CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;14 of 14 results for author: <span class="mathjax">Fedchak, J A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Fedchak%2C+J+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fedchak, J A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fedchak%2C+J+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fedchak, J A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11226">arXiv:2409.11226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11226">pdf</a>, <a href="https://arxiv.org/format/2409.11226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> On the effect of &#34;glancing&#34; collisions in the cold atom vacuum standard </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S+P">Stephen P. Eckel</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">Daniel S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">James A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=K%C5%82os%2C+J">Jacek K艂os</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">Julia Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Tiesinga%2C+E">Eite Tiesinga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11226v1-abstract-short" style="display: inline;"> We theoretically investigate the effect of ``glancing&#34; collisions on the ultra-high vacuum (UHV) pressure readings of the cold atom vacuum standard (CAVS), based on either ultracold $^7$Li or $^{87}$Rb atoms. Here, glancing collisions are those collisions between ultracold atoms and room-temperature background atoms or molecules in the vacuum that do not impart enough kinetic energy to eject an ul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11226v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11226v1-abstract-full" style="display: none;"> We theoretically investigate the effect of ``glancing&#34; collisions on the ultra-high vacuum (UHV) pressure readings of the cold atom vacuum standard (CAVS), based on either ultracold $^7$Li or $^{87}$Rb atoms. Here, glancing collisions are those collisions between ultracold atoms and room-temperature background atoms or molecules in the vacuum that do not impart enough kinetic energy to eject an ultracold atom from its trap. Our model is wholly probabilistic and shows that the number of the ultracold atoms remaining in the trap as a function of time is non-exponential. We update the recent results of a comparison between a traditional pressure standard -- a combined flowmeter and dynamic expansion system -- to the CAVS [D.S. Barker, et al., arXiv:2302.12143] to reflect the results of our model. We find that the effect of glancing collisions shifts the theoretical predictions of the total loss rate coefficients for $^7$Li colliding with noble gases or N$_2$ by up to $0.6$ %. Likewise, we find that in the limit of zero trap depth the experimentally extracted loss rate coefficients for $^{87}$Rb colliding with noble gases or N$_2$ shift by as much as 2.2 %. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11226v1-abstract-full').style.display = 'none'; document.getElementById('2409.11226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures, 3 tables, and 1 supplemental material with 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12143">arXiv:2302.12143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.12143">pdf</a>, <a href="https://arxiv.org/format/2302.12143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1116/5.0147686">10.1116/5.0147686 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accurate measurement of the loss rate of cold atoms due to background gas collisions for the quantum-based cold atom vacuum standard </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">Daniel S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">James A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=K%C5%82os%2C+J">Jacek K艂os</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">Julia Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Sheikh%2C+A+A">Abrar A. Sheikh</a>, <a href="/search/physics?searchtype=author&amp;query=Tiesinga%2C+E">Eite Tiesinga</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S+P">Stephen P. Eckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12143v2-abstract-short" style="display: inline;"> We present measurements of thermalized collisional rate coefficients for ultra-cold $^7$Li and $^{87}$Rb colliding with room-temperature He, Ne, N$_2$, Ar, Kr, and Xe. In our experiments, a combined flowmeter and dynamic expansion system, a vacuum metrology standard, is used to set a known number density for the room-temperature background gas in the vicinity of the magnetically trapped $^7$Li or&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12143v2-abstract-full').style.display = 'inline'; document.getElementById('2302.12143v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12143v2-abstract-full" style="display: none;"> We present measurements of thermalized collisional rate coefficients for ultra-cold $^7$Li and $^{87}$Rb colliding with room-temperature He, Ne, N$_2$, Ar, Kr, and Xe. In our experiments, a combined flowmeter and dynamic expansion system, a vacuum metrology standard, is used to set a known number density for the room-temperature background gas in the vicinity of the magnetically trapped $^7$Li or $^{87}$Rb clouds. Each collision with a background atom or molecule removes a $^7$Li or $^{87}$Rb atom from its trap and the change in the atom loss rate with background gas density is used to determine the thermalized loss rate coefficients with fractional standard uncertainties better than 1.6 % for $^7$Li and 2.7 % for $^{87}$Rb. We find consistency -- a degree of equivalence of less than one -- between the measurements and recent quantum-scattering calculations of the loss rate coefficients [J. Klos and E. Tiesinga, J. Chem. Phys. 158, 014308 (2023)], with the exception of the loss rate coefficient for both $^7$Li and $^{87}$Rb colliding with Ar. Nevertheless, the agreement between theory and experiment for all other studied systems provides validation that a quantum-based measurement of vacuum pressure using cold atoms also serves as a primary standard for vacuum pressure, which we refer to as the cold-atom vacuum standard. