CINXE.COM
William Peck - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>William Peck - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="RQ2QlJZvOj0mgcxlQIaNlchUzWEYcuf79UkIht8LVX09DBAPr89JZy0L6EoxKoyNJ1YsxYrzkG8EnhL2QFVxng" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="william peck" /> <meta name="description" content="William Peck: 23 Followers, 8 Following, 27 Research papers. Research interests: Great Basin Archaeology, Lithic Raw Material Sourcing, and Neolithic…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'b092bf3a3df71cf13feee7c143e83a57eb6b94fb'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14016,"monthly_visitors":"99 million","monthly_visitor_count":99567017,"monthly_visitor_count_in_millions":99,"user_count":283028338,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1739841024000); window.Aedu.timeDifference = new Date().getTime() - 1739841024000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a22f75d8519394c21253dae46c8c5d60ad36ea68c7d494347ec64229d8c1cf85.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5708a105dd66b4c7d0ef30b7c094b1048423f0042bd2a7b123f2d99ee3cf46d9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/WilliamPeck2" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-c0b60aedadfb9d46b698730fbbcb2e70645c886b405d825adeba3a031c02455d.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2","photo":"https://0.academia-photos.com/55204412/14847312/15631715/s65_william.peck.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":63532,"name":"Great Basin Archaeology","url":"https://www.academia.edu/Documents/in/Great_Basin_Archaeology"},{"id":108398,"name":"Lithic Raw Material Sourcing","url":"https://www.academia.edu/Documents/in/Lithic_Raw_Material_Sourcing"},{"id":25502,"name":"Neolithic Transition","url":"https://www.academia.edu/Documents/in/Neolithic_Transition"},{"id":30976,"name":"Mesolithic/Neolithic","url":"https://www.academia.edu/Documents/in/Mesolithic_Neolithic"},{"id":12588,"name":"Origins of Agriculture","url":"https://www.academia.edu/Documents/in/Origins_of_Agriculture"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/WilliamPeck2","location":"/WilliamPeck2","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/WilliamPeck2","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-f2f4523d-67a9-4833-ba3a-a6304f5804e7"></div> <div id="ProfileCheckPaperUpdate-react-component-f2f4523d-67a9-4833-ba3a-a6304f5804e7"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="William Peck" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/55204412/14847312/15631715/s200_william.peck.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">William Peck</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="William" data-follow-user-id="55204412" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="55204412"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">23</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">8</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">8</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/WilliamPeck2/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/BruceSelleck"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/BruceSelleck">Bruce Selleck</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://colgate.academia.edu/JMcLelland"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://colgate.academia.edu/JMcLelland">James M McLelland</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Colgate University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ucd.academia.edu/StephenDaly"><img class="profile-avatar u-positionAbsolute" alt="J. Stephen Daly" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/555916/945194/1183819/s200_stephen.daly.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ucd.academia.edu/StephenDaly">J. Stephen Daly</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University College Dublin</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://wisc.academia.edu/JohnValley"><img class="profile-avatar u-positionAbsolute" alt="John Valley" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/31054590/9107827/10158297/s200_john.valley.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://wisc.academia.edu/JohnValley">John Valley</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Wisconsin-Madison</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://neip.academia.edu/AlcidesSial"><img class="profile-avatar u-positionAbsolute" alt="Alcides N . Sial" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/11617101/7830872/8774653/s200_alcides.sial.jpg_oh_79461d5a133055f93265608b6d585153_oe_557cbc74___gda___1434192885_0ccd0668303de8f038244d6d2213480b" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://neip.academia.edu/AlcidesSial">Alcides N . Sial</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Federal University of Pernambuco</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cug.academia.edu/TimothyKusky"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cug.academia.edu/TimothyKusky">Timothy