Silvestre, D Duraccio, S Cimmino; citation_volume=36; citation_issue=12; citation_publication_date=2011; citation_pages=1766-1782; citation_id=CR135"/> <meta name="citation_reference" content="citation_journal_title=J. Colloid Interface Sci.; citation_title=Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors; citation_author=TV Duncan; citation_volume=363; citation_issue=1; citation_publication_date=2011; citation_pages=1-24; citation_id=CR136"/> <meta name="citation_reference" content="P. Kaur, R. Thakur, S. Kumar, N. Dilbaghi, Interaction of ZnO nanoparticles with food borne pathogens Escherichia coli DH5α and Staphylococcus aureus 5021 and their bactericidal efficacy, in International Conference on Advances in Condensed and Nano Materials (ICACNM-2011): AIP Proceedings, Chandigarh, India, 23–26 February 2011 (2011), p. 153. doi: 10.1063/1.3653655 "/> <meta name="citation_reference" content="citation_journal_title=BioNanoScience; citation_title=Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens; citation_author=P Narayanan, WS Wilson, AT Abraham, M Sevanan; citation_volume=2; citation_issue=4; citation_publication_date=2012; citation_pages=329-335; citation_id=CR138"/> <meta name="citation_reference" content="citation_journal_title=Int. Food Res. J.; citation_title=Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen; citation_author=K Chitra, G Annadurai; citation_volume=20; citation_issue=1; citation_publication_date=2013; citation_pages=59-64; citation_id=CR139"/> <meta name="citation_reference" content="B. Yalcin, S. Otles, Intelligent food packaging, http://www.logforum.net/vol4/issue4/no3 . Accessed 13 Feb 2008"/> <meta name="citation_reference" content="citation_journal_title=Trends Food Sci. Technol.; citation_title=Antimicrobial nanostructures in food packaging; citation_author=H Azeredo; citation_volume=30; citation_issue=1; citation_publication_date=2013; citation_pages=56-69; citation_id=CR141"/> <meta name="citation_reference" content="N. Soares, C.A.S. Silva, P. Santiago-Silva, P.J.P Espitia, M.P.J.C. Gonçalves, M.J.G. Lopez, J. Miltz, M.A. Cerqueira, A.A. Vicente, J. Teixeira, in Engineering Aspects of Milk and Dairy Products: Active and Intelligent Packaging for Milk and Milk Products, ed. by J.A.T. Jane Selia dos Reis Coimbra (CRC Press, 2009), pp. 155–174. doi: 10.1201/9781420090390-c8 "/> <meta name="citation_reference" content="citation_title=Novel Food Packaging Techniques; citation_publication_date=2003; citation_id=CR143; citation_publisher=CRC Press"/> <meta name="citation_reference" content="citation_journal_title=Food Addit. Contam.; citation_title=Active and intelligent packaging: applications and regulatory aspects; citation_author=ND Kruijf, MV Beest, R Rijk, T Sipiläinen-Malm, PP Losada, BD Meulenaer; citation_volume=19; citation_issue=S1; citation_publication_date=2002; citation_pages=144-162; citation_id=CR144"/> <meta name="citation_reference" content="citation_journal_title=J. Food Sci.; citation_title=Intelligent packaging: concepts and applications; citation_author=KL Yam, PT Takhistov, J Miltz; citation_volume=70; citation_issue=1; citation_publication_date=2005; citation_pages=R1-R10; citation_id=CR145"/> <meta name="citation_reference" content="S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano. Lett. 3(1), 1–6 (2013)"/> <meta name="citation_reference" content="E.E. Hafez, H.S. Hassan, M. Elkady, E. Salama, Assessment Of antibacterial activity for synthesized zinc oxide nanorods against plant pathogenic strains. Int. J. Sci. Tech. Res. (IJSTR), 3(9), 318–324 (2014)"/> <meta name="citation_author" content="Sirelkhatim, Amna"/> <meta name="citation_author_email" content="amnasirelkhatim@yahoo.co.uk"/> <meta name="citation_author_institution" content="Nano-Optoelectronics Research and Technology Laboratory (N.O.R. Lab), School of Physics, Universiti Sains Malaysia, Minden, Malaysia"/> <meta name="citation_author" content="Mahmud, Shahrom"/> <meta name="citation_author_institution" content="Nano-Optoelectronics Research and Technology Laboratory (N.O.R. Lab), School of Physics, Universiti Sains Malaysia, Minden, Malaysia"/> <meta name="citation_author" content="Seeni, Azman"/> <meta name="citation_author_institution" content="Advanced Medical and Dental Institute, Cluster of Integrative Medicine, Universiti Sains Malaysia, Bertam, Malaysia"/> <meta name="citation_author" content="Kaus, Noor Haida Mohamad"/> <meta name="citation_author_institution" content="School of Chemical Sciences, Universiti Sains Malaysia, Minden, Malaysia"/> <meta name="citation_author" content="Ann, Ling Chuo"/> <meta name="citation_author_institution" content="Nano-Optoelectronics Research and Technology Laboratory (N.O.R. Lab), School of Physics, Universiti Sains Malaysia, Minden, Malaysia"/> <meta name="citation_author" content="Bakhori, Siti Khadijah Mohd"/> <meta name="citation_author_institution" content="Nano-Optoelectronics Research and Technology Laboratory (N.O.R. Lab), School of Physics, Universiti Sains Malaysia, Minden, Malaysia"/> <meta name="citation_author" content="Hasan, Habsah"/> <meta name="citation_author_institution" content="Department of Medical Microbiology, Parasitology and Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kubang Kerian, Malaysia"/> <meta name="citation_author" content="Mohamad, Dasmawati"/> <meta name="citation_author_institution" content="School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia"/> <meta name="format-detection" content="telephone=no"/> <meta name="citation_cover_date" content="2015/07/01"/> <meta property="og:url" content="https://link.springer.com/article/10.1007/s40820-015-0040-x"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism - Nano-Micro Letters"/> <meta property="og:description" content="Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition."/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig1_HTML.gif"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-5272567b64.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '40820.springer.com', siteWithPath: '40820.springer.com' + window.location.pathname, twitterHashtag: '40820', cmsPrefix: 'https://studio-cms.springernature.com/studio/', figshareScriptUrl: 'https://widgets.figshare.com/static/figshare.js', hasFigshareInvoked: false, publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/s40820-015-0040-x","Page":"article","springerJournal":true,"Publishing Model":"Open Access","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1007-s40820-015-0040-x","Journal Id":40820,"Journal Title":"Nano-Micro Letters","imprint":"Springer","Keywords":"Antibacterial activity, ZnO-NPs, Toxicity mechanism, Reactive oxygen species, Zinc ions release, Food antimicrobial","kwrd":["Antibacterial_activity","ZnO-NPs","Toxicity_mechanism","Reactive_oxygen_species","Zinc_ions_release","Food_antimicrobial"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1007-s40820-015-0040-x","Full HTML":"Y","Subject Codes":["SCT","SCT18000","SCZ14000","SCP25140"],"pmc":["T","T18000","Z14000","P25140"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"2150-5551","pissn":"2311-6706"},"type":"Article","category":{"pmc":{"primarySubject":"Engineering","primarySubjectCode":"T","secondarySubjects":{"1":"Nanotechnology and Microengineering","2":"Nanotechnology","3":"Nanoscale Science and Technology"},"secondarySubjectCodes":{"1":"T18000","2":"Z14000","3":"P25140"}},"sucode":"SC8","articleType":"Review"},"attributes":{"deliveryPlatform":"oscar"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true } ], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1007/s40820-015-0040-x"/> <script type="application/ld+json">{"mainEntity":{"headline":"Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism","description":"Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2\n −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.","datePublished":"2015-04-19T00:00:00Z","dateModified":"2015-04-19T00:00:00Z","pageStart":"219","pageEnd":"242","sameAs":"https://doi.org/10.1007/s40820-015-0040-x","keywords":["Antibacterial activity","ZnO-NPs","Toxicity mechanism","Reactive oxygen species","Zinc ions release","Food antimicrobial","Nanotechnology and Microengineering","Nanotechnology","Nanoscale Science and Technology"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig1_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig2_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig3_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig4_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig5_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig6_HTML.gif"],"isPartOf":{"name":"Nano-Micro Letters","issn":["2150-5551","2311-6706"],"volumeNumber":"7","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer Berlin Heidelberg","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Amna Sirelkhatim","affiliation":[{"name":"Universiti Sains Malaysia","address":{"name":"Nano-Optoelectronics Research and Technology Laboratory (N.O.R. Lab), School of Physics, Universiti Sains Malaysia, Minden, Malaysia","@type":"PostalAddress"},"@type":"Organization"}],"email":"amnasirelkhatim@yahoo.co.uk","@type":"Person"},{"name":"Shahrom Mahmud","affiliation":[{"name":"Universiti Sains Malaysia","address":{"name":"Nano-Optoelectronics Research and Technology Laboratory (N.O.R. Lab), School of Physics, Universiti Sains Malaysia, Minden, Malaysia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Azman Seeni","affiliation":[{"name":"Universiti Sains Malaysia","address":{"name":"Advanced Medical and Dental Institute, Cluster of Integrative Medicine, Universiti Sains Malaysia, Bertam, Malaysia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Noor Haida Mohamad Kaus","affiliation":[{"name":"Universiti Sains Malaysia","address":{"name":"School of Chemical Sciences, Universiti Sains Malaysia, Minden, Malaysia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Ling Chuo Ann","affiliation":[{"name":"Universiti Sains Malaysia","address":{"name":"Nano-Optoelectronics Research and Technology Laboratory (N.O.R. Lab), School of Physics, Universiti Sains Malaysia, Minden, Malaysia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Siti Khadijah Mohd Bakhori","affiliation":[{"name":"Universiti Sains Malaysia","address":{"name":"Nano-Optoelectronics Research and Technology Laboratory (N.O.R. Lab), School of Physics, Universiti Sains Malaysia, Minden, Malaysia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Habsah Hasan","affiliation":[{"name":"Universiti Sains Malaysia, Kubang Kerian","address":{"name":"Department of Medical Microbiology, Parasitology and Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kubang Kerian, Malaysia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Dasmawati Mohamad","affiliation":[{"name":"Universiti Sains Malaysia","address":{"name":"School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s40820-015-0040-x?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-20"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/40820" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Nano-Micro Letters</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Review</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2015-04-19">19 April 2015</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 7</span>, pages 219–242, (<span data-test="article-publication-year">2015</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s40820-015-0040-x.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/40820" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/40820?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/40820?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/40820?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/40820?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Nano-Micro Letters</span> </a> <a href="https://link.springer.com/journal/volumesAndIssues/40820/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://mc03.manuscriptcentral.com/nmlett" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s40820-015-0040-x.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Amna-Sirelkhatim-Aff1" data-author-popup="auth-Amna-Sirelkhatim-Aff1" data-author-search="Sirelkhatim, Amna" data-corresp-id="c1">Amna Sirelkhatim<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Shahrom-Mahmud-Aff1" data-author-popup="auth-Shahrom-Mahmud-Aff1" data-author-search="Mahmud, Shahrom">Shahrom Mahmud</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Azman-Seeni-Aff2" data-author-popup="auth-Azman-Seeni-Aff2" data-author-search="Seeni, Azman">Azman Seeni</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Noor_Haida_Mohamad-Kaus-Aff3" data-author-popup="auth-Noor_Haida_Mohamad-Kaus-Aff3" data-author-search="Kaus, Noor Haida Mohamad">Noor Haida Mohamad Kaus</a><sup class="u-js-hide"><a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Ling_Chuo-Ann-Aff1" data-author-popup="auth-Ling_Chuo-Ann-Aff1" data-author-search="Ann, Ling Chuo">Ling Chuo Ann</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Siti_Khadijah_Mohd-Bakhori-Aff1" data-author-popup="auth-Siti_Khadijah_Mohd-Bakhori-Aff1" data-author-search="Bakhori, Siti Khadijah Mohd">Siti Khadijah Mohd Bakhori</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Habsah-Hasan-Aff4" data-author-popup="auth-Habsah-Hasan-Aff4" data-author-search="Hasan, Habsah">Habsah Hasan</a><sup class="u-js-hide"><a href="#Aff4">4</a></sup> & </li><li class="c-article-author-list__show-more" aria-label="Show all 8 authors for this article" title="Show all 8 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Dasmawati-Mohamad-Aff5" data-author-popup="auth-Dasmawati-Mohamad-Aff5" data-author-search="Mohamad, Dasmawati">Dasmawati Mohamad</a><sup class="u-js-hide"><a href="#Aff5">5</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>143k <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-altmetric-medium"></use> </svg>23 <span class="app-article-metrics-bar__label">Altmetric</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon app-article-metrics-bar__icon--mentions" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-mentions-medium"></use> </svg>2 <span class="app-article-metrics-bar__label">Mentions</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1007/s40820-015-0040-x/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), OH<sup>−</sup> (hydroxyl radicals), and O<sub>2</sub> <sup>−2</sup> (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.</p></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs10904-020-01603-9/MediaObjects/10904_2020_1603_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s10904-020-01603-9?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1007/s10904-020-01603-9">A Review on Antibacterial Properties of Biologically Synthesized Zinc Oxide Nanostructures </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">26 May 2020</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41598-024-69044-9/MediaObjects/41598_2024_69044_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1038/s41598-024-69044-9?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1038/s41598-024-69044-9">Phytochemical fabrication of ZnO nanoparticles and their antibacterial and anti-biofilm activity </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">24 August 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-319-46835-8?as=webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-319-46835-8_6?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/978-3-319-46835-8_6">Synthesis and Characterization of Pure and Doped ZnO Nanostructures for Antimicrobial Applications: Effect of Dopant Concentration with Their Mechanism of Action </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2017</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732660308, embedded_user: 'null' } }); </script> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=40820" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>Nanotechnology is a research hot spot in modern materials science. This technology is capable of providing miscellaneous novel applications that range from innovative fabric compounds, food processing, and agricultural production to sophisticated medicinal techniques [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="S. Sahoo, Socio-ethical issues and nanotechnology
 development: perspectives from India, in 2010 10th IEEE Conference on Nanotechnology (IEEE-NANO), Seoul, South Korea, USA, 17–20 August 2010 (IEEE, 2010), pp. 1205–1210. doi:
 10.1109/NANO.2010.5697887
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR1" id="ref-link-section-d36426609e696">1</a>]. It is considered as the synthesis, characterization, and exploration of materials in the nanometer region (1–100 nm). At this level, the properties and functions of living and anthropogenic systems are defined [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="V. Yadav, Nanotechnology, big things from a tiny world: a review. AEEE 3(6), 771–778 (2013)" href="/article/10.1007/s40820-015-0040-x#ref-CR2" id="ref-link-section-d36426609e699">2</a>]. In this technology, the pertinent materials are those whose structures exhibit new and considerably enhanced physicochemical and biological properties as well as distinct phenomena and functionalities as a result of the nanoscale size [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007). doi:
 10.1128/AEM.02218-06
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR3" id="ref-link-section-d36426609e702">3</a>]. This nanoscale size generally confers larger surface areas to nanoparticles (NPs) compared with macro-sized particles [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="B. Ashe, A Detail investigation to observe the effect of zinc oxide and Silver nanoparticles in biological system, M.Sc. (Roll NO-607bm004), National Institute of Technology, 2011" href="/article/10.1007/s40820-015-0040-x#ref-CR4" id="ref-link-section-d36426609e705">4</a>]. NPs are known as controlled or manipulated particles at the atomic level (1–100 nm). They show size-related properties significantly different from bulk materials [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), MR17–MR71 (2007). doi:
 10.1116/1.2815690
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR5" id="ref-link-section-d36426609e708">5</a>]. Given their small size, NPs have larger structures in comparison with their counterparts. This distinct property allows their possible applications in many fields such as biosensors, nanomedicine, and bionanotechnology [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="B. Ashe, A Detail investigation to observe the effect of zinc oxide and Silver nanoparticles in biological system, M.Sc. (Roll NO-607bm004), National Institute of Technology, 2011" href="/article/10.1007/s40820-015-0040-x#ref-CR4" id="ref-link-section-d36426609e712">4</a>]. The intrinsic properties of metal NPs such as zinc oxide (ZnO), TiO<sub>2</sub>, and silver are mostly characterized by their size, composition, crystallinity, and morphology. Reducing the size to nanoscale can modify their chemical, mechanical, electrical, structural, morphological, and optical properties. These modified features allow the NPs to interact in a unique manner with cell biomolecules and thus facilitate the physical transfer of NPs into the inner cellular structures [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7(9), 1063–1077 (2010). doi:
 10.1517/17425247.2010.502560
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR6" id="ref-link-section-d36426609e717">6</a>]. Nanostructured materials have a larger percentage of atoms at their surface which lead to high surface reactivity. Thus, nanomaterials have witnessed recently significant importance in the basic and applied sciences as well as in bionanotechnology.</p><p> Nano-sized ZnO exhibits varying morphologies and shows significant antibacterial activity over a wide spectrum of bacterial species explored by a large body of researchers [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), MR17–MR71 (2007). doi:
 10.1116/1.2815690
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR5" id="ref-link-section-d36426609e723">5</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870 (2006). doi:
 10.1021/nl052326h
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR7" id="ref-link-section-d36426609e726">7</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:
 10.1371/journal.pone.0085981
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR13" id="ref-link-section-d36426609e729">13</a>]. ZnO is currently being investigated as an antibacterial agent in both microscale and nanoscale formulations. ZnO exhibits significant antimicrobial activities when particle size is reduced to the nanometer range, then nano-sized ZnO can interact with bacterial surface and/or with the bacterial core where it enters inside the cell, and subsequently exhibits distinct bactericidal mechanisms [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 7, 2767–2781 (2012). doi:
 10.2147/IJN.S24805
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR10" id="ref-link-section-d36426609e732">10</a>]. The interactions between these unique materials and bacteria are mostly toxic, which have been exploited for antimicrobial applications such as in food industry.</p><p>Interestingly, ZnO-NPs are reported by several studies as non-toxic to human cells [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="G. Colon, B.C. Ward, T.J. Webster, Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J. Biomed. Mater. Res. 78(3), 595–604 (2006). doi:
 10.1002/jbm.a.30789
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR14" id="ref-link-section-d36426609e738">14</a>], this aspect necessitated their usage as antibacterial agents, noxious to microorganisms, and hold good biocompatibility to human cells [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e741">12</a>]. The various antibacterial mechanisms of nanomaterials are mostly attributed to their high specific surface area-to-volume ratios [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="J.T. Seil, E.N. Taylor, T.J. Webster, Reduced
 activity of Staphylococcus epidermidis in the presence of sonicated piezoelectric zinc oxide nanoparticles, in 2009 IEEE 35th Annual Northeast Bioengineering Conference, Boston, MA, USA, 3–5 April 2009 (IEEE, 2009), pp. 1–2. doi:
 10.1109/NEBC.2009.4967674
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR15" id="ref-link-section-d36426609e744">15</a>], and their distinctive physicochemical properties. However, the precise mechanisms are yet under debate, although several proposed ones are suggested and adopted. Investigations on antibacterial nanomaterials, mostly ZnO-NPs, would enhance the research area of nanomaterials, and the mechanisms and phenomenon behind nanostructured materials.</p><p>Bacterial infectious diseases are serious health problem that has drawn the public attention in worldwide as a human health threat, which extends to economic and social complications. Increased outbreaks and infections of pathogenic strains, bacterial antibiotic resistance, emergence of new bacterial mutations, lack of suitable vaccine in underdeveloped countries, and hospital-associated infections, are global health hazard to human, particularly in children. For example, infections by <i>Shigella flexneri</i> cause 1.5 million deaths annually, due to contaminated food and drinks by these bacteria [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="K. Kotloff, J. Winickoff, B. Ivanoff, J.D. Clemens, D. Swerdlow, P. Sansonetti, G. Adak, M. Levine, Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ 77(8), 651–666 (1999)" href="/article/10.1007/s40820-015-0040-x#ref-CR16" id="ref-link-section-d36426609e753">16</a>]. Thus, developing novel antibacterial agents against bacteria strains, mostly major food pathogens, such as <i>Escherichia coli</i> O157:H, <i>Campylobacter jejuni</i>, <i>Staphylococcus aureus</i>, <i>Pseudomonas aeruginosa</i>, <i>Enterococcus faecalis</i>, <i>Salmonella</i> types, and <i>Clostridium perfringens</i>, has become utmost demand. This work is intended to explore these problems to induce further investigations in these areas by addressing new techniques, benefiting from the unique features of ZnO-NPs, and from to date successful studies.</p><p>In this paper, we have extensively reviewed ideas behind the antibacterial activity of ZnO-NPs covering techniques of evaluating bacteria viability. In the subsequent sections, we have discussed the factors affecting the antibacterial activity, including UV illumination, ZnO particle size, concentration, morphology, surface modifications by annealing, surface defects, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A brief presentation of an experimental case study, carried by authors on antibacterial activity response to <i>E. coli</i>, was explored. A special focus has been given on a range of remarkable toxicity mechanisms that underlie this bacterial activity, mainly reactive oxygen species (ROS) generation and Zn<sup>2+</sup> release. Finally, a concise discussion was made to an essential application of ZnO-NPs antibacterial activity as an antimicrobial agent against foodborne diseases and food packaging.</p></div></div></section><section data-title="Zinc Oxide Nanoparticles"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2"><span class="c-article-section__title-number">2 </span>Zinc Oxide Nanoparticles</h2><div class="c-article-section__content" id="Sec2-content"><p>ZnO is described as a functional, strategic, promising, and versatile inorganic material with a broad range of applications. It is known as II–VI semiconductor [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Y.G. Gertrude Neumark, I. Kuskovsky, in Springer Handbook of Electronic and Photonic Materials: Doping Aspects of Zn-Based Wide-Band-Gap Semiconductors, ed. by P.C. Safa Kasap (Springer, 2007), pp. 843–854. doi:
 10.1007/978-0-387-29185-7_35
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR17" id="ref-link-section-d36426609e795">17</a>], since Zn and O are classified into groups two and six in the periodic table, respectively. ZnO holds a unique optical, chemical sensing, semiconducting, electric conductivity, and piezoelectric properties [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5(10), 1561–1573 (2005). doi:
 10.1166/jnn.2005.182
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR18" id="ref-link-section-d36426609e798">18</a>]. It is characterized by a direct wide band gap (3.3 eV) in the near-UV spectrum, a high excitonic binding energy (60 meV) at room temperature [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16(25), R829–R858 (2004). doi:
 10.1088/0953-8984/16/25/R01
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR19" id="ref-link-section-d36426609e801">19</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO-nanostructures, defects, and devices. Mater. Today 10(5), 40–48 (2007). doi:
 10.1016/S1369-7021(07)70078-0
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR23" id="ref-link-section-d36426609e804">23</a>], and a natural n-type electrical conductivity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="J. Wellings, N. Chaure, S. Heavens, I. Dharmadasa, Growth and characterisation of electrodeposited ZnO thin films. Thin Solid Films 516(12), 3893–3898 (2008). doi:
 10.1016/j.tsf.2007.07.156
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR24" id="ref-link-section-d36426609e807">24</a>]. These characteristics enable ZnO to have remarkable applications in diverse fields [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). doi:
 10.1126/science.1124005
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR20" id="ref-link-section-d36426609e811">20</a>]. The wide band gap of ZnO has significant effect on its properties, such as the electrical conductivity and optical absorption. The excitonic emission can persevere higher at room temperature [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009). doi:
 10.1088/0034-4885/72/12/126501
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR21" id="ref-link-section-d36426609e814">21</a>] and the conductivity increases when ZnO doped with other metals [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16(25), R829–R858 (2004). doi:
 10.1088/0953-8984/16/25/R01
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR19" id="ref-link-section-d36426609e817">19</a>]. Though ZnO shows light covalent character, it has very strong ionic bonding in the Zn–O. Its longer durability, higher selectivity, and heat resistance are preceded than organic and inorganic materials [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e820">12</a>]. The synthesis of nano-sized ZnO has led to the investigation of its use as new antibacterial agent. In addition to its unique antibacterial and antifungal properties, ZnO-NPs possess high catalytic and high photochemical activities. ZnO possesses high optical absorption in the UVA (315–400 nm) and UVB (280–315 nm) regions which is beneficial in antibacterial response and used as a UV protector in cosmetics [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 25" title="Z. Song, T.A. Kelf, W.H. Sanchez, M.S. Roberts, J. Rička, M. Frenz, A.V. Zvyagin, Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomed. Opt. Express 2(12), 3321–3333 (2011). doi:
 10.1364/BOE.2.003321
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR25" id="ref-link-section-d36426609e823">25</a>].</p><h3 class="c-article__sub-heading" id="Sec3"><span class="c-article-section__title-number">2.1 </span>Synthesis of ZnO Nanostructures</h3><p>ZnO nanostructures have been a subject of immense research owing to their multifunctional properties in diverse applications. The nanostructured ZnO has been emerged as a potential candidate for applications in sensors, energy harvesting, and many electronic devices. Many pronounced applications are being currently explored in the biomedical and antiviral areas. This is as a result of their potential biocompatibility over other metal oxides, solubility in alkaline medium, and the Zn–O terminated polar surfaces [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="Y. Mishra, V. Chakravadhanula, V. Hrkac, S. Jebril, D. Agarwal, S. Mohapatra, D. Avasthi, L. Kienle, R. Adelung, Crystal growth behaviour in Au–ZnO nanocomposite under different annealing environments and photoswitchability. J. Appl. Phys. 112(6), 064308 (2012). doi:
 10.1063/1.4752469
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR26" id="ref-link-section-d36426609e833">26</a>]. The unique properties and versatility of ZnO pave the way to use various methods to synthesize various ZnO nanostructures. ZnO-NPs can be synthesized through various methods by controlling the synthesis parameters. The properties can be tailored by shape and size, resulting in renewable applications relevant to their structural properties. Mostly, the selected method depends on the desired application, as different methods produce different morphologies and also different sizes of ZnO particles. Accordingly, the chemical and physical parameters such as the solvent type, precursors, pH, and the temperature were highly considered. An assortment of ZnO nanostructures with different growth morphologies such as nanorods, nanosphere, nanotubes, nanowires, nanoneedles and nanorings have been successfully synthesized [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="N. Yahya, H. Daud, N.A. Tajuddin, H.M. Daud, A. Shafie, P. Puspitasari, Application of ZnO nanoparticles EM wave detector prepared by sol–gel and self-combustion techniques. J. Nano Res. 11, 25–34 (2010). doi:
 10.4028/www.scientific.net/JNanoR.11.25
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR27" id="ref-link-section-d36426609e836">27</a>]. Such unique ZnO nanostructures reflected the richest nanoconfiguration assembly compared to other nano-metal oxides, in terms of properties and structure, such as nanobelts, nanocages, nanocombs and nanosprings/nanohelixes [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16(25), R829–R858 (2004). doi:
 10.1088/0953-8984/16/25/R01
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR19" id="ref-link-section-d36426609e839">19</a>]. Other shapes can also be obtained, such as ZnO spirals, drums, polyhedrons, disks, flowers, stars, boxes, and plates [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="S. Mahmud, One-dimensional growth of zinc oxide nanostructures from large micro-particles in a highly rapid synthesis. J. Alloys Compd. 509(9), 4035–4040 (2011). doi:
 10.1016/j.jallcom.2011.01.013
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR28" id="ref-link-section-d36426609e842">28</a>], those are possibly grown by adjusting the growth conditions. Each nanostructure has specific structural, optical, electrical, and physicochemical properties [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="J.E. Ramirez-Vick, Nanostructured ZnO for electrochemical biosensors. J. Biosens. Bioelectron. (2012). doi:
 10.4172/2155-6210.1000e109
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR29" id="ref-link-section-d36426609e845">29</a>], permitting remarkable applications. These nanostructures have been fabricated using variety of physical and chemical techniques; however, the chemical techniques allow better control of the particle size and morphology [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="H. Karami, E. Fakoori, Synthesis and characterization of ZnO nanorods based on a new gel pyrolysis method. J. Nanomater. 2011, 628203 (2011). doi:
 10.1155/2011/628203
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR30" id="ref-link-section-d36426609e849">30</a>]. The most adopted fabrication methods include thermal evaporation of ZnO powders at 1400 °C, hydrothermal synthesis, sol–gel technique, simple thermal sublimation, self-combustion, polymerized complex method, vapor–liquid–solid technique, double-jet precipitation, and solution synthesis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="N. Yahya, H. Daud, N.A. Tajuddin, H.M. Daud, A. Shafie, P. Puspitasari, Application of ZnO nanoparticles EM wave detector prepared by sol–gel and self-combustion techniques. J. Nano Res. 11, 25–34 (2010). doi:
 10.4028/www.scientific.net/JNanoR.11.25
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR27" id="ref-link-section-d36426609e852">27</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="Z. Xu, J.-Y. Hwang, B. Li, X. Huang, H. Wang, The characterization of various ZnO nanostructures using field-emission SEM. JOM 60(4), 29–32 (2008). doi:
 10.1007/s11837-008-0044-9
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR31" id="ref-link-section-d36426609e855">31</a>]. The solution process was used by several researchers to produce selective ZnO nanostructures. Wahab et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 32" title="R. Wahab, S. Ansari, Y. Kim, H. Seo, G. Kim, G. Khang, H.-S. Shin, Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. 42(9), 1640–1648 (2007). doi:
 10.1016/j.materresbull.2006.11.035
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR32" id="ref-link-section-d36426609e858">32</a>] have synthesized flower-shaped ZnO nanostructures which were produced via solution process at low temperature (90 °C) using the zinc acetate dihydrate and NaOH. As well, Zhang et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 33" title="J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Control of ZnO morphology via a simple solution route. Chem. Mater. 14(10), 4172–4177 (2002). doi:
 10.1021/cm020077h
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR33" id="ref-link-section-d36426609e861">33</a>] have synthesized the flower-shaped, prism, snowflakes, and rod-like morphologies ZnO, at a high temperature of 180 °C for 13 h. The researchers also prepared prism-like and prickly sphere-like ZnO via decomposition process at 100 °C for 13 h. These nanostructures plus others such as nanowires, nanoplates, and nanorods have been key factors for the antibacterial activity, as each morphology accounts for a certain mechanism of action. Thus, a large number of researchers have been motivated to achieve selective nanostructured ZnO for the antibacterial tests. They succeeded to produce morphologies that were highly compatible with the antibacterial activity. Wahab et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 34" title="R. Wahab, A. Mishra, S.-I. Yun, Y.-S. Kim, H.-S. Shin, Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl. Microbiol. Biotechnol. 87(5), 1917–1925 (2010). doi:
 10.1007/s00253-010-2692-2
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR34" id="ref-link-section-d36426609e864">34</a>] carried a non-hydrolytic solution process using zinc acetate dihydrate to prepare ZnO-NPs. The method yielded structures of spherical surface that showed high antibacterial activity against the tested pathogens. Similarly, spherical shaped ZnO-NPs in another investigation [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 35" title="R. Wahab, M.A. Siddiqui, Q. Saquib, S. Dwivedi, J. Ahmad, J. Musarrat, A.A. Al-Khedhairy, H.-S. Shin, ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B 117, 267–276 (2014). doi:
 10.1016/j.colsurfb.2014.02.038