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12143v2-abstract-full').style.display = 'none'; document.getElementById('2302.12143v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, 3 tables, 2 appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AVS Quantum Sci. 5 035001 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.03705">arXiv:2204.03705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.03705">pdf</a>, <a href="https://arxiv.org/format/2204.03705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1116/5.0095011">10.1116/5.0095011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison of two multiplexed portable cold-atom vacuum standards </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ehinger%2C+L+H">Lucas H. Ehinger</a>, <a href="/search/physics?searchtype=author&amp;query=Acharya%2C+B+P">Bishnu P. Acharya</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">Daniel S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">James A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">Julia Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Tiesinga%2C+E">Eite Tiesinga</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S">Stephen Eckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.03705v1-abstract-short" style="display: inline;"> We compare the vacuum measured by two portable cold-atom vacuum standards (pCAVS) based on ultracold $^7$Li atoms. The pCAVS are quantum-based standards that use a priori scattering calculations to convert a measured loss rate of cold atoms from a conservative trap into a background gas pressure. Our pCAVS devices share the same laser system and measure the vacuum concurrently. The two pCAVS toget&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.03705v1-abstract-full').style.display = 'inline'; document.getElementById('2204.03705v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.03705v1-abstract-full" style="display: none;"> We compare the vacuum measured by two portable cold-atom vacuum standards (pCAVS) based on ultracold $^7$Li atoms. The pCAVS are quantum-based standards that use a priori scattering calculations to convert a measured loss rate of cold atoms from a conservative trap into a background gas pressure. Our pCAVS devices share the same laser system and measure the vacuum concurrently. The two pCAVS together detected a leak with a rate on the order of $10^{-6}$ Pa L/s. After fixing the leak, the pCAVS measured a pressure of about 40 nPa with 2.6 % uncertainty. The two pCAVS agree within their uncertainties, even when swapping some of their component parts. Operation of the pCAVS was found to cause some additional outgassing, on the order of $10^{-8}$ Pa L/s, which can be mitigated in the future by better thermal management. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.03705v1-abstract-full').style.display = 'none'; document.getElementById('2204.03705v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AVS Quantum Sci. 4, 034403 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03064">arXiv:2110.03064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.03064">pdf</a>, <a href="https://arxiv.org/format/2110.03064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.444711">10.1364/OE.444711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $螞$-enhanced gray molasses in a tetrahedral laser beam geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">D. S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Norrgard%2C+E+B">E. B. Norrgard</a>, <a href="/search/physics?searchtype=author&amp;query=Klimov%2C+N+N">N. N. Klimov</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">J. A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">J. Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S">S. Eckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03064v1-abstract-short" style="display: inline;"> We report observation of sub-Doppler cooling of lithium using an irregular-tetrahedral laser beam arrangement, which is produced by a nanofabricated diffraction grating. We are able to capture 11(2) % of the lithium atoms from a grating magneto-optical trap into $螞$-enhanced $D_1$ gray molasses. The molasses cools the captured atoms to a radial temperature of 60(9) $渭$K and an axial temperature of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03064v1-abstract-full').style.display = 'inline'; document.getElementById('2110.03064v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03064v1-abstract-full" style="display: none;"> We report observation of sub-Doppler cooling of lithium using an irregular-tetrahedral laser beam arrangement, which is produced by a nanofabricated diffraction grating. We are able to capture 11(2) % of the lithium atoms from a grating magneto-optical trap into $螞$-enhanced $D_1$ gray molasses. The molasses cools the captured atoms to a radial temperature of 60(9) $渭$K and an axial temperature of 23(3) $渭$K. In contrast to results from conventional counterpropagating beam configurations, we do not observe cooling when our optical fields are detuned from Raman resonance. An optical Bloch equation simulation of the cooling dynamics agrees with our data. Our results show that grating magneto-optical traps can serve as a robust source of cold atoms for tweezer-array and atom-chip experiments, even when the atomic species is not amenable to sub-Doppler cooling in bright optical molasses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03064v1-abstract-full').style.display = 'none'; document.getElementById('2110.03064v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10560">arXiv:2009.10560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10560">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1116/6.0000657">10.1116/6.0000657 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Outgassing rate comparison of seven geometrically similar vacuum chambers of different materials and heat treatments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">James A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J+K">Julia K. Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Avdiaj%2C+S">Sefer Avdiaj</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">Daniel S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S+P">Stephen P. Eckel</a>, <a href="/search/physics?searchtype=author&amp;query=Bowers%2C+B">Ben Bowers</a>, <a href="/search/physics?searchtype=author&amp;query=OConnell%2C+S">Scott OConnell</a>, <a href="/search/physics?searchtype=author&amp;query=Henderson%2C+P">Perry Henderson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10560v2-abstract-short" style="display: inline;"> We have measured the water and hydrogen outgassing rates of seven vacuum chambers of identical geometry but constructed of different materials and heat treatments. Chambers of five different materials were tested: 304L, 316L, and 316LN stainless steels; titanium (ASTM grade 2); and 6061 aluminum. In addition, chambers constructed of 316L and 316LN stainless steel were subjected to a vacuum-fire pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10560v2-abstract-full').style.display = 'inline'; document.getElementById('2009.10560v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10560v2-abstract-full" style="display: none;"> We have measured the water and hydrogen outgassing rates of seven vacuum chambers of identical geometry but constructed of different materials and heat treatments. Chambers of five different materials were tested: 304L, 316L, and 316LN stainless steels; titanium (ASTM grade 2); and 6061 aluminum. In addition, chambers constructed of 316L and 316LN stainless steel were subjected to a vacuum-fire process, where they were heated to approximately 950 掳C for 24 hours while under vacuum; these two chambers are designated as 316L-XHV and 316LN-XHV. All chambers were of identical geometry and made by the same manufacturer, thus a relative comparison of the outgassing rates among these chambers can be made. Water outgassing rates were measured as a function of time using the throughput technique. The water outgassing results for the 316L, 316LN, 316L-XHV, 316LN-XHV were all similar, but lower than those of 304L by a factor of 3 to 5 lower at 10^4 s. The water outgassing results for Ti and Al chambers were close to that of 304L, Ti being slightly lower. Hydrogen outgassing rates were measured using the rate-of-rise method and performed after a low-temperature bake of 125 掳C to 150 掳C for a minimum of 72 hours. The Ti, Al, 316L-XHV, and 316LN-XHV chambers all have specific outgassing rates below 1 X 10^-11 Pa L s^-1 cm^-2 and are at least a factor of 100 or better than the 304L chamber. The 304L, 316L, and 316LN chambers without vacuum-fire heat treatment have larger hydrogen outgassing rates than the other chambers, with specific outgassing rates ranging between 4.0 X 10^-11 Pa L s^-1 cm^-2 and 8.0 X 10^-11 Pa L s^-1 cm^-2. We conclude that Ti, Al, 316L-XHV, and 316LN-XHV have hydrogen outgassing rates that make them excellent choices for ultra-high vacuum (UHV) and extreme-high vacuum (XHV) applications, the choice depending on cost and other material properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10560v2-abstract-full').style.display = 'none'; document.getElementById('2009.10560v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 8 figures, 4 tables The following article has been submitted the Journal of Vacuum Science &amp; Technology B. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Vacuum Science &amp; Technology B 39, 024201 (2021) and may be found at https://doi.org/10.1116/6.0000657</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Vacuum Science &amp; Technology B 39, 024201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10538">arXiv:2004.10538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.10538">pdf</a>, <a href="https://arxiv.org/format/2004.10538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0011813">10.1063/5.0011813 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A radiofrequency voltage-controlled current source for quantum spin manipulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">D. S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Restelli%2C+A">A. Restelli</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">J. A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">J. Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S">S. Eckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10538v3-abstract-short" style="display: inline;"> We present a design for a wide-bandwidth, voltage-controlled current source that is easily integrated with radiofrequency magnetic field coils. Our design uses current feedback to compensate for the frequency-dependent impedance of a radiofrequency antenna. We are able to deliver peak currents greater than 100 mA over a 300 kHz to 54 MHz frequency span. The radiofrequency current source fits onto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10538v3-abstract-full').style.display = 'inline'; document.getElementById('2004.10538v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10538v3-abstract-full" style="display: none;"> We present a design for a wide-bandwidth, voltage-controlled current source that is easily integrated with radiofrequency magnetic field coils. Our design uses current feedback to compensate for the frequency-dependent impedance of a radiofrequency antenna. We are able to deliver peak currents greater than 100 mA over a 300 kHz to 54 MHz frequency span. The radiofrequency current source fits onto a printed circuit board smaller than $4~\text{cm}^2$ and consumes less than 1.3 W of power. It is suitable for use in deployable quantum sensors and nuclear-magnetic-resonance systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10538v3-abstract-full').style.display = 'none'; document.getElementById('2004.10538v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 91, 104708 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.02156">arXiv:1908.02156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.02156">pdf</a>, <a href="https://arxiv.org/format/1908.02156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.3361540">10.5281/zenodo.3361540 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A flexible, open-source radio-frequency driver for acousto-optic and electro-optic devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">D. S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Pisenti%2C+N+C">N. C. Pisenti</a>, <a href="/search/physics?searchtype=author&amp;query=Restelli%2C+A">A. Restelli</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">J. Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">J. A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Campbell%2C+G+K">G. K. Campbell</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S">S. Eckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.02156v1-abstract-short" style="display: inline;"> We present a design for a radio-frequency driver that leverages telecom amplifiers to achieve high power output and wide bandwidth. The design consists of two compact printed circuit boards (total area $&lt; 255$ cm), which incorporate power (turn-on) and thermal management to prevent accidental damage to the amplifier circuitry. Our driver provides $&gt;1$ W of output power over a $10$ MHz to $1.1$ GHz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02156v1-abstract-full').style.display = 'inline'; document.getElementById('1908.02156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.02156v1-abstract-full" style="display: none;"> We present a design for a radio-frequency driver that leverages telecom amplifiers to achieve high power output and wide bandwidth. The design consists of two compact printed circuit boards (total area $&lt; 255$ cm), which incorporate power (turn-on) and thermal management to prevent accidental damage to the amplifier circuitry. Our driver provides $&gt;1$ W of output power over a $10$ MHz to $1.1$ GHz frequency range, and $\geq 5$ W from $20$ MHz to $100$ MHz. The driver circuit includes auxiliary components for analog frequency and amplitude modulation ($\approx 70$ kHz bandwidth), as well as digital power switching ($&gt; 30$ dB of extinction within $40$ ns and final extinction $&gt; 90$ dB). The radio-frequency source can also be digitally switched between an external input and an integrated voltage-controlled oscillator. Our design is motivated by the need for flexible, inexpensive drivers of optically active devices, such as acousto-optic and electro-optic modulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02156v1-abstract-full').style.display = 'none'; document.getElementById('1908.02156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.00064">arXiv:1812.00064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.00064">pdf</a>, <a href="https://arxiv.org/ps/1812.00064">ps</a>, <a href="https://arxiv.org/format/1812.00064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Nuclear-Spin Dependent Parity Violation in Optically Trapped Polyatomic Molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Norrgard%2C+E+B">Eric B. Norrgard</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">Daniel S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S+P">Stephen P. Eckel</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">James A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Klimov%2C+N+N">Nikoliai N. Klimov</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">Julia Scherschligt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.00064v2-abstract-short" style="display: inline;"> We investigate using optically trapped linear polyatomic molecules as probes of nuclear spin-dependent parity violation. The presence of closely spaced, opposite-parity $\ell$-doublets is a general feature of such molecules, allowing parity-violation-sensitive pairs of levels to be brought to degeneracy in magnetic fields typically 100 times smaller than in diatomics. Assuming laser cooling and tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00064v2-abstract-full').style.display = 'inline'; document.getElementById('1812.00064v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.00064v2-abstract-full" style="display: none;"> We