Kusky</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">China University of Geosciences(Wuhan)</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uqac.academia.edu/MichaelHiggins"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uqac.academia.edu/MichaelHiggins">Michael Higgins</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Université du Québec à Chicoutimi</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/WilliamDelorraine"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/WilliamDelorraine">William Delorraine</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/LyalHarris"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/LyalHarris">Lyal Harris</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://sgu.academia.edu/JennyAndersson"><img class="profile-avatar u-positionAbsolute" alt="Jenny Andersson" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/38524960/177693666/167762285/s200_jenny.andersson.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://sgu.academia.edu/JennyAndersson">Jenny Andersson</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">St. George's University</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="55204412" href="https://www.academia.edu/Documents/in/Great_Basin_Archaeology"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/WilliamPeck2","location":"/WilliamPeck2","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/WilliamPeck2","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Great Basin Archaeology"]}" data-trace="false" data-dom-id="Pill-react-component-33d0619d-8053-4960-8053-3da9afb2bec5"></div> <div id="Pill-react-component-33d0619d-8053-4960-8053-3da9afb2bec5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="55204412" href="https://www.academia.edu/Documents/in/Lithic_Raw_Material_Sourcing"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Lithic Raw Material Sourcing"]}" data-trace="false" data-dom-id="Pill-react-component-bdf4d380-80c0-4ef1-831f-68daa00cd745"></div> <div id="Pill-react-component-bdf4d380-80c0-4ef1-831f-68daa00cd745"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="55204412" href="https://www.academia.edu/Documents/in/Neolithic_Transition"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Neolithic Transition"]}" data-trace="false" data-dom-id="Pill-react-component-00257b61-94d1-48f0-9d2d-a4b72a924b8a"></div> <div id="Pill-react-component-00257b61-94d1-48f0-9d2d-a4b72a924b8a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="55204412" href="https://www.academia.edu/Documents/in/Mesolithic_Neolithic"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Mesolithic/Neolithic"]}" data-trace="false" data-dom-id="Pill-react-component-b442e08f-9465-4477-a809-0ccd497fa9c8"></div> <div id="Pill-react-component-b442e08f-9465-4477-a809-0ccd497fa9c8"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="55204412" href="https://www.academia.edu/Documents/in/Origins_of_Agriculture"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Origins of Agriculture"]}" data-trace="false" data-dom-id="Pill-react-component-30f15526-b677-4d4d-8791-df69e8b053c9"></div> <div id="Pill-react-component-30f15526-b677-4d4d-8791-df69e8b053c9"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by William Peck</h3></div><div class="js-work-strip profile--work_container" data-work-id="34839041"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34839041/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province"><img alt="Research paper thumbnail of Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province" class="work-thumbnail" src="https://attachments.academia-assets.com/54697300/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34839041/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province">Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/WilliamPeck2">William Peck</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://colgate.academia.edu/WilliamPeck">William Peck</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://wisc.academia.edu/JohnValley">John Valley</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockite-granite plutonism sti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockite-granite plutonism stitch three terranes in the southwestern Grenville Province (Adirondack Highlands–Morin terrane, Frontenac terrane, Elzevir terrane). Because of the refractory nature of zircon (Zrn), analysis of oxygen-isotope ratios of dated igneous zircon from these rocks allows calculation of δ δ 18 O values of original magmas even if the rocks were subjected to late magmatic assimilation, postmagmatic alteration , or metamorphism. Documented variability in δ δ 18 O(Zrn) for these granitic rocks corresponds to their geographic location. Seven plutons from the central Frontenac terrane (Ontario) have a high average δ δ 18 O(Zrn) = 11.8 ± ± 1.0‰, which corresponds to δ δ 18 O magma values of 12.4–14.3‰. In contrast, twenty-seven other plutons and dikes of this suite (New York, Ontario, and Québec) average δ δ 18 O(Zrn) = 8.2 ± ± 0.6‰, with a typical igneous range of 8.6 to 10.3‰ for δ δ 18 O magma values. High δ δ 18 O values in the Frontenac terrane are some of the highest magmatic oxygen-isotope ratios recognized worldwide, but these plutons are not unusual with respect to whole-rock chemistry or radiogenic isotope compositions. Such high δ δ 18 O values can result from mixing between paragneiss (δ δ 18 O ≈ ≈ 15‰) and hydrothermally altered basalts and/or oceanic sediments (δ δ 18 O ≈ ≈ 12‰) in the source region. We propose that high-δ δ 18 O, hydrother-mally altered basalts and sediments were subducted or underthrust to the base of the Frontenac terrane during closure of an ocean basin between the Frontenac terrane and the Adirondack Highlands at or prior to 1.2 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e85d81ee50879ebeebae3446480042b0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54697300,"asset_id":34839041,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54697300/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34839041"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34839041"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34839041; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34839041]").text(description); $(".js-view-count[data-work-id=34839041]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34839041; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34839041']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e85d81ee50879ebeebae3446480042b0" } } $('.js-work-strip[data-work-id=34839041]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34839041,"title":"Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province","internal_url":"https://www.academia.edu/34839041/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54697300,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54697300/thumbnails/1.jpg","file_name":"GSAMem2004.pdf","download_url":"https://www.academia.edu/attachments/54697300/download_file","bulk_download_file_name":"Oxygen_isotope_constraints_on_terrane_bo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54697300/GSAMem2004-libre.pdf?1507805335=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_constraints_on_terrane_bo.pdf\u0026Expires=1738823226\u0026Signature=EbbU6GjHCzHyZQbT7-ujRARhEEPdY3yS6DQqQ5ec1-bRKgXh7ZdHZWM6PxH9w5haxuTPegFeKgQpJmudmeSO1PWDEnTrvrrKIJZV-35Z3~Bl7s4Qcg43qT4CVwBfmNbBYHa3aqdXUXAwQlYswKmyM6gSm8gMcUy96WkGtMCyKd1bCxGQ7xEsOnzkO-ClznwTMo0QE8tPBl7U3g8wjmRxSJ6LKR1fSBOuCsyENsTcMs1acNpFtPHp-ZjB~aHT5zhC2e16A3ceOk9VMC~0eC3xSOM2wfGFfN~ah3z~~pTriW2YsXl5jBJQrfVku3pPY2gdr14qbTL6k4EFZ9wRO6~zJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270273"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34270273/Fiskenaesset_Anorthosite_Complex_Stable_isotope_evidence_for_shallow_emplacement_into_Archean_ocean_crust"><img alt="Research paper thumbnail of Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/34270273/Fiskenaesset_Anorthosite_Complex_Stable_isotope_evidence_for_shallow_emplacement_into_Archean_ocean_crust">Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust</a></div><div class="wp-workCard_item"><span>Geology</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270273"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270273]").text(description); $(".js-view-count[data-work-id=34270273]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270273']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34270273]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270273,"title":"Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust","internal_url":"https://www.academia.edu/34270273/Fiskenaesset_Anorthosite_Complex_Stable_isotope_evidence_for_shallow_emplacement_into_Archean_ocean_crust","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270272"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270272/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga"><img alt="Research paper thumbnail of The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga" class="work-thumbnail" src="https://attachments.academia-assets.com/54178473/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270272/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga">The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga</a></div><div class="wp-workCard_item"><span>Agu Spring Meeting Abstracts</span><span>, Apr 29, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous rocks. The d18-O of non-metamict zircon is unaffected even by hydrothermal alteration and high-grade metamorphism. Ion microprobe analysis of detrital zircons from the \sim3 Ga Jack Hills metaconglomerate (Narryer Gneiss Terrane, Yilgarn Craton, Western Australia) yield U-Pb ages from 3.1 to 4.4 Ga (SHRIMP II, Wilde et al. 2001 Nature) and d18-O from 5 to 8 permil (Cameca 4f, Peck