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR35" id="ref-link-section-d36426609e868">35</a>] were obtained via soft chemical solution process, and it was used for the treatment of bacteria (<i>E. coli</i>, <i>S. aureus</i>, <i>P. aeruginosa</i>, <i>B. subtilis</i>, and <i>S. acidaminiphila</i>) and cancer cells (HepG2 and MCF-7 cell lines). While Stanković et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 36" title="A. Stanković, S. Dimitrijević, D. Uskoković, Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf. B 102, 21–28 (2013). doi:
 10.1016/j.colsurfb.2012.07.033
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR36" id="ref-link-section-d36426609e887">36</a>] have synthesized ZnO powder hydrothermally with the addition of different stabilizing agents leading to different nanostructures. The obtained synthesized ZnO has shown nanorods of hexagonal prismatic and hexagonal pyramid-like structures, with some spherical and ellipsoid shapes. These different morphologies displayed pronounced antibacterial effect toward the targeted bacteria. Further discussions are in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s40820-015-0040-x#Sec9">4.2</a> coupled with Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s40820-015-0040-x#Tab1">1</a> displaying some synthesis methods and their corresponding morphology of ZnO.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 ZnO synthesis and resultant morphology</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s40820-015-0040-x/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>In a more recent study [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 37" title="J.M. Wu, Heterojunction nanowires of AgxZn1−xO–ZnO photocatalytic and antibacterial activities under visible-light and dark conditions. J. Phys. Chem. C 119(3), 1433–1441 (2015). doi:
 10.1021/jp510259j
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR37" id="ref-link-section-d36426609e1115">37</a>], ZnO nanowires were synthesized in heterojunction of silver-loaded ZnO (Ag<sub> <i>x</i> </sub> Zn<sub>1−<i>x</i> </sub>O–ZnO nanowires) through UV light decomposition process. It was found to exhibit higher antibacterial activities to <i>E. coli</i> under visible light or in the dark. It disrupted the bacterial membrane and released lethal active species.</p><p>Techniques of doping and implanting foreign metals on ZnO nanostructures to develop functional antibacterial agent have become a topic among researchers. Doped and undoped ZnO of nanosphere and nanorod shapes were synthesized by simple wet chemical technique, and were annealed at 600 °C for 2 h [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 38" title="J.I. Tariq Jan, M. Ismail, M. Zakaullah, S.H. Naqvi, N. Badshah, Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria. Int. J. Nanomed. 8(1), 3679–3687 (2013). doi:
 10.2147/IJN.S45439
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR38" id="ref-link-section-d36426609e1136">38</a>]. The resultant ZnO samples were tested against three bacterial strains (<i>E. coli</i>, <i>P. aeruginosa</i>, and <i>S. aureus</i>). ZnO-doped samples exhibited considerably high activity toward <i>S. aureus</i> (skin bacteria) in comparison to <i>E. coli</i> and <i>P. aeruginosa</i>. It produced zone of inhibition of 4 % which was 37 % higher than that produced by undoped ZnO nanostructures. These results were beneficial for medical application. <i>S. aureus</i> is well known of causing contamination in hospital implants leading to serious infections [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 39" title="V.B. Schwartz, F. Thétiot, S. Ritz, S. Pütz, L. Choritz, A. Lappas, R. Förch, K. Landfester, U. Jonas, Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(n-isopropylacrylamide) hydrogel surface layers. Adv. Funct. Mater. 22(11), 2376–2386 (2012). doi:
 10.1002/adfm.201102980
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR39" id="ref-link-section-d36426609e1161">39</a>]. ZnO is characterized by its antibacterial coatings, incorporation in skin creams, and UV protection. Therefore, coating hospital implants with 4 % of this doped ZnO nanostructures will be more effective in controlling associated bacterial infections. On the other hand, such doped ZnO can alternatively be used in skin lotions and in UV protection than undoped ZnO.</p><p>Usually, antibacterial tests are done in aqueous media or cell culture media. ZnO is known as nearly insoluble in water, it agglomerates immediately with water during synthesis due to the high polarity of water leading to deposition. Issues of aggregation, re-precipitation, settling, or non-dissolution impede the synthesis processes. In this regards, a number of researchers considered this difficulty by using certain additives that have no significant effect in the antibacterial activity. As such, in the above mentioned study [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 36" title="A. Stanković, S. Dimitrijević, D. Uskoković, Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf. B 102, 21–28 (2013). doi:
 10.1016/j.colsurfb.2012.07.033
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR36" id="ref-link-section-d36426609e1167">36</a>], the addition of PVA, polyvinylpyrrolidone (PVP), and poly(α, γ, <span class="u-small-caps">l</span>-glutamic acid) (PGA; see Abbreviations) as stabilizers enhanced ZnO morphology and size for the antibacterial activity. Meanwhile, Zhang et al. have addressed the problem by adding dispersants polyethylene glycol (PEG; see Abbreviations) and PVP (10 % of the amount of ZnO-NPs) which enhanced the stability of ZnO and resulted in ZnO nanofluids, well suited for the antibacterial tests. While other researchers used appropriate capping agents [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e1173">12</a>] or deflocculants (sodium silicate Na<sub>2</sub>SiO<sub>3</sub> or sodium carbonate Na<sub>2</sub>CO<sub>3</sub>). After addition, the mixtures were exposed to vigorous vortex (e.g., 5 min) or kept overnight on magnetic stirring and then ultrasonicated 20–30 min to avoid aggregation and deposition of particles. Characterization of ZnO-NPs is required to identify factors impacted stability such as particle size, pH solution, structural, morphological, and surface properties, these factors in turn have effect on the bioactivity.</p><h3 class="c-article__sub-heading" id="Sec4"><span class="c-article-section__title-number">2.2 </span>Crystal Structure of ZnO</h3><p>ZnO exhibits three crystallize structures namely, wurtzite, zinc-blende and an occasionally noticed rock-salt [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 41" title="U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A
 comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005). doi:
 10.1063/1.1992666
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR41" id="ref-link-section-d36426609e1193">41</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="A. Moezzi, A.M. McDonagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185, 1–22 (2012). doi:
 10.1016/j.cej.2012.01.076
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR42" id="ref-link-section-d36426609e1196">42</a>]. The hexagonal wurtzite structure possesses lattice spacing <i>a</i> = 0.325 nm and <i>c</i> = 0.521 nm, the ratio <i>c</i>/<i>a</i> ~ 1.6 that is very close to the ideal value for hexagonal cell <i>c</i>/<i>a</i> = 1.633. Each tetrahedral Zn atom is surrounded by four oxygen atoms and vice versa [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 43" title="S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K.A. Bradley, L. Mädler, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1), 15–29 (2009). doi:
 10.1021/nn901503q
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR43" id="ref-link-section-d36426609e1218">43</a>]. The structure is thermodynamically stable in an ambient environment [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="A. Moezzi, A.M. McDonagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185, 1–22 (2012). doi:
 10.1016/j.cej.2012.01.076
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR42" id="ref-link-section-d36426609e1221">42</a>], and usually illustrated schematically as a number of alternating planes of Zn and O ions stacked alongside the <i>c</i>-axis. Zinc-blende structure is metastable and can be stabilized via growth techniques. These crystal structures are illustrated in (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig1">1</a>a), and the black and gray-shaded spheres symbolize O and Zn atoms, respectively.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig1_HTML.gif?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig1_HTML.gif" alt="figure 1" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p> <b>a</b> ZnO crystal structures. Adapted from Ozgur et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 41" title="U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A
 comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005). doi:
 10.1063/1.1992666
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR41" id="ref-link-section-d36426609e1244">41</a>]. <b>b</b> Bacterial cell structures, reused from Earth Doctor, Inc., formerly Alken-Murray [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 45" title="J.V.A. Edwards, K.J. Edwards, Bacteria Cell, 
 http://www.alken-murray.com/BioInfo1-05.html
 
 . Accessed 9 July 2010" href="/article/10.1007/s40820-015-0040-x#ref-CR45" id="ref-link-section-d36426609e1250">45</a>]. <b>c</b> <i>S. aureus</i> plating for colony count [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:
 10.1371/journal.pone.0085981
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR13" id="ref-link-section-d36426609e1260">13</a>]</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> </div></div></section><section data-title="Antibacterial Activity of ZnO Nanoparticles"><div class="c-article-section" id="Sec5-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec5"><span class="c-article-section__title-number">3 </span>Antibacterial Activity of ZnO Nanoparticles</h2><div class="c-article-section__content" id="Sec5-content"><p>Bacteria are generally characterized by a cell membrane, cell wall, and cytoplasm. The cell wall lies outside the cell membrane and is composed mostly of a homogeneous peptidoglycan layer (which consists of amino acids and sugars). The cell wall maintains the osmotic pressure of the cytoplasm as well the characteristic cell shape. Gram-positive bacteria have one cytoplasmic membrane with multilayer of peptidoglycan polymer [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 44" title="G. Fu, P.S. Vary, C.-T. Lin, Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 109(18), 8889–8898 (2005). doi:
 10.1021/jp0502196
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR44" id="ref-link-section-d36426609e1281">44</a>], and a thicker cell wall (20–80 nm). Whereas gram-negative bacteria wall is composed of two cell membranes, an outer membrane and a plasma membrane with a thin layer of peptidoglycan [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 44" title="G. Fu, P.S. Vary, C.-T. Lin, Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 109(18), 8889–8898 (2005). doi:
 10.1021/jp0502196
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR44" id="ref-link-section-d36426609e1284">44</a>] with a thickness of 7–8 nm. NPs size within such ranges can readily pass through the peptidoglycan and hence are highly susceptible to damage. The cytoplasm, a jelly-like fluid that fills a cell, involves all the cellular components except the nucleus. The functions of this organelle include growth, metabolism, and replication. Consequently, the cytoplasm contains proteins, carbohydrates, nucleic acids, salts, ions, and water (∼80 %). This composition contributes in the electrical conductivity of the cellular structure. The overall charge of bacterial cell walls is negative. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig1">1</a>b shows typical bacteria cell structures [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 45" title="J.V.A. Edwards, K.J. Edwards, Bacteria Cell, 
 http://www.alken-murray.com/BioInfo1-05.html
 
 . Accessed 9 July 2010" href="/article/10.1007/s40820-015-0040-x#ref-CR45" id="ref-link-section-d36426609e1290">45</a>]. Antibacterial activity is known according to <i>The American Heritage Medical Dictionary 2007</i>, as the action by which bacterial growth is destroyed or inhibited. It is also described as a function of the surface area in contact with the microorganisms [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="R. Wahab, Y.-S. Kim, A. Mishra, S.-I. Yun, H.-S. Shin, Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res. Lett. 5(10), 1675–1681 (2010). doi:
 10.1007/s11671-010-9694-y
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR46" id="ref-link-section-d36426609e1297">46</a>]. While antibacterial agents are selective concentration drugs capable to damage or inhibit bacterial growth and they are not harmful to the host. These compounds act as chemo-therapeutic agents for the treatment or prevention of bacterial infections (<i>Saunders Comprehensive Veterinary Dictionary 2007</i>). An antibacterial agent is considered as bactericidal if it kills bacteria or as bacteriostatic if it inhibits their growth.</p><p>Different methods have been adopted for the assessment and investigation of antibacterial activity in vitro. These methods include disk diffusion, broth dilution, agar dilution, and the microtiter plate-based method [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 47" title="M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 7(2), 184–192 (2011). doi:
 10.1016/j.nano.2010.10.001
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR47" id="ref-link-section-d36426609e1306">47</a>]. Other methods are different according to the investigated parameters. For example, the conductometric assay measures the bacterial metabolism-induced alterations in the electrical conductivity of growth media [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 48" title="J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 54(2), 177–182 (2003). doi:
 10.1016/S0167-7012(03)00037-X
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR48" id="ref-link-section-d36426609e1309">48</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 49" title="S.O. Sukon Phanichphantand, Antimicrobial nanomaterials in
 the textile industry, in Bionanotechnology II Global Prospects, ed. by D.E. Reisner (CRC Press, Boca Raton, 2011), p. 2" href="/article/10.1007/s40820-015-0040-x#ref-CR49" id="ref-link-section-d36426609e1312">49</a>]. Meanwhile, Reddy et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 50" title="K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 213902 (2007). doi:
 10.1063/1.2742324
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR50" id="ref-link-section-d36426609e1315">50</a>] have used the flow cytometry viability assays to examine ZnO-NPs toxicity toward <i>E. coli</i> and <i>S. aureus</i>. The most commonly used method is the broth dilution method, followed by colony count, through plating serial culture broths dilutions which contained ZnO-NPs and the targeted bacteria in appropriate agar medium and incubated. A number of researchers [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:
 10.1371/journal.pone.0085981
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR13" id="ref-link-section-d36426609e1325">13</a>] have examined the antibacterial activity of ZnO-NPs to determine bacterial growth through the culture turbidity and the viable cells percentage by the colony counts test (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig1">1</a>c). While others, such as Yamamoto [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7), 643–646 (2001). doi:
 10.1016/S1466-6049(01)00197-0
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR51" id="ref-link-section-d36426609e1331">51</a>] enhanced the antibacterial activity of ZnO-NPs by modulating within the procedure. They considered that the antibacterial activity rate was much improved by decreasing the initial number of bacterial cells from 10<sup>2</sup> to 10<sup>6</sup> colony forming unit (CFU). Nair et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 52" title="S. Nair, A. Sasidharan, V.D. Rani, D. Menon, S. Nair, K. Manzoor, S. Raina, Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 20(1), 235–241 (2009). doi:
 10.1007/s10856-008-3548-5
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR52" id="ref-link-section-d36426609e1339">52</a>] considered that the determination of starting number of bacterial cells is very important in the antibacterial activity evaluation. The MIC of an antimicrobial agent and MBC can be measured by using the susceptibility test methods. However, there are some variations in the established laboratory methods and protocols in the assessment of the bactericidal activity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 53" title="A.L. Barry, W.A. Craig, H. Nadler, L.B. Reller, C.C. Sanders, J.M. Swenson, in Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline, vol. 19, 18th edn. (National Committee for Clinical Laboratory Standards, CLSI, Wayne, 1999)" href="/article/10.1007/s40820-015-0040-x#ref-CR53" id="ref-link-section-d36426609e1342">53</a>]. The agar diffusion method (an indirect method) is the most frequently used method and has been standardized as an official method for detecting bacteriostatic activity by the (ATCC). Other direct test methods, such as the measurement of urease inhibition of inocula, have been reported [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 54" title="M. Aslam, I. Anis, N. Afza, M.T. Hussain, L. Iqbal, A. Hussain, S. Iqbal, T.H. Bokhari, M. Khalid, Synthesis, antibacterial, lipoxygenase and urease inhibitory activities of 2-aminophenol derivatives. Med. Chem. Drug Discov. 3(2), 80–86 (2012)" href="/article/10.1007/s40820-015-0040-x#ref-CR54" id="ref-link-section-d36426609e1345">54</a>]. The microdilution method is a modification of the broth macrodilution test, which utilizes the advances in miniaturization to allow multiple tests to be performed on a 96-well plate. Modified procedures along with the standard methods are also used by a large body of researchers. In all of the aforementioned methods, the culture media [trypticase soy broth (TSB), Luria–Bertani broth (LB), nutrient agar (NA), tryptic soy agar (TSA), and blood agar (BA; see Abbreviations)] were accordingly selected to autoclave and stored at 4–5 °C. The stocks of ZnO-NPs suspensions are also usually prepared, and serially diluted to different concentrations, and then characterized using techniques [X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), electron spectroscopy imaging (ESI), etc.; see Abbreviations] to correlate the antibacterial response with ZnO properties.</p><p>Growth curves were typically obtained via monitoring the optical density (OD), at wavelength of 600 nm, a typical wavelength for cells. The density of bacterial isolates must be adjusted to an optimal density of 0.5 McFarland standards. The OD should serially be monitored hourly up to 12 h of incubation, and finally after 24 h of overnight incubation for the determination of the percentage of growth inhibition [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71–76 (2008). doi:
 10.1111/j.1574-6968.2007.01012.x
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR8" id="ref-link-section-d36426609e1351">8</a>]. The inhibition rate varies with the tested organisms and the utilized NP-oxide [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="R. Prasad, D. Basavaraju, K. Rao, C. Naveen, J. Endrino, A. Phani, Nanostructured
 TiO2 and TiO2–Ag antimicrobial thin films, in Proceedings of the 2011 International Conference on
 Nanoscience, Technology and Societal Implications (NSTSI), Bhubaneswar, USA, 8–10 December 2011 (IEEE, 2011), pp. 1–6. doi:
 10.1109/NSTSI.2011.6111808
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR55" id="ref-link-section-d36426609e1354">55</a>].</p><p>We discuss below the influence of essential physiochemical and structural factors (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig2">2</a>a), which affect the antibacterial activity of ZnO-NPs, and consequently have potential impact upon the resultant toxicity mechanism (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig2">2</a>b).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig2_HTML.gif?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig2_HTML.gif" alt="figure 2" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Correlation between the <b>a</b> influence of essential ZnO-NPs parameters on the antibacterial response and the <b>b</b> different possible mechanisms of ZnO-NPs antibacterial activity, including: ROS formation, Zn<sup>2+</sup> release, internalization of ZnO-NPs into bacteria, and electrostatic interactions</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> </div></div></section><section data-title="Mechanism of Antibacterial Activity of ZnO-NPs"><div class="c-article-section" id="Sec6-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec6"><span class="c-article-section__title-number">4 </span>Mechanism of Antibacterial Activity of ZnO-NPs</h2><div class="c-article-section__content" id="Sec6-content"><p>Researchers analyzing morphological bacterial changes are induced by ZnO using SEM or FESEM to quantify the multiple mechanisms. Though, the antibacterial activity of ZnO-NPs has been referred to a number of issues, but the exact toxicity mechanism is not completely illuminated and still controversial, as there are some queries within the spectrum of antibacterial activity requiring deep explanations. Distinctive mechanisms that have been put forward in the literature are listed as following: direct contact of ZnO-NPs with cell walls, resulting in destructing bacterial cell integrity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870 (2006). doi:
 10.1021/nl052326h
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR7" id="ref-link-section-d36426609e1401">7</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007). doi:
 10.1007/s11051-006-9150-1
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR40" id="ref-link-section-d36426609e1404">40</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="L.K. Adams, D.Y. Lyon, P.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006). doi:
 10.1016/j.watres.2006.08.004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR56" id="ref-link-section-d36426609e1407">56</a>], liberation of antimicrobial ions mainly Zn<sup>2+</sup> ions [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 57" title="K. Kasemets, A. Ivask, H.-C. Dubourguier, A. Kahru, Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro 23(6), 1116–1122 (2009). doi:
 10.1016/j.tiv.2009.05.015
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR57" id="ref-link-section-d36426609e1412">57</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 59" title="M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45(5), 1977–1983 (2011). doi:
 10.1021/es102624t
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR59" id="ref-link-section-d36426609e1416">59</a>], and ROS formation [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, P. Nancarrow, ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. 121(1), 198–201 (2010). doi:
 10.1016/j.matchemphys.2010.01.020
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR9" id="ref-link-section-d36426609e1419">9</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, H. Kojima, Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86(5), 521–522 (1998). doi:
 10.1016/S0922-338X(98)80165-7
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR60" id="ref-link-section-d36426609e1422">60</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci. 18(8), 939–944 (2008). doi:
 10.1016/j.pnsc.2008.01.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR62" id="ref-link-section-d36426609e1425">62</a>]. However, the toxicity mechanism varies in various media as the species of dissolved Zn may change according to the medium components besides the physicochemical properties of ZnO-NPs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 59" title="M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45(5), 1977–1983 (2011). doi:
 10.1021/es102624t
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR59" id="ref-link-section-d36426609e1428">59</a>].</p><h3 class="c-article__sub-heading" id="Sec7"><span class="c-article-section__title-number">4.1 </span>UV Illumination Effect</h3><p>ZnO is found to possess high photocatalytic efficiency among all inorganic photocatalytic materials, and is more biocompatible than TiO<sub>2</sub> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 63" title="J. Zhang, Silver-coated zinc oxide nanoantibacterial
 synthesis and antibacterial activity characterization, in 2011 International Conference on Electronics and Optoelectronics (ICEOE), vol. 3, Dalian, Liaoning, USA, 29–31 July 2011 (IEEE, 2011), pp. V3-94–V3-98. doi:
 10.1109/ICEOE.2011.6013309
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR63" id="ref-link-section-d36426609e1440">63</a>]. ZnO can highly absorb UV light [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="M. Nirmala, M.G. Nair, K. Rekha, A. Anukaliani, S. Samdarshi, R.G. Nair, Photocatalytic activity of ZnO nanopowders synthesized by DC thermal plasma. Afr. J. Basic Appl. Sci. 2(5–6), 161–166 (2010)" href="/article/10.1007/s40820-015-0040-x#ref-CR64" id="ref-link-section-d36426609e1443">64</a>], and it has a better response to UV light, thus its conductivity dramatically enhances, and this feature significantly activates the interaction of ZnO with bacteria. Its photoconductivity persists long after turning off the UV light, and it has been attributed to surface electron depletion region strongly associated to negative oxygen species (<span class="mathjax-tex">\({\text{O}}_{2}^{ - } ,\;{\text{O}}_{2}^{2 - }\)</span>), adsorbed on the surface [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 65" title="M. E, Proceedings of the photoconductivity conference, photoconductivity conference, Atlantic City, Pennsylvania (4-6 Nov. 1956): John Wiley and Sons, Inc, New York (1956)" href="/article/10.1007/s40820-015-0040-x#ref-CR65" id="ref-link-section-d36426609e1499">65</a>]. UV illumination rapidly causes desorption of this loosely bound oxygen from the surface. This results in reducing the surface electron depletion region and causing improved photoconductivity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 66" title="I.S.J. Bao, Z. Su, R. Gurwitz, F. Capasso, X. Wang, Z. Ren, Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires. Nanoscale Res. Lett. 6(404), 1–7 (2011). doi:
 10.1186/1556-276X-6-404
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR66" id="ref-link-section-d36426609e1503">66</a>]. The photocatalysis is described as a photo-induced oxidation process that can damage and inactivate organisms [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 67" title="S. Baruah, M.A. Mahmood, M.T.Z. Myint, T. Bora, J. Dutta, Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J. Nanotechnol. 1(1), 14–20 (2010). doi:
 10.3762/bjnano.1.3
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR67" id="ref-link-section-d36426609e1506">67</a>]. ZnO-NPs in aqueous solution under UV radiation have phototoxic effect that can produce ROS such as hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and superoxide ions (O<sup>2−</sup>). Such species are extremely essential for bio-applications [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 68" title="H. Zhang, B. Chen, H. Jiang, C. Wang, H. Wang, X. Wang, A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32(7), 1906–1914 (2011). doi:
 10.1016/j.biomaterials.2010.11.027
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR68" id="ref-link-section-d36426609e1515">68</a>]. The generated active species are capable to penetrate into the cells, thus inhibit or kill microorganisms. This process inspired the use of the photocatalytic activity of ZnO-NPs in bionanotechnology and in bionanomedicine for many antibacterial applications. Therefore, enhancement of ZnO bioactivity was considered as a result of the produced free radicals, as ZnO absorbs UV light [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="J.T. Seil, E.N. Taylor, T.J. Webster, Reduced
 activity of Staphylococcus epidermidis in the presence of sonicated piezoelectric zinc oxide nanoparticles, in 2009 IEEE 35th Annual Northeast Bioengineering Conference, Boston, MA, USA, 3–5 April 2009 (IEEE, 2009), pp. 1–2. doi:
 10.1109/NEBC.2009.4967674
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR15" id="ref-link-section-d36426609e1519">15</a>]. A detailed reaction mechanism which explains this phenomenon was proposed by Seven et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 69" title="O. Seven, B. Dindar, S. Aydemir, D. Metin, M. Ozinel, S. Icli, Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara Desert dust. J. Photochem. Photobiol. A 165(1), 103–107 (2004). doi:
 10.1016/j.jphotochem.2004.03.005
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR69" id="ref-link-section-d36426609e1522">69</a>] and Padmavathy and Vijayaraghavan [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e1525">12</a>] as follows.</p><p>The electronic band structure of ZnO, as a semiconductor material consists of a conduction band (CB) and a valence band (VB). Incident radiation with photons of energy greater than 3.3 eV is immediately absorbed, thus the electrons move from the VB to the CB. This electron transfer initiates a series of possible photoreactions. As a result, positive holes (h<sup>+</sup>) are formed in the VB, while free electrons are created within the CB [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 69" title="O. Seven, B. Dindar, S. Aydemir, D. Metin, M. Ozinel, S. Icli, Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara Desert dust. J. Photochem. Photobiol. A 165(1), 103–107 (2004). doi:
 10.1016/j.jphotochem.2004.03.005
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR69" id="ref-link-section-d36426609e1533">69</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 71" title="P.J.P. Espitia, N.d.F.F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5(5), 1447–1464 (2012). doi:
 10.1007/s11947-012-0797-6
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR71" id="ref-link-section-d36426609e1536">71</a>]. This positive hole (h<sup>+</sup>), a direct oxidant and essential for the creation of reactive hydroxyl radicals (OH<sup>•</sup>), serves as principal oxidants in the photocatalytic system [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 1–22 (2012). doi:
 10.1155/2012/624520
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR22" id="ref-link-section-d36426609e1544">22</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 70" title="S. Ahmed, M. Rasul, W.N. Martens, R. Brown, M. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261(1), 3–18 (2010). doi:
 10.1016/j.desal.2010.04.062
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR70" id="ref-link-section-d36426609e1547">70</a>]. The electrons in the CB reduce oxygen, which is adsorbed by the photocatalyst [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 1–22 (2012). doi:
 10.1155/2012/624520
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR22" id="ref-link-section-d36426609e1550">22</a>]. Meanwhile, Padmavathy et al. proposed an association between photon reaction and the antibacterial activity in a series of reactions resulting in production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) molecules which penetrates the membrane, causing fatal damage. Sawai et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, H. Kojima, Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86(5), 521–522 (1998). doi:
 10.1016/S0922-338X(98)80165-7
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR60" id="ref-link-section-d36426609e1557">60</a>] also attributed the disruption of the cell membrane to peroxidation of the unsaturated phospholipids as a result of photocatalytic prompted H<sub>2</sub>O<sub>2</sub>.</p><p>In antibacterial tests that involve UV exposure, OD readings are taken before and after UV illumination. Shorter exposures (15 min) result in significantly few colonies, while many colonies could be detected and counted by long exposure times (up to 30 min). Generally, it has been observed from the intensive studies held, that the antibacterial activity of ZnO can be verified under UV light as well as in the dark to inhibit the bacterial growth. Zhou et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 72" title="G. Zhou, Y. Li, W. Xiao, L. Zhang, Y. Zuo, J. Xue, J.A. Jansen, Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J. Biomed. Mater. Res. A 85(4), 929–937 (2008). doi:
 10.1002/jbm.a.31527
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR72" id="ref-link-section-d36426609e1568">72</a>] reported best results of antibacterial effects upon UV exposure toward <i>E. coli</i> and <i>S. aureus</i>, which were 98.65 and 99.45 % under UV, respectively. The authors referred that to OH production under light, and they produced a novel ZnO complex. Their findings also showed that the activity can be achieved under UV illumination, ambient light, or even in the dark. However, ZnO exhibits considerable activity against bacteria under different test conditions [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71–76 (2008). doi:
 10.1111/j.1574-6968.2007.01012.x
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR8" id="ref-link-section-d36426609e1577">8</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="L.K. Adams, D.Y. Lyon, P.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006). doi:
 10.1016/j.watres.2006.08.004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR56" id="ref-link-section-d36426609e1580">56</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 73" title="P. Joshi, S. Chakraborti, P. Chakrabarti, D. Haranath, V. Shanker, Z. Ansari, S.P. Singh, V. Gupta, Role of surface adsorbed anionic species in antibacterial activity of ZnO quantum dots against Escherichia coli. J. Nanosci. Nanotechnol. 9(11), 6427–6433 (2009). doi:
 10.1166/jnn.2009.1584
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR73" id="ref-link-section-d36426609e1584">73</a>] and fungi [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="A. Lipovsky, Y. Nitzan, A. Gedanken, R. Lubart, Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22(10), 105101 (2011). doi:
 10.1088/0957-4484/22/10/105101
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR61" id="ref-link-section-d36426609e1587">61</a>]. Besides, the active species that drive the activity can be created without UV irradiation [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="A. Lipovsky, Y. Nitzan, A. Gedanken, R. Lubart, Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22(10), 105101 (2011). doi:
 10.1088/0957-4484/22/10/105101
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR61" id="ref-link-section-d36426609e1590">61</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. 36(2), 497–506 (2010). doi:
 10.1016/j.ceramint.2009.09.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR74" id="ref-link-section-d36426609e1593">74</a>]. We have also carried a study [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 75" title="L.C. Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni, R.A. Rahman, Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder. Appl. Surf. Sci. 292, 405–412 (2014). doi:
 10.1016/j.apsusc.2013.11.152
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR75" id="ref-link-section-d36426609e1596">75</a>] for the antibacterial activity toward <i>E. coli</i> and <i>S. aureus</i> using ZnO of two forms (ZnO-rod and ZnO-plate) which are exposed to UVA illumination (390 nm, 1.8 W cm<sup>−2</sup>). We found that UVA illumination had significantly influenced the interaction of both ZnO samples with the targeted bacteria compared with unexposed ZnO. Exposure of only 20 min increased the inhibition of <i>E. coli</i> by 18 % (ZnO-rod) and 13 % (ZnO-plate), whereas, for <i>S. aureus</i>, 22 % increase for treated with ZnO-rod and 21 % with ZnO-plate, compared with the unexposed. Thus, longer durations of UVA exposure expected to lead to greater growth inhibition. To elucidate the effects of oxygen species on antibacterial response, electrical, structural, and optical characterization of ZnO were performed. For example, the result of the current–voltage measurements (IV) showed significant increase in surface conductance (7-fold for ZnO-rod and 5-fold for ZnO-plate) due to a decrease in the depletion layer upon UVA illumination. It was suggested that photo-excitation caused desorption of the oxygen molecules from the surface, thus the surface potential decreased and underlying photoconductivity of ZnO. Stimulation of oxygen species such as H<sub>2</sub>O<sub>2</sub>, <span class="mathjax-tex">\({\text{O}}_{2}^{ - }\)</span> and OH<sup>•</sup> by UV light found to harm bacteria and damage the active enzyme, DNA, and protein [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. 36(2), 497–506 (2010). doi:
 10.1016/j.ceramint.2009.09.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR74" id="ref-link-section-d36426609e1650">74</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 76" title="I.G. Kirkinezos, C.T. Moraes, Reactive oxygen species and mitochondrial diseases. Semin. Cell Dev. Biol. 12(6), 449–457 (2001). doi:
 10.1006/scdb.2001.0282