investigate using optically trapped linear polyatomic molecules as probes of nuclear spin-dependent parity violation. The presence of closely spaced, opposite-parity $\ell$-doublets is a general feature of such molecules, allowing parity-violation-sensitive pairs of levels to be brought to degeneracy in magnetic fields typically 100 times smaller than in diatomics. Assuming laser cooling and trapping of polyatomics at the current state-of-the-art for diatomics, we expect to measure nuclear spin-dependent parity-violating matrix elements $iW$ with 70 times better sensitivity than the current best measurements. Our scheme should allow for 10 \% measurements of $iW$ in nuclei as light as Be or as heavy as Yb, with averaging times on order the of 10 days and 1 second, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00064v2-abstract-full').style.display = 'none'; document.getElementById('1812.00064v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.09180">arXiv:1811.09180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.09180">pdf</a>, <a href="https://arxiv.org/format/1811.09180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.11.064023">10.1103/PhysRevApplied.11.064023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">D. S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Norrgard%2C+E+B">E. B. Norrgard</a>, <a href="/search/physics?searchtype=author&amp;query=Klimov%2C+N+N">N. N. Klimov</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">J. A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">J. Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S">S. Eckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.09180v3-abstract-short" style="display: inline;"> We demonstrate a compact (0.25 L) system for laser cooling and trapping atoms from a heated dispenser source. Our system uses a nanofabricated diffraction grating to generate a magneto-optical trap (MOT) using a single input laser beam. An aperture in the grating allows atoms from the dispenser to be loaded from behind the chip, increasing the interaction distance of atoms with the cooling light.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09180v3-abstract-full').style.display = 'inline'; document.getElementById('1811.09180v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.09180v3-abstract-full" style="display: none;"> We demonstrate a compact (0.25 L) system for laser cooling and trapping atoms from a heated dispenser source. Our system uses a nanofabricated diffraction grating to generate a magneto-optical trap (MOT) using a single input laser beam. An aperture in the grating allows atoms from the dispenser to be loaded from behind the chip, increasing the interaction distance of atoms with the cooling light. To take full advantage of this increased distance, we extend the magnetic field gradient of the MOT to create a Zeeman slower. The MOT traps approximately $10^6$ $^7$Li atoms emitted from an effusive source with loading rates in excess of $10^6$ s$^{-1}$. Our design is portable to a variety of atomic and molecular species and could be a principal component of miniaturized cold-atom-based technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09180v3-abstract-full').style.display = 'none'; document.getElementById('1811.09180v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 11, 064023 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.05378">arXiv:1809.05378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.05378">pdf</a>, <a href="https://arxiv.org/format/1809.05378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1681-7575/aadbe4">10.1088/1681-7575/aadbe4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Challenges to miniaturizing cold atom technology for deployable vacuum metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S">Stephen Eckel</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">Daniel S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">James A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Klimov%2C+N+N">Nikolai N. Klimov</a>, <a href="/search/physics?searchtype=author&amp;query=Norrgard%2C+E">Eric Norrgard</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">Julia Scherschligt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.05378v1-abstract-short" style="display: inline;"> Cold atoms are excellent metrological tools; they currently realize SI time and, soon, SI pressure in the ultra-high (UHV) and extreme high vacuum (XHV) regimes. The development of primary, vacuum metrology based on cold atoms currently falls under the purview of national metrology institutes. Under the emerging paradigm of the &#34;quantum-SI&#34;, these technologies become deployable (relatively easy-to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.05378v1-abstract-full').style.display = 'inline'; document.getElementById('1809.05378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.05378v1-abstract-full" style="display: none;"> Cold atoms are excellent metrological tools; they currently realize SI time and, soon, SI pressure in the ultra-high (UHV) and extreme high vacuum (XHV) regimes. The development of primary, vacuum metrology based on cold atoms currently falls under the purview of national metrology institutes. Under the emerging paradigm of the &#34;quantum-SI&#34;, these technologies become deployable (relatively easy-to-use sensors that integrate with other vacuum chambers), providing a primary realization of the pascal in the UHV and XHV for the end-user. Here, we discuss the challenges that this goal presents. We investigate, for two different modes of operation, the expected corrections to the ideal cold-atom vacuum gauge and estimate the associated uncertainties. Finally, we discuss the appropriate choice of sensor atom, the light Li atom rather than the heavier Rb. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.05378v1-abstract-full').style.display = 'none'; document.getElementById('1809.05378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures, contribution to the Metrologia focus issue &#34;Focus on Quantum Metrology&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Metrologia 55 S182 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.09862">arXiv:1805.09862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.09862">pdf</a>, <a href="https://arxiv.org/format/1805.09862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.043412">10.1103/PhysRevA.98.043412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-induced atomic desorption of lithium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">D. S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Norrgard%2C+E+B">E. B. Norrgard</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">J. Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">J. A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S">S. Eckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.09862v2-abstract-short" style="display: inline;"> We demonstrate loading of a Li magneto-optical trap using light-induced atomic desorption. The magneto-optical trap confines up to approximately $4\times10^{4}$ $^{7}\text{Li}$ atoms with loading rates up to approximately $4\times10^{3}$ atoms per second. We study the Li desorption rate as a function of the desorption wavelength and power. The extracted wavelength threshold for desorption of Li fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09862v2-abstract-full').style.display = 'inline'; document.getElementById('1805.09862v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.09862v2-abstract-full" style="display: none;"> We demonstrate loading of a Li magneto-optical trap using light-induced atomic desorption. The magneto-optical trap confines up to approximately $4\times10^{4}$ $^{7}\text{Li}$ atoms with loading rates up to approximately $4\times10^{3}$ atoms per second. We study the Li desorption rate as a function of the desorption wavelength and power. The extracted wavelength threshold for desorption of Li from fused silica is approximately $470$ nm. In addition to desorption of lithium, we observe light-induced desorption of background gas molecules. The vacuum pressure increase due to the desorbed background molecules is $\lesssim50$ % and the vacuum pressure decreases back to its base value with characteristic timescales on the order of seconds when we extinguish the desorption light. By examining both the loading and decay curves of the magneto-optical trap, we are able to disentangle the trap decay rates due to background gases and desorbed lithium. Our results show that light-induced atomic desorption can be a viable Li vapor source for compact devices and sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09862v2-abstract-full').style.display = 'none'; document.getElementById('1805.09862v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 043412 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.06928">arXiv:1805.06928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.06928">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Quantum-based vacuum metrology at NIST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">Julia Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">James A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">Daniel S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Douglass%2C+K">Kevin Douglass</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S">Stephen Eckel</a>, <a href="/search/physics?searchtype=author&amp;query=Hanson%2C+E">Edward Hanson</a>, <a href="/search/physics?searchtype=author&amp;query=Hendricks%2C+J">Jay Hendricks</a>, <a href="/search/physics?searchtype=author&amp;query=Klimov%2C+N">Nikolai Klimov</a>, <a href="/search/physics?searchtype=author&amp;query=Purdy%2C+T">Thomas Purdy</a>, <a href="/search/physics?searchtype=author&amp;query=Ricker%2C+J">Jacob Ricker</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+R">Robinjeet Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Stone%2C+J">Jack Stone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.06928v1-abstract-short" style="display: inline;"> The measurement science in realizing and disseminating the unit for pressure in the International System of Units (SI), the pascal (Pa), has been the subject of much interest at the National Institute of Standards and Technology (NIST). Modern optical-based techniques for pascal metrology have been investigated, including multi-photon ionization and cavity ringdown spectroscopy. Work is ongoing to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.06928v1-abstract-full').style.display = 'inline'; document.getElementById('1805.06928v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.06928v1-abstract-full" style="display: none;"> The measurement science in realizing and disseminating the unit for pressure in the International System of Units (SI), the pascal (Pa), has been the subject of much interest at the National Institute of Standards and Technology (NIST). Modern optical-based techniques for pascal metrology have been investigated, including multi-photon ionization and cavity ringdown spectroscopy. Work is ongoing to recast the pascal in terms of quantum properties and fundamental constants and in so doing, make vacuum metrology consistent with the global