et al. 2001 GCA). The d18-O of these zircons averages 6.3, and is 1 permil higher than that in equilibrium with the mantle and that of normal Archean granitic zircons (5.3+-0.3, 5.5+-0.4, respectively; King et al. 1998 Pre-C Res, Peck et al. 2000 Geology). The distribution of mantle-like vs. mildly elevated d18-O values for magmas is constant from 2.7 to 4.4 Ga, and on 4 continents. The age of 4.404+-0.008 Ga from one 200 micron zircon is >99% concordant and represents the oldest recognized terrestrial material. This crystal is zoned in d18-O (5.0+-0.7 vs. 7.4+-0.7) and REEs (La=0.3 to 13.6 ppm), and contains inclusions of SiO2. REE patterns are HREE enriched with positive Ce and negative Eu anomalies; calculated melts are LREE enriched. Taken together, these results suggest crystallization from a quartz-saturated granitic magma and thus the existence of continental crust, possibly in a setting like Iceland. The high d18-O portion of the crystal would be in equilibrium with a magma at d18-O(WR)= 8.5-9.5. There is no known mantle reservoir with such high values. d18-O(WR) values above 8.5 are typical of "S-type" granites that have melted or assimilated material that was altered by low temperature interaction with water at the surface of the Earth (i.e., weathering, diagenesis, low T hydrothermal alteration). Thus the high d18-O value of the 4.4 Ga zircon suggests that surface temperatures were cool enough for liquid water suggesting that the early steam-rich atmosphere condensed to form oceans at that time. The evidence for liquid water and possibly oceans at 4.4 Ga suggests a Cool Early Earth. This contrasts with the Hot Early Earth and global magma oceans envisioned at 4.5-4.3 Ga based on: an impact origin of the Moon (4.45-4.50 Ga), core formation, higher Hadean radioactive heat production, and intense early meteorite bombardment. Magma on the surface of the Earth cools quickly by radiation to form a crust, but a magma ocean caused by these processes might persist beneath the initially thin crust for up to 400 m.y. and might erupt as massive flood basalts in response to major meteorite impacts, boiling surface waters. The thermal contrasts presented by these lines of evidence are minimized if the Moon and core formed earlier (\sim4.5 Ga), if the Moon formed by a process not involving a Mars-size impactor, or if the early meteorite bombardment was less intense or irregular in timing. It is possible that periods of Cool vs. Hot Early Earth alternated, with boiling of early oceans after major impact events followed by periods of cooler surface conditions. If life evolved in these seas, multiple extinctions before 3.9 Ga are suggested.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ce307aff8f0570a8cae65acdda067a3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178473,"asset_id":34270272,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178473/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270272"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270272"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270272; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270272]").text(description); $(".js-view-count[data-work-id=34270272]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270272; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270272']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ce307aff8f0570a8cae65acdda067a3" } } $('.js-work-strip[data-work-id=34270272]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270272,"title":"The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga","translated_title":"","metadata":{"abstract":"Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous rocks. The d18-O of non-metamict zircon is unaffected even by hydrothermal alteration and high-grade metamorphism. Ion microprobe analysis of detrital zircons from the \\sim3 Ga Jack Hills metaconglomerate (Narryer Gneiss Terrane, Yilgarn Craton, Western Australia) yield U-Pb ages from 3.1 to 4.4 Ga (SHRIMP II, Wilde et al. 2001 Nature) and d18-O from 5 to 8 permil (Cameca 4f, Peck et al. 2001 GCA). The d18-O of these zircons averages 6.3, and is 1 permil higher than that in equilibrium with the mantle and that of normal Archean granitic zircons (5.3+-0.3, 5.5+-0.4, respectively; King et al. 1998 Pre-C Res, Peck et al. 2000 Geology). The distribution of mantle-like vs. mildly elevated d18-O values for magmas is constant from 2.7 to 4.4 Ga, and on 4 continents. The age of 4.404+-0.008 Ga from one 200 micron zircon is \u003e99% concordant and represents the oldest recognized terrestrial material. This crystal is zoned in d18-O (5.0+-0.7 vs. 7.4+-0.7) and REEs (La=0.3 to 13.6 ppm), and contains inclusions of SiO2. REE patterns are HREE enriched with positive Ce and negative Eu anomalies; calculated melts are LREE enriched. Taken together, these results suggest crystallization from a quartz-saturated granitic magma and thus the existence of continental crust, possibly