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR76" id="ref-link-section-d36426609e1653">76</a>]. Our results were in consistence with Raghupathi et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:
 10.1371/journal.pone.0085981
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR13" id="ref-link-section-d36426609e1656">13</a>], whose results also revealed high antibacterial activity upon UV illumination.</p><h3 class="c-article__sub-heading" id="Sec8"><span class="c-article-section__title-number">4.2 </span>Impact of ZnO Morphology</h3><p>The impact of ZnO shapes has attracted current research [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007). doi:
 10.1128/AEM.02218-06
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR3" id="ref-link-section-d36426609e1667">3</a>]. Many studies have reported that the toxicity is significantly affected by the various morphologies of ZnO-NPs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 36" title="A. Stanković, S. Dimitrijević, D. Uskoković, Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf. B 102, 21–28 (2013). doi:
 10.1016/j.colsurfb.2012.07.033
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR36" id="ref-link-section-d36426609e1670">36</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 77" title="N. Talebian, S.M. Amininezhad, M. Doudi, Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. 120, 66–73 (2013). doi:
 10.1016/j.jphotobiol.2013.01.004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR77" id="ref-link-section-d36426609e1673">77</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 78" title="J. Ma, J. Liu, Y. Bao, Z. Zhu, X. Wang, J. Zhang, Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram. Int. 39(3), 2803–2810 (2013). doi:
 10.1016/j.ceramint.2012.09.049
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR78" id="ref-link-section-d36426609e1676">78</a>]. ZnO morphology is determined by the synthesis conditions as mentioned earlier. Thus, desired synthesized ZnO-NPs structures for best antibacterial response could be attained by controlling parameters such as solvents, precursor types, and physicochemical settings such as temperature and pH [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 71" title="P.J.P. Espitia, N.d.F.F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5(5), 1447–1464 (2012). doi:
 10.1007/s11947-012-0797-6
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR71" id="ref-link-section-d36426609e1679">71</a>] as well as shape-directing agents. Also, under controlled growth conditions, the surface morphology is determined by the surface activity.</p><p> The shape-dependent activity was explained in terms of the percent of active facets in the NPs. Synthesis and growth techniques lead to holding numerous active facets in NP. Rod-structures of ZnO have (111) and (100) facets, whereas spherical nanostructures mainly have (100) facets. High-atom-density facets with (111) facets exhibit higher antibacterial activity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007). doi:
 10.1128/AEM.02218-06
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR3" id="ref-link-section-d36426609e1685">3</a>]. The facet-dependent ZnO antibacterial activity has been evaluated by few studies, and nanostructured ZnO with different morphologies have different active facets, which may lead to enhanced antibacterial activity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 79" title="M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, E. Marsili, Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids Surf. B 117, 233–239 (2014). doi:
 10.1016/j.colsurfb.2014.02.017
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR79" id="ref-link-section-d36426609e1688">79</a>]. In this regard, the shape of ZnO nanostructures can influence their mechanism of internalization such as rods and wires penetrating into cell walls of bacteria more easily than spherical ZnO-NPs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="H. Yang, C. Liu, D. Yang, H. Zhang, Z. Xi, Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol. 29(1), 69–78 (2009). doi:
 10.1002/jat.1385
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR80" id="ref-link-section-d36426609e1691">80</a>]. Whereas, flower-shaped have revealed higher biocidal activity against <i>S. aureus</i>, and <i>E. coli</i> than the spherical and rod-shaped ZnO-NPs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 77" title="N. Talebian, S.M. Amininezhad, M. Doudi, Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. 120, 66–73 (2013). doi:
 10.1016/j.jphotobiol.2013.01.004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR77" id="ref-link-section-d36426609e1701">77</a>]. In addition to the enhancement of internalization, it has been suggested regarding the contribution of the polar facets of ZnO nanostructured to the antibacterial activity, that the higher number of polar surfaces possess higher amount of oxygen vacancies. Oxygen vacancies are known to increase the generation of ROS and consequently affect the photocatalytic of ZnO [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 81" title="G. Li, T. Hu, G. Pan, T. Yan, X. Gao, H. Zhu, Morphology–function relationship of ZnO: polar planes, oxygen vacancies, and activity. J. Phys. Chem. C 112(31), 11859–11864 (2008). doi:
 10.1021/jp8038626
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR81" id="ref-link-section-d36426609e1704">81</a>]. Currently, it has been found that greater antibacterial results could be achieved from ZnO morphologies of highly exposed (0 0 0 1)-Zn terminated polar facets [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 82" title="G.-X. Tong, F.-F. Du, Y. Liang, Q. Hu, R.-N. Wu, J.-G. Guan, X. Hu, Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. J. Mater. Chem. B 1(4), 454–463 (2013). doi:
 10.1039/C2TB00132B
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR82" id="ref-link-section-d36426609e1707">82</a>].</p><h3 class="c-article__sub-heading" id="Sec9"><span class="c-article-section__title-number">4.3 </span>Surface Modification by Thermal Annealing</h3><p>Functionalized ZnO surface leads to best antibacterial responses. Annealing of ZnO powder has much effect in increasing the inhibition. In our study [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 75" title="L.C. Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni, R.A. Rahman, Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder. Appl. Surf. Sci. 292, 405–412 (2014). doi:
 10.1016/j.apsusc.2013.11.152
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR75" id="ref-link-section-d36426609e1718">75</a>], the EDX and IV measurements revealed that oxygen annealing increased the amount of oxygen atoms on the surface of ZnO samples. Oxygen annealing stimulated a high amount of oxygen atoms to be absorbed onto ZnO surface, thereby enhanced antibacterial response inducing more ROS in the suspension resulting in intense oxidative stress towards the bacteria. This was also in agreement with our study [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 83" title="L.C. Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni, R.A. Rahman, Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram. Int. 40(2), 2993–3001 (2014). doi:
 10.1016/j.ceramint.2013.10.008
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR83" id="ref-link-section-d36426609e1721">83</a>] that used ESI method to explore the zinc and oxygen atoms on ZnO structure, and it has shown a considerable increase of O:Zn ratio of the oxygen annealed samples. Modifying ZnO-NPs surface area would establish the release of Zn<sup>2+</sup> ions and enhance ROS production. Mamat et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 84" title="M.H. Mamat, Z. Khusaimi, M.M. Zahidi, M.R. Mahmood, Performance
 of an ultraviolet photoconductive sensor using well-aligned aluminium-doped zinc-oxide nanorod arrays annealed in an air and oxygen environment. Jpn. J. Appl. Phys. 50(6), 06GF05–06GF05-4 (2011). doi:
 10.1143/JJAP.50.06GF05
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR84" id="ref-link-section-d36426609e1726">84</a>] increased the surface area of ZnO nanorods by annealing under oxygen and air to stimulate formation of nanoholes on the surface to increase the surface area, and on turn have caused high absorption and diffusion of oxygen molecules onto the surface upon UV light exposure, which consequently assisted in generating more ROS on the surface.</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{O}}_{2} \;({\text{g}}) + {\text{e}}^{ - } = {\text{O}}_{2}^{ - } \;({\text{ad}}),$$</span></div><div class="c-article-equation__number"> (1) </div></div> <div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{h}}\upnu \to {\text{e}}^{ - } + {\text{h}}^{ + } ,$$</span></div><div class="c-article-equation__number"> (2) </div></div> <div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{O}}_{2}^{ - } \;({\text{ad}}) + {\text{h}}^{ + } = {\text{O}}_{2} \;({\text{g}}).$$</span></div><div class="c-article-equation__number"> (3) </div></div> <p>An alternative way for surface modification can be attained by coating NPs with surface modifying reagents which trigger toxicity to bacteria, and can cause differences in Zn<sup>2+</sup> ions release and ROS generation [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 85" title="Y. Leung, C. Chan, A. Ng, H. Chan, M. Chiang, A. Djurišić, Y. Ng, W. Jim, M. Guo, F. Leung, Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnology 23(47), 475703 (2012). doi:
 10.1088/0957-4484/23/47/475703
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR85" id="ref-link-section-d36426609e1958">85</a>]. Hsu et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 86" title="A. Hsu, F. Liu, Y.H. Leung, A.P. Ma, A.B. Djurišić, F.C. Leung, W.K. Chan, H.K. Lee, Is the effect of surface modifying molecules on antibacterial activity universal for a given material? Nanoscale 6(17), 10323–10331 (2014). doi:
 10.1039/C4NR02366H
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR86" id="ref-link-section-d36426609e1961">86</a>] as well, completed an investigation on how the different surfactant molecules can result in varying antibacterial properties of ZnO-NPs.</p><h3 class="c-article__sub-heading" id="Sec10"><span class="c-article-section__title-number">4.4 </span>Influence of ZnO Particle Size and Concentration</h3><p>Particle size and concentration of ZnO-NPs play important roles in the antibacterial activity. ZnO-NPs antibacterial activity directly correlates with their concentration as reported by several studies, likewise, the activity is size dependent, however, this dependency is also influenced by concentration of NPs. Larger surface area and higher concentration are accountable for ZnO-NPs antibacterial activity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007). doi:
 10.1007/s11051-006-9150-1
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR40" id="ref-link-section-d36426609e1973">40</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 87" title="X. Peng, S. Palma, N.S. Fisher, S.S. Wong, Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat. Toxicol. 102(3), 186–196 (2011). doi:
 10.1016/j.aquatox.2011.01.014
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR87" id="ref-link-section-d36426609e1976">87</a>]. ZnO-NPs of smaller sizes can easily penetrate into bacterial membranes due to their large interfacial area, thus enhancing their antibacterial efficiency. A large number of studies investigated on the considerable impact of particle size on the antibacterial activity, and the researchers found that controlling ZnO-NPs size was crucial to achieve best bactericidal response, and ZnO-NPs with smaller size (higher specific surface areas) showed highest antibacterial activity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007). doi:
 10.1007/s11051-006-9150-1
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR40" id="ref-link-section-d36426609e1979">40</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7), 643–646 (2001). doi:
 10.1016/S1466-6049(01)00197-0
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR51" id="ref-link-section-d36426609e1982">51</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 88" title="J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 29(4), 627–633 (1996). doi:
 10.1252/jcej.29.627
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR88" id="ref-link-section-d36426609e1985">88</a>]. The dissolution of ZnO-NPs into Zn<sup>2+</sup> was reported as size dependent, and few studies suggested this dissolution of Zn<sup>2+</sup> responsible for toxicity of ZnO-NPs. The effect of size and concentration was successfully analyzed by a work carried by Padmavathy and Vijayaraghavan [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e1993">12</a>] who described the generation of H<sub>2</sub>O<sub>2</sub>, which depends mainly on the surface area of ZnO. The larger the surface area and the higher concentration of oxygen species on the surface can obtain greater antibacterial activity by smaller particles, which was in contrast to that of Franklin et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 89" title="N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41(24), 8484–8490 (2007). doi:
 10.1021/es071445r
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR89" id="ref-link-section-d36426609e2000">89</a>] who found no size-related effect. In general, a correspondence between NPs size and bacteria appears to be required for the bioactivity of ZnO-NPs, as well the concentration. Yamamoto [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7), 643–646 (2001). doi:
 10.1016/S1466-6049(01)00197-0
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR51" id="ref-link-section-d36426609e2004">51</a>] examined the influence of ZnO-NPs size (100–800 nm) on the antibacterial activity, against <i>S. aureus</i> and <i>E. coli</i> by changing the electrical conductivity with bacterial growth. It was concluded that decrease in particle size will increase the antibacterial activity. Similarly, it was found that ZnO-NPs antibacterial activity toward <i>S. aureus</i> and <i>E</i>. <i>coli</i> increases with decreasing the size [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71–76 (2008). doi:
 10.1111/j.1574-6968.2007.01012.x
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR8" id="ref-link-section-d36426609e2023">8</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e2026">12</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007). doi:
 10.1007/s11051-006-9150-1
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR40" id="ref-link-section-d36426609e2029">40</a>]. Size-dependent bactericidal activity was also extensively evaluated by Raghupathi et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:
 10.1371/journal.pone.0085981
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR13" id="ref-link-section-d36426609e2032">13</a>]. The authors targeted a number of major gram-negative and gram-positive strains, and revealed that ZnO-NPs antibacterial activity was inversely proportional to the particle size. Based on the growth curves and percentage viability, their findings revealed that the activity is size dependent, where smaller sized ZnO-NPs possess best antimicrobial action under visible light. The results illustrated in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig3">3</a>a–f. Panels a–c show the growth curves obtained from the readings of OD, till 8 h of incubation, at selected ZnO concentrations. While panels d–f show the inhibition viability, with ZnO-NPs of very small size (∼12 nm), that inhibited about 95 % of the growth with respect to the control (0 mM). Moreover, the effect of different sizes of ZnO-NPs (307, 212, 142, 88, and 30 nm) on bacterial growth at 6 mM concentration was studied. By analyzing growth curves at OD<sub>600 nm</sub>, we could perform colony count, and obtain the growth inhibition percentage which was plotted against particle sizes (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig3">3</a>g). The number of viable cells recovered, at a certain point of growth, showed significant decrease with decreasing ZnO-NPs particle size (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig3">3</a>h). This was attributed to the increased reactivity of small size NPs, as the generated amount of H<sub>2</sub>O<sub>2</sub> is significantly dependent on the surface area of ZnO-NPs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e2051">12</a>]. On the other hand, the antibacterial activity depends on the concentration and the crystalline structure of ZnO. Increased cell death achieved by increasing ZnO concentrations, which disrupt mitochondrial function, stimulating lactate dehydrogenase leakage and changing the morphology of the cell at concentrations of 50–100 mg L<sup>−1</sup> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 90" title="H.A. Jeng, J. Swanson, Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health. A 41(12), 2699–2711 (2006). doi:
 10.1080/10934520600966177
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR90" id="ref-link-section-d36426609e2057">90</a>]. Yamamoto [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7), 643–646 (2001). doi:
 10.1016/S1466-6049(01)00197-0
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR51" id="ref-link-section-d36426609e2060">51</a>] found that the higher concentration and the larger surface area can obtain the better antibacterial activity. Also, Jones et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71–76 (2008). doi:
 10.1111/j.1574-6968.2007.01012.x
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR8" id="ref-link-section-d36426609e2063">8</a>] fulfilled their antibacterial tests using four types of NPs (TiO<sub>2</sub>, MgO, CuO, and CeO<sub>2</sub>) which have not considerably inhibited the bacteria growth (more than 10 mM). These results contradicted those obtained for ZnO and Al<sub>2</sub>O<sub>3</sub> NPs, which exhibited significant growth inhibition. The researchers found that just 2 mM of ZnO-NPs with reduced sizes decreased bacterial growth by 99 %. This result confirmed that the antibacterial activity also depended on the size, and it was probably due to the internalization and subsequent accumulation of NPs inside the cells until the particles reached the cytoplasmic region. In addition, the authors performed the tests in dark, and observed that the antimicrobial effect was weaker. Thus, they concluded that only an ambient laboratory environment could achieve the optimum bactericidal effects, and the reduced size and concentration enhanced this effect. The different conditions, including the type of culture medium and the bacterial cells number, contribute to the variations in antibacterial activity results. Overall, this flourishing study confirms that ZnO-NPs are successful candidates for further antibacterial applications owing to their extensive growth inhibition, as a result of the low concentration and smaller particle size. A related study on five oral bacteria showed that ZnO has bacteriostatic effects on two bacterial strains: <i>Lactobacillus salivarius</i> and <i>Streptococcus sobrinus</i>. However, few inhibitions were observed on the three other types (<i>P. aeruginosa</i>, <i>Streptococcus mutans</i>, and <i>S. aureus</i>) according to those tests conditions [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 90" title="H.A. Jeng, J. Swanson, Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health. A 41(12), 2699–2711 (2006). doi:
 10.1080/10934520600966177
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR90" id="ref-link-section-d36426609e2091">90</a>]. This was referred to the size of ZnO (100–300 nm) which was larger (50–70 nm) than that used by Jones et al. In a similar manner, Zhang et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci. 18(8), 939–944 (2008). doi:
 10.1016/j.pnsc.2008.01.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR62" id="ref-link-section-d36426609e2094">62</a>] performed an interesting study using ZnO nanofluids. Their results showed bacteriostatic action towards <i>E. coli</i>, which increased at higher ZnO-NPs concentrations and reduced size. Furthermore, the authors used SEM analyses to examine the morphological changes. The data showed that ZnO-NPs interacted with <i>E. coli</i> membrane wall resulting in considerable wall damages, which in turn collapsed the cell membrane. Similarly, increasing the concentration of the ZnO dispersions to 10 mM with extended exposure time (30 min) has inhibited totally <i>E. coli</i> growth [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 36" title="A. Stanković, S. Dimitrijević, D. Uskoković, Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf. B 102, 21–28 (2013). doi:
 10.1016/j.colsurfb.2012.07.033
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR36" id="ref-link-section-d36426609e2106">36</a>]. A parallel study was made by Jalal et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, P. Nancarrow, ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. 121(1), 198–201 (2010). doi:
 10.1016/j.matchemphys.2010.01.020
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR9" id="ref-link-section-d36426609e2110">9</a>] who obtained strong antibacterial activity against <i>E. coli</i> at increased concentration. As a result, an increase in H<sub>2</sub>O<sub>2</sub> amount was produced from ZnO surface, a lethal species to bacteria.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig3_HTML.gif?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig3_HTML.gif" alt="figure 3" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p> <b>a</b>–<b>f</b> Growth analysis curves and cells viability percentage, at selected ZnO concentrations. <b>g</b> Growth curves through optical density (OD<sub>600 nm</sub>) measurements. <b>h</b> Percentage of viable cells after overnight incubation. Adapted with permissions from Raghupathi et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:
 10.1371/journal.pone.0085981
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR13" id="ref-link-section-d36426609e2145">13</a>]</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>Also concentration-dependent bactericidal activity of ZnO-NPs was fruitfully evaluated by Xie et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 91" title="Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011). doi:
 10.1128/AEM.02149-10
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR91" id="ref-link-section-d36426609e2160">91</a>] toward four foodborne pathogens (<i>C. jejuni</i> is known as the most common foodborne pathogen, <i>Salmonella enterica Enteritidis</i>, <i>E. coli</i> O157:H7, and <i>Salmonella</i> strains). The researchers treated these strains with 30 nm ZnO-NPs at low concentrations, which indicated complete inhibition of 100 % bactericidal (not bacteriostatic). The ZnO concentrations were 0, 0.025, 0.03, 0.04, 0.05, and 0.10 mg mL<sup>−1</sup>. <i>C. jejuni</i> cells were killed at 108 CFU mL<sup>−1</sup> after only 3 h, at selected concentrations of 0.1, 0.3, and 0.5 mg mL<sup>−1</sup>. This result confirms the potent antibacterial effect of ZnO-NPs toward this particular bacterial species at much reduced concentrations, and this finding is highly beneficial in food packaging. Also, they revealed that three strains of this bacterium possess greater degree of susceptibility toward ZnO-NPs, as determined from the MIC (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig4">4</a>A: a–d), and considered a lethal effect. By contrast, <i>S. enterica serovar Enteritidis</i> and <i>E. coli</i> O157:H7 showed a reduction in viable cells number after 8 h exposure, and the growth inhibition was determined by counting the numbers of CFUs for the bacteria (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig4">4</a>A: e, f). In case of <i>E. coli</i> O157:H7 (a major foodborne pathogen) showed 100 % growth inhibition in the presence of a ZnO concentration which is approximately 8–32 times that used for <i>C. jejuni</i>. The efficiency of ZnO-NPs against <i>Salmonella</i> was also tested at lower concentration. ZnO-NPs concentrations that are 20–100 times were required for decreasing 1–2 logs of cells viability. The result showed that ZnO damaged the membrane integrity. Moreover, the antibacterial activity toward <i>S. enterica serovar Enteritidis</i> was also determined at lower concentration. Recently, Palanikumar et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 92" title="L. Palanikumar, S.N. Ramasamy, C. Balachandran, Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol. 8(2), 111–117 (2014)" href="/article/10.1007/s40820-015-0040-x#ref-CR92" id="ref-link-section-d36426609e2211">92</a>] reported that ZnO-NPs inhibit the growth of <i>Staphylococcus epidermidis</i> in a size- and concentration-dependent manner. Their findings revealed as well wide spectrum of antimicrobial activities of ZnO-NPs against various microorganisms (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s40820-015-0040-x#Tab2">2</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig4_HTML.gif?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig4_HTML.gif" alt="figure 4" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p> <b>A</b> Bactericidal efficacies of ZnO suspensions, for tested samples namely <i>sample 1</i>, <i>sample 2</i>, and <i>bulk</i> with three different particle sizes after 24 h incubation. Reproduced by permission from Padmavathy and Vijayaraghavan [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e2242">12</a>]. <b>B</b> Antibacterial activity of ZnO-NPs towards: <i>Enteritidis</i> and <i>E. coli</i> O157:H7, adapted from Xie et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 91" title="Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011). doi:
 10.1128/AEM.02149-10
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR91" id="ref-link-section-d36426609e2255">91</a>]</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2 Selected studies show concentration-dependent antibacterial activity of ZnO-NPs</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s40820-015-0040-x/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="Sec11"><span class="c-article-section__title-number">4.5 </span>Minimum Inhibitory Concentration (MIC)</h3><p>For discussing MIC and MBC measurements, a comparison between a study reported by Emami-Karvani and Chehrazi [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Z. Emami-Karvani, P. Chehrazi, Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr. J. Microbiol. Res. 5(12), 1368–1373 (2011)" href="/article/10.1007/s40820-015-0040-x#ref-CR11" id="ref-link-section-d36426609e2480">11</a>] and Reddy et al. study [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 50" title="K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 213902 (2007). doi:
 10.1063/1.2742324
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR50" id="ref-link-section-d36426609e2483">50</a>] was presented. Briefly, an agar diffusion test was performed by inoculating the targeted bacteria (<i>E. coli</i> and <i>S. aureus</i>) on NA using ZnO-NPs at a defined concentration range. The CFU for each plate was then counted and incubated for 24 h to determine the bacteria growth rates. Autoclaved distilled water (0.1 mL) was added to the plates that did not show any bacterial growth. The culture was then transferred to a fresh medium without ZnO-NPs. MBC is determined as the lowest concentration that showed no bacteria growth in the fresh medium, whereas MIC is the lowest NP concentration at which colonies are observed on the surface of the fresh medium. In other words, MIC is the concentration which impedes and absolutely prevents bacterial growth. It was found to be 1.5 and 3.1 mg mL<sup>−1</sup> for <i>S. aureus</i> and <i>E. coli</i>, respectively. These results were consistent with those obtained by Reddy et al., which was 1 mg mL<sup>−1</sup> for <i>S. aureus</i> and 3.4 mg mL<sup>−1</sup> for <i>E. coli</i>. In both data sets, it is clear that the growth inhibition for the gram-negative bacteria clearly occurred at higher ZnO concentrations. This finding confirms that gram-positive bacteria are more susceptible to inhibition compared to gram-negative bacteria. The inhibition accounts for variations in cell physiology, cell wall constitution, and the metabolism [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 93" title="S. Atmaca, K. Gül, R. Cicek, The effect of zinc on microbial growth. Turk. J. Med. Sci. 28(6), 595–598 (1998)" href="/article/10.1007/s40820-015-0040-x#ref-CR93" id="ref-link-section-d36426609e2512">93</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 94" title="H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, C. Ding, Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 8(2), 904–915 (2012). doi:
 10.1016/j.actbio.2011.09.031
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR94" id="ref-link-section-d36426609e2515">94</a>]. Additionally, Xie et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 91" title="Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011). doi:
 10.1128/AEM.02149-10
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR91" id="ref-link-section-d36426609e2518">91</a>] reported that the MIC of ZnO-NPs (30 nm) toward <i>C. jejuni</i> (0.05–0.25 mg mL<sup>−1</sup>) was 8–16-fold lesser than <i>E. coli</i> O157:H7 and <i>S. enterica serovar Enteritidis</i> (0.4 mg mL<sup>−1</sup>). It is also obvious that ZnO-NPs activity was concentration dependent.</p><p>MIC was determined recently in a different approach by Salem et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 95" title="W. Salem, D.R. Leitner, F.G. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, S. Schild, Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbiol. 305(1), 85–95 (2015). doi:
 10.1016/j.ijmm.2014.11.005
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR95" id="ref-link-section-d36426609e2538">95</a>] against two pathogens enterotoxic <i>E. coli</i> and <i>Vibrio cholerae</i>, causative agents of diarrheal diseases leading to death. The researchers introduced growth curve test besides INT reduction assay in 96-well plates supplemented with bacterial culture and ZnO-NPs and Ag-NPs. The OD (600 nm) was measured after 16 h incubation at 37 °C. MIC was determined by the lowest concentration of each NPs, which inhibited the growth. Bacterial growth was defined by an at least 2-fold increase of the OD<sub>600 nm</sub> with respect to the negative control (growth medium only). Additionally, INT assay (a tetrazolium reduction assay) was performed using <i>P</i>-iodonitrotetrazolium violet INT to determine lack of metabolic activity and reveal the growth inhibition. INT was added to the cultures in 96-plates and incubated 30 min until a color change occurred. MIC was defined as the lowest NPs concentration which did not show any color change. A higher efficacy was exhibited by ZnO-NPs compared to Ag-NPs. ZnO-NPs concentration of 1.6 × 10<sup>5</sup>–1.2 × 10<sup>6</sup> mL<sup>−1</sup> was necessary for killing both pathogens, while Ag-NPs concentration of 5 × 10<sup>6</sup>–1.2 × 10<sup>7</sup> mL<sup>−1</sup> was needed to kill the pathogens.</p><h3 class="c-article__sub-heading" id="Sec12"><span class="c-article-section__title-number">4.6 </span>Surface Defects</h3><p>Other factors that play vital roles on the mechanism are surface defects and surface charges as the surfaces of ZnO-NPs containing numerous edges and corners, and thus have potential reactive surface sites. In spite of its simple chemical formula, ZnO has very rich defect chemistry [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 96" title="F. Kroger, The Chemistry of Imperfect Crystals. Vol. 2. Imperfection Chemistry of Crystalline Solids (Elsevier, New York, 1974)" href="/article/10.1007/s40820-015-0040-x#ref-CR96" id="ref-link-section-d36426609e2573">96</a>], which is associated with its antimicrobial activity. Surface defects strongly affect the toxicity of ZnO. For instance, Padmavathy and Vijayaraghavan [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e2576">12</a>] suggested that the antibacterial action of ZnO-NPs is due to the membrane injury caused by defects such as edges and corners, which results from the abrasive surface of ZnO. Interesting applications of ZnO-NPs can be achieved by controlling the defects, impurities, and the associated charge carriers. Defects extensively change grain boundary properties and the IV characteristics [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO-nanostructures, defects, and devices. Mater. Today 10(5), 40–48 (2007). doi:
 10.1016/S1369-7021(07)70078-0
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR23" id="ref-link-section-d36426609e2579">23</a>].</p><p>Finally, Wang et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 97" title="X. Wang, F. Yang, W. Yang, X. Yang, A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chem. Commun. 42, 4419–4421 (2007). doi:
 10.1039/b708662h
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR97" id="ref-link-section-d36426609e2585">97</a>] proposed the orientation of ZnO which affects the biocidal activity of ZnO because of its various randomly oriented spatial configurations, which exhibits higher antibacterial action compared with those of regularly arranged structures [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e2588">12</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="H. Yang, C. Liu, D. Yang, H. Zhang, Z. Xi, Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol. 29(1), 69–78 (2009). doi:
 10.1002/jat.1385
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR80" id="ref-link-section-d36426609e2591">80</a>]. As well, Ramani et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 79" title="M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, E. Marsili, Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids Surf. B 117, 233–239 (2014). doi:
 10.1016/j.colsurfb.2014.02.017
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR79" id="ref-link-section-d36426609e2594">79</a>] referred the toxicity of nanostructured ZnO to their orientation, while, it has been found as irrelevant for crystallographic orientation [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 98" title="K. Tam, A. Djurišić, C. Chan, Y. Xi, C. Tse, Y. Leung, W. Chan, F. Leung, D. Au, Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516(18), 6167–6174 (2008). doi:
 10.1016/j.tsf.2007.11.081
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR98" id="ref-link-section-d36426609e2597">98</a>]. The inconsistency made the effect under research.</p><p>Besides ZnO, other NPs including Ag, MgO, TiO<sub>2</sub>, CuO, CaO, CeO<sub>2</sub>, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>3</sub>O<sub>4</sub>, exhibit antimicrobial properties and are safe to humans and animals [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 99" title="R. Karmali, A. Bartakke, V. Borker, K. Rane, Bactericidal action of N doped ZnO in sunlight. Biointerface Res. Appl. Chem. 1(2), 57–63 (2011)" href="/article/10.1007/s40820-015-0040-x#ref-CR99" id="ref-link-section-d36426609e2618">99</a>]. Metal NPs are known for their extremely ionic characteristics and are synthesized with different morphologies that exhibit remarkable crystallinity and highly surface area. The surfaces of these NPs are reactive due to plentiful corners and edges [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 100" title="P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17), 6679–6686 (2002). doi:
 10.1021/la0202374
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR100" id="ref-link-section-d36426609e2621">100</a>]. However, some metal oxides are highly toxic, for example, Al<sub>2</sub>O<sub>3</sub> toxicity toward many cells [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71–76 (2008). doi:
 10.1111/j.1574-6968.2007.01012.x
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR8" id="ref-link-section-d36426609e2629">8</a>]. Moreover, Ag-NPs toxicity was reported [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007). doi:
 10.1128/AEM.02218-06
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR3" id="ref-link-section-d36426609e2632">3</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 101" title="J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3(1), 95–101 (2007). doi:
 10.1016/j.nano.2006.12.001
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR101" id="ref-link-section-d36426609e2635">101</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 102" title="L. Liu, J. Yang, J. Xie, Z. Luo, J. Jiang, Y.Y. Yang, S. Liu, The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale 5(9), 3834–3840 (2013). doi:
 10.1039/c3nr34254a
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR102" id="ref-link-section-d36426609e2638">102</a>] and TiO<sub>2</sub> was revealed to kill a number of bacteria [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71–76 (2008). doi:
 10.1111/j.1574-6968.2007.01012.x
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR8" id="ref-link-section-d36426609e2643">8</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 103" title="J.Y. Kim, J.Y. Yoon, Developing a testing method for antimicrobial efficacy on TiO2 photocatalytic products. Environ. Eng. Res. 13(3), 136–140 (2008). doi:
 10.4491/eer.2008.13.3.136