trend toward quantum-based metrology. NIST has ongoing projects that interrogate the index of refraction of a gas using an optical cavity for low vacuum, and count background particles in high vacuum to extreme high vacuum using trapped laser-cooled atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.06928v1-abstract-full').style.display = 'none'; document.getElementById('1805.06928v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 11 figures, review article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.10120">arXiv:1801.10120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.10120">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1681-7575/aa8a7b">10.1088/1681-7575/aa8a7b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a new UHV/XHV pressure standard (cold atom vacuum standard) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">Julia Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">James A Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">Daniel S Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S">Stephen Eckel</a>, <a href="/search/physics?searchtype=author&amp;query=Klimov%2C+N">Nikolai Klimov</a>, <a href="/search/physics?searchtype=author&amp;query=Makrides%2C+C">Constantinos Makrides</a>, <a href="/search/physics?searchtype=author&amp;query=Tiesinga%2C+E">Eite Tiesinga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.10120v1-abstract-short" style="display: inline;"> The National Institute of Standards and Technology has recently begun a program to develop a primary pressure standard that is based on ultra-cold atoms, covering a pressure range of 1 x 10-6 to 1 x 10-10 Pa and possibly lower. These pressures correspond to the entire ultra-high vacuum range and extend into the extreme-high vacuum. This cold-atom vacuum standard (CAVS) is both a primary standard a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.10120v1-abstract-full').style.display = 'inline'; document.getElementById('1801.10120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.10120v1-abstract-full" style="display: none;"> The National Institute of Standards and Technology has recently begun a program to develop a primary pressure standard that is based on ultra-cold atoms, covering a pressure range of 1 x 10-6 to 1 x 10-10 Pa and possibly lower. These pressures correspond to the entire ultra-high vacuum range and extend into the extreme-high vacuum. This cold-atom vacuum standard (CAVS) is both a primary standard and absolute sensor of vacuum. The CAVS is based on the loss of cold, sensor atoms (such as the alkali-metal lithium) from a magnetic trap due to collisions with the background gas (primarily H2) in the vacuum. The pressure is determined from a thermally-averaged collision cross section, which is a fundamental atomic property, and the measured loss rate. The CAVS is primary because it will use collision cross sections determined from ab initio calculations for the Li + H2 system. Primary traceability is transferred to other systems of interest using sensitivity coefficients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.10120v1-abstract-full').style.display = 'none'; document.getElementById('1801.10120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2017 Metrologia 54 S125 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.09612">arXiv:1801.09612</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.09612">pdf</a>, <a href="https://arxiv.org/format/1801.09612">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5023906">10.1063/1.5023906 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A 3D-printed alkali metal dispenser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Norrgard%2C+E+B">Eric B. Norrgard</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D+S">Daniel S. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Fedchak%2C+J+A">James A. Fedchak</a>, <a href="/search/physics?searchtype=author&amp;query=Klimov%2C+N">Nikolai Klimov</a>, <a href="/search/physics?searchtype=author&amp;query=Scherschligt%2C+J">Julia Scherschligt</a>, <a href="/search/physics?searchtype=author&amp;query=Eckel%2C+S+P">Stephen P. Eckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.09612v1-abstract-short" style="display: inline;"> We demonstrate and characterize a source of Li atoms made from direct metal laser sintered titanium. The source&#39;s outgassing rate is measured to be $5 \,(2)\cdot 10^{-7}$\,$\rm{Pa}~ \rm{L}~ \rm{s}^{-1}$ at a temperature $T=330\,^\circ$C, which optimizes the number of atoms loaded into a magneto-optical trap. The source loads $\approx 10^7$ $^7$Li atoms in the trap in $\approx 1$\,s. The loaded sou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09612v1-abstract-full').style.display = 'inline'; document.getElementById('1801.09612v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.09612v1-abstract-full" style="display: none;"> We demonstrate and characterize a source of Li atoms made from direct metal laser sintered titanium. The source&#39;s outgassing rate is measured to be $5 \,(2)\cdot 10^{-7}$\,$\rm{Pa}~ \rm{L}~ \rm{s}^{-1}$ at a temperature $T=330\,^\circ$C, which optimizes the number of atoms loaded into a magneto-optical trap. The source loads $\approx 10^7$ $^7$Li atoms in the trap in $\approx 1$\,s. The loaded source weighs 700\,mg and is suitable for a number of deployable sensors based on cold atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09612v1-abstract-full').style.display = 'none'; document.getElementById('1801.09612v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 89, 056101 (2018) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10