in a setting like Iceland. The high d18-O portion of the crystal would be in equilibrium with a magma at d18-O(WR)= 8.5-9.5. There is no known mantle reservoir with such high values. d18-O(WR) values above 8.5 are typical of \"S-type\" granites that have melted or assimilated material that was altered by low temperature interaction with water at the surface of the Earth (i.e., weathering, diagenesis, low T hydrothermal alteration). Thus the high d18-O value of the 4.4 Ga zircon suggests that surface temperatures were cool enough for liquid water suggesting that the early steam-rich atmosphere condensed to form oceans at that time. The evidence for liquid water and possibly oceans at 4.4 Ga suggests a Cool Early Earth. This contrasts with the Hot Early Earth and global magma oceans envisioned at 4.5-4.3 Ga based on: an impact origin of the Moon (4.45-4.50 Ga), core formation, higher Hadean radioactive heat production, and intense early meteorite bombardment. Magma on the surface of the Earth cools quickly by radiation to form a crust, but a magma ocean caused by these processes might persist beneath the initially thin crust for up to 400 m.y. and might erupt as massive flood basalts in response to major meteorite impacts, boiling surface waters. The thermal contrasts presented by these lines of evidence are minimized if the Moon and core formed earlier (\\sim4.5 Ga), if the Moon formed by a process not involving a Mars-size impactor, or if the early meteorite bombardment was less intense or irregular in timing. It is possible that periods of Cool vs. Hot Early Earth alternated, with boiling of early oceans after major impact events followed by periods of cooler surface conditions. If life evolved in these seas, multiple extinctions before 3.9 Ga are suggested.","publication_date":{"day":29,"month":4,"year":2001,"errors":{}},"publication_name":"Agu Spring Meeting Abstracts"},"translated_abstract":"Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous rocks. The d18-O of non-metamict zircon is unaffected even by hydrothermal alteration and high-grade metamorphism. Ion microprobe analysis of detrital zircons from the \\sim3 Ga Jack Hills metaconglomerate (Narryer Gneiss Terrane, Yilgarn Craton, Western Australia) yield U-Pb ages from 3.1 to 4.4 Ga (SHRIMP II, Wilde et al. 2001 Nature) and d18-O from 5 to 8 permil (Cameca 4f, Peck et al. 2001 GCA). The d18-O of these zircons averages 6.3, and is 1 permil higher than that in equilibrium with the mantle and that of normal Archean granitic zircons (5.3+-0.3, 5.5+-0.4, respectively; King et al. 1998 Pre-C Res, Peck et al. 2000 Geology). The distribution of mantle-like vs. mildly elevated d18-O values for magmas is constant from 2.7 to 4.4 Ga, and on 4 continents. The age of 4.404+-0.008 Ga from one 200 micron zircon is \u003e99% concordant and represents the oldest recognized terrestrial material. This crystal is zoned in d18-O (5.0+-0.7 vs. 7.4+-0.7) and REEs (La=0.3 to 13.6 ppm), and contains inclusions of SiO2. REE patterns are HREE enriched with positive Ce and negative Eu anomalies; calculated melts are LREE enriched. Taken together, these results suggest crystallization from a quartz-saturated granitic magma and thus the existence of continental crust, possibly in a setting like Iceland. The high d18-O portion of the crystal would be in equilibrium with a magma at d18-O(WR)= 8.5-9.5. There is no known mantle reservoir with such high values. d18-O(WR) values above 8.5 are typical of \"S-type\" granites that have melted or assimilated material that was altered by low temperature interaction with water at the surface of the Earth (i.e., weathering, diagenesis, low T hydrothermal alteration). Thus the high d18-O value of the 4.4 Ga zircon suggests that surface temperatures were cool enough for liquid water suggesting that the early steam-rich atmosphere condensed to form oceans at that time. The evidence for liquid water and possibly oceans at 4.4 Ga suggests a Cool Early Earth. This contrasts with the Hot Early Earth and global magma oceans envisioned at 4.5-4.3 Ga based on: an impact origin of the Moon (4.45-4.50 Ga), core formation, higher Hadean radioactive heat production, and intense early meteorite bombardment. Magma on the surface of the Earth cools quickly by radiation to form a crust, but a magma ocean caused by these processes might persist beneath the initially thin crust for up to 400 m.y. and might erupt as massive flood basalts in response to major meteorite impacts, boiling surface waters. The thermal contrasts presented by these lines of evidence are minimized if the Moon and core formed earlier (\\sim4.5 Ga), if the Moon formed by a process not involving a Mars-size impactor, or if the early meteorite bombardment was less intense or irregular in timing. It is possible that periods of Cool vs. Hot Early Earth alternated, with boiling of early oceans after major impact events followed by periods of cooler