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR103" id="ref-link-section-d36426609e2647">103</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 104" title="I.-L. Hsiao, Y.-J. Huang, Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci. Total Environ. 409(7), 1219–1228 (2011). doi:
 10.1016/j.scitotenv.2010.12.033
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR104" id="ref-link-section-d36426609e2650">104</a>]. Adding such metals to ZnO as precursor could lead to remarkable results, and the precipitation method reported by Zhang [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 68" title="H. Zhang, B. Chen, H. Jiang, C. Wang, H. Wang, X. Wang, A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32(7), 1906–1914 (2011). doi:
 10.1016/j.biomaterials.2010.11.027
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR68" id="ref-link-section-d36426609e2653">68</a>] who reported that silver-loaded ZnO showed extreme increase of ZnO antibacterial activity. Ag-loaded ZnO speculated as a new kind of precursor for inorganic antibacterial agents.</p></div></div></section><section data-title="Proposed Mechanisms of Antibacterial Activity"><div class="c-article-section" id="Sec13-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec13"><span class="c-article-section__title-number">5 </span>Proposed Mechanisms of Antibacterial Activity</h2><div class="c-article-section__content" id="Sec13-content"><h3 class="c-article__sub-heading" id="Sec14"><span class="c-article-section__title-number">5.1 </span>Reactive Oxygen Species (ROS) Generation</h3><p>The toxicity of ROS to bacteria is attributed to their high reactivity and oxidizing property [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25–graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009). doi:
 10.1021/nn901221k
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR105" id="ref-link-section-d36426609e2669">105</a>], it has been reported that aquatic ZnO-NPs suspensions produce augmented level of ROS. Numerous studies have considered ROS generation as the major cause of nanotoxicity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870 (2006). doi:
 10.1021/nl052326h
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR7" id="ref-link-section-d36426609e2672">7</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="L.K. Adams, D.Y. Lyon, P.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006). doi:
 10.1016/j.watres.2006.08.004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR56" id="ref-link-section-d36426609e2675">56</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25–graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009). doi:
 10.1021/nn901221k
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR105" id="ref-link-section-d36426609e2678">105</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 107" title="T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10), 2121–2134 (2008). doi:
 10.1021/nn800511k
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR107" id="ref-link-section-d36426609e2681">107</a>]. The photocatalytic generation of ROS has been a major contributor to the antibacterial activities of various metal oxides [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 108" title="R. Prasad, D. Basavaraju, K. Rao, C. Naveen, J. Endrino, A. Phani, Nanostructured
 TiO2 and TiO2–Ag antimicrobial thin films, in 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI), Bhubaneswar, USA, 8–10 December 2011 (IEEE, 2011), pp. 1–6. doi:
 10.1109/NSTSI.2011.6111808
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR108" id="ref-link-section-d36426609e2685">108</a>]. Several studies indicated ROS formation as the main mechanism responsible for ZnO-NPs antibacterial activity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, P. Nancarrow, ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. 121(1), 198–201 (2010). doi:
 10.1016/j.matchemphys.2010.01.020
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR9" id="ref-link-section-d36426609e2688">9</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e2691">12</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7), 643–646 (2001). doi:
 10.1016/S1466-6049(01)00197-0
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR51" id="ref-link-section-d36426609e2694">51</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, H. Kojima, Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86(5), 521–522 (1998). doi:
 10.1016/S0922-338X(98)80165-7
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR60" id="ref-link-section-d36426609e2697">60</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci. 18(8), 939–944 (2008). doi:
 10.1016/j.pnsc.2008.01.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR62" id="ref-link-section-d36426609e2700">62</a>]. Raghupathi et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:
 10.1371/journal.pone.0085981
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR13" id="ref-link-section-d36426609e2704">13</a>] showed that enhanced ZnO antibacterial activity was due to the increased ROS production from ZnO under UV exposure. Such reactive species are superoxide anion (O<sup>2</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and hydroxide (OH<sup>−</sup>). The toxicity of these species involves the destruction of cellular components such as lipids, DNA, and proteins, as a result of their internalization into the bacteria cell membrane. However, the role of ROS in the antimicrobial actions has become an argument issue among the researchers in this field [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:
 10.1371/journal.pone.0085981
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR13" id="ref-link-section-d36426609e2715">13</a>]. The creation of ROS seems to be contradictory since a number of studies have revealed this mechanism under light exposure, as mentioned earlier. While alternative studies reported the activity even in the dark [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="L.K. Adams, D.Y. Lyon, P.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006). doi:
 10.1016/j.watres.2006.08.004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR56" id="ref-link-section-d36426609e2719">56</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. 36(2), 497–506 (2010). doi:
 10.1016/j.ceramint.2009.09.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR74" id="ref-link-section-d36426609e2722">74</a>]. The creation of ROS in the dark was observed by Hirota et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. 36(2), 497–506 (2010). doi:
 10.1016/j.ceramint.2009.09.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR74" id="ref-link-section-d36426609e2725">74</a>] by testing ZnO-NPs toward <i>E. coli</i>. They found that the activity can occur under darkness, producing superoxide species; which is in consistence with Jones et al. findings [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71–76 (2008). doi:
 10.1111/j.1574-6968.2007.01012.x
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR8" id="ref-link-section-d36426609e2731">8</a>]. Such consistent results give a sign of possibly further mechanisms so far to be determined to produce reactive species without illumination and in dark. Therefore, further studies are required to explain these findings deeply. An important clarification studied by Padmavathy and Vijayaraghavan [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e2734">12</a>], who used ZnO-NPs of three different sizes (45, 12 nm, and 2 µm, namely sample 1, sample 2, and bulk) to determine ZnO bactericidal efficiency (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig4">4</a>B). They found that the smaller sized, 12 nm showed best efficiency compared to 45 nm and 2 µm. This was attributed to ROS release on ZnO-NPs surface under both UV and visible light, and the ROS release caused lethal bacterial injury. The researchers explained the production of ROS (OH<sup>−</sup>, H<sub>2</sub>O<sub>2</sub>, and <span class="mathjax-tex">\({\text{O}}_{2}^{2 - }\)</span>) on ZnO surface and proposed a correlation between photon reactions and the antibacterial activity as follows.</p><p>The electron and hole interacts with water (H<sub>2</sub>O) to produce <sup>•</sup>OH and H<sup><b>+</b></sup>. In addition, O<sub>2</sub> molecules (suspended within the mixture of bacteria and ZnO) yield superoxide anion (<span class="mathjax-tex">\({}^{ \bullet }{\text{O}}_{2}^{ - }\)</span>), which reacts with H<sup><b>+</b></sup> to produce <span class="mathjax-tex">\({\text{HO}}_{2}^{ \bullet } .\)</span> Afterward, <span class="mathjax-tex">\({\text{HO}}_{2}^{ \bullet }\)</span> interferes with electrons generating hydrogen peroxide (<sup>•</sup>HO<sub> <b>2</b> </sub>); which combines with H<sup><b>+</b></sup> giving hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) molecules. The latter are capable to enter the membrane where they either damage or kill the bacteria. H<sub>2</sub>O<sub>2</sub> generation mainly relies on the surface of ZnO-NPs to yield additional active molecules. There is a linear proportionality between the concentrations of H<sub>2</sub>O<sub>2</sub> produced in ZnO slurry and the ZnO particle size [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 88" title="J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 29(4), 627–633 (1996). doi:
 10.1252/jcej.29.627
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR88" id="ref-link-section-d36426609e2927">88</a>]. The mentioned researchers expressed the generated ROS by chemical equations as follows:</p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{ZnO}} + {\text{h}}\upnu \to {\text{e}}^{ - } + {\text{h}}^{ + } ,$$</span></div><div class="c-article-equation__number"> (4) </div></div> <div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{h}}^{ + } + {\text{H}}_{2} {\text{O}} \to {}^{ \bullet }{\text{OH}} + {\text{H}}^{ + } ,$$</span></div><div class="c-article-equation__number"> (5) </div></div> <div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{e}}^{ - } + {\text{O}}_{2} \to {}^{ \bullet }{\text{O}}_{2}^{ - } ,$$</span></div><div class="c-article-equation__number"> (6) </div></div> <div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${}^{ \bullet }{\text{O}}_{2} + {\text{H}}^{ + } \to {\text{HO}}_{2}^{ \bullet } ,$$</span></div><div class="c-article-equation__number"> (7) </div></div> <div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{HO}}_{2}^{ \bullet } + {\text{H}}^{ + } + {\text{e}}^{ - } \to {\text{H}}_{2} {\text{O}}_{2} .$$</span></div><div class="c-article-equation__number"> (8) </div></div> <p>The superoxides and hydroxyl radicals cannot penetrate into the membrane due to their negative charges [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 91" title="Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011). doi:
 10.1128/AEM.02149-10
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR91" id="ref-link-section-d36426609e3272">91</a>]. Thus, these species are found on the outer surface of the bacteria, by contrast, H<sub>2</sub>O<sub>2</sub> molecules are able to pass through the bacterial cell wall, subsequently leading to injuries and destroy, and finally triggering cell death [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007). doi:
 10.1007/s11051-006-9150-1
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR40" id="ref-link-section-d36426609e3279">40</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 88" title="J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 29(4), 627–633 (1996). doi:
 10.1252/jcej.29.627
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR88" id="ref-link-section-d36426609e3282">88</a>]. When ZnO-NP kills or interacts with the cell membrane, the particles most probably stay firmly adsorbed at the surface of the left over/killed bacteria blocking additional antibacterial activity. Once ZnO-NPs are in the growth media, they will carry on releasing peroxides covering the entire surfaces of the dead bacteria. Therefore, this continuous peroxide release leads to higher bactericidal efficacy.</p><p>The production of ROS has been concerned in the onset and development of many diseases (such as cancer, atherosclerosis, diabetes, and neurodegeneration). In this regard, investigation of sensitive ROS detection probes has been of utmost importance and was carried by some researcher. A fluorescent dye dichlorodihydrofluorescein diacetate (DCFH-DA) has been used recently to detect the intracellular ROS levels in bacteria and cancer cell lines [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 109" title="S. Dwivedi, R. Wahab, F. Khan, Y.K. Mishra, J. Musarrat, A.A. Al-Khedhairy, Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9(11), e111289 (2014). doi:
 10.1371/journal.pone.0111289
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR109" id="ref-link-section-d36426609e3288">109</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 110" title="W. Song, J. Zhang, J. Guo, J. Zhang, F. Ding, L. Li, Z. Sun, Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 199(3), 389–397 (2010). doi:
 10.1016/j.toxlet.2010.10.003
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR110" id="ref-link-section-d36426609e3291">110</a>]. Thus, the mechanism related to the formation of ROS in bacteria and cell line was clearly examined by the measurement of ROS level using DCFH-DA [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 111" title="B. Kalyanaraman, V. Darley-Usmar, K.J. Davies, P.A. Dennery, H.J. Forman, M.B. Grisham, G.E. Mann, K. Moore, L.J. Roberts, H. Ischiropoulos, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 52(1), 1–6 (2012). doi:
 10.1016/j.freeradbiomed.2011.09.030
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR111" id="ref-link-section-d36426609e3294">111</a>]. Production of ROS by metal NPs in cell lines has been revealed by several studies [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 111" title="B. Kalyanaraman, V. Darley-Usmar, K.J. Davies, P.A. Dennery, H.J. Forman, M.B. Grisham, G.E. Mann, K. Moore, L.J. Roberts, H. Ischiropoulos, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 52(1), 1–6 (2012). doi:
 10.1016/j.freeradbiomed.2011.09.030
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR111" id="ref-link-section-d36426609e3297">111</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 113" title="R. Wahab, N.K. Kaushik, N. Kaushik, E.H. Choi, A. Umar, S. Dwivedi, J. Musarrat, A.A. Al-Khedhairy, ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. J. Biomed. Nanotechnol. 9(7), 1181–1189 (2013)" href="/article/10.1007/s40820-015-0040-x#ref-CR113" id="ref-link-section-d36426609e3300">113</a>], and referred to the inhibition of the respiratory enzymes [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 114" title="Y. Matsumura, K. Yoshikata, S.-I. Kunisaki, T. Tsuchido, Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69(7), 4278–4281 (2003). doi:
 10.1128/AEM.69.7.4278-4281.2003
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR114" id="ref-link-section-d36426609e3304">114</a>]. Previously, it was documented that ROS production in bacteria was mostly due to the autoxidation of NADH dehydrogenase II in the respiratory system [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 115" title="K.R. Messner, J.A. Imlay, The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem. 274(15), 10119–10128 (1999). doi:
 10.1074/jbc.274.15.10119
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR115" id="ref-link-section-d36426609e3307">115</a>].</p><p>The mechanism of antibacterial activity by ROS generation due to treatment with ZnO-NPs using DCFH-DA dye was studied by Dwivedi et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 109" title="S. Dwivedi, R. Wahab, F. Khan, Y.K. Mishra, J. Musarrat, A.A. Al-Khedhairy, Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9(11), e111289 (2014). doi:
 10.1371/journal.pone.0111289
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR109" id="ref-link-section-d36426609e3314">109</a>]. The dye passively enters into the bacterial cell, and then is hydrolyzed by cell esterases to DCFH which is oxidized to DCF, a highly fluorescent compound dichlorofluorescein in the presence of ROS. The fluorescence was determined by flow cytometry or microplate reader, the fluorescent intensity is proportional to the amount of ROS [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 116" title="L. Yuan, Y. Wang, J. Wang, H. Xiao, X. Liu, Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line. Toxicol. Lett. 225(2), 294–304 (2014). doi:
 10.1016/j.toxlet.2013.12.015
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR116" id="ref-link-section-d36426609e3317">116</a>].</p><div id="Equa" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{DCFH-DA}}\mathop{\longrightarrow}\limits[{\text{esterases}}]{}{\text{DCFH}} \to {\text{DCF}} .$$</span></div></div> <h3 class="c-article__sub-heading" id="Sec15"><span class="c-article-section__title-number">5.2 </span>Zinc Ions (Zn<sup>2+</sup>) Release</h3><p>One of the main proposed antibacterial mechanisms for ZnO-NPs is release of zinc ions in medium containing ZnO-NPs and bacteria [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 47" title="M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 7(2), 184–192 (2011). doi:
 10.1016/j.nano.2010.10.001
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR47" id="ref-link-section-d36426609e3376">47</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 59" title="M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45(5), 1977–1983 (2011). doi:
 10.1021/es102624t
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR59" id="ref-link-section-d36426609e3379">59</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 110" title="W. Song, J. Zhang, J. Guo, J. Zhang, F. Ding, L. Li, Z. Sun, Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 199(3), 389–397 (2010). doi:
 10.1016/j.toxlet.2010.10.003
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR110" id="ref-link-section-d36426609e3382">110</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7), 1308–1316 (2008). doi:
 10.1016/j.chemosphere.2007.11.047
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR117" id="ref-link-section-d36426609e3385">117</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 118" title="B. Aydin Sevinç, L. Hanley, Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. B 94(1), 22–31 (2010). doi:
 10.1002/jbm.b.31620
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR118" id="ref-link-section-d36426609e3388">118</a>]. The released Zn<sup>2+</sup> has significant effect in the active transport inhibition as well as in the amino acid metabolism and enzyme system disruption. Several studies have believed that the leaked Zn<sup>2+</sup> into growth media responsible for ZnO nanotoxicity and the dissolution of ZnO-NPs into Zn<sup>2+</sup> were found as size dependent. Therefore, engineered nanostructures might modify their toxicity by manipulating the dissolution rate [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="H. Yang, C. Liu, D. Yang, H. Zhang, Z. Xi, Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol. 29(1), 69–78 (2009). doi:
 10.1002/jat.1385
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR80" id="ref-link-section-d36426609e3398">80</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 107" title="T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10), 2121–2134 (2008). doi:
 10.1021/nn800511k
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR107" id="ref-link-section-d36426609e3401">107</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7), 1308–1316 (2008). doi:
 10.1016/j.chemosphere.2007.11.047
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR117" id="ref-link-section-d36426609e3404">117</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 119" title="S.W. Wong, P.T. Leung, A. Djurišić, K.M. Leung, Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal. Bioanal. Chem. 396(2), 609–618 (2010). doi:
 10.1007/s00216-009-3249-z
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR119" id="ref-link-section-d36426609e3408">119</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 120" title="B. Wu, Y. Wang, Y.-H. Lee, A. Horst, Z. Wang, D.-R. Chen, R. Sureshkumar, Y.J. Tang, Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ. Sci. Technol. 44(4), 1484–1489 (2010). doi:
 10.1021/es9030497
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR120" id="ref-link-section-d36426609e3411">120</a>]. Kasemets et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 57" title="K. Kasemets, A. Ivask, H.-C. Dubourguier, A. Kahru, Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro 23(6), 1116–1122 (2009). doi:
 10.1016/j.tiv.2009.05.015
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR57" id="ref-link-section-d36426609e3414">57</a>] have shown that the release of Zn<sup>2+</sup> ions was a logical cause of ZnO toxicity toward <i>Saccharomyces cerevisiae</i> bacteria (these bacteria is highly considered in food processing). According to this hypothesis, ZnO-NPs toxicity is referred to the solubility of Zn<sup>2+</sup> in the medium including the bacteria. Therefore, solubilized low concentrations Zn<sup>2+</sup> can induce a comparatively high tolerance in bacteria. Reddy et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 50" title="K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 213902 (2007). doi:
 10.1063/1.2742324
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR50" id="ref-link-section-d36426609e3427">50</a>] treated <i>E. coli</i> with a low concentration (1 mM) of solubilized Zn<sup>2+</sup>. On contrast, Sawai [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 48" title="J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 54(2), 177–182 (2003). doi:
 10.1016/S0167-7012(03)00037-X
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR48" id="ref-link-section-d36426609e3435">48</a>] and Jiang et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 121" title="W. Jiang, H. Mashayekhi, B. Xing, Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 157(5), 1619–1625 (2009). doi:
 10.1016/j.envpol.2008.12.025
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR121" id="ref-link-section-d36426609e3438">121</a>] described the contribution of Zn<sup>2+</sup> to the antimicrobial efficacy of ZnO-NPs as minor due to the low concentrations of solubilized Zn species released from ZnO dissolution. The aforementioned studies reported the mechanism as predominant. So the dissolution phenomenon is somewhat under debate, although it has been adopted and accepted. Additionally, Zn<sup>2+</sup> release would be limited by an inherent ZnO property, mentioned earlier ZnO stability in water. The insolubility of ZnO impedes the distribution of zinc ions into the medium and thus limits this antimicrobial effect [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 118" title="B. Aydin Sevinç, L. Hanley, Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. B 94(1), 22–31 (2010). doi:
 10.1002/jbm.b.31620
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR118" id="ref-link-section-d36426609e3446">118</a>], unless ZnO capped or stabilized. The physicochemical properties of ZnO-NPs and dissolved zinc species depend upon the medium components. Though, Pasquet et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 122" title="J. Pasquet, Y. Chevalier, J. Pelletier, E. Couval, D. Bouvier, M.-A. Bolzinger, The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A 457, 263–274 (2014). doi:
 10.1016/j.colsurfa.2014.05.057
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR122" id="ref-link-section-d36426609e3449">122</a>] summarized that Zn<sup>2+</sup> release mechanism affected by two main parameters: (i) the physicochemical properties of the particles including porosity, concentration, particle size, and morphology. (ii) The chemistry of the media: the pH, UV illumination, exposure time, and existence of other elements. However, the influence of these parameters is not entirely elucidated. Peng et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 87" title="X. Peng, S. Palma, N.S. Fisher, S.S. Wong, Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat. Toxicol. 102(3), 186–196 (2011). doi:
 10.1016/j.aquatox.2011.01.014
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR87" id="ref-link-section-d36426609e3454">87</a>] observed the morphology-dependent release of Zn<sup>2+</sup> ions on spherical structures that had the highest increase in the release of Zn<sup>2+</sup> ions than rod structures. It was elucidated on the fact that smaller surface curvature of sphere causes high equilibrium solubility. Also, Wang et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 123" title="X. Wang, H.-F. Wu, Q. Kuang, R.-B. Huang, Z.-X. Xie, L.-S. Zheng, Shape-dependent antibacterial activities of Ag2O polyhedral particles. Langmuir 26(4), 2774–2778 (2009). doi:
 10.1021/la9028172
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR123" id="ref-link-section-d36426609e3462">123</a>] studied the morphology-dependent dissolution of metal ions. Leung et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 85" title="Y. Leung, C. Chan, A. Ng, H. Chan, M. Chiang, A. Djurišić, Y. Ng, W. Jim, M. Guo, F. Leung, Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnology 23(47), 475703 (2012). doi:
 10.1088/0957-4484/23/47/475703
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR85" id="ref-link-section-d36426609e3465">85</a>] proposed that the most probable mechanisms can be influenced by surface modifications because both the liberation of Zn<sup>2+</sup> ions and ROS creation occur on NPs surface. Moreover, the surface properties affect the reactions on the bacterial cell walls. In this regards, characterizations techniques assist in recognizing the mechanisms such as SEM, XRD, TEM, and ESI. For example, ESI is used to investigate the elemental distribution of ZnO particle surfaces. In our study [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 83" title="L.C. Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni, R.A. Rahman, Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram. Int. 40(2), 2993–3001 (2014). doi:
 10.1016/j.ceramint.2013.10.008
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR83" id="ref-link-section-d36426609e3470">83</a>], where ESI elemental mapping results showed a higher O:Zn ratio on the surface of ZnO-rod structure but lower O:Zn ratio on ZnO-plates surfaces. Therefore, ZnO-rod tends to have relatively higher O:Zn ratio than other ZnO-structures, i.e., higher amounts of oxygen atoms on rod surface, which generates ROS causing intense oxidative stress toward the bacteria. Currently, it was found that Zn<sup>2+</sup> of ZnO is capable to interact with protein and has a potential effect to HSV-1 pathogenesis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 109" title="S. Dwivedi, R. Wahab, F. Khan, Y.K. Mishra, J. Musarrat, A.A. Al-Khedhairy, Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9(11), e111289 (2014). doi:
 10.1371/journal.pone.0111289
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR109" id="ref-link-section-d36426609e3476">109</a>].</p><h3 class="c-article__sub-heading" id="Sec16"><span class="c-article-section__title-number">5.3 </span>Different Probable Mechanisms</h3><p>Further suggestions for the bactericide achievement are the inhibition of energy metabolism, once NPs have internalized bacteria. ZnO-NPs are bactericidal and thus disrupt membrane causing membrane dysfunction, resulting in their internalization into the bacteria (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig5">5</a>a). ZnO internalization is controlled by the particle size, surface chemistry, defects, and functionalization. Compared with cells exposed to Ag-NPs and ions, the cell energy is reduced due to the decline in the adenosine triphosphate levels and the essential energy molecule, and destabilization of the outer membrane was followed [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="B. Ashe, A Detail investigation to observe the effect of zinc oxide and Silver nanoparticles in biological system, M.Sc. (Roll NO-607bm004), National Institute of Technology, 2011" href="/article/10.1007/s40820-015-0040-x#ref-CR4" id="ref-link-section-d36426609e3490">4</a>]. The effect of the pH value of the reaction medium in the antibacterial activity mechanism has been considered. A value in the neutral region (pH 7.5) was assumed to have no effect on the antibacterial activity in absence of light [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 124" title="O. Yamamoto, M. Komatsu, J. Sawai, Z.-E. Nakagawa, Effect of lattice constant of zinc oxide on antibacterial characteristics. J. Mater. Sci. Mater. Med. 15(8), 847–851 (2004). doi:
 10.1023/B:JMSM.0000036271.35440.36
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR124" id="ref-link-section-d36426609e3493">124</a>]. Meanwhile Sawai et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, H. Kojima, Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86(5), 521–522 (1998). doi:
 10.1016/S0922-338X(98)80165-7
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR60" id="ref-link-section-d36426609e3496">60</a>] found that the activity could not be detected for pH in range of 5.5–8.0. While Stanković et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 125" title="L.V. Ana Stanković, S. Marković, S. Dimitrijević, S.D. Škapin, D. Uskoković, Morphology Controlled hydrothermal synthesis of ZnO particles and examination of their antibacterial properties on Escherichia coli and Staphylococcus aureus bacterial cultures, in Tenth Young Researchers’ Conference—Materials Science and Engineering, Belgrade, Serbia, 21–23 December 2011 (Institute of Technical Sciences of SASA, Belgrade, 2011), p. 62" href="/article/10.1007/s40820-015-0040-x#ref-CR125" id="ref-link-section-d36426609e3499">125</a>] varied the pH value of the starting reaction solution from 8 to 12 that enabled in changing the morphology from micro-rods to nano-spheres, resulting in an efficient bacteriostatic activity.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Fig. 5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/5" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig5_HTML.gif?as=webp"><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig5_HTML.gif" alt="figure 5" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p> <b>a</b> NPs internalization into the cell and translocation. NPs penetrate through holes, pits or protrusions in the cell wall. <b>b</b> Schematic representation of collapsed cell showing disruption of cell wall and extrusion of cytoplasmic contents. <b>c</b> Bacterial cell showing important variations in envelope composition (slight invaginations and thickening of cell wall) and extrusion of cytoplasm. <b>d</b> Probable mechanisms, involves the following: metal ions uptake into cells, intracellular depletion, and disruption of DNA replication, releasing metallic ions and ROS generation and accumulation and dissolution of NPs in the bacterial membrane. Reused from Díaz-Visurraga et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 128" title="J. Díaz-Visurraga, C. Gutiérrez, C. Von Plessing, A. García, in Science and Technology Against Microbial Pathogens Communicating Current Research and Technological Advances: Metal Nanostructures as Antibacterial Agents, ed. by A. Méndez-Vilas (Formatex, Badajoz, 2011), pp. 210–218" href="/article/10.1007/s40820-015-0040-x#ref-CR128" id="ref-link-section-d36426609e3525">128</a>]</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>There is a strong trend that considers two mechanisms underlying the interaction of NPs with bacteria, to be mainly concerned [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:
 10.1371/journal.pone.0085981
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR13" id="ref-link-section-d36426609e3540">13</a>]: (i) excessive ROS generation, mostly hydroxyl radicals (HO<sup>•</sup>) and singlet oxygen (<sup>1</sup>O<sub>2</sub>) [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, H. Kojima, Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86(5), 521–522 (1998). doi:
 10.1016/S0922-338X(98)80165-7
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR60" id="ref-link-section-d36426609e3549">60</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="H. Yang, C. Liu, D. Yang, H. Zhang, Z. Xi, Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol. 29(1), 69–78 (2009). doi:
 10.1002/jat.1385
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR80" id="ref-link-section-d36426609e3553">80</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 126" title="V. Berry, A. Gole, S. Kundu, C.J. Murphy, R.F. Saraf, Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. J. Am. Chem. Soc. 127(50), 17600–17601 (2005). doi:
 10.1021/ja056428l
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR126" id="ref-link-section-d36426609e3556">126</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 127" title="A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. Gedanken, R. Lubart, EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C 113(36), 15997–16001 (2009). doi:
 10.1021/jp904864g
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR127" id="ref-link-section-d36426609e3559">127</a>], and (ii) NPs precipitation on the bacterial exterior; or NPs gather in the cytoplasmic area or in the periplasm space, thus, disrupt the cellular activities, resulting in membranes disturbance and disorder [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870 (2006). doi:
 10.1021/nl052326h
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR7" id="ref-link-section-d36426609e3562">7</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007). doi:
 10.1007/s11051-006-9150-1
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR40" id="ref-link-section-d36426609e3565">40</a>]. In this way, Zhang et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci. 18(8), 939–944 (2008). doi:
 10.1016/j.pnsc.2008.01.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR62" id="ref-link-section-d36426609e3568">62</a>] referred some of the effect to a direct liaison between NPs and the membrane as well as to ROS generation nearby bacteria membrane. Zhang et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci. 18(8), 939–944 (2008). doi:
 10.1016/j.pnsc.2008.01.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR62" id="ref-link-section-d36426609e3572">62</a>] suggested a creation of electrostatic forces when <i>E. coli</i> treated with ZnO. Stoimenov et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 100" title="P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17), 6679–6686 (2002). doi:
 10.1021/la0202374
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR100" id="ref-link-section-d36426609e3578">100</a>] also proposed this electrostatic interaction between NPs and bacteria cell surface as a cause of growth inhibition, and that the total bacterial charge is negative, because of the excessive formation of separated carboxyl groups. Thus, the cell surface is negatively charged, interestingly, ZnO-NPs contain a positive charge in a water suspension [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci. 18(8), 939–944 (2008). doi:
 10.1016/j.pnsc.2008.01.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR62" id="ref-link-section-d36426609e3581">62</a>]. Such reverse charges enhance the total effect by creating electrostatic forces, which serve as a powerful bond between NPs and bacterial surface. As a result, the cell membrane is damaged. Additionally, Brayner et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870 (2006). doi:
 10.1021/nl052326h
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR7" id="ref-link-section-d36426609e3584">7</a>] observed that the interaction between <i>E. coli</i> and ZnO-NPs yields cell wall disorganization followed by internalization of NPs into the cells. They recognized a substantial damage to <i>E. coli</i> with disorganized cell walls by SEM images which showed the changed morphology, a consequence of intracellular content leakage. Also, the images showed ZnO-NPs both inside and outside the cell bordered probably by lipopolysaccharides released of bacteria. They explained the capability of ZnO-NPs to reduce the bacteria growth. It was attributed to membrane disruption and raises its permeability, which in turn causes the gathering of ZnO-NPs inside the membrane and then reaches the cytoplasm. These results are similar to those obtained by Díaz-Visurraga et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 128" title="J. Díaz-Visurraga, C. Gutiérrez, C. Von Plessing, A. García, in Science and Technology Against Microbial Pathogens Communicating Current Research and Technological Advances: Metal Nanostructures as Antibacterial Agents, ed. by A. Méndez-Vilas (Formatex, Badajoz, 2011), pp. 210–218" href="/article/10.1007/s40820-015-0040-x#ref-CR128" id="ref-link-section-d36426609e3594">128</a>] shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig5">5</a>a–c. An identical finding showed the attachment of ZnO-NPs to outer cell wall and passing in the inner wall, causing disruption of the membrane and consequent disorder and leakage [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="R. Wahab, Y.-S. Kim, A. Mishra, S.-I. Yun, H.-S. Shin, Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res. Lett. 5(10), 1675–1681 (2010). doi:
 10.1007/s11671-010-9694-y
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR46" id="ref-link-section-d36426609e3600">46</a>]. In a similar manner, Xie et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 91" title="Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011). doi:
 10.1128/AEM.02149-10
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR91" id="ref-link-section-d36426609e3603">91</a>] found that the action of ZnO-NPs on <i>C. jejuni</i> has stimulated morphology disorder, intracellular components outflow, and considerable release in gene expression of oxidative stress of <i>C. jejuni</i>. In addition to the aforementioned mechanisms, ZnO-NPs have abrasive surface texture which influences the antibacterial mechanism, which in sequence destroys the bacterial membrane [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e3613">12</a>]. The abrasive property of ZnO has been recognized and referred to its surface defects [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 100" title="P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17), 6679–6686 (2002). doi:
 10.1021/la0202374
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR100" id="ref-link-section-d36426609e3616">100</a>]. These defects such as corners, edges, and chemistry defects have a major impact on the antibacterial activity in the mechanical damage on cell wall. Surface defects play an important role; Ramani et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 129" title="M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, From zinc oxide nanoparticles to microflowers: a study of growth kinetics and biocidal activity. Mater. Sci. Eng. C 32(8), 2381–2389 (2012). doi:
 10.1016/j.msec.2012.07.011
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR129" id="ref-link-section-d36426609e3619">129</a>] reported that ZnO nanostructures antibacterial activity is surface-dependent defect which in sequence are shape dependent. Although the detailed mechanism of ZnO antibacterial activity is under discussion, a three most widely accepted, and reported hypothetical mechanisms in the literature [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 128" title="J. Díaz-Visurraga, C. Gutiérrez, C. Von Plessing, A. García, in Science and Technology Against Microbial Pathogens Communicating Current Research and Technological Advances: Metal Nanostructures as Antibacterial Agents, ed. by A. Méndez-Vilas (Formatex, Badajoz, 2011), pp. 210–218" href="/article/10.1007/s40820-015-0040-x#ref-CR128" id="ref-link-section-d36426609e3622">128</a>] are: (i) metal ions uptake (translocation and particle internalization) into cells followed by depletion of intracellular ATP production and disruption of DNA replication [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 130" title="C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, C.-M. Che, Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5(4), 916–924 (2006). doi:
 10.1021/pr0504079
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR130" id="ref-link-section-d36426609e3625">130</a>], (ii) ROS generation from NPs metal oxides and ions with subsequent oxidative damage to cellular structures [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 131" title="H. Meruvu, M. Vangalapati, S.C. Chippada, S.R. Bammidi, Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. J. Rasayan Chem. 4(1), 217–222 (2011)" href="/article/10.1007/s40820-015-0040-x#ref-CR131" id="ref-link-section-d36426609e3629">131</a>], and (iii) changes in bacterial membrane permeability (progressive release of lipopolysaccharides, membrane proteins, and intracellular factors) and dissipation of the proton motive force as a result of accumulation and dissolution of NPs in the membrane [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 132" title="N.A. Amro, L.P. Kotra, K. Wadu-Mesthrige, A. Bulychev, S. Mobashery, G.-Y. Liu, High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16(6), 2789–2796 (2000). doi:
 10.1021/la991013x
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR132" id="ref-link-section-d36426609e3632">132</a>]. These mechanisms were illustrated in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig5">5</a>a, b, d along with other predicted ones previously mentioned.</p></div></div></section><section data-title="A Study of ZnO-NPs Antibacterial Response to E. coli
 "><div class="c-article-section" id="Sec17-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec17"><span class="c-article-section__title-number">6 </span>A Study of ZnO-NPs Antibacterial Response to <i>E. coli</i> </h2><div class="c-article-section__content" id="Sec17-content"><p>We present here briefly one study in which we used ZnO-NPs (80 nm) produced via French process [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="S. Mahmud, One-dimensional growth of zinc oxide nanostructures from large micro-particles in a highly rapid synthesis. J. Alloys Compd. 509(9), 4035–4040 (2011). doi:
 10.1016/j.jallcom.2011.01.013
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR28" id="ref-link-section-d36426609e3652">28</a>] of high purity (>99.97 %). A stock solution was prepared in ddH<sub>2</sub>O, and vigorously vortexed (3 min) and subjected to high ultrasonication (30 min) prior to addition to culture mixture, and diluted to concentrations 1–4 mM. Two samples were used to treat <i>E. coli</i> (ATCC 25922), ZnO-AP (as purchased), and ZnO–O<sub>2</sub> (oxygen annealed). ZnO powder was annealed at 700 °C in an annealing tube furnace (model Lenton) under oxygen ambient for 1 h. The gas flow was regulated at 2.4 L min<sup>−1</sup>. Bacteria and ZnO mixture were prepared in 96-well plate including control and incubating in 5 %, CO<sub>2</sub>, 37 °C incubator chamber, as described below.</p><p>Bacterial culture conditions for the antibacterial tests were conducted. <i>E. coli</i> was freshly prepared, grown in NA broth, and incubated for 24 h at 37 °C, and then supplemented with four concentrations of ZnO-NPs suspensions to study the bacterial growth rate. Then the inoculum preparation and inoculation was carried by preparing standardized inoculums of <i>E. coli</i> containing approximately 5 × 10<sup>5</sup> CFU mL<sup>−1</sup>. This was accomplished by diluting the 0.5 McFarland suspension 1:150, resulting in a tube containing approximately 1 × 10<sup>6</sup> CFU mL<sup>−1</sup>. Within 15 min after the inoculum has been standardized as described above, a 150 µL of the adjusted inoculums was added into the 96-well microplate containing 150 µL ZnO in the dilution series, and triplicated for each concentration. The controls, positive control (ZnO and TSB), and negative control (bacteria and TSB) were prepared for each set of experiment. All types of serial concentration of ZnO were mixed with relevant bacteria. This resulted in a 1:2 dilution of each ZnO concentration and a 1:2 dilution of the inoculums 5 × 10<sup>5</sup> CFU mL<sup>−1</sup>.</p><p>Then the mixture in the 96-well plate were exposed to UVA light (390 nm, 1.8 mW cm<sup>−2</sup>) for 20 min, and consequently OD measurements were held hourly up to 8 h, and then after 24 h to determine the percentage growth inhibition. Additionally, cells were fixed to be viewed by FESEM to observe the bacterial morphological changes after treated with ZnO-NPs. Cells were mounted on specimen stub using a double-sided carbon tape and coated with platinum.</p><p>The percentage inhibition (after 24 h incubation) was calculated from the OD readings as follows.</p><p>Results were displayed in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig6">6</a>, it was observed that higher concentration of ZnO caused higher bacterial inhibition. Moreover, the UV illumination increased the percentage inhibition of bacteria (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig6">6</a>e, f). As it is known that ZnO absorbs UV light, it has an excellent photocatalytic property, thus it is believed that UV stimulated the ZnO in the mixture to release electrons, which leads to produce more oxygen within the mixture. This phenomenon induced the generation of ROS from ZnO surface, as described earlier. ZnO–O<sub>2</sub> had exhibited the highest growth inhibition capability toward <i>E. coli</i> than ZnO-AP. This was most likely attributed to the higher surface defects induced by annealing. The oxygen annealing stimulated a high level of oxygen atoms to be absorbed onto the surface of ZnO, which was revealed by the EDS spectrum (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig6">6</a>a). Additionally, the release of electrons was believed to interact with the bacteria where the electron discharges the bacteria membrane halting the bacterial growth.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Fig. 6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig6_HTML.gif?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs40820-015-0040-x/MediaObjects/40820_2015_40_Fig6_HTML.gif" alt="figure 6" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p> <b>a</b> EDS spectrum of <i>E. coli</i> in ZnO mixture, <b>b</b> FESEM micrographs of <i>E. coli</i> exposed to ZnO, <i>arrows</i> show ZnO particles on the bacteria surface, <b>c</b> untreated bacteria cells, <b>d</b> <i>E. coli</i> treated with ZnO, and <b>e</b>, <b>f</b> percentage inhibition of <i>E. coli</i> treated with ZnO-AP and ZnO–O<sub>2</sub> at different concentrations with and without UVA illumination, respectively (experiment was done by authors of this manuscript, triplicated)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s40820-015-0040-x/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>The FESEM images (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s40820-015-0040-x#Fig6">6</a>b–d) show ZnO-NPs on the bacteria surfaces, which probably inhibited the growth due to the generated ROS into the mixture of ZnO with <i>E. coli</i>, which was enhanced by the UV exposure and also the annealing process causing oxygen absorption on the surface of ZnO samples. The high amount of oxygen on the surface induced ROS release in ZnO suspension. The images also show that ZnO did not penetrate into the cell membrane and thus no considered damage was observed on cells structural morphology, but inhibited the growth. This might be probably suggested that the size of the particles did not allow their penetration into the cell wall and membrane. Our results of this experiment were in agreement with some studies [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, P. Nancarrow, ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. 121(1), 198–201 (2010). doi:
 10.1016/j.matchemphys.2010.01.020
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR9" id="ref-link-section-d36426609e3780">9</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:
 10.1088/1468-6996/9/3/035004
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR12" id="ref-link-section-d36426609e3783">12</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:
 10.1371/journal.pone.0085981
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR13" id="ref-link-section-d36426609e3786">13</a>], which showed that enhanced ZnO antibacterial response is referred to the increased ROS production under UV light. And also with Zhang et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci. 18(8), 939–944 (2008). doi:
 10.1016/j.pnsc.2008.01.026
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR62" id="ref-link-section-d36426609e3790">62</a>] who referred some of the effect to a direct contact between NPs and the bacteria besides ROS generation nearby bacteria membrane.</p></div></div></section><section data-title="ZnO-NP as an Antibacterial Agent in Food"><div class="c-article-section" id="Sec18-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec18"><span class="c-article-section__title-number">7 </span>ZnO-NP as an Antibacterial Agent in Food</h2><div class="c-article-section__content" id="Sec18-content"><p>Research on ZnO-NPs as antibacterial agent has become interdisciplinary linking physicists, biologists, chemists, and medicine, hence it is the wide spread of their applications. One of these essential applications is in food industry; as an antibacterial agent in food packaging and towards foodborne pathogen. Nanomaterials possess great concern in food technology for their high reactivity, enhanced bioavailability and bioactivity, and have creative surface possessions [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 133" title="M.L.M. Francisco Javier Gutiérrez, P. Gatón, R. Rojo, in Scientific, Health and Social Aspects of the Food Industry: Nanotechnology and Food Industry, ed. by B. Valdez (InTech Europe, Rijeka, 2012), pp. 95–128. doi:
 10.5772/1869
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR133" id="ref-link-section-d36426609e3801">133</a>]. Some of the main benefits of using NPs in food nanotechnology are the addition of NPs onto food surfaces to inhibit bacterial growth, also using of NPs as intelligent packaging materials and for nano-sensing [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 134" title="Q. Chaudhry, L. Castle, Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci. Technol. 22(11), 595–603 (2011). doi:
 10.1016/j.tifs.2011.01.001
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR134" id="ref-link-section-d36426609e3804">134</a>]. Among these NPs, ZnO-NPs developed as a successful candidate in the food industry [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 71" title="P.J.P. Espitia, N.d.F.F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5(5), 1447–1464 (2012). doi:
 10.1007/s11947-012-0797-6
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR71" id="ref-link-section-d36426609e3807">71</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 135" title="C. Silvestre, D. Duraccio, S. Cimmino, Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36(12), 1766–1782 (2011). doi:
 10.1016/j.progpolymsci.2011.02.003
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR135" id="ref-link-section-d36426609e3810">135</a>]. The antibacterial influence of ZnO-NPs against foodborne pathogens stimulates proficient applications in food packaging, and can be introduced in food nanotechnology. Duncan [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 136" title="T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363(1), 1–24 (2011). doi:
 10.1016/j.jcis.2011.07.017
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR136" id="ref-link-section-d36426609e3813">136</a>] reported about recent applications of antimicrobial NPs on food, to achieve high barrier packaging materials, and nano-sensors using NPs to trace food-relevant analytes such as foodborne pathogens. Generally, food industry witnessed revolution by the implementation of nanotechnology.</p><h3 class="c-article__sub-heading" id="Sec19"><span class="c-article-section__title-number">7.1 </span>Food Pathogens</h3><p>Recently, the need for novel technologies to control foodborne pathogens is increasing, due to the alarming increase in fatalities and hospitalization worldwide. Foodborne illnesses are an increasing major health problem in both developing and developed countries. Each year, 1 million people in the UK acquire foodborne illness, 20,000 people undergo hospitalization, and 500 deaths. As announced by the<i> Food Standards Agency</i>, which is a program for the reduction of food-borne diseases in the UK. The spread of foodborne diseases can result in many social problems such as poverty, health problems, and even economic issues. Moreover, in recent years, the pathogenic bacteria have exhibited antimicrobial resistance, and this emerged as hot subject of discussion among researchers in this field. Some most common bacterial foodborne pathogens are <i>C. jejuni</i>, <i>C. perfringens</i> (is the cafeteria germ), <i>Salmonella</i> spp., and <i>E. coli</i> O157:H7. Several studies were conducted to determine the interaction of ZnO-NPs with foodborne pathogens, since ZnO-NPs are listed as being safe (US FDA). Studies showed that ZnO-NPs can inhibit and kill common as well as major foodborne pathogens. The bactericidal activity of ZnO-NPs (8–10 nm size) against <i>E. coli</i> DH5α and <i>S. aureus</i> was examined and found to be effective at 80 and 100 µg mL<sup>−1</sup>. These concentrations disrupted the cell membrane causing cytoplasmic leakage [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 137" title="P. Kaur, R. Thakur, S. Kumar, N. Dilbaghi, Interaction of ZnO nanoparticles with food borne pathogens Escherichia coli DH5α and Staphylococcus aureus 5021 and their bactericidal efficacy, in International Conference on Advances in Condensed and Nano Materials (ICACNM-2011): AIP Proceedings, Chandigarh, India, 23–26 February 2011 (2011), p. 153. doi:
 10.1063/1.3653655
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR137" id="ref-link-section-d36426609e3847">137</a>]. Narayanan et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 138" title="P. Narayanan, W.S. Wilson, A.T. Abraham, M. Sevanan, Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens. BioNanoScience 2(4), 329–335 (2012). doi:
 10.1007/s12668-012-0061-6
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR138" id="ref-link-section-d36426609e3850">138</a>] tested the antibacterial activity of ZnO-NPs against some human pathogens such as <i>P. aeruginosa</i>, <i>E. coli</i>, <i>S. aureus</i>, and <i>E. faecalis</i>. They emerged with the result that ZnO-NPs have strong antibacterial activity toward these human pathogens. Likewise, the antimicrobial activity of ZnO-NPs was studied [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 139" title="K. Chitra, G. Annadurai, Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen. Int. Food Res. J. 20(1), 59–64 (2013)" href="/article/10.1007/s40820-015-0040-x#ref-CR139" id="ref-link-section-d36426609e3866">139</a>] toward <i>P. aeruginosa</i> and <i>E. coli</i> which were isolated from mint leaf extract and frozen ice cream, and ZnO was prepared using wet chemical method, yielding spherical morphology with smooth surface, of concentrations 20, 50, and 100 μL. Both bacteria showed decreased growth rate at the highest concentration 100 μL, and they explained the growth inhibition as a result of cell membrane damage through penetration of ZnO-NPs. They concluded that ZnO-NPs synthesized by wet chemical method are potential antibacterial agents in food preservation and packaging.</p><h3 class="c-article__sub-heading" id="Sec20"><span class="c-article-section__title-number">7.2 </span>Food Packaging Applications</h3><p>Protection of food from microbial pollution is one of the main purposes in food packaging [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="B. Yalcin, S. Otles, Intelligent food packaging, 
 http://www.logforum.net/vol4/issue4/no3
 
 . Accessed 13 Feb 2008" href="/article/10.1007/s40820-015-0040-x#ref-CR140" id="ref-link-section-d36426609e3883">140</a>]. The emergence of nanotechnology assisted to present novel food packaging materials with antimicrobial properties and with novel nano-sensors to trace and monitor the food [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 135" title="C. Silvestre, D. Duraccio, S. Cimmino, Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36(12), 1766–1782 (2011). doi:
 10.1016/j.progpolymsci.2011.02.003
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR135" id="ref-link-section-d36426609e3886">135</a>]. Several studies have addressed the antibacterial properties and potential applications of ZnO-NPs in food processing. For example, ZnO has been included into a number of food linings in packaging to avoid spoilage plus it maintains colors. ZnO-NPs provide antimicrobial activity for food packaging. Once they are introduced in a polymeric matrix, it permits interaction of food with the packaging possessing functional part in the conservation. Other benefits also are achieved such as the barrier properties, constancy, and mechanical capability [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 71" title="P.J.P. Espitia, N.d.F.F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5(5), 1447–1464 (2012). doi:
 10.1007/s11947-012-0797-6
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR71" id="ref-link-section-d36426609e3889">71</a>]. The use of polymer nanotechnology in packaging was introduced by Silvestre et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 135" title="C. Silvestre, D. Duraccio, S. Cimmino, Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36(12), 1766–1782 (2011). doi:
 10.1016/j.progpolymsci.2011.02.003
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR135" id="ref-link-section-d36426609e3892">135</a>] to achieve novel way of packaging that mainly meet the requirements of protection against bacteria. These new materials with improved antimicrobial properties permit also tracking of food during storage and transfer.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec21"><span class="c-article-section__title-number">7.2.1 </span>Active Packaging</h4><p>Recently, active food packaging systems as an emergent approach in food packaging have replaced the conventional packaging systems to achieve effective performance. The conventional approach uses a passive barrier to protect food against the surrounding atmosphere [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 141" title="H. de Azeredo, Antimicrobial nanostructures in food packaging. Trends Food Sci. Technol. 30(1), 56–69 (2013). doi:
 10.1016/j.tifs.2012.11.006
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR141" id="ref-link-section-d36426609e3902">141</a>]. While, active packaging create an effective antimicrobial action on food, and saves the inert products from the environmental factors. The liberation of the NPs, which acts as bacteriostatic or bactericidal agents onto the food surface where bacteria reside, halts the growth and thus prevents food from spoilage [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 141" title="H. de Azeredo, Antimicrobial nanostructures in food packaging. Trends Food Sci. Technol. 30(1), 56–69 (2013). doi:
 10.1016/j.tifs.2012.11.006
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR141" id="ref-link-section-d36426609e3905">141</a>]. This type of active packaging is also called <i>antimicrobial packaging</i>, where direct interaction occurs between the product and the NPs leading to the killing or inhibition of bacterial growth on food surfaces [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 142" title="N. Soares, C.A.S. Silva, P. Santiago-Silva, P.J.P Espitia, M.P.J.C. Gonçalves, M.J.G. Lopez, J. Miltz, M.A. Cerqueira, A.A. Vicente, J. Teixeira, in Engineering Aspects of Milk and Dairy Products: Active and Intelligent Packaging for Milk and Milk Products, ed. by J.A.T. Jane Selia dos Reis Coimbra (CRC Press, 2009), pp. 155–174. doi:
 10.1201/9781420090390-c8
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR142" id="ref-link-section-d36426609e3911">142</a>]. Accordingly, direct addition of highly concentrated antibacterial to a packed food is not recommended. The inclusion of antibacterial agents assists either bacteriostatic or bactericidal materials to gradually diffuse into the food matrix. Hence, reducing the possibility of pathogen contamination and thus a safe product with an extended shelf life was obtained. Ahvenainen [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 143" title="R. Ahvenainen (ed.), Novel Food Packaging Techniques (CRC Press, Boca Raton, 2003)" href="/article/10.1007/s40820-015-0040-x#ref-CR143" id="ref-link-section-d36426609e3914">143</a>] stated that active packaging satisfies the consumer demand as it enhances safety, with more natural products of extended life time. The packaging materials are firstly characterized before incorporating with ZnO-NPs by microscopic and spectroscopic techniques. In XRD, a scattered intensity of X-ray beam on the sample provides information about the studied material such as chemical composition, crystallographic structure, and physical properties. Also, images of the NPs interacted with the packaging materials can be obtained by SEM and TEM. Besides, FTIR is used to reveal the chemical changes after NP incorporation.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec22"><span class="c-article-section__title-number">7.2.2 </span>Intelligent Packaging and Smart Packaging</h4><p>Intelligent packaging has intelligent functions, such as sensing, detecting, tracing, recording, and communicating [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="B. Yalcin, S. Otles, Intelligent food packaging, 
 http://www.logforum.net/vol4/issue4/no3
 
 . Accessed 13 Feb 2008" href="/article/10.1007/s40820-015-0040-x#ref-CR140" id="ref-link-section-d36426609e3925">140</a>]. This system utilizes a number of indicators for monitoring the food quality in terms of microbial growth as well as temperature and packing integrity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 144" title="N.D. Kruijf, M.V. Beest, R. Rijk, T. Sipiläinen-Malm, P.P. Losada, B.D. Meulenaer, Active and intelligent packaging: applications and regulatory aspects. Food Addit. Contam. 19(S1), 144–162 (2002). doi:
 10.1080/02652030110072722
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR144" id="ref-link-section-d36426609e3928">144</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 145" title="K.L. Yam, P.T. Takhistov, J. Miltz, Intelligent packaging: concepts and applications. J. Food Sci. 70(1), R1–R10 (2005). doi:
 10.1111/j.1365-2621.2005.tb09052.x
 
 
 " href="/article/10.1007/s40820-015-0040-x#ref-CR145" id="ref-link-section-d36426609e3931">145</a>], whereas smart packaging possesses the susceptibilities of intelligent and active packaging.</p></div></div></section><section data-title="Conclusions and Future Perspective"><div class="c-article-section" id="Sec23-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec23"><span class="c-article-section__title-number">8 </span>Conclusions and Future Perspective</h2><div class="c-article-section__content" id="Sec23-content"><p>This current review aimed to discuss and analyze research works that addressed the potential use of ZnO-NPs for antibacterial activity. Extensive discussion was centered on the antibacterial activity of ZnO-NPs coupled with a number of influenced factors impacting the activity. Mainly, by improving factors like UV illumination, ZnO particle size, concentration, morphology, and surface modification, powerful antibacterial results would be obtained. These factors influence a variety of toxicity mechanisms. Special focus was given to mechanisms of action which come as the hottest issue in the antibacterial activity. The induction of intracellular ROS generation can cause death and have been considered as a major ability of ZnO-NPs. Release of Zn<sup>2+</sup> ions and adhesion on the cell membrane cause mechanical damage to the cell wall. Additionally, a brief presentation of a study conducted by authors of this review was explored. Finally, a concise discussion was given to one vital application as antimicrobial agent on food.</p><p>The importance and significance of ZnO-NPs in various areas has developed global interest to study their antibacterial activity. The documented antibacterial actions of ZnO-NPs have stimulated a considerable range of antimicrobial applications. ZnO-NPs possess unique properties and excellent stability with long life compared with organic-based disinfectants that stimulated its use as antibacterial agent. The large surface area-to-volume ratio allows their use as novel antimicrobial agents, which are coming up as recent concern for researchers.</p><p>A goal of this review is to set a well-built reference for scientists interested in antibacterial activities along with their functional applications by considering nanotechnology principles as it relates to the nanobiological toxicity of ZnO-NPs. The noble properties and attractive characteristics of ZnO-NPs confer significant toxicity to organisms, which have made ZnO-NPs successful candidate among other metal oxides. Other specific properties are predicted to expand ZnO-NPs applications in several areas, particularly in catalysis and biomedicine. A number of significant breakthroughs have emerged in the areas of antimicrobial applications, as in the food industry.</p><p>This survey revealed the sensitivity of ZnO-NPs toward characteristic microorganisms that are of threatening concern. Based on the toxicity mechanism of ZnO-NPs, this review concludes that the toxicity differs from one study to another according to the test conditions, further mechanisms and researches are currently being investigated. Additional research is required to investigate the exact toxicity mechanisms to deeply elucidate the sensitivity of bacteria to ZnO-NPs, as the results to date are quite promising. However, this will necessitates further researches to adequately scrutinize the NPs properties. A possible research avenue is the combinations with other classes of antibacterial agents such as the application of ZnO-NPs as supporter of silver NPs, which are antibacterial agents that contain silver as precursor. This topic is regarded as a powerful application forecast and marketable significance.</p><p>More emphasis should be given to the correlation between ZnO-NPs structural, optical, electrical, chemical properties, and their bacterial toxicity. ZnO-NPs can act as smart weapon toward multidrug-resistant microorganisms and a talented substitute approach to antibiotics. The toxicological influence of ZnO-NPs should be evaluated to determine the consequences of using these NPs in food safety. It is anticipated that this review may be able to enhance further research into novel methodological characterization and clinical correlations in this topic. Meanwhile, solutions would be suggested to consequences of health-related problems by addressing this complex through research and scientific reports.</p></div></div></section> </div> <section data-title="Abbreviations"><div class="c-article-section" id="abbreviations-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="abbreviations">Abbreviations</h2><div class="c-article-section__content" id="abbreviations-content"><dl class="c-abbreviation_list"><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>ROS:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Reactive oxygen species</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>MIC:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>The minimum inhibitory concentration</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>MBC:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Minimum bactericidal concentration</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>XRD:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>X-ray diffraction</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>FESEM:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Field emission scanning electron microscope</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>TEM:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Transmission electron microscope</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>EDX:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Energy dispersive X-ray spectroscopy</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>ESI:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Electron spectroscopy imaging, by energy-filtered transmission electron microscopy (EFTEM)</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>IV:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Current–voltage measurement</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>ATCC:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>American Association of Textile Chemists and Colorists</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>NA:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Nutrient agar</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>LB:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Luria–Bertani broth</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>TSB:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Trypticase soy broth</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>TSA:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Tryptic soy agar</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>BA:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Blood agar</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>CFU:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Colony forming unit</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>PEG:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Polyethylene glycol</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>PVP:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Polyvinylpyrrolidone</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>PGA:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>Poly(α, γ, <span class="u-small-caps">l</span>-glutamic acid)</p> </dd></dl></div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">S. Sahoo, Socio-ethical issues and nanotechnology development: perspectives from India, in <i>2010 10th IEEE Conference on Nanotechnology</i> (<i>IEEE-NANO</i>), Seoul, South Korea, USA, 17–20 August 2010 (IEEE, 2010), pp. 1205–1210. doi:<a href="https://doi.org/10.1109/NANO.2010.5697887" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/NANO.2010.5697887">10.1109/NANO.2010.5697887</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">V. Yadav, Nanotechnology, big things from a tiny world: a review. AEEE <b>3</b>(6), 771–778 (2013)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&title=Nanotechnology%2C%20big%20things%20from%20a%20tiny%20world%3A%20a%20review&journal=AEEE&volume=3&issue=6&pages=771-778&publication_year=2013&author=Yadav%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium <i>Escherichia coli</i>. Appl. Environ. Microbiol. <b>73</b>(6), 1712–1720 (2007). doi:<a href="https://doi.org/10.1128/AEM.02218-06" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1128/AEM.02218-06">10.1128/AEM.02218-06</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&title=Does%20the%20antibacterial%20activity%20of%20silver%20nanoparticles%20depend%20on%20the%20shape%20of%20the%20nanoparticle%3F%20A%20study%20of%20the%20gram-negative%20bacterium%20Escherichia%20coli&journal=Appl.%20Environ.%20Microbiol.&doi=10.1128%2FAEM.02218-06&volume=73&issue=6&pages=1712-1720&publication_year=2007&author=Pal%2CS&author=Tak%2CYK&author=Song%2CJM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">B. Ashe, A Detail investigation to observe the effect of zinc oxide and Silver nanoparticles in biological system, M.Sc. (Roll NO-607bm004), National Institute of Technology, 2011</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity. Biointerphases <b>2</b>(4), MR17–MR71 (2007). doi:<a href="https://doi.org/10.1116/1.2815690" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1116/1.2815690">10.1116/1.2815690</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&title=Nanomaterials%20and%20nanoparticles%3A%20sources%20and%20toxicity&journal=Biointerphases&doi=10.1116%2F1.2815690&volume=2&issue=4&pages=MR17-MR71&publication_year=2007&author=Buzea%2CC&author=Pacheco%2CII&author=Robbie%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. <b>7</b>(9), 1063–1077 (2010). doi:<a href="https://doi.org/10.1517/17425247.2010.502560" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1517/17425247.2010.502560">10.1517/17425247.2010.502560</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&title=Zinc%20oxide%20nanoparticles%20for%20selective%20destruction%20of%20tumor%20cells%20and%20potential%20for%20drug%20delivery%20applications&journal=Expert%20Opin.%20Drug%20Deliv.&doi=10.1517%2F17425247.2010.502560&volume=7&issue=9&pages=1063-1077&publication_year=2010&author=Rasmussen%2CJW&author=Martinez%2CE&author=Louka%2CP&author=Wingett%2CDG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on <i>Escherichia coli</i> bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. <b>6</b>(4), 866–870 (2006). doi:<a href="https://doi.org/10.1021/nl052326h" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/nl052326h">10.1021/nl052326h</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&title=Toxicological%20impact%20studies%20based%20on%20Escherichia%20coli%20bacteria%20in%20ultrafine%20ZnO%20nanoparticles%20colloidal%20medium&journal=Nano%20Lett.&doi=10.1021%2Fnl052326h&volume=6&issue=4&pages=866-870&publication_year=2006&author=Brayner%2CR&author=Ferrari-Iliou%2CR&author=Brivois%2CN&author=Djediat%2CS&author=Benedetti%2CMF&author=Fi%C3%A9vet%2CF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. <b>279</b>(1), 71–76 (2008). doi:<a href="https://doi.org/10.1111/j.1574-6968.2007.01012.x" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1111/j.1574-6968.2007.01012.x">10.1111/j.1574-6968.2007.01012.x</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20activity%20of%20ZnO%20nanoparticle%20suspensions%20on%20a%20broad%20spectrum%20of%20microorganisms&journal=FEMS%20Microbiol.%20Lett.&doi=10.1111%2Fj.1574-6968.2007.01012.x&volume=279&issue=1&pages=71-76&publication_year=2008&author=Jones%2CN&author=Ray%2CB&author=Ranjit%2CKT&author=Manna%2CAC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, P. Nancarrow, ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. <b>121</b>(1), 198–201 (2010). doi:<a href="https://doi.org/10.1016/j.matchemphys.2010.01.020" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.matchemphys.2010.01.020">10.1016/j.matchemphys.2010.01.020</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&title=ZnO%20nanofluids%3A%20green%20synthesis%2C%20characterization%2C%20and%20antibacterial%20activity&journal=Mater.%20Chem.%20Phys.&doi=10.1016%2Fj.matchemphys.2010.01.020&volume=121&issue=1&pages=198-201&publication_year=2010&author=Jalal%2CR&author=Goharshadi%2CEK&author=Abareshi%2CM&author=Moosavi%2CM&author=Yousefi%2CA&author=Nancarrow%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. <b>7</b>, 2767–2781 (2012). doi:<a href="https://doi.org/10.2147/IJN.S24805" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.2147/IJN.S24805">10.2147/IJN.S24805</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&title=Antimicrobial%20applications%20of%20nanotechnology%3A%20methods%20and%20literature&journal=Int.%20J.%20Nanomed.&doi=10.2147%2FIJN.S24805&volume=7&pages=2767-2781&publication_year=2012&author=Seil%2CJT&author=Webster%2CTJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Z. Emami-Karvani, P. Chehrazi, Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr. J. Microbiol. Res. <b>5</b>(12), 1368–1373 (2011)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20activity%20of%20ZnO%20nanoparticle%20on%20gram-positive%20and%20gram-negative%20bacteria&journal=Afr.%20J.%20Microbiol.%20Res.&volume=5&issue=12&pages=1368-1373&publication_year=2011&author=Emami-Karvani%2CZ&author=Chehrazi%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. <b>9</b>(3), 035004 (2008). doi:<a href="https://doi.org/10.1088/1468-6996/9/3/035004" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1088/1468-6996/9/3/035004">10.1088/1468-6996/9/3/035004</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&title=Enhanced%20bioactivity%20of%20ZnO%20nanoparticles%E2%80%94an%20antimicrobial%20study&journal=Sci.%20Technol.%20Adv.%20Mater.&doi=10.1088%2F1468-6996%2F9%2F3%2F035004&volume=9&issue=3&publication_year=2008&author=Padmavathy%2CN&author=Vijayaraghavan%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir <b>27</b>(7), 4020–4028 (2011). doi:<a href="https://doi.org/10.1371/journal.pone.0085981" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1371/journal.pone.0085981">10.1371/journal.pone.0085981</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&title=Size-dependent%20bacterial%20growth%20inhibition%20and%20mechanism%20of%20antibacterial%20activity%20of%20zinc%20oxide%20nanoparticles&journal=Langmuir&doi=10.1371%2Fjournal.pone.0085981&volume=27&issue=7&pages=4020-4028&publication_year=2011&author=Raghupathi%2CKR&author=Koodali%2CRT&author=Manna%2CAC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">G. Colon, B.C. Ward, T.J. Webster, Increased osteoblast and decreased <i>Staphylococcus epidermidis</i> functions on nanophase ZnO and TiO<sub>2</sub>. J. Biomed. Mater. Res. <b>78</b>(3), 595–604 (2006). doi:<a href="https://doi.org/10.1002/jbm.a.30789" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1002/jbm.a.30789">10.1002/jbm.a.30789</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&title=Increased%20osteoblast%20and%20decreased%20Staphylococcus%20epidermidis%20functions%20on%20nanophase%20ZnO%20and%20TiO2&journal=J.%20Biomed.%20Mater.%20Res.&doi=10.1002%2Fjbm.a.30789&volume=78&issue=3&pages=595-604&publication_year=2006&author=Colon%2CG&author=Ward%2CBC&author=Webster%2CTJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">J.T. Seil, E.N. Taylor, T.J. Webster, Reduced activity of <i>Staphylococcus epidermidis</i> in the presence of sonicated piezoelectric zinc oxide nanoparticles, in <i>2009 IEEE 35th Annual Northeast Bioengineering Conference</i>, Boston, MA, USA, 3–5 April 2009 (IEEE, 2009), pp. 1–2. doi:<a href="https://doi.org/10.1109/NEBC.2009.4967674" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/NEBC.2009.4967674">10.1109/NEBC.2009.4967674</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">K. Kotloff, J. Winickoff, B. Ivanoff, J.D. Clemens, D. Swerdlow, P. Sansonetti, G. Adak, M. Levine, Global burden of <i>Shigella</i> infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ <b>77</b>(8), 651–666 (1999)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&title=Global%20burden%20of%20Shigella%20infections%3A%20implications%20for%20vaccine%20development%20and%20implementation%20of%20control%20strategies&journal=Bull.%20World%20Health%20Organ.&volume=77&issue=8&pages=651-666&publication_year=1999&author=Kotloff%2CK&author=Winickoff%2CJ&author=Ivanoff%2CB&author=Clemens%2CJD&author=Swerdlow%2CD&author=Sansonetti%2CP&author=Adak%2CG&author=Levine%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Y.G. Gertrude Neumark, I. Kuskovsky, in <i>Springer Handbook of Electronic and Photonic Materials</i>: <i>Doping Aspects of Zn-Based Wide-Band-Gap Semiconductors</i>, ed. by P.C. Safa Kasap (Springer, 2007), pp. 843–854. doi:<a href="https://doi.org/10.1007/978-0-387-29185-7_35" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/978-0-387-29185-7_35">10.1007/978-0-387-29185-7_35</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. <b>5</b>(10), 1561–1573 (2005). doi:<a href="https://doi.org/10.1166/jnn.2005.182" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1166/jnn.2005.182">10.1166/jnn.2005.182</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&title=Zinc%20oxide%20nanostructures%3A%20synthesis%20and%20properties&journal=J.%20Nanosci.%20Nanotechnol.&doi=10.1166%2Fjnn.2005.182&volume=5&issue=10&pages=1561-1573&publication_year=2005&author=Fan%2CZ&author=Lu%2CJG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter <b>16</b>(25), R829–R858 (2004). doi:<a href="https://doi.org/10.1088/0953-8984/16/25/R01" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1088/0953-8984/16/25/R01">10.1088/0953-8984/16/25/R01</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&title=Zinc%20oxide%20nanostructures%3A%20growth%2C%20properties%20and%20applications&journal=J.%20Phys.%3A%20Condens.%20Matter&doi=10.1088%2F0953-8984%2F16%2F25%2FR01&volume=16&issue=25&pages=R829-R858&publication_year=2004&author=Wang%2CZL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science <b>312</b>(5771), 242–246 (2006). doi:<a href="https://doi.org/10.1126/science.1124005" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1126/science.1124005">10.1126/science.1124005</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&title=Piezoelectric%20nanogenerators%20based%20on%20zinc%20oxide%20nanowire%20arrays&journal=Science&doi=10.1126%2Fscience.1124005&volume=312&issue=5771&pages=242-246&publication_year=2006&author=Wang%2CZL&author=Song%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. <b>72</b>(12), 126501 (2009). doi:<a href="https://doi.org/10.1088/0034-4885/72/12/126501" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1088/0034-4885/72/12/126501">10.1088/0034-4885/72/12/126501</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&title=Fundamentals%20of%20zinc%20oxide%20as%20a%20semiconductor&journal=Rep.%20Prog.%20Phys.&doi=10.1088%2F0034-4885%2F72%2F12%2F126501&volume=72&issue=12&publication_year=2009&author=Janotti%2CA&author=Walle%2CCG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. <b>2012</b>, 1–22 (2012). doi:<a href="https://doi.org/10.1155/2012/624520" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1155/2012/624520">10.1155/2012/624520</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1289.74159" aria-label="MATH reference 22">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&title=Synthesis%2C%20characterization%2C%20and%20applications%20of%20ZnO%20nanowires&journal=J.%20Nanomater.&doi=10.1155%2F2012%2F624520&volume=2012&pages=1-22&publication_year=2012&author=Zhang%2CY&author=Ram%2CMK&author=Stefanakos%2CEK&author=Goswami%2CDY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO-nanostructures, defects, and devices. Mater. Today <b>10</b>(5), 40–48 (2007). doi:<a href="https://doi.org/10.1016/S1369-7021(07)70078-0" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/S1369-7021(07)70078-0">10.1016/S1369-7021(07)70078-0</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&title=ZnO-nanostructures%2C%20defects%2C%20and%20devices&journal=Mater.%20Today&doi=10.1016%2FS1369-7021%2807%2970078-0&volume=10&issue=5&pages=40-48&publication_year=2007&author=Schmidt-Mende%2CL&author=MacManus-Driscoll%2CJL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">J. Wellings, N. Chaure, S. Heavens, I. Dharmadasa, Growth and characterisation of electrodeposited ZnO thin films. Thin Solid Films <b>516</b>(12), 3893–3898 (2008). doi:<a href="https://doi.org/10.1016/j.tsf.2007.07.156" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.tsf.2007.07.156">10.1016/j.tsf.2007.07.156</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&title=Growth%20and%20characterisation%20of%20electrodeposited%20ZnO%20thin%20films&journal=Thin%20Solid%20Films&doi=10.1016%2Fj.tsf.2007.07.156&volume=516&issue=12&pages=3893-3898&publication_year=2008&author=Wellings%2CJ&author=Chaure%2CN&author=Heavens%2CS&author=Dharmadasa%2CI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">Z. Song, T.A. Kelf, W.H. Sanchez, M.S. Roberts, J. Rička, M. Frenz, A.V. Zvyagin, Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomed. Opt. Express <b>2</b>(12), 3321–3333 (2011). doi:<a href="https://doi.org/10.1364/BOE.2.003321" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1364/BOE.2.003321">10.1364/BOE.2.003321</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&title=Characterization%20of%20optical%20properties%20of%20ZnO%20nanoparticles%20for%20quantitative%20imaging%20of%20transdermal%20transport&journal=Biomed.%20Opt.%20Express&doi=10.1364%2FBOE.2.003321&volume=2&issue=12&pages=3321-3333&publication_year=2011&author=Song%2CZ&author=Kelf%2CTA&author=Sanchez%2CWH&author=Roberts%2CMS&author=Ri%C4%8Dka%2CJ&author=Frenz%2CM&author=Zvyagin%2CAV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">Y. Mishra, V. Chakravadhanula, V. Hrkac, S. Jebril, D. Agarwal, S. Mohapatra, D. Avasthi, L. Kienle, R. Adelung, Crystal growth behaviour in Au–ZnO nanocomposite under different annealing environments and photoswitchability. J. Appl. Phys. <b>112</b>(6), 064308 (2012). doi:<a href="https://doi.org/10.1063/1.4752469" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1063/1.4752469">10.1063/1.4752469</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&title=Crystal%20growth%20behaviour%20in%20Au%E2%80%93ZnO%20nanocomposite%20under%20different%20annealing%20environments%20and%20photoswitchability&journal=J.%20Appl.%20Phys.&doi=10.1063%2F1.4752469&volume=112&issue=6&publication_year=2012&author=Mishra%2CY&author=Chakravadhanula%2CV&author=Hrkac%2CV&author=Jebril%2CS&author=Agarwal%2CD&author=Mohapatra%2CS&author=Avasthi%2CD&author=Kienle%2CL&author=Adelung%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">N. Yahya, H. Daud, N.A. Tajuddin, H.M. Daud, A. Shafie, P. Puspitasari, Application of ZnO nanoparticles EM wave detector prepared by sol–gel and self-combustion techniques. J. Nano Res. <b>11</b>, 25–34 (2010). doi:<a href="https://doi.org/10.4028/www.scientific.net/JNanoR.11.25" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.4028/www.scientific.net/JNanoR.11.25">10.4028/www.scientific.net/JNanoR.11.25</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&title=Application%20of%20ZnO%20nanoparticles%20EM%20wave%20detector%20prepared%20by%20sol%E2%80%93gel%20and%20self-combustion%20techniques&journal=J.%20Nano%20Res.&doi=10.4028%2Fwww.scientific.net%2FJNanoR.11.25&volume=11&pages=25-34&publication_year=2010&author=Yahya%2CN&author=Daud%2CH&author=Tajuddin%2CNA&author=Daud%2CHM&author=Shafie%2CA&author=Puspitasari%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">S. Mahmud, One-dimensional growth of zinc oxide nanostructures from large micro-particles in a highly rapid synthesis. J. Alloys Compd. <b>509</b>(9), 4035–4040 (2011). doi:<a href="https://doi.org/10.1016/j.jallcom.2011.01.013" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.jallcom.2011.01.013">10.1016/j.jallcom.2011.01.013</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&title=One-dimensional%20growth%20of%20zinc%20oxide%20nanostructures%20from%20large%20micro-particles%20in%20a%20highly%20rapid%20synthesis&journal=J.%20Alloys%20Compd.&doi=10.1016%2Fj.jallcom.2011.01.013&volume=509&issue=9&pages=4035-4040&publication_year=2011&author=Mahmud%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">J.E. Ramirez-Vick, Nanostructured ZnO for electrochemical biosensors. J. Biosens. Bioelectron. (2012). doi:<a href="https://doi.org/10.4172/2155-6210.1000e109" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.4172/2155-6210.1000e109">10.4172/2155-6210.1000e109</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&title=Nanostructured%20ZnO%20for%20electrochemical%20biosensors&journal=J.%20Biosens.%20Bioelectron.&doi=10.4172%2F2155-6210.1000e109&publication_year=2012&author=Ramirez-Vick%2CJE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">H. Karami, E. Fakoori, Synthesis and characterization of ZnO nanorods based on a new gel pyrolysis method. J. Nanomater. <b>2011</b>, 628203 (2011). doi:<a href="https://doi.org/10.1155/2011/628203" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1155/2011/628203">10.1155/2011/628203</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 30" href="http://scholar.google.com/scholar_lookup?&title=Synthesis%20and%20characterization%20of%20ZnO%20nanorods%20based%20on%20a%20new%20gel%20pyrolysis%20method&journal=J.%20Nanomater.&doi=10.1155%2F2011%2F628203&volume=2011&publication_year=2011&author=Karami%2CH&author=Fakoori%2CE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">Z. Xu, J.-Y. Hwang, B. Li, X. Huang, H. Wang, The characterization of various ZnO nanostructures using field-emission SEM. JOM <b>60</b>(4), 29–32 (2008). doi:<a href="https://doi.org/10.1007/s11837-008-0044-9" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s11837-008-0044-9">10.1007/s11837-008-0044-9</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&title=The%20characterization%20of%20various%20ZnO%20nanostructures%20using%20field-emission%20SEM&journal=JOM&doi=10.1007%2Fs11837-008-0044-9&volume=60&issue=4&pages=29-32&publication_year=2008&author=Xu%2CZ&author=Hwang%2CJ-Y&author=Li%2CB&author=Huang%2CX&author=Wang%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">R. Wahab, S. Ansari, Y. Kim, H. Seo, G. Kim, G. Khang, H.-S. Shin, Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. <b>42</b>(9), 1640–1648 (2007). doi:<a href="https://doi.org/10.1016/j.materresbull.2006.11.035" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.materresbull.2006.11.035">10.1016/j.materresbull.2006.11.035</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 32" href="http://scholar.google.com/scholar_lookup?&title=Low%20temperature%20solution%20synthesis%20and%20characterization%20of%20ZnO%20nano-flowers&journal=Mater.%20Res.%20Bull.&doi=10.1016%2Fj.materresbull.2006.11.035&volume=42&issue=9&pages=1640-1648&publication_year=2007&author=Wahab%2CR&author=Ansari%2CS&author=Kim%2CY&author=Seo%2CH&author=Kim%2CG&author=Khang%2CG&author=Shin%2CH-S"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Control of ZnO morphology via a simple solution route. Chem. Mater. <b>14</b>(10), 4172–4177 (2002). doi:<a href="https://doi.org/10.1021/cm020077h" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/cm020077h">10.1021/cm020077h</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&title=Control%20of%20ZnO%20morphology%20via%20a%20simple%20solution%20route&journal=Chem.%20Mater.&doi=10.1021%2Fcm020077h&volume=14&issue=10&pages=4172-4177&publication_year=2002&author=Zhang%2CJ&author=Sun%2CL&author=Yin%2CJ&author=Su%2CH&author=Liao%2CC&author=Yan%2CC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">R. Wahab, A. Mishra, S.-I. Yun, Y.-S. Kim, H.-S. Shin, Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl. Microbiol. Biotechnol. <b>87</b>(5), 1917–1925 (2010). doi:<a href="https://doi.org/10.1007/s00253-010-2692-2" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s00253-010-2692-2">10.1007/s00253-010-2692-2</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20activity%20of%20ZnO%20nanoparticles%20prepared%20via%20non-hydrolytic%20solution%20route&journal=Appl.%20Microbiol.%20Biotechnol.&doi=10.1007%2Fs00253-010-2692-2&volume=87&issue=5&pages=1917-1925&publication_year=2010&author=Wahab%2CR&author=Mishra%2CA&author=Yun%2CS-I&author=Kim%2CY-S&author=Shin%2CH-S"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">R. Wahab, M.A. Siddiqui, Q. Saquib, S. Dwivedi, J. Ahmad, J. Musarrat, A.A. Al-Khedhairy, H.-S. Shin, ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B <b>117</b>, 267–276 (2014). doi:<a href="https://doi.org/10.1016/j.colsurfb.2014.02.038" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.colsurfb.2014.02.038">10.1016/j.colsurfb.2014.02.038</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 35" href="http://scholar.google.com/scholar_lookup?&title=ZnO%20nanoparticles%20induced%20oxidative%20stress%20and%20apoptosis%20in%20HepG2%20and%20MCF-7%20cancer%20cells%20and%20their%20antibacterial%20activity&journal=Colloids%20Surf.%20B&doi=10.1016%2Fj.colsurfb.2014.02.038&volume=117&pages=267-276&publication_year=2014&author=Wahab%2CR&author=Siddiqui%2CMA&author=Saquib%2CQ&author=Dwivedi%2CS&author=Ahmad%2CJ&author=Musarrat%2CJ&author=Al-Khedhairy%2CAA&author=Shin%2CH-S"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">A. Stanković, S. Dimitrijević, D. Uskoković, Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf. B <b>102</b>, 21–28 (2013). doi:<a href="https://doi.org/10.1016/j.colsurfb.2012.07.033" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.colsurfb.2012.07.033">10.1016/j.colsurfb.2012.07.033</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&title=Influence%20of%20size%20scale%20and%20morphology%20on%20antibacterial%20properties%20of%20ZnO%20powders%20hydrothermally%20synthesized%20using%20different%20surface%20stabilizing%20agents&journal=Colloids%20Surf.%20B&doi=10.1016%2Fj.colsurfb.2012.07.033&volume=102&pages=21-28&publication_year=2013&author=Stankovi%C4%87%2CA&author=Dimitrijevi%C4%87%2CS&author=Uskokovi%C4%87%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">J.M. Wu, Heterojunction nanowires of Ag<sub>x</sub>Zn<sub>1−x</sub>O–ZnO photocatalytic and antibacterial activities under visible-light and dark conditions. J. Phys. Chem. C <b>119</b>(3), 1433–1441 (2015). doi:<a href="https://doi.org/10.1021/jp510259j" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/jp510259j">10.1021/jp510259j</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 37" href="http://scholar.google.com/scholar_lookup?&title=Heterojunction%20nanowires%20of%20AgxZn1%E2%88%92xO%E2%80%93ZnO%20photocatalytic%20and%20antibacterial%20activities%20under%20visible-light%20and%20dark%20conditions&journal=J.%20Phys.%20Chem.%20C&doi=10.1021%2Fjp510259j&volume=119&issue=3&pages=1433-1441&publication_year=2015&author=Wu%2CJM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">J.I. Tariq Jan, M. Ismail, M. Zakaullah, S.H. Naqvi, N. Badshah, Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant <i>S. aureus</i> bacteria. Int. J. Nanomed. <b>8</b>(1), 3679–3687 (2013). doi:<a href="https://doi.org/10.2147/IJN.S45439" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.2147/IJN.S45439">10.2147/IJN.S45439</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="http://scholar.google.com/scholar_lookup?&title=Sn%20doping%20induced%20enhancement%20in%20the%20activity%20of%20ZnO%20nanostructures%20against%20antibiotic%20resistant%20S.%20aureus%20bacteria&journal=Int.%20J.%20Nanomed.&doi=10.2147%2FIJN.S45439&volume=8&issue=1&pages=3679-3687&publication_year=2013&author=Tariq%20Jan%2CJI&author=Ismail%2CM&author=Zakaullah%2CM&author=Naqvi%2CSH&author=Badshah%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">V.B. Schwartz, F. Thétiot, S. Ritz, S. Pütz, L. Choritz, A. Lappas, R. Förch, K. Landfester, U. Jonas, Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(<i>n</i>-isopropylacrylamide) hydrogel surface layers. Adv. Funct. Mater. <b>22</b>(11), 2376–2386 (2012). doi:<a href="https://doi.org/10.1002/adfm.201102980" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1002/adfm.201102980">10.1002/adfm.201102980</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20surface%20coatings%20from%20zinc%20oxide%20nanoparticles%20embedded%20in%20poly%28n-isopropylacrylamide%29%20hydrogel%20surface%20layers&journal=Adv.%20Funct.%20Mater.&doi=10.1002%2Fadfm.201102980&volume=22&issue=11&pages=2376-2386&publication_year=2012&author=Schwartz%2CVB&author=Th%C3%A9tiot%2CF&author=Ritz%2CS&author=P%C3%BCtz%2CS&author=Choritz%2CL&author=Lappas%2CA&author=F%C3%B6rch%2CR&author=Landfester%2CK&author=Jonas%2CU"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40">L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. <b>9</b>(3), 479–489 (2007). doi:<a href="https://doi.org/10.1007/s11051-006-9150-1" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s11051-006-9150-1">10.1007/s11051-006-9150-1</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&title=Investigation%20into%20the%20antibacterial%20behaviour%20of%20suspensions%20of%20ZnO%20nanoparticles%20%28ZnO%20nanofluids%29&journal=J.%20Nanopart.%20Res.&doi=10.1007%2Fs11051-006-9150-1&volume=9&issue=3&pages=479-489&publication_year=2007&author=Zhang%2CL&author=Jiang%2CY&author=Ding%2CY&author=Povey%2CM&author=York%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="41."><p class="c-article-references__text" id="ref-CR41">U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. <b>98</b>(4), 041301 (2005). doi:<a href="https://doi.org/10.1063/1.1992666" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1063/1.1992666">10.1063/1.1992666</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&title=A%20comprehensive%20review%20of%20ZnO%20materials%20and%20devices&journal=J.%20Appl.%20Phys.&doi=10.1063%2F1.1992666&volume=98&issue=4&publication_year=2005&author=Ozgur%2CU&author=Alivov%2CYI&author=Liu%2CC&author=Teke%2CA&author=Reshchikov%2CM&author=Dogan%2CS&author=Avrutin%2CV&author=Cho%2CSJ&author=Morkoc%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="42."><p class="c-article-references__text" id="ref-CR42">A. Moezzi, A.M. McDonagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. <b>185</b>, 1–22 (2012). doi:<a href="https://doi.org/10.1016/j.cej.2012.01.076" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.cej.2012.01.076">10.1016/j.cej.2012.01.076</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 42" href="http://scholar.google.com/scholar_lookup?&title=Zinc%20oxide%20particles%3A%20synthesis%2C%20properties%20and%20applications&journal=Chem.%20Eng.%20J.&doi=10.1016%2Fj.cej.2012.01.076&volume=185&pages=1-22&publication_year=2012&author=Moezzi%2CA&author=McDonagh%2CAM&author=Cortie%2CMB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="43."><p class="c-article-references__text" id="ref-CR43">S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K.A. Bradley, L. Mädler, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano <b>4</b>(1), 15–29 (2009). doi:<a href="https://doi.org/10.1021/nn901503q" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/nn901503q">10.1021/nn901503q</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 43" href="http://scholar.google.com/scholar_lookup?&title=Use%20of%20a%20rapid%20cytotoxicity%20screening%20approach%20to%20engineer%20a%20safer%20zinc%20oxide%20nanoparticle%20through%20iron%20doping&journal=ACS%20Nano&doi=10.1021%2Fnn901503q&volume=4&issue=1&pages=15-29&publication_year=2009&author=George%2CS&author=Pokhrel%2CS&author=Xia%2CT&author=Gilbert%2CB&author=Ji%2CZ&author=Schowalter%2CM&author=Rosenauer%2CA&author=Damoiseaux%2CR&author=Bradley%2CKA&author=M%C3%A4dler%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="44."><p class="c-article-references__text" id="ref-CR44">G. Fu, P.S. Vary, C.-T. Lin, Anatase TiO<sub>2</sub> nanocomposites for antimicrobial coatings. J. Phys. Chem. B <b>109</b>(18), 8889–8898 (2005). doi:<a href="https://doi.org/10.1021/jp0502196" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/jp0502196">10.1021/jp0502196</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 44" href="http://scholar.google.com/scholar_lookup?&title=Anatase%20TiO2%20nanocomposites%20for%20antimicrobial%20coatings&journal=J.%20Phys.%20Chem.%20B&doi=10.1021%2Fjp0502196&volume=109&issue=18&pages=8889-8898&publication_year=2005&author=Fu%2CG&author=Vary%2CPS&author=Lin%2CC-T"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="45."><p class="c-article-references__text" id="ref-CR45">J.V.A. Edwards, K.J. Edwards, <i>Bacteria Cell</i>, <a href="http://www.alken-murray.com/BioInfo1-05.html" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://www.alken-murray.com/BioInfo1-05.html">http://www.alken-murray.com/BioInfo1-05.html</a>. Accessed 9 July 2010</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="46."><p class="c-article-references__text" id="ref-CR46">R. Wahab, Y.-S. Kim, A. Mishra, S.-I. Yun, H.-S. Shin, Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res. Lett. <b>5</b>(10), 1675–1681 (2010). doi:<a href="https://doi.org/10.1007/s11671-010-9694-y" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s11671-010-9694-y">10.1007/s11671-010-9694-y</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 46" href="http://scholar.google.com/scholar_lookup?&title=Formation%20of%20ZnO%20micro-flowers%20prepared%20via%20solution%20process%20and%20their%20antibacterial%20activity&journal=Nanoscale%20Res.%20Lett.&doi=10.1007%2Fs11671-010-9694-y&volume=5&issue=10&pages=1675-1681&publication_year=2010&author=Wahab%2CR&author=Kim%2CY-S&author=Mishra%2CA&author=Yun%2CS-I&author=Shin%2CH-S"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="47."><p class="c-article-references__text" id="ref-CR47">M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. <b>7</b>(2), 184–192 (2011). doi:<a href="https://doi.org/10.1016/j.nano.2010.10.001" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.nano.2010.10.001">10.1016/j.nano.2010.10.001</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 47" href="http://scholar.google.com/scholar_lookup?&title=Selective%20toxicity%20of%20ZnO%20nanoparticles%20toward%20Gram-positive%20bacteria%20and%20cancer%20cells%20by%20apoptosis%20through%20lipid%20peroxidation&journal=Nanomed.%20Nanotechnol.%20Biol.%20Med.&doi=10.1016%2Fj.nano.2010.10.001&volume=7&issue=2&pages=184-192&publication_year=2011&author=Premanathan%2CM&author=Karthikeyan%2CK&author=Jeyasubramanian%2CK&author=Manivannan%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="48."><p class="c-article-references__text" id="ref-CR48">J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods <b>54</b>(2), 177–182 (2003). doi:<a href="https://doi.org/10.1016/S0167-7012(03)00037-X" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/S0167-7012(03)00037-X">10.1016/S0167-7012(03)00037-X</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 48" href="http://scholar.google.com/scholar_lookup?&title=Quantitative%20evaluation%20of%20antibacterial%20activities%20of%20metallic%20oxide%20powders%20%28ZnO%2C%20MgO%20and%20CaO%29%20by%20conductimetric%20assay&journal=J.%20Microbiol.%20Methods&doi=10.1016%2FS0167-7012%2803%2900037-X&volume=54&issue=2&pages=177-182&publication_year=2003&author=Sawai%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="49."><p class="c-article-references__text" id="ref-CR49">S.O. Sukon Phanichphantand, Antimicrobial nanomaterials in the textile industry, in <i>Bionanotechnology II Global Prospects</i>, ed. by D.E. Reisner (CRC Press, Boca Raton, 2011), p. 2</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="50."><p class="c-article-references__text" id="ref-CR50">K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. <b>90</b>(21), 213902 (2007). doi:<a href="https://doi.org/10.1063/1.2742324" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1063/1.2742324">10.1063/1.2742324</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&title=Selective%20toxicity%20of%20zinc%20oxide%20nanoparticles%20to%20prokaryotic%20and%20eukaryotic%20systems&journal=Appl.%20Phys.%20Lett.&doi=10.1063%2F1.2742324&volume=90&issue=21&publication_year=2007&author=Reddy%2CKM&author=Feris%2CK&author=Bell%2CJ&author=Wingett%2CDG&author=Hanley%2CC&author=Punnoose%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="51."><p class="c-article-references__text" id="ref-CR51">O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. <b>3</b>(7), 643–646 (2001). doi:<a href="https://doi.org/10.1016/S1466-6049(01)00197-0" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/S1466-6049(01)00197-0">10.1016/S1466-6049(01)00197-0</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 51" href="http://scholar.google.com/scholar_lookup?&title=Influence%20of%20particle%20size%20on%20the%20antibacterial%20activity%20of%20zinc%20oxide&journal=Int.%20J.%20Inorg.%20Mater.&doi=10.1016%2FS1466-6049%2801%2900197-0&volume=3&issue=7&pages=643-646&publication_year=2001&author=Yamamoto%2CO"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="52."><p class="c-article-references__text" id="ref-CR52">S. Nair, A. Sasidharan, V.D. Rani, D. Menon, S. Nair, K. Manzoor, S. Raina, Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. <b>20</b>(1), 235–241 (2009). doi:<a href="https://doi.org/10.1007/s10856-008-3548-5" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10856-008-3548-5">10.1007/s10856-008-3548-5</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 52" href="http://scholar.google.com/scholar_lookup?&title=Role%20of%20size%20scale%20of%20ZnO%20nanoparticles%20and%20microparticles%20on%20toxicity%20toward%20bacteria%20and%20osteoblast%20cancer%20cells&journal=J.%20Mater.%20Sci.%20Mater.%20Med.&doi=10.1007%2Fs10856-008-3548-5&volume=20&issue=1&pages=235-241&publication_year=2009&author=Nair%2CS&author=Sasidharan%2CA&author=Rani%2CVD&author=Menon%2CD&author=Nair%2CS&author=Manzoor%2CK&author=Raina%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="53."><p class="c-article-references__text" id="ref-CR53">A.L. Barry, W.A. Craig, H. Nadler, L.B. Reller, C.C. Sanders, J.M. Swenson, in <i>Methods for Determining Bactericidal Activity of Antimicrobial Agents</i>; <i>Approved Guideline</i>, vol. 19, 18th edn. (National Committee for Clinical Laboratory Standards, CLSI, Wayne, 1999)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="54."><p class="c-article-references__text" id="ref-CR54">M. Aslam, I. Anis, N. Afza, M.T. Hussain, L. Iqbal, A. Hussain, S. Iqbal, T.H. Bokhari, M. Khalid, Synthesis, antibacterial, lipoxygenase and urease inhibitory activities of 2-aminophenol derivatives. Med. Chem. Drug Discov. <b>3</b>(2), 80–86 (2012)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 54" href="http://scholar.google.com/scholar_lookup?&title=Synthesis%2C%20antibacterial%2C%20lipoxygenase%20and%20urease%20inhibitory%20activities%20of%202-aminophenol%20derivatives&journal=Med.%20Chem.%20Drug%20Discov.&volume=3&issue=2&pages=80-86&publication_year=2012&author=Aslam%2CM&author=Anis%2CI&author=Afza%2CN&author=Hussain%2CMT&author=Iqbal%2CL&author=Hussain%2CA&author=Iqbal%2CS&author=Bokhari%2CTH&author=Khalid%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="55."><p class="c-article-references__text" id="ref-CR55">R. Prasad, D. Basavaraju, K. Rao, C. Naveen, J. Endrino, A. Phani, Nanostructured TiO<sub>2</sub> and TiO<sub>2</sub>–Ag antimicrobial thin films, in <i>Proceedings of the 2011 International Conference on</i> <i>Nanoscience</i>, <i>Technology and Societal Implications</i> (<i>NSTSI</i>), Bhubaneswar, USA, 8–10 December 2011 (IEEE, 2011), pp. 1–6. doi:<a href="https://doi.org/10.1109/NSTSI.2011.6111808" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/NSTSI.2011.6111808">10.1109/NSTSI.2011.6111808</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="56."><p class="c-article-references__text" id="ref-CR56">L.K. Adams, D.Y. Lyon, P.J. Alvarez, Comparative eco-toxicity of nanoscale TiO<sub>2</sub>, SiO<sub>2</sub>, and ZnO water suspensions. Water Res. <b>40</b>(19), 3527–3532 (2006). doi:<a href="https://doi.org/10.1016/j.watres.2006.08.004" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.watres.2006.08.004">10.1016/j.watres.2006.08.004</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 56" href="http://scholar.google.com/scholar_lookup?&title=Comparative%20eco-toxicity%20of%20nanoscale%20TiO2%2C%20SiO2%2C%20and%20ZnO%20water%20suspensions&journal=Water%20Res.&doi=10.1016%2Fj.watres.2006.08.004&volume=40&issue=19&pages=3527-3532&publication_year=2006&author=Adams%2CLK&author=Lyon%2CDY&author=Alvarez%2CPJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="57."><p class="c-article-references__text" id="ref-CR57">K. Kasemets, A. Ivask, H.-C. Dubourguier, A. Kahru, Toxicity of nanoparticles of ZnO, CuO and TiO<sub>2</sub> to yeast <i>Saccharomyces cerevisiae</i>. Toxicol. In Vitro <b>23</b>(6), 1116–1122 (2009). doi:<a href="https://doi.org/10.1016/j.tiv.2009.05.015" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.tiv.2009.05.015">10.1016/j.tiv.2009.05.015</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 57" href="http://scholar.google.com/scholar_lookup?&title=Toxicity%20of%20nanoparticles%20of%20ZnO%2C%20CuO%20and%20TiO2%20to%20yeast%20Saccharomyces%20cerevisiae&journal=Toxicol.%20In%20Vitro&doi=10.1016%2Fj.tiv.2009.05.015&volume=23&issue=6&pages=1116-1122&publication_year=2009&author=Kasemets%2CK&author=Ivask%2CA&author=Dubourguier%2CH-C&author=Kahru%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="58."><p class="c-article-references__text" id="ref-CR58">T.J. Brunner, P. Wick, P. Manser, P. Spohn, R.N. Grass, L.K. Limbach, A. Bruinink, W.J. Stark, In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. <b>40</b>(14), 4374–4381 (2006). doi:<a href="https://doi.org/10.1021/es052069i" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/es052069i">10.1021/es052069i</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 58" href="http://scholar.google.com/scholar_lookup?&title=In%20vitro%20cytotoxicity%20of%20oxide%20nanoparticles%3A%20comparison%20to%20asbestos%2C%20silica%2C%20and%20the%20effect%20of%20particle%20solubility&journal=Environ.%20Sci.%20Technol.&doi=10.1021%2Fes052069i&volume=40&issue=14&pages=4374-4381&publication_year=2006&author=Brunner%2CTJ&author=Wick%2CP&author=Manser%2CP&author=Spohn%2CP&author=Grass%2CRN&author=Limbach%2CLK&author=Bruinink%2CA&author=Stark%2CWJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="59."><p class="c-article-references__text" id="ref-CR59">M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to <i>Escherichia coli</i>: mechanism and the influence of medium components. Environ. Sci. Technol. <b>45</b>(5), 1977–1983 (2011). doi:<a href="https://doi.org/10.1021/es102624t" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/es102624t">10.1021/es102624t</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 59" href="http://scholar.google.com/scholar_lookup?&title=Toxicity%20of%20ZnO%20nanoparticles%20to%20Escherichia%20coli%3A%20mechanism%20and%20the%20influence%20of%20medium%20components&journal=Environ.%20Sci.%20Technol.&doi=10.1021%2Fes102624t&volume=45&issue=5&pages=1977-1983&publication_year=2011&author=Li%2CM&author=Zhu%2CL&author=Lin%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="60."><p class="c-article-references__text" id="ref-CR60">J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, H. Kojima, Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. <b>86</b>(5), 521–522 (1998). doi:<a href="https://doi.org/10.1016/S0922-338X(98)80165-7" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/S0922-338X(98)80165-7">10.1016/S0922-338X(98)80165-7</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 60" href="http://scholar.google.com/scholar_lookup?&title=Hydrogen%20peroxide%20as%20an%20antibacterial%20factor%20in%20zinc%20oxide%20powder%20slurry&journal=J.%20Ferment.%20Bioeng.&doi=10.1016%2FS0922-338X%2898%2980165-7&volume=86&issue=5&pages=521-522&publication_year=1998&author=Sawai%2CJ&author=Shoji%2CS&author=Igarashi%2CH&author=Hashimoto%2CA&author=Kokugan%2CT&author=Shimizu%2CM&author=Kojima%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="61."><p class="c-article-references__text" id="ref-CR61">A. Lipovsky, Y. Nitzan, A. Gedanken, R. Lubart, Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology <b>22</b>(10), 105101 (2011). doi:<a href="https://doi.org/10.1088/0957-4484/22/10/105101" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1088/0957-4484/22/10/105101">10.1088/0957-4484/22/10/105101</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 61" href="http://scholar.google.com/scholar_lookup?&title=Antifungal%20activity%20of%20ZnO%20nanoparticles%E2%80%94the%20role%20of%20ROS%20mediated%20cell%20injury&journal=Nanotechnology&doi=10.1088%2F0957-4484%2F22%2F10%2F105101&volume=22&issue=10&publication_year=2011&author=Lipovsky%2CA&author=Nitzan%2CY&author=Gedanken%2CA&author=Lubart%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="62."><p class="c-article-references__text" id="ref-CR62">L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci. <b>18</b>(8), 939–944 (2008). doi:<a href="https://doi.org/10.1016/j.pnsc.2008.01.026" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.pnsc.2008.01.026">10.1016/j.pnsc.2008.01.026</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 62" href="http://scholar.google.com/scholar_lookup?&title=ZnO%20nanofluids%E2%80%94a%20potential%20antibacterial%20agent&journal=Prog.%20Nat.%20Sci.&doi=10.1016%2Fj.pnsc.2008.01.026&volume=18&issue=8&pages=939-944&publication_year=2008&author=Zhang%2CL&author=Ding%2CY&author=Povey%2CM&author=York%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="63."><p class="c-article-references__text" id="ref-CR63">J. Zhang, Silver-coated zinc oxide nanoantibacterial synthesis and antibacterial activity characterization, in 2011 <i>International Conference on Electronics and Optoelectronics</i> (<i>ICEOE</i>), vol. 3, Dalian, Liaoning, USA, 29–31 July 2011 (IEEE, 2011), pp. V3-94–V3-98. doi:<a href="https://doi.org/10.1109/ICEOE.2011.6013309" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/ICEOE.2011.6013309">10.1109/ICEOE.2011.6013309</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="64."><p class="c-article-references__text" id="ref-CR64">M. Nirmala, M.G. Nair, K. Rekha, A. Anukaliani, S. Samdarshi, R.G. Nair, Photocatalytic activity of ZnO nanopowders synthesized by DC thermal plasma. Afr. J. Basic Appl. Sci. <b>2</b>(5–6), 161–166 (2010)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 64" href="http://scholar.google.com/scholar_lookup?&title=Photocatalytic%20activity%20of%20ZnO%20nanopowders%20synthesized%20by%20DC%20thermal%20plasma&journal=Afr.%20J.%20Basic%20Appl.%20Sci.&volume=2&issue=5%E2%80%936&pages=161-166&publication_year=2010&author=Nirmala%2CM&author=Nair%2CMG&author=Rekha%2CK&author=Anukaliani%2CA&author=Samdarshi%2CS&author=Nair%2CRG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="65."><p class="c-article-references__text" id="ref-CR65">M. E, Proceedings of the photoconductivity conference, photoconductivity conference, Atlantic City, Pennsylvania (4-6 Nov. 1956): John Wiley and Sons, Inc, New York (1956)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="66."><p class="c-article-references__text" id="ref-CR66">I.S.J. Bao, Z. Su, R. Gurwitz, F. Capasso, X. Wang, Z. Ren, Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires. Nanoscale Res. Lett. <b>6</b>(404), 1–7 (2011). doi:<a href="https://doi.org/10.1186/1556-276X-6-404" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1186/1556-276X-6-404">10.1186/1556-276X-6-404</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 66" href="http://scholar.google.com/scholar_lookup?&title=Photoinduced%20oxygen%20release%20and%20persistent%20photoconductivity%20in%20ZnO%20nanowires&journal=Nanoscale%20Res.%20Lett.&doi=10.1186%2F1556-276X-6-404&volume=6&issue=404&pages=1-7&publication_year=2011&author=Bao%2CISJ&author=Su%2CZ&author=Gurwitz%2CR&author=Capasso%2CF&author=Wang%2CX&author=Ren%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="67."><p class="c-article-references__text" id="ref-CR67">S. Baruah, M.A. Mahmood, M.T.Z. Myint, T. Bora, J. Dutta, Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J. Nanotechnol. <b>1</b>(1), 14–20 (2010). doi:<a href="https://doi.org/10.3762/bjnano.1.3" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.3762/bjnano.1.3">10.3762/bjnano.1.3</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 67" href="http://scholar.google.com/scholar_lookup?&title=Enhanced%20visible%20light%20photocatalysis%20through%20fast%20crystallization%20of%20zinc%20oxide%20nanorods&journal=Beilstein%20J.%20Nanotechnol.&doi=10.3762%2Fbjnano.1.3&volume=1&issue=1&pages=14-20&publication_year=2010&author=Baruah%2CS&author=Mahmood%2CMA&author=Myint%2CMTZ&author=Bora%2CT&author=Dutta%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="68."><p class="c-article-references__text" id="ref-CR68">H. Zhang, B. Chen, H. Jiang, C. Wang, H. Wang, X. Wang, A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials <b>32</b>(7), 1906–1914 (2011). doi:<a href="https://doi.org/10.1016/j.biomaterials.2010.11.027" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.biomaterials.2010.11.027">10.1016/j.biomaterials.2010.11.027</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 68" href="http://scholar.google.com/scholar_lookup?&title=A%20strategy%20for%20ZnO%20nanorod%20mediated%20multi-mode%20cancer%20treatment&journal=Biomaterials&doi=10.1016%2Fj.biomaterials.2010.11.027&volume=32&issue=7&pages=1906-1914&publication_year=2011&author=Zhang%2CH&author=Chen%2CB&author=Jiang%2CH&author=Wang%2CC&author=Wang%2CH&author=Wang%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="69."><p class="c-article-references__text" id="ref-CR69">O. Seven, B. Dindar, S. Aydemir, D. Metin, M. Ozinel, S. Icli, Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO<sub>2</sub>, ZnO and Sahara Desert dust. J. Photochem. Photobiol. A <b>165</b>(1), 103–107 (2004). doi:<a href="https://doi.org/10.1016/j.jphotochem.2004.03.005" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.jphotochem.2004.03.005">10.1016/j.jphotochem.2004.03.005</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 69" href="http://scholar.google.com/scholar_lookup?&title=Solar%20photocatalytic%20disinfection%20of%20a%20group%20of%20bacteria%20and%20fungi%20aqueous%20suspensions%20with%20TiO2%2C%20ZnO%20and%20Sahara%20Desert%20dust&journal=J.%20Photochem.%20Photobiol.%20A&doi=10.1016%2Fj.jphotochem.2004.03.005&volume=165&issue=1&pages=103-107&publication_year=2004&author=Seven%2CO&author=Dindar%2CB&author=Aydemir%2CS&author=Metin%2CD&author=Ozinel%2CM&author=Icli%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="70."><p class="c-article-references__text" id="ref-CR70">S. Ahmed, M. Rasul, W.N. Martens, R. Brown, M. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination <b>261</b>(1), 3–18 (2010). doi:<a href="https://doi.org/10.1016/j.desal.2010.04.062" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.desal.2010.04.062">10.1016/j.desal.2010.04.062</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 70" href="http://scholar.google.com/scholar_lookup?&title=Heterogeneous%20photocatalytic%20degradation%20of%20phenols%20in%20wastewater%3A%20a%20review%20on%20current%20status%20and%20developments&journal=Desalination&doi=10.1016%2Fj.desal.2010.04.062&volume=261&issue=1&pages=3-18&publication_year=2010&author=Ahmed%2CS&author=Rasul%2CM&author=Martens%2CWN&author=Brown%2CR&author=Hashib%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="71."><p class="c-article-references__text" id="ref-CR71">P.J.P. Espitia, N.d.F.F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. <b>5</b>(5), 1447–1464 (2012). doi:<a href="https://doi.org/10.1007/s11947-012-0797-6" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s11947-012-0797-6">10.1007/s11947-012-0797-6</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 71" href="http://scholar.google.com/scholar_lookup?&title=Zinc%20oxide%20nanoparticles%3A%20synthesis%2C%20antimicrobial%20activity%20and%20food%20packaging%20applications&journal=Food%20Bioprocess%20Technol.&doi=10.1007%2Fs11947-012-0797-6&volume=5&issue=5&pages=1447-1464&publication_year=2012&author=Espitia%2CPJP&author=Soares%2CNdFF&author=Reis%20Coimbra%2CJS&author=Andrade%2CNJ&author=Cruz%2CRS&author=Medeiros%2CEAA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="72."><p class="c-article-references__text" id="ref-CR72">G. Zhou, Y. Li, W. Xiao, L. Zhang, Y. Zuo, J. Xue, J.A. Jansen, Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J. Biomed. Mater. Res. A <b>85</b>(4), 929–937 (2008). doi:<a href="https://doi.org/10.1002/jbm.a.31527" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1002/jbm.a.31527">10.1002/jbm.a.31527</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 72" href="http://scholar.google.com/scholar_lookup?&title=Synthesis%2C%20characterization%2C%20and%20antibacterial%20activities%20of%20a%20novel%20nanohydroxyapatite%2Fzinc%20oxide%20complex&journal=J.%20Biomed.%20Mater.%20Res.%20A&doi=10.1002%2Fjbm.a.31527&volume=85&issue=4&pages=929-937&publication_year=2008&author=Zhou%2CG&author=Li%2CY&author=Xiao%2CW&author=Zhang%2CL&author=Zuo%2CY&author=Xue%2CJ&author=Jansen%2CJA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="73."><p class="c-article-references__text" id="ref-CR73">P. Joshi, S. Chakraborti, P. Chakrabarti, D. Haranath, V. Shanker, Z. Ansari, S.P. Singh, V. Gupta, Role of surface adsorbed anionic species in antibacterial activity of ZnO quantum dots against <i>Escherichia coli</i>. J. Nanosci. Nanotechnol. <b>9</b>(11), 6427–6433 (2009). doi:<a href="https://doi.org/10.1166/jnn.2009.1584" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1166/jnn.2009.1584">10.1166/jnn.2009.1584</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 73" href="http://scholar.google.com/scholar_lookup?&title=Role%20of%20surface%20adsorbed%20anionic%20species%20in%20antibacterial%20activity%20of%20ZnO%20quantum%20dots%20against%20Escherichia%20coli&journal=J.%20Nanosci.%20Nanotechnol.&doi=10.1166%2Fjnn.2009.1584&volume=9&issue=11&pages=6427-6433&publication_year=2009&author=Joshi%2CP&author=Chakraborti%2CS&author=Chakrabarti%2CP&author=Haranath%2CD&author=Shanker%2CV&author=Ansari%2CZ&author=Singh%2CSP&author=Gupta%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="74."><p class="c-article-references__text" id="ref-CR74">K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. <b>36</b>(2), 497–506 (2010). doi:<a href="https://doi.org/10.1016/j.ceramint.2009.09.026" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.ceramint.2009.09.026">10.1016/j.ceramint.2009.09.026</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 74" href="http://scholar.google.com/scholar_lookup?&title=Preparation%20of%20zinc%20oxide%20ceramics%20with%20a%20sustainable%20antibacterial%20activity%20under%20dark%20conditions&journal=Ceram.%20Int.&doi=10.1016%2Fj.ceramint.2009.09.026&volume=36&issue=2&pages=497-506&publication_year=2010&author=Hirota%2CK&author=Sugimoto%2CM&author=Kato%2CM&author=Tsukagoshi%2CK&author=Tanigawa%2CT&author=Sugimoto%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="75."><p class="c-article-references__text" id="ref-CR75">L.C. Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni, R.A. Rahman, Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder. Appl. Surf. Sci. <b>292</b>, 405–412 (2014). doi:<a href="https://doi.org/10.1016/j.apsusc.2013.11.152" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.apsusc.2013.11.152">10.1016/j.apsusc.2013.11.152</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 75" href="http://scholar.google.com/scholar_lookup?&title=Effect%20of%20surface%20modification%20and%20UVA%20photoactivation%20on%20antibacterial%20bioactivity%20of%20zinc%20oxide%20powder&journal=Appl.%20Surf.%20Sci.&doi=10.1016%2Fj.apsusc.2013.11.152&volume=292&pages=405-412&publication_year=2014&author=Ann%2CLC&author=Mahmud%2CS&author=Bakhori%2CSKM&author=Sirelkhatim%2CA&author=Mohamad%2CD&author=Hasan%2CH&author=Seeni%2CA&author=Rahman%2CRA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="76."><p class="c-article-references__text" id="ref-CR76">I.G. Kirkinezos, C.T. Moraes, Reactive oxygen species and mitochondrial diseases. Semin. Cell Dev. Biol. <b>12</b>(6), 449–457 (2001). doi:<a href="https://doi.org/10.1006/scdb.2001.0282" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1006/scdb.2001.0282">10.1006/scdb.2001.0282</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 76" href="http://scholar.google.com/scholar_lookup?&title=Reactive%20oxygen%20species%20and%20mitochondrial%20diseases&journal=Semin.%20Cell%20Dev.%20Biol.&doi=10.1006%2Fscdb.2001.0282&volume=12&issue=6&pages=449-457&publication_year=2001&author=Kirkinezos%2CIG&author=Moraes%2CCT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="77."><p class="c-article-references__text" id="ref-CR77">N. Talebian, S.M. Amininezhad, M. Doudi, Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. <b>120</b>, 66–73 (2013). doi:<a href="https://doi.org/10.1016/j.jphotobiol.2013.01.004" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.jphotobiol.2013.01.004">10.1016/j.jphotobiol.2013.01.004</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 77" href="http://scholar.google.com/scholar_lookup?&title=Controllable%20synthesis%20of%20ZnO%20nanoparticles%20and%20their%20morphology-dependent%20antibacterial%20and%20optical%20properties&journal=J.%20Photochem.%20Photobiol.&doi=10.1016%2Fj.jphotobiol.2013.01.004&volume=120&pages=66-73&publication_year=2013&author=Talebian%2CN&author=Amininezhad%2CSM&author=Doudi%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="78."><p class="c-article-references__text" id="ref-CR78">J. Ma, J. Liu, Y. Bao, Z. Zhu, X. Wang, J. Zhang, Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram. Int. <b>39</b>(3), 2803–2810 (2013). doi:<a href="https://doi.org/10.1016/j.ceramint.2012.09.049" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.ceramint.2012.09.049">10.1016/j.ceramint.2012.09.049</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 78" href="http://scholar.google.com/scholar_lookup?&title=Synthesis%20of%20large-scale%20uniform%20mulberry-like%20ZnO%20particles%20with%20microwave%20hydrothermal%20method%20and%20its%20antibacterial%20property&journal=Ceram.%20Int.&doi=10.1016%2Fj.ceramint.2012.09.049&volume=39&issue=3&pages=2803-2810&publication_year=2013&author=Ma%2CJ&author=Liu%2CJ&author=Bao%2CY&author=Zhu%2CZ&author=Wang%2CX&author=Zhang%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="79."><p class="c-article-references__text" id="ref-CR79">M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, E. Marsili, Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids Surf. B <b>117</b>, 233–239 (2014). doi:<a href="https://doi.org/10.1016/j.colsurfb.2014.02.017" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.colsurfb.2014.02.017">10.1016/j.colsurfb.2014.02.017</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 79" href="http://scholar.google.com/scholar_lookup?&title=Amino%20acid-mediated%20synthesis%20of%20zinc%20oxide%20nanostructures%20and%20evaluation%20of%20their%20facet-dependent%20antimicrobial%20activity&journal=Colloids%20Surf.%20B&doi=10.1016%2Fj.colsurfb.2014.02.017&volume=117&pages=233-239&publication_year=2014&author=Ramani%2CM&author=Ponnusamy%2CS&author=Muthamizhchelvan%2CC&author=Marsili%2CE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="80."><p class="c-article-references__text" id="ref-CR80">H. Yang, C. Liu, D. Yang, H. Zhang, Z. Xi, Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol. <b>29</b>(1), 69–78 (2009). doi:<a href="https://doi.org/10.1002/jat.1385" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1002/jat.1385">10.1002/jat.1385</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 80" href="http://scholar.google.com/scholar_lookup?&title=Comparative%20study%20of%20cytotoxicity%2C%20oxidative%20stress%20and%20genotoxicity%20induced%20by%20four%20typical%20nanomaterials%3A%20the%20role%20of%20particle%20size%2C%20shape%20and%20composition&journal=J.%20Appl.%20Toxicol.&doi=10.1002%2Fjat.1385&volume=29&issue=1&pages=69-78&publication_year=2009&author=Yang%2CH&author=Liu%2CC&author=Yang%2CD&author=Zhang%2CH&author=Xi%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="81."><p class="c-article-references__text" id="ref-CR81">G. Li, T. Hu, G. Pan, T. Yan, X. Gao, H. Zhu, Morphology–function relationship of ZnO: polar planes, oxygen vacancies, and activity. J. Phys. Chem. C <b>112</b>(31), 11859–11864 (2008). doi:<a href="https://doi.org/10.1021/jp8038626" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/jp8038626">10.1021/jp8038626</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 81" href="http://scholar.google.com/scholar_lookup?&title=Morphology%E2%80%93function%20relationship%20of%20ZnO%3A%20polar%20planes%2C%20oxygen%20vacancies%2C%20and%20activity&journal=J.%20Phys.%20Chem.%20C&doi=10.1021%2Fjp8038626&volume=112&issue=31&pages=11859-11864&publication_year=2008&author=Li%2CG&author=Hu%2CT&author=Pan%2CG&author=Yan%2CT&author=Gao%2CX&author=Zhu%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="82."><p class="c-article-references__text" id="ref-CR82">G.-X. Tong, F.-F. Du, Y. Liang, Q. Hu, R.-N. Wu, J.-G. Guan, X. Hu, Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. J. Mater. Chem. B <b>1</b>(4), 454–463 (2013). doi:<a href="https://doi.org/10.1039/C2TB00132B" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1039/C2TB00132B">10.1039/C2TB00132B</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 82" href="http://scholar.google.com/scholar_lookup?&title=Polymorphous%20ZnO%20complex%20architectures%3A%20selective%20synthesis%2C%20mechanism%2C%20surface%20area%20and%20Zn-polar%20plane-codetermining%20antibacterial%20activity&journal=J.%20Mater.%20Chem.%20B&doi=10.1039%2FC2TB00132B&volume=1&issue=4&pages=454-463&publication_year=2013&author=Tong%2CG-X&author=Du%2CF-F&author=Liang%2CY&author=Hu%2CQ&author=Wu%2CR-N&author=Guan%2CJ-G&author=Hu%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="83."><p class="c-article-references__text" id="ref-CR83">L.C. Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni, R.A. Rahman, Antibacterial responses of zinc oxide structures against <i>Staphylococcus aureus</i>, <i>Pseudomonas aeruginosa</i> and <i>Streptococcus pyogenes</i>. Ceram. Int. <b>40</b>(2), 2993–3001 (2014). doi:<a href="https://doi.org/10.1016/j.ceramint.2013.10.008" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.ceramint.2013.10.008">10.1016/j.ceramint.2013.10.008</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 83" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20responses%20of%20zinc%20oxide%20structures%20against%20Staphylococcus%20aureus%2C%20Pseudomonas%20aeruginosa%20and%20Streptococcus%20pyogenes&journal=Ceram.%20Int.&doi=10.1016%2Fj.ceramint.2013.10.008&volume=40&issue=2&pages=2993-3001&publication_year=2014&author=Ann%2CLC&author=Mahmud%2CS&author=Bakhori%2CSKM&author=Sirelkhatim%2CA&author=Mohamad%2CD&author=Hasan%2CH&author=Seeni%2CA&author=Rahman%2CRA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="84."><p class="c-article-references__text" id="ref-CR84">M.H. Mamat, Z. Khusaimi, M.M. Zahidi, M.R. Mahmood, Performance of an ultraviolet photoconductive sensor using well-aligned aluminium-doped zinc-oxide nanorod arrays annealed in an air and oxygen environment. Jpn. J. Appl. Phys. <b>50</b>(6), 06GF05–06GF05-4 (2011). doi:<a href="https://doi.org/10.1143/JJAP.50.06GF05" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1143/JJAP.50.06GF05">10.1143/JJAP.50.06GF05</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 84" href="http://scholar.google.com/scholar_lookup?&title=Performance%20of%20an%20ultraviolet%20photoconductive%20sensor%20using%20well-aligned%20aluminium-doped%20zinc-oxide%20nanorod%20arrays%20annealed%20in%20an%20air%20and%20oxygen%20environment&journal=Jpn.%20J.%20Appl.%20Phys.&doi=10.1143%2FJJAP.50.06GF05&volume=50&issue=6&publication_year=2011&author=Mamat%2CMH&author=Khusaimi%2CZ&author=Zahidi%2CMM&author=Mahmood%2CMR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="85."><p class="c-article-references__text" id="ref-CR85">Y. Leung, C. Chan, A. Ng, H. Chan, M. Chiang, A. Djurišić, Y. Ng, W. Jim, M. Guo, F. Leung, Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnology <b>23</b>(47), 475703 (2012). doi:<a href="https://doi.org/10.1088/0957-4484/23/47/475703" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1088/0957-4484/23/47/475703">10.1088/0957-4484/23/47/475703</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 85" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20activity%20of%20ZnO%20nanoparticles%20with%20a%20modified%20surface%20under%20ambient%20illumination&journal=Nanotechnology&doi=10.1088%2F0957-4484%2F23%2F47%2F475703&volume=23&issue=47&publication_year=2012&author=Leung%2CY&author=Chan%2CC&author=Ng%2CA&author=Chan%2CH&author=Chiang%2CM&author=Djuri%C5%A1i%C4%87%2CA&author=Ng%2CY&author=Jim%2CW&author=Guo%2CM&author=Leung%2CF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="86."><p class="c-article-references__text" id="ref-CR86">A. Hsu, F. Liu, Y.H. Leung, A.P. Ma, A.B. Djurišić, F.C. Leung, W.K. Chan, H.K. Lee, Is the effect of surface modifying molecules on antibacterial activity universal for a given material? Nanoscale <b>6</b>(17), 10323–10331 (2014). doi:<a href="https://doi.org/10.1039/C4NR02366H" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1039/C4NR02366H">10.1039/C4NR02366H</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 86" href="http://scholar.google.com/scholar_lookup?&title=Is%20the%20effect%20of%20surface%20modifying%20molecules%20on%20antibacterial%20activity%20universal%20for%20a%20given%20material%3F&journal=Nanoscale&doi=10.1039%2FC4NR02366H&volume=6&issue=17&pages=10323-10331&publication_year=2014&author=Hsu%2CA&author=Liu%2CF&author=Leung%2CYH&author=Ma%2CAP&author=Djuri%C5%A1i%C4%87%2CAB&author=Leung%2CFC&author=Chan%2CWK&author=Lee%2CHK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="87."><p class="c-article-references__text" id="ref-CR87">X. Peng, S. Palma, N.S. Fisher, S.S. Wong, Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat. Toxicol. <b>102</b>(3), 186–196 (2011). doi:<a href="https://doi.org/10.1016/j.aquatox.2011.01.014" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.aquatox.2011.01.014">10.1016/j.aquatox.2011.01.014</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 87" href="http://scholar.google.com/scholar_lookup?&title=Effect%20of%20morphology%20of%20ZnO%20nanostructures%20on%20their%20toxicity%20to%20marine%20algae&journal=Aquat.%20Toxicol.&doi=10.1016%2Fj.aquatox.2011.01.014&volume=102&issue=3&pages=186-196&publication_year=2011&author=Peng%2CX&author=Palma%2CS&author=Fisher%2CNS&author=Wong%2CSS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="88."><p class="c-article-references__text" id="ref-CR88">J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. <b>29</b>(4), 627–633 (1996). doi:<a href="https://doi.org/10.1252/jcej.29.627" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1252/jcej.29.627">10.1252/jcej.29.627</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 88" href="http://scholar.google.com/scholar_lookup?&title=Detection%20of%20active%20oxygen%20generated%20from%20ceramic%20powders%20having%20antibacterial%20activity&journal=J.%20Chem.%20Eng.%20Jpn.&doi=10.1252%2Fjcej.29.627&volume=29&issue=4&pages=627-633&publication_year=1996&author=Sawai%2CJ&author=Kawada%2CE&author=Kanou%2CF&author=Igarashi%2CH&author=Hashimoto%2CA&author=Kokugan%2CT&author=Shimizu%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="89."><p class="c-article-references__text" id="ref-CR89">N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl<sub>2</sub> to a freshwater microalga (<i>Pseudokirchneriella subcapitata</i>): the importance of particle solubility. Environ. Sci. Technol. <b>41</b>(24), 8484–8490 (2007). doi:<a href="https://doi.org/10.1021/es071445r" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/es071445r">10.1021/es071445r</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 89" href="http://scholar.google.com/scholar_lookup?&title=Comparative%20toxicity%20of%20nanoparticulate%20ZnO%2C%20bulk%20ZnO%2C%20and%20ZnCl2%20to%20a%20freshwater%20microalga%20%28Pseudokirchneriella%20subcapitata%29%3A%20the%20importance%20of%20particle%20solubility&journal=Environ.%20Sci.%20Technol.&doi=10.1021%2Fes071445r&volume=41&issue=24&pages=8484-8490&publication_year=2007&author=Franklin%2CNM&author=Rogers%2CNJ&author=Apte%2CSC&author=Batley%2CGE&author=Gadd%2CGE&author=Casey%2CPS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="90."><p class="c-article-references__text" id="ref-CR90">H.A. Jeng, J. Swanson, Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health. A <b>41</b>(12), 2699–2711 (2006). doi:<a href="https://doi.org/10.1080/10934520600966177" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/10934520600966177">10.1080/10934520600966177</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 90" href="http://scholar.google.com/scholar_lookup?&title=Toxicity%20of%20metal%20oxide%20nanoparticles%20in%20mammalian%20cells&journal=J.%20Environ.%20Sci.%20Health.%20A&doi=10.1080%2F10934520600966177&volume=41&issue=12&pages=2699-2711&publication_year=2006&author=Jeng%2CHA&author=Swanson%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="91."><p class="c-article-references__text" id="ref-CR91">Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against <i>Campylobacter jejuni</i>. Appl. Environ. Microbiol. <b>77</b>(7), 2325–2331 (2011). doi:<a href="https://doi.org/10.1128/AEM.02149-10" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1128/AEM.02149-10">10.1128/AEM.02149-10</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 91" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20activity%20and%20mechanism%20of%20action%20of%20zinc%20oxide%20nanoparticles%20against%20Campylobacter%20jejuni&journal=Appl.%20Environ.%20Microbiol.&doi=10.1128%2FAEM.02149-10&volume=77&issue=7&pages=2325-2331&publication_year=2011&author=Xie%2CY&author=He%2CY&author=Irwin%2CPL&author=Jin%2CT&author=Shi%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="92."><p class="c-article-references__text" id="ref-CR92">L. Palanikumar, S.N. Ramasamy, C. Balachandran, Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol. <b>8</b>(2), 111–117 (2014)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 92" href="http://scholar.google.com/scholar_lookup?&title=Size-dependent%20antimicrobial%20response%20of%20zinc%20oxide%20nanoparticles&journal=IET%20Nanobiotechnol.&volume=8&issue=2&pages=111-117&publication_year=2014&author=Palanikumar%2CL&author=Ramasamy%2CSN&author=Balachandran%2CC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="93."><p class="c-article-references__text" id="ref-CR93">S. Atmaca, K. Gül, R. Cicek, The effect of zinc on microbial growth. Turk. J. Med. Sci. <b>28</b>(6), 595–598 (1998)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 93" href="http://scholar.google.com/scholar_lookup?&title=The%20effect%20of%20zinc%20on%20microbial%20growth&journal=Turk.%20J.%20Med.%20Sci.&volume=28&issue=6&pages=595-598&publication_year=1998&author=Atmaca%2CS&author=G%C3%BCl%2CK&author=Cicek%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="94."><p class="c-article-references__text" id="ref-CR94">H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, C. Ding, Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO<sub>2</sub> coatings on titanium. Acta Biomater. <b>8</b>(2), 904–915 (2012). doi:<a href="https://doi.org/10.1016/j.actbio.2011.09.031" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.actbio.2011.09.031">10.1016/j.actbio.2011.09.031</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 94" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20activity%20and%20increased%20bone%20marrow%20stem%20cell%20functions%20of%20Zn-incorporated%20TiO2%20coatings%20on%20titanium&journal=Acta%20Biomater.&doi=10.1016%2Fj.actbio.2011.09.031&volume=8&issue=2&pages=904-915&publication_year=2012&author=Hu%2CH&author=Zhang%2CW&author=Qiao%2CY&author=Jiang%2CX&author=Liu%2CX&author=Ding%2CC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="95."><p class="c-article-references__text" id="ref-CR95">W. Salem, D.R. Leitner, F.G. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, S. Schild, Antibacterial activity of silver and zinc nanoparticles against <i>Vibrio cholerae</i> and enterotoxic <i>Escherichia coli</i>. Int. J. Med. Microbiol. <b>305</b>(1), 85–95 (2015). doi:<a href="https://doi.org/10.1016/j.ijmm.2014.11.005" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.ijmm.2014.11.005">10.1016/j.ijmm.2014.11.005</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 95" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20activity%20of%20silver%20and%20zinc%20nanoparticles%20against%20Vibrio%20cholerae%20and%20enterotoxic%20Escherichia%20coli&journal=Int.%20J.%20Med.%20Microbiol.&doi=10.1016%2Fj.ijmm.2014.11.005&volume=305&issue=1&pages=85-95&publication_year=2015&author=Salem%2CW&author=Leitner%2CDR&author=Zingl%2CFG&author=Schratter%2CG&author=Prassl%2CR&author=Goessler%2CW&author=Reidl%2CJ&author=Schild%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="96."><p class="c-article-references__text" id="ref-CR96">F. Kroger, <i>The Chemistry of Imperfect Crystals</i>. Vol. 2. <i>Imperfection Chemistry of Crystalline Solids</i> (Elsevier, New York, 1974)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="97."><p class="c-article-references__text" id="ref-CR97">X. Wang, F. Yang, W. Yang, X. Yang, A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chem. Commun. <b>42</b>, 4419–4421 (2007). doi:<a href="https://doi.org/10.1039/b708662h" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1039/b708662h">10.1039/b708662h</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 97" href="http://scholar.google.com/scholar_lookup?&title=A%20study%20on%20the%20antibacterial%20activity%20of%20one-dimensional%20ZnO%20nanowire%20arrays%3A%20effects%20of%20the%20orientation%20and%20plane%20surface&journal=Chem.%20Commun.&doi=10.1039%2Fb708662h&volume=42&pages=4419-4421&publication_year=2007&author=Wang%2CX&author=Yang%2CF&author=Yang%2CW&author=Yang%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="98."><p class="c-article-references__text" id="ref-CR98">K. Tam, A. Djurišić, C. Chan, Y. Xi, C. Tse, Y. Leung, W. Chan, F. Leung, D. Au, Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films <b>516</b>(18), 6167–6174 (2008). doi:<a href="https://doi.org/10.1016/j.tsf.2007.11.081" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.tsf.2007.11.081">10.1016/j.tsf.2007.11.081</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 98" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20activity%20of%20ZnO%20nanorods%20prepared%20by%20a%20hydrothermal%20method&journal=Thin%20Solid%20Films&doi=10.1016%2Fj.tsf.2007.11.081&volume=516&issue=18&pages=6167-6174&publication_year=2008&author=Tam%2CK&author=Djuri%C5%A1i%C4%87%2CA&author=Chan%2CC&author=Xi%2CY&author=Tse%2CC&author=Leung%2CY&author=Chan%2CW&author=Leung%2CF&author=Au%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="99."><p class="c-article-references__text" id="ref-CR99">R. Karmali, A. Bartakke, V. Borker, K. Rane, Bactericidal action of N doped ZnO in sunlight. Biointerface Res. Appl. Chem. <b>1</b>(2), 57–63 (2011)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 99" href="http://scholar.google.com/scholar_lookup?&title=Bactericidal%20action%20of%20N%20doped%20ZnO%20in%20sunlight&journal=Biointerface%20Res.%20Appl.%20Chem.&volume=1&issue=2&pages=57-63&publication_year=2011&author=Karmali%2CR&author=Bartakke%2CA&author=Borker%2CV&author=Rane%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="100."><p class="c-article-references__text" id="ref-CR100">P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal oxide nanoparticles as bactericidal agents. Langmuir <b>18</b>(17), 6679–6686 (2002). doi:<a href="https://doi.org/10.1021/la0202374" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/la0202374">10.1021/la0202374</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 100" href="http://scholar.google.com/scholar_lookup?&title=Metal%20oxide%20nanoparticles%20as%20bactericidal%20agents&journal=Langmuir&doi=10.1021%2Fla0202374&volume=18&issue=17&pages=6679-6686&publication_year=2002&author=Stoimenov%2CPK&author=Klinger%2CRL&author=Marchin%2CGL&author=Klabunde%2CKJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="101."><p class="c-article-references__text" id="ref-CR101">J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. <b>3</b>(1), 95–101 (2007). doi:<a href="https://doi.org/10.1016/j.nano.2006.12.001" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.nano.2006.12.001">10.1016/j.nano.2006.12.001</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 101" href="http://scholar.google.com/scholar_lookup?&title=Antimicrobial%20effects%20of%20silver%20nanoparticles&journal=Nanomed.%20Nanotechnol.%20Biol.%20Med.&doi=10.1016%2Fj.nano.2006.12.001&volume=3&issue=1&pages=95-101&publication_year=2007&author=Kim%2CJS&author=Kuk%2CE&author=Yu%2CKN&author=Kim%2CJ-H&author=Park%2CSJ&author=Lee%2CHJ&author=Kim%2CSH&author=Park%2CYK&author=Park%2CYH&author=Hwang%2CC-Y"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="102."><p class="c-article-references__text" id="ref-CR102">L. Liu, J. Yang, J. Xie, Z. Luo, J. Jiang, Y.Y. Yang, S. Liu, The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale <b>5</b>(9), 3834–3840 (2013). doi:<a href="https://doi.org/10.1039/c3nr34254a" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1039/c3nr34254a">10.1039/c3nr34254a</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 102" href="http://scholar.google.com/scholar_lookup?&title=The%20potent%20antimicrobial%20properties%20of%20cell%20penetrating%20peptide-conjugated%20silver%20nanoparticles%20with%20excellent%20selectivity%20for%20Gram-positive%20bacteria%20over%20erythrocytes&journal=Nanoscale&doi=10.1039%2Fc3nr34254a&volume=5&issue=9&pages=3834-3840&publication_year=2013&author=Liu%2CL&author=Yang%2CJ&author=Xie%2CJ&author=Luo%2CZ&author=Jiang%2CJ&author=Yang%2CYY&author=Liu%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="103."><p class="c-article-references__text" id="ref-CR103">J.Y. Kim, J.Y. Yoon, Developing a testing method for antimicrobial efficacy on TiO<sub>2</sub> photocatalytic products. Environ. Eng. Res. <b>13</b>(3), 136–140 (2008). doi:<a href="https://doi.org/10.4491/eer.2008.13.3.136" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.4491/eer.2008.13.3.136">10.4491/eer.2008.13.3.136</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 103" href="http://scholar.google.com/scholar_lookup?&title=Developing%20a%20testing%20method%20for%20antimicrobial%20efficacy%20on%20TiO2%20photocatalytic%20products&journal=Environ.%20Eng.%20Res.&doi=10.4491%2Feer.2008.13.3.136&volume=13&issue=3&pages=136-140&publication_year=2008&author=Kim%2CJY&author=Yoon%2CJY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="104."><p class="c-article-references__text" id="ref-CR104">I.-L. Hsiao, Y.-J. Huang, Effects of various physicochemical characteristics on the toxicities of ZnO and TiO<sub>2</sub> nanoparticles toward human lung epithelial cells. Sci. Total Environ. <b>409</b>(7), 1219–1228 (2011). doi:<a href="https://doi.org/10.1016/j.scitotenv.2010.12.033" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.scitotenv.2010.12.033">10.1016/j.scitotenv.2010.12.033</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 104" href="http://scholar.google.com/scholar_lookup?&title=Effects%20of%20various%20physicochemical%20characteristics%20on%20the%20toxicities%20of%20ZnO%20and%20TiO2%20nanoparticles%20toward%20human%20lung%20epithelial%20cells&journal=Sci.%20Total%20Environ.&doi=10.1016%2Fj.scitotenv.2010.12.033&volume=409&issue=7&pages=1219-1228&publication_year=2011&author=Hsiao%2CI-L&author=Huang%2CY-J"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="105."><p class="c-article-references__text" id="ref-CR105">H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25–graphene composite as a high performance photocatalyst. ACS Nano <b>4</b>(1), 380–386 (2009). doi:<a href="https://doi.org/10.1021/nn901221k" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/nn901221k">10.1021/nn901221k</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 105" href="http://scholar.google.com/scholar_lookup?&title=P25%E2%80%93graphene%20composite%20as%20a%20high%20performance%20photocatalyst&journal=ACS%20Nano&doi=10.1021%2Fnn901221k&volume=4&issue=1&pages=380-386&publication_year=2009&author=Zhang%2CH&author=Lv%2CX&author=Li%2CY&author=Wang%2CY&author=Li%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="106."><p class="c-article-references__text" id="ref-CR106">Z. Huang, X. Zheng, D. Yan, G. Yin, X. Liao, Y. Kang, Y. Yao, D. Huang, B. Hao, Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir <b>24</b>(8), 4140–4144 (2008). doi:<a href="https://doi.org/10.1021/la7035949" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/la7035949">10.1021/la7035949</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 106" href="http://scholar.google.com/scholar_lookup?&title=Toxicological%20effect%20of%20ZnO%20nanoparticles%20based%20on%20bacteria&journal=Langmuir&doi=10.1021%2Fla7035949&volume=24&issue=8&pages=4140-4144&publication_year=2008&author=Huang%2CZ&author=Zheng%2CX&author=Yan%2CD&author=Yin%2CG&author=Liao%2CX&author=Kang%2CY&author=Yao%2CY&author=Huang%2CD&author=Hao%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="107."><p class="c-article-references__text" id="ref-CR107">T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano <b>2</b>(10), 2121–2134 (2008). doi:<a href="https://doi.org/10.1021/nn800511k" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/nn800511k">10.1021/nn800511k</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 107" href="http://scholar.google.com/scholar_lookup?&title=Comparison%20of%20the%20mechanism%20of%20toxicity%20of%20zinc%20oxide%20and%20cerium%20oxide%20nanoparticles%20based%20on%20dissolution%20and%20oxidative%20stress%20properties&journal=ACS%20Nano&doi=10.1021%2Fnn800511k&volume=2&issue=10&pages=2121-2134&publication_year=2008&author=Xia%2CT&author=Kovochich%2CM&author=Liong%2CM&author=M%C3%A4dler%2CL&author=Gilbert%2CB&author=Shi%2CH&author=Yeh%2CJI&author=Zink%2CJI&author=Nel%2CAE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="108."><p class="c-article-references__text" id="ref-CR108">R. Prasad, D. Basavaraju, K. Rao, C. Naveen, J. Endrino, A. Phani, Nanostructured TiO<sub>2</sub> and TiO<sub>2</sub>–Ag antimicrobial thin films, in <i>2011 International Conference on Nanoscience</i>, <i>Technology and Societal Implications</i> (<i>NSTSI</i>), Bhubaneswar, USA, 8–10 December 2011 (IEEE, 2011), pp. 1–6. doi:<a href="https://doi.org/10.1109/NSTSI.2011.6111808" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/NSTSI.2011.6111808">10.1109/NSTSI.2011.6111808</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="109."><p class="c-article-references__text" id="ref-CR109">S. Dwivedi, R. Wahab, F. Khan, Y.K. Mishra, J. Musarrat, A.A. Al-Khedhairy, Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE <b>9</b>(11), e111289 (2014). doi:<a href="https://doi.org/10.1371/journal.pone.0111289" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1371/journal.pone.0111289">10.1371/journal.pone.0111289</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 109" href="http://scholar.google.com/scholar_lookup?&title=Reactive%20oxygen%20species%20mediated%20bacterial%20biofilm%20inhibition%20via%20zinc%20oxide%20nanoparticles%20and%20their%20statistical%20determination&journal=PLoS%20ONE&doi=10.1371%2Fjournal.pone.0111289&volume=9&issue=11&publication_year=2014&author=Dwivedi%2CS&author=Wahab%2CR&author=Khan%2CF&author=Mishra%2CYK&author=Musarrat%2CJ&author=Al-Khedhairy%2CAA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="110."><p class="c-article-references__text" id="ref-CR110">W. Song, J. Zhang, J. Guo, J. Zhang, F. Ding, L. Li, Z. Sun, Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. <b>199</b>(3), 389–397 (2010). doi:<a href="https://doi.org/10.1016/j.toxlet.2010.10.003" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.toxlet.2010.10.003">10.1016/j.toxlet.2010.10.003</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 110" href="http://scholar.google.com/scholar_lookup?&title=Role%20of%20the%20dissolved%20zinc%20ion%20and%20reactive%20oxygen%20species%20in%20cytotoxicity%20of%20ZnO%20nanoparticles&journal=Toxicol.%20Lett.&doi=10.1016%2Fj.toxlet.2010.10.003&volume=199&issue=3&pages=389-397&publication_year=2010&author=Song%2CW&author=Zhang%2CJ&author=Guo%2CJ&author=Zhang%2CJ&author=Ding%2CF&author=Li%2CL&author=Sun%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="111."><p class="c-article-references__text" id="ref-CR111">B. Kalyanaraman, V. Darley-Usmar, K.J. Davies, P.A. Dennery, H.J. Forman, M.B. Grisham, G.E. Mann, K. Moore, L.J. Roberts, H. Ischiropoulos, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. <b>52</b>(1), 1–6 (2012). doi:<a href="https://doi.org/10.1016/j.freeradbiomed.2011.09.030" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.freeradbiomed.2011.09.030">10.1016/j.freeradbiomed.2011.09.030</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 111" href="http://scholar.google.com/scholar_lookup?&title=Measuring%20reactive%20oxygen%20and%20nitrogen%20species%20with%20fluorescent%20probes%3A%20challenges%20and%20limitations&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2011.09.030&volume=52&issue=1&pages=1-6&publication_year=2012&author=Kalyanaraman%2CB&author=Darley-Usmar%2CV&author=Davies%2CKJ&author=Dennery%2CPA&author=Forman%2CHJ&author=Grisham%2CMB&author=Mann%2CGE&author=Moore%2CK&author=Roberts%2CLJ&author=Ischiropoulos%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="112."><p class="c-article-references__text" id="ref-CR112">D. Guo, H. Bi, B. Liu, Q. Wu, D. Wag, Y. Cui, Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol. In Vitro <b>27</b>(2), 731–738 (2012). doi:<a href="https://doi.org/10.1016/j.tiv.2012.12.001" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.tiv.2012.12.001">10.1016/j.tiv.2012.12.001</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 112" href="http://scholar.google.com/scholar_lookup?&title=Reactive%20oxygen%20species-induced%20cytotoxic%20effects%20of%20zinc%20oxide%20nanoparticles%20in%20rat%20retinal%20ganglion%20cells&journal=Toxicol.%20In%20Vitro&doi=10.1016%2Fj.tiv.2012.12.001&volume=27&issue=2&pages=731-738&publication_year=2012&author=Guo%2CD&author=Bi%2CH&author=Liu%2CB&author=Wu%2CQ&author=Wag%2CD&author=Cui%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="113."><p class="c-article-references__text" id="ref-CR113">R. Wahab, N.K. Kaushik, N. Kaushik, E.H. Choi, A. Umar, S. Dwivedi, J. Musarrat, A.A. Al-Khedhairy, ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. J. Biomed. Nanotechnol. <b>9</b>(7), 1181–1189 (2013)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 113" href="http://scholar.google.com/scholar_lookup?&title=ZnO%20nanoparticles%20induces%20cell%20death%20in%20malignant%20human%20T98G%20gliomas%2C%20KB%20and%20non-malignant%20HEK%20cells&journal=J.%20Biomed.%20Nanotechnol.&volume=9&issue=7&pages=1181-1189&publication_year=2013&author=Wahab%2CR&author=Kaushik%2CNK&author=Kaushik%2CN&author=Choi%2CEH&author=Umar%2CA&author=Dwivedi%2CS&author=Musarrat%2CJ&author=Al-Khedhairy%2CAA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="114."><p class="c-article-references__text" id="ref-CR114">Y. Matsumura, K. Yoshikata, S.-I. Kunisaki, T. Tsuchido, Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. <b>69</b>(7), 4278–4281 (2003). doi:<a href="https://doi.org/10.1128/AEM.69.7.4278-4281.2003" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1128/AEM.69.7.4278-4281.2003">10.1128/AEM.69.7.4278-4281.2003</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 114" href="http://scholar.google.com/scholar_lookup?&title=Mode%20of%20bactericidal%20action%20of%20silver%20zeolite%20and%20its%20comparison%20with%20that%20of%20silver%20nitrate&journal=Appl.%20Environ.%20Microbiol.&doi=10.1128%2FAEM.69.7.4278-4281.2003&volume=69&issue=7&pages=4278-4281&publication_year=2003&author=Matsumura%2CY&author=Yoshikata%2CK&author=Kunisaki%2CS-I&author=Tsuchido%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="115."><p class="c-article-references__text" id="ref-CR115">K.R. Messner, J.A. Imlay, The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of <i>Escherichia coli</i>. J. Biol. Chem. <b>274</b>(15), 10119–10128 (1999). doi:<a href="https://doi.org/10.1074/jbc.274.15.10119" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1074/jbc.274.15.10119">10.1074/jbc.274.15.10119</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 115" href="http://scholar.google.com/scholar_lookup?&title=The%20identification%20of%20primary%20sites%20of%20superoxide%20and%20hydrogen%20peroxide%20formation%20in%20the%20aerobic%20respiratory%20chain%20and%20sulfite%20reductase%20complex%20of%20Escherichia%20coli&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.274.15.10119&volume=274&issue=15&pages=10119-10128&publication_year=1999&author=Messner%2CKR&author=Imlay%2CJA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="116."><p class="c-article-references__text" id="ref-CR116">L. Yuan, Y. Wang, J. Wang, H. Xiao, X. Liu, Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line. Toxicol. Lett. <b>225</b>(2), 294–304 (2014). doi:<a href="https://doi.org/10.1016/j.toxlet.2013.12.015" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.toxlet.2013.12.015">10.1016/j.toxlet.2013.12.015</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 116" href="http://scholar.google.com/scholar_lookup?&title=Additive%20effect%20of%20zinc%20oxide%20nanoparticles%20and%20isoorientin%20on%20apoptosis%20in%20human%20hepatoma%20cell%20line&journal=Toxicol.%20Lett.&doi=10.1016%2Fj.toxlet.2013.12.015&volume=225&issue=2&pages=294-304&publication_year=2014&author=Yuan%2CL&author=Wang%2CY&author=Wang%2CJ&author=Xiao%2CH&author=Liu%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="117."><p class="c-article-references__text" id="ref-CR117">M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO<sub>2</sub> to bacteria <i>Vibrio fischeri</i> and crustaceans <i>Daphnia magna</i> and <i>Thamnocephalus platyurus</i>. Chemosphere <b>71</b>(7), 1308–1316 (2008). doi:<a href="https://doi.org/10.1016/j.chemosphere.2007.11.047" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.chemosphere.2007.11.047">10.1016/j.chemosphere.2007.11.047</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 117" href="http://scholar.google.com/scholar_lookup?&title=Toxicity%20of%20nanosized%20and%20bulk%20ZnO%2C%20CuO%20and%20TiO2%20to%20bacteria%20Vibrio%20fischeri%20and%20crustaceans%20Daphnia%20magna%20and%20Thamnocephalus%20platyurus&journal=Chemosphere&doi=10.1016%2Fj.chemosphere.2007.11.047&volume=71&issue=7&pages=1308-1316&publication_year=2008&author=Heinlaan%2CM&author=Ivask%2CA&author=Blinova%2CI&author=Dubourguier%2CH-C&author=Kahru%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="118."><p class="c-article-references__text" id="ref-CR118">B. Aydin Sevinç, L. Hanley, Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. B <b>94</b>(1), 22–31 (2010). doi:<a href="https://doi.org/10.1002/jbm.b.31620" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1002/jbm.b.31620">10.1002/jbm.b.31620</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 118" href="http://scholar.google.com/scholar_lookup?&title=Antibacterial%20activity%20of%20dental%20composites%20containing%20zinc%20oxide%20nanoparticles&journal=J.%20Biomed.%20Mater.%20Res.%20B&doi=10.1002%2Fjbm.b.31620&volume=94&issue=1&pages=22-31&publication_year=2010&author=Aydin%20Sevin%C3%A7%2CB&author=Hanley%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="119."><p class="c-article-references__text" id="ref-CR119">S.W. Wong, P.T. Leung, A. Djurišić, K.M. Leung, Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal. Bioanal. Chem. <b>396</b>(2), 609–618 (2010). doi:<a href="https://doi.org/10.1007/s00216-009-3249-z" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s00216-009-3249-z">10.1007/s00216-009-3249-z</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 119" href="http://scholar.google.com/scholar_lookup?&title=Toxicities%20of%20nano%20zinc%20oxide%20to%20five%20marine%20organisms%3A%20influences%20of%20aggregate%20size%20and%20ion%20solubility&journal=Anal.%20Bioanal.%20Chem.&doi=10.1007%2Fs00216-009-3249-z&volume=396&issue=2&pages=609-618&publication_year=2010&author=Wong%2CSW&author=Leung%2CPT&author=Djuri%C5%A1i%C4%87%2CA&author=Leung%2CKM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="120."><p class="c-article-references__text" id="ref-CR120">B. Wu, Y. Wang, Y.-H. Lee, A. Horst, Z. Wang, D.-R. Chen, R. Sureshkumar, Y.J. Tang, Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ. Sci. Technol. <b>44</b>(4), 1484–1489 (2010). doi:<a href="https://doi.org/10.1021/es9030497" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/es9030497">10.1021/es9030497</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 120" href="http://scholar.google.com/scholar_lookup?&title=Comparative%20eco-toxicities%20of%20nano-ZnO%20particles%20under%20aquatic%20and%20aerosol%20exposure%20modes&journal=Environ.%20Sci.%20Technol.&doi=10.1021%2Fes9030497&volume=44&issue=4&pages=1484-1489&publication_year=2010&author=Wu%2CB&author=Wang%2CY&author=Lee%2CY-H&author=Horst%2CA&author=Wang%2CZ&author=Chen%2CD-R&author=Sureshkumar%2CR&author=Tang%2CYJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="121."><p class="c-article-references__text" id="ref-CR121">W. Jiang, H. Mashayekhi, B. Xing, Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. <b>157</b>(5), 1619–1625 (2009). doi:<a href="https://doi.org/10.1016/j.envpol.2008.12.025" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.envpol.2008.12.025">10.1016/j.envpol.2008.12.025</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 121" href="http://scholar.google.com/scholar_lookup?&title=Bacterial%20toxicity%20comparison%20between%20nano-%20and%20micro-scaled%20oxide%20particles&journal=Environ.%20Pollut.&doi=10.1016%2Fj.envpol.2008.12.025&volume=157&issue=5&pages=1619-1625&publication_year=2009&author=Jiang%2CW&author=Mashayekhi%2CH&author=Xing%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="122."><p class="c-article-references__text" id="ref-CR122">J. Pasquet, Y. Chevalier, J. Pelletier, E. Couval, D. Bouvier, M.-A. Bolzinger, The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A <b>457</b>, 263–274 (2014). doi:<a href="https://doi.org/10.1016/j.colsurfa.2014.05.057" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.colsurfa.2014.05.057">10.1016/j.colsurfa.2014.05.057</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 122" href="http://scholar.google.com/scholar_lookup?&title=The%20contribution%20of%20zinc%20ions%20to%20the%20antimicrobial%20activity%20of%20zinc%20oxide&journal=Colloids%20Surf.%20A&doi=10.1016%2Fj.colsurfa.2014.05.057&volume=457&pages=263-274&publication_year=2014&author=Pasquet%2CJ&author=Chevalier%2CY&author=Pelletier%2CJ&author=Couval%2CE&author=Bouvier%2CD&author=Bolzinger%2CM-A"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="123."><p class="c-article-references__text" id="ref-CR123">X. Wang, H.-F. Wu, Q. Kuang, R.-B. Huang, Z.-X. Xie, L.-S. Zheng, Shape-dependent antibacterial activities of Ag<sub>2</sub>O polyhedral particles. Langmuir <b>26</b>(4), 2774–2778 (2009). doi:<a href="https://doi.org/10.1021/la9028172" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/la9028172">10.1021/la9028172</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 123" href="http://scholar.google.com/scholar_lookup?&title=Shape-dependent%20antibacterial%20activities%20of%20Ag2O%20polyhedral%20particles&journal=Langmuir&doi=10.1021%2Fla9028172&volume=26&issue=4&pages=2774-2778&publication_year=2009&author=Wang%2CX&author=Wu%2CH-F&author=Kuang%2CQ&author=Huang%2CR-B&author=Xie%2CZ-X&author=Zheng%2CL-S"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="124."><p class="c-article-references__text" id="ref-CR124">O. Yamamoto, M. Komatsu, J. Sawai, Z.-E. Nakagawa, Effect of lattice constant of zinc oxide on antibacterial characteristics. J. Mater. Sci. Mater. Med. <b>15</b>(8), 847–851 (2004). doi:<a href="https://doi.org/10.1023/B:JMSM.0000036271.35440.36" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1023/B:JMSM.0000036271.35440.36">10.1023/B:JMSM.0000036271.35440.36</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 124" href="http://scholar.google.com/scholar_lookup?&title=Effect%20of%20lattice%20constant%20of%20zinc%20oxide%20on%20antibacterial%20characteristics&journal=J.%20Mater.%20Sci.%20Mater.%20Med.&doi=10.1023%2FB%3AJMSM.0000036271.35440.36&volume=15&issue=8&pages=847-851&publication_year=2004&author=Yamamoto%2CO&author=Komatsu%2CM&author=Sawai%2CJ&author=Nakagawa%2CZ-E"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="125."><p class="c-article-references__text" id="ref-CR125">L.V. Ana Stanković, S. Marković, S. Dimitrijević, S.D. Škapin, D. Uskoković, Morphology Controlled hydrothermal synthesis of ZnO particles and examination of their antibacterial properties on <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> bacterial cultures, in <i>Tenth Young Researchers</i>’ <i>Conference</i>—<i>Materials Science and Engineering</i>, Belgrade, Serbia, 21–23 December 2011 (Institute of Technical Sciences of SASA, Belgrade, 2011), p. 62</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="126."><p class="c-article-references__text" id="ref-CR126">V. Berry, A. Gole, S. Kundu, C.J. Murphy, R.F. Saraf, Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. J. Am. Chem. Soc. <b>127</b>(50), 17600–17601 (2005). doi:<a href="https://doi.org/10.1021/ja056428l" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/ja056428l">10.1021/ja056428l</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 126" href="http://scholar.google.com/scholar_lookup?&title=Deposition%20of%20CTAB-terminated%20nanorods%20on%20bacteria%20to%20form%20highly%20conducting%20hybrid%20systems&journal=J.%20Am.%20Chem.%20Soc.&doi=10.1021%2Fja056428l&volume=127&issue=50&pages=17600-17601&publication_year=2005&author=Berry%2CV&author=Gole%2CA&author=Kundu%2CS&author=Murphy%2CCJ&author=Saraf%2CRF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="127."><p class="c-article-references__text" id="ref-CR127">A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. Gedanken, R. Lubart, EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C <b>113</b>(36), 15997–16001 (2009). doi:<a href="https://doi.org/10.1021/jp904864g" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/jp904864g">10.1021/jp904864g</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 127" href="http://scholar.google.com/scholar_lookup?&title=EPR%20study%20of%20visible%20light-induced%20ROS%20generation%20by%20nanoparticles%20of%20ZnO&journal=J.%20Phys.%20Chem.%20C&doi=10.1021%2Fjp904864g&volume=113&issue=36&pages=15997-16001&publication_year=2009&author=Lipovsky%2CA&author=Tzitrinovich%2CZ&author=Friedmann%2CH&author=Applerot%2CG&author=Gedanken%2CA&author=Lubart%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="128."><p class="c-article-references__text" id="ref-CR128">J. Díaz-Visurraga, C. Gutiérrez, C. Von Plessing, A. García, in <i>Science and Technology Against Microbial Pathogens Communicating Current Research and Technological Advances: Metal Nanostructures as Antibacterial Agents</i>, ed. by A. Méndez-Vilas (Formatex, Badajoz, 2011), pp. 210–218</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 128" href="http://scholar.google.com/scholar_lookup?&title=Science%20and%20Technology%20Against%20Microbial%20Pathogens%20Communicating%20Current%20Research%20and%20Technological%20Advances%3A%20Metal%20Nanostructures%20as%20Antibacterial%20Agents&pages=210-218&publication_year=2011&author=D%C3%ADaz-Visurraga%2CJ&author=Guti%C3%A9rrez%2CC&author=Plessing%2CC&author=Garc%C3%ADa%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="129."><p class="c-article-references__text" id="ref-CR129">M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, From zinc oxide nanoparticles to microflowers: a study of growth kinetics and biocidal activity. Mater. Sci. Eng. C <b>32</b>(8), 2381–2389 (2012). doi:<a href="https://doi.org/10.1016/j.msec.2012.07.011" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.msec.2012.07.011">10.1016/j.msec.2012.07.011</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 129" href="http://scholar.google.com/scholar_lookup?&title=From%20zinc%20oxide%20nanoparticles%20to%20microflowers%3A%20a%20study%20of%20growth%20kinetics%20and%20biocidal%20activity&journal=Mater.%20Sci.%20Eng.%20C&doi=10.1016%2Fj.msec.2012.07.011&volume=32&issue=8&pages=2381-2389&publication_year=2012&author=Ramani%2CM&author=Ponnusamy%2CS&author=Muthamizhchelvan%2CC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="130."><p class="c-article-references__text" id="ref-CR130">C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, C.-M. Che, Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. <b>5</b>(4), 916–924 (2006). doi:<a href="https://doi.org/10.1021/pr0504079" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/pr0504079">10.1021/pr0504079</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 130" href="http://scholar.google.com/scholar_lookup?&title=Proteomic%20analysis%20of%20the%20mode%20of%20antibacterial%20action%20of%20silver%20nanoparticles&journal=J.%20Proteome%20Res.&doi=10.1021%2Fpr0504079&volume=5&issue=4&pages=916-924&publication_year=2006&author=Lok%2CC-N&author=Ho%2CC-M&author=Chen%2CR&author=He%2CQ-Y&author=Yu%2CW-Y&author=Sun%2CH&author=Tam%2CPK-H&author=Chiu%2CJ-F&author=Che%2CC-M"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="131."><p class="c-article-references__text" id="ref-CR131">H. Meruvu, M. Vangalapati, S.C. Chippada, S.R. Bammidi, Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against <i>Bacillus subtilis</i> and <i>Escherichia coli</i>. J. Rasayan Chem. <b>4</b>(1), 217–222 (2011)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 131" href="http://scholar.google.com/scholar_lookup?&title=Synthesis%20and%20characterization%20of%20zinc%20oxide%20nanoparticles%20and%20its%20antimicrobial%20activity%20against%20Bacillus%20subtilis%20and%20Escherichia%20coli&journal=J.%20Rasayan%20Chem.&volume=4&issue=1&pages=217-222&publication_year=2011&author=Meruvu%2CH&author=Vangalapati%2CM&author=Chippada%2CSC&author=Bammidi%2CSR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="132."><p class="c-article-references__text" id="ref-CR132">N.A. Amro, L.P. Kotra, K. Wadu-Mesthrige, A. Bulychev, S. Mobashery, G.-Y. Liu, High-resolution atomic force microscopy studies of the <i>Escherichia coli</i> outer membrane: structural basis for permeability. Langmuir <b>16</b>(6), 2789–2796 (2000). doi:<a href="https://doi.org/10.1021/la991013x" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1021/la991013x">10.1021/la991013x</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 132" href="http://scholar.google.com/scholar_lookup?&title=High-resolution%20atomic%20force%20microscopy%20studies%20of%20the%20Escherichia%20coli%20outer%20membrane%3A%20structural%20basis%20for%20permeability&journal=Langmuir&doi=10.1021%2Fla991013x&volume=16&issue=6&pages=2789-2796&publication_year=2000&author=Amro%2CNA&author=Kotra%2CLP&author=Wadu-Mesthrige%2CK&author=Bulychev%2CA&author=Mobashery%2CS&author=Liu%2CG-Y"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="133."><p class="c-article-references__text" id="ref-CR133">M.L.M. Francisco Javier Gutiérrez, P. Gatón, R. Rojo, in <i>Scientific</i>, <i>Health and Social Aspects of the Food Industry</i>: <i>Nanotechnology and Food Industry</i>, ed. by B. Valdez (InTech Europe, Rijeka, 2012), pp. 95–128. doi:<a href="https://doi.org/10.5772/1869" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.5772/1869">10.5772/1869</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="134."><p class="c-article-references__text" id="ref-CR134">Q. Chaudhry, L. Castle, Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci. Technol. <b>22</b>(11), 595–603 (2011). doi:<a href="https://doi.org/10.1016/j.tifs.2011.01.001" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.tifs.2011.01.001">10.1016/j.tifs.2011.01.001</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 134" href="http://scholar.google.com/scholar_lookup?&title=Food%20applications%20of%20nanotechnologies%3A%20an%20overview%20of%20opportunities%20and%20challenges%20for%20developing%20countries&journal=Trends%20Food%20Sci.%20Technol.&doi=10.1016%2Fj.tifs.2011.01.001&volume=22&issue=11&pages=595-603&publication_year=2011&author=Chaudhry%2CQ&author=Castle%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="135."><p class="c-article-references__text" id="ref-CR135">C. Silvestre, D. Duraccio, S. Cimmino, Food packaging based on polymer nanomaterials. Prog. Polym. Sci. <b>36</b>(12), 1766–1782 (2011). doi:<a href="https://doi.org/10.1016/j.progpolymsci.2011.02.003" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.progpolymsci.2011.02.003">10.1016/j.progpolymsci.2011.02.003</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 135" href="http://scholar.google.com/scholar_lookup?&title=Food%20packaging%20based%20on%20polymer%20nanomaterials&journal=Prog.%20Polym.%20Sci.&doi=10.1016%2Fj.progpolymsci.2011.02.003&volume=36&issue=12&pages=1766-1782&publication_year=2011&author=Silvestre%2CC&author=Duraccio%2CD&author=Cimmino%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="136."><p class="c-article-references__text" id="ref-CR136">T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. <b>363</b>(1), 1–24 (2011). doi:<a href="https://doi.org/10.1016/j.jcis.2011.07.017" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.jcis.2011.07.017">10.1016/j.jcis.2011.07.017</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 136" href="http://scholar.google.com/scholar_lookup?&title=Applications%20of%20nanotechnology%20in%20food%20packaging%20and%20food%20safety%3A%20barrier%20materials%2C%20antimicrobials%20and%20sensors&journal=J.%20Colloid%20Interface%20Sci.&doi=10.1016%2Fj.jcis.2011.07.017&volume=363&issue=1&pages=1-24&publication_year=2011&author=Duncan%2CTV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="137."><p class="c-article-references__text" id="ref-CR137">P. Kaur, R. Thakur, S. Kumar, N. Dilbaghi, Interaction of ZnO nanoparticles with food borne pathogens <i>Escherichia coli</i> DH5α and <i>Staphylococcus aureus</i> 5021 and their bactericidal efficacy, in <i>International Conference on Advances in Condensed and Nano Materials</i> (<i>ICACNM-2011</i>): <i>AIP Proceedings</i>, Chandigarh, India, 23–26 February 2011 (2011), p. 153. doi:<a href="https://doi.org/10.1063/1.3653655" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1063/1.3653655">10.1063/1.3653655</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="138."><p class="c-article-references__text" id="ref-CR138">P. Narayanan, W.S. Wilson, A.T. Abraham, M. Sevanan, Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens. BioNanoScience <b>2</b>(4), 329–335 (2012). doi:<a href="https://doi.org/10.1007/s12668-012-0061-6" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s12668-012-0061-6">10.1007/s12668-012-0061-6</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 138" href="http://scholar.google.com/scholar_lookup?&title=Synthesis%2C%20characterization%2C%20and%20antimicrobial%20activity%20of%20zinc%20oxide%20nanoparticles%20against%20human%20pathogens&journal=BioNanoScience&doi=10.1007%2Fs12668-012-0061-6&volume=2&issue=4&pages=329-335&publication_year=2012&author=Narayanan%2CP&author=Wilson%2CWS&author=Abraham%2CAT&author=Sevanan%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="139."><p class="c-article-references__text" id="ref-CR139">K. Chitra, G. Annadurai, Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen. Int. Food Res. J. <b>20</b>(1), 59–64 (2013)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 139" href="http://scholar.google.com/scholar_lookup?&title=Antimicrobial%20activity%20of%20wet%20chemically%20engineered%20spherical%20shaped%20ZnO%20nanoparticles%20on%20food%20borne%20pathogen&journal=Int.%20Food%20Res.%20J.&volume=20&issue=1&pages=59-64&publication_year=2013&author=Chitra%2CK&author=Annadurai%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="140."><p class="c-article-references__text" id="ref-CR140">B. Yalcin, S. Otles, Intelligent food packaging, <a href="http://www.logforum.net/vol4/issue4/no3" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://www.logforum.net/vol4/issue4/no3">http://www.logforum.net/vol4/issue4/no3</a>. Accessed 13 Feb 2008</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="141."><p class="c-article-references__text" id="ref-CR141">H. de Azeredo, Antimicrobial nanostructures in food packaging. Trends Food Sci. Technol. <b>30</b>(1), 56–69 (2013). doi:<a href="https://doi.org/10.1016/j.tifs.2012.11.006" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.tifs.2012.11.006">10.1016/j.tifs.2012.11.006</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 141" href="http://scholar.google.com/scholar_lookup?&title=Antimicrobial%20nanostructures%20in%20food%20packaging&journal=Trends%20Food%20Sci.%20Technol.&doi=10.1016%2Fj.tifs.2012.11.006&volume=30&issue=1&pages=56-69&publication_year=2013&author=Azeredo%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="142."><p class="c-article-references__text" id="ref-CR142">N. Soares, C.A.S. Silva, P. Santiago-Silva, P.J.P Espitia, M.P.J.C. Gonçalves, M.J.G. Lopez, J. Miltz, M.A. Cerqueira, A.A. Vicente, J. Teixeira, in <i>Engineering Aspects of Milk and Dairy Products</i>: <i>Active and Intelligent Packaging for Milk and Milk Products</i>, ed. by J.A.T. Jane Selia dos Reis Coimbra (CRC Press, 2009), pp. 155–174. doi:<a href="https://doi.org/10.1201/9781420090390-c8" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1201/9781420090390-c8">10.1201/9781420090390-c8</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="143."><p class="c-article-references__text" id="ref-CR143">R. Ahvenainen (ed.), <i>Novel Food Packaging Techniques</i> (CRC Press, Boca Raton, 2003)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 143" href="http://scholar.google.com/scholar_lookup?&title=Novel%20Food%20Packaging%20Techniques&publication_year=2003"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="144."><p class="c-article-references__text" id="ref-CR144">N.D. Kruijf, M.V. Beest, R. Rijk, T. Sipiläinen-Malm, P.P. Losada, B.D. Meulenaer, Active and intelligent packaging: applications and regulatory aspects. Food Addit. Contam. <b>19</b>(S1), 144–162 (2002). doi:<a href="https://doi.org/10.1080/02652030110072722" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/02652030110072722">10.1080/02652030110072722</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 144" href="http://scholar.google.com/scholar_lookup?&title=Active%20and%20intelligent%20packaging%3A%20applications%20and%20regulatory%20aspects&journal=Food%20Addit.%20Contam.&doi=10.1080%2F02652030110072722&volume=19&issue=S1&pages=144-162&publication_year=2002&author=Kruijf%2CND&author=Beest%2CMV&author=Rijk%2CR&author=Sipil%C3%A4inen-Malm%2CT&author=Losada%2CPP&author=Meulenaer%2CBD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="145."><p class="c-article-references__text" id="ref-CR145">K.L. Yam, P.T. Takhistov, J. Miltz, Intelligent packaging: concepts and applications. J. Food Sci. <b>70</b>(1), R1–R10 (2005). doi:<a href="https://doi.org/10.1111/j.1365-2621.2005.tb09052.x" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1111/j.1365-2621.2005.tb09052.x">10.1111/j.1365-2621.2005.tb09052.x</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 145" href="http://scholar.google.com/scholar_lookup?&title=Intelligent%20packaging%3A%20concepts%20and%20applications&journal=J.%20Food%20Sci.&doi=10.1111%2Fj.1365-2621.2005.tb09052.x&volume=70&issue=1&pages=R1-R10&publication_year=2005&author=Yam%2CKL&author=Takhistov%2CPT&author=Miltz%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="146."><p class="c-article-references__text" id="ref-CR146">S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano. Lett.<b> 3</b>(1), 1–6 (2013)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="147."><p class="c-article-references__text" id="ref-CR147">E.E. Hafez, H.S. Hassan, M. Elkady, E. Salama, Assessment Of antibacterial activity for synthesized zinc oxide nanorods against plant pathogenic strains. Int. J. Sci. Tech. Res. (IJSTR),<b> 3</b>(9), 318–324 (2014)</p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s40820-015-0040-x?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgments"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgments</h2><div class="c-article-section__content" id="Ack1-content"><p>We acknowledge the financial support from a research university Grant number 1001/PFIZIK/814174 of Universiti Sains Malaysia (USM). Thanks are due to the Emerging Nations Science Foundation (ENSF), for the fellowship award. We are grateful to all who gave us permissions to adapt from their evaluated articles. We thank NOR Lab staff, at School of Physics for the characterization of ZnO-NPs. We gratefully appreciate the assistance of Microbiology Lab, School of Medical Sciences USM, where series of in vitro assays were conducted that emerged with this review.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Nano-Optoelectronics Research and Technology Laboratory (N.O.R. Lab), School of Physics, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia</p><p class="c-article-author-affiliation__authors-list">Amna Sirelkhatim, Shahrom Mahmud, Ling Chuo Ann & Siti Khadijah Mohd Bakhori</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Advanced Medical and Dental Institute, Cluster of Integrative Medicine, Universiti Sains Malaysia, 13200, Bertam, Malaysia</p><p class="c-article-author-affiliation__authors-list">Azman Seeni</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia</p><p class="c-article-author-affiliation__authors-list">Noor Haida Mohamad Kaus</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">Department of Medical Microbiology, Parasitology and Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kubang Kerian, Kelantan, Malaysia</p><p class="c-article-author-affiliation__authors-list">Habsah Hasan</p></li><li id="Aff5"><p class="c-article-author-affiliation__address">School of Dental Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia</p><p class="c-article-author-affiliation__authors-list">Dasmawati Mohamad</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Amna-Sirelkhatim-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Amna Sirelkhatim</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Amna%20Sirelkhatim" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Amna%20Sirelkhatim" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Amna%20Sirelkhatim%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Shahrom-Mahmud-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Shahrom Mahmud</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Shahrom%20Mahmud" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Shahrom%20Mahmud" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Shahrom%20Mahmud%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Azman-Seeni-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Azman Seeni</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Azman%20Seeni" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Azman%20Seeni" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Azman%20Seeni%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Noor_Haida_Mohamad-Kaus-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Noor Haida Mohamad Kaus</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Noor%20Haida%20Mohamad%20Kaus" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Noor%20Haida%20Mohamad%20Kaus" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Noor%20Haida%20Mohamad%20Kaus%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Ling_Chuo-Ann-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Ling Chuo Ann</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Ling%20Chuo%20Ann" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Ling%20Chuo%20Ann" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Ling%20Chuo%20Ann%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Siti_Khadijah_Mohd-Bakhori-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Siti Khadijah Mohd Bakhori</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Siti%20Khadijah%20Mohd%20Bakhori" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Siti%20Khadijah%20Mohd%20Bakhori" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Siti%20Khadijah%20Mohd%20Bakhori%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Habsah-Hasan-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Habsah Hasan</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Habsah%20Hasan" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Habsah%20Hasan" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Habsah%20Hasan%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Dasmawati-Mohamad-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">Dasmawati Mohamad</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Dasmawati%20Mohamad" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Dasmawati%20Mohamad" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Dasmawati%20Mohamad%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:amnasirelkhatim@yahoo.co.uk">Amna Sirelkhatim</a>.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p> <b>Open Access</b> This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Review%20on%20Zinc%20Oxide%20Nanoparticles%3A%20Antibacterial%20Activity%20and%20Toxicity%20Mechanism&author=Amna%20Sirelkhatim%20et%20al&contentID=10.1007%2Fs40820-015-0040-x&copyright=The%20Author%28s%29&publication=2311-6706&publicationDate=2015-04-19&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/s40820-015-0040-x" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/s40820-015-0040-x" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Sirelkhatim, A., Mahmud, S., Seeni, A. <i>et al.</i> Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. <i>Nano-Micro Lett.</i> <b>7</b>, 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s40820-015-0040-x?format=refman&flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2015-01-31">31 January 2015</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2015-03-11">11 March 2015</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2015-04-19">19 April 2015</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Issue Date<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2015-07">July 2015</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/s40820-015-0040-x</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Antibacterial%20activity&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">Antibacterial activity</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=ZnO-NPs&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">ZnO-NPs</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Toxicity%20mechanism&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">Toxicity mechanism</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Reactive%20oxygen%20species&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">Reactive oxygen species</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Zinc%20ions%20release&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">Zinc ions release</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Food%20antimicrobial&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">Food antimicrobial</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=40820" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/40820/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s40820-015-0040-x;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">© 2024 Springer Nature</p> </div> </div> </footer> </div> </body> </html>