surface conditions. If life evolved in these seas, multiple extinctions before 3.9 Ga are suggested.","internal_url":"https://www.academia.edu/34270272/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga","translated_internal_url":"","created_at":"2017-08-18T16:38:49.523-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":55204412,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":54178473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178473/thumbnails/1.jpg","file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-16xx2ok.pdf","download_url":"https://www.academia.edu/attachments/54178473/download_file","bulk_download_file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178473/The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-16xx2ok-libre.pdf?1503099912=\u0026response-content-disposition=attachment%3B+filename%3DThe_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf\u0026Expires=1738628723\u0026Signature=Yaf3Numct8H9oeQhr2wtWzSZe6DMVLBynHcobbjxjqbAsyJmR2AD0ux25L5oC9GNTY1uM5mB-RSkyekw9OSgBU7bCH6iZ-ZARj63ofDsi-hEPrXxfOBNhOh2GllnVbdwa65zcv~FUwfIvnvdmWTRU4bx-OFgc0Muc327wS-9w~yj0hhIjgNVgu1L1BcH-163EL4k7Xdwlyne64JToVmF~yPvn7kyvFtqueakUC2J0sLC9phg3pOuLkc0jajovqC4lfLp0Wv3HlDs1p6GyuwneMHPerKuyFNs8Z2D0lw0YhFX-medooluoarZlpcXmdP~WJC1Br-Me7RBYRkwuyEsyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous rocks. The d18-O of non-metamict zircon is unaffected even by hydrothermal alteration and high-grade metamorphism. Ion microprobe analysis of detrital zircons from the \\sim3 Ga Jack Hills metaconglomerate (Narryer Gneiss Terrane, Yilgarn Craton, Western Australia) yield U-Pb ages from 3.1 to 4.4 Ga (SHRIMP II, Wilde et al. 2001 Nature) and d18-O from 5 to 8 permil (Cameca 4f, Peck et al. 2001 GCA). The d18-O of these zircons averages 6.3, and is 1 permil higher than that in equilibrium with the mantle and that of normal Archean granitic zircons (5.3+-0.3, 5.5+-0.4, respectively; King et al. 1998 Pre-C Res, Peck et al. 2000 Geology). The distribution of mantle-like vs. mildly elevated d18-O values for magmas is constant from 2.7 to 4.4 Ga, and on 4 continents. The age of 4.404+-0.008 Ga from one 200 micron zircon is \u003e99% concordant and represents the oldest recognized terrestrial material. This crystal is zoned in d18-O (5.0+-0.7 vs. 7.4+-0.7) and REEs (La=0.3 to 13.6 ppm), and contains inclusions of SiO2. REE patterns are HREE enriched with positive Ce and negative Eu anomalies; calculated melts are LREE enriched. Taken together, these results suggest crystallization from a quartz-saturated granitic magma and thus the existence of continental crust, possibly in a setting like Iceland. The high d18-O portion of the crystal would be in equilibrium with a magma at d18-O(WR)= 8.5-9.5. There is no known mantle reservoir with such high values. d18-O(WR) values above 8.5 are typical of \"S-type\" granites that have melted or assimilated material that was altered by low temperature interaction with water at the surface of the Earth (i.e., weathering, diagenesis, low T hydrothermal alteration). Thus the high d18-O value of the 4.4 Ga zircon suggests that surface temperatures were cool enough for liquid water suggesting that the early steam-rich atmosphere condensed to form oceans at that time. The evidence for liquid water and possibly oceans at 4.4 Ga suggests a Cool Early Earth. This contrasts with the Hot Early Earth and global magma oceans envisioned at 4.5-4.3 Ga based on: an impact origin of the Moon (4.45-4.50 Ga), core formation, higher Hadean radioactive heat production, and intense early meteorite bombardment. Magma on the surface of the Earth cools quickly by radiation to form a crust, but a magma ocean caused by these processes might persist beneath the initially thin crust for up to 400 m.y. and might erupt as massive flood basalts in response to major meteorite impacts, boiling surface waters. The thermal contrasts presented by these lines of evidence are minimized if the Moon and core formed earlier (\\sim4.5 Ga), if the Moon formed by a process not involving a Mars-size impactor, or if the early meteorite bombardment was less intense or irregular in timing. It is possible that periods of Cool vs. Hot Early Earth alternated, with boiling of early oceans after major impact events followed by periods of cooler surface conditions. If life evolved in these seas, multiple extinctions before 3.9 Ga are suggested.","owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178473/thumbnails/1.jpg","file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-16xx2ok.pdf","download_url":"https://www.academia.edu/attachments/54178473/download_file","bulk_download_file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178473/The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-16xx2ok-libre.pdf?1503099912=\u0026response-content-disposition=attachment%3B+filename%3DThe_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf\u0026Expires=1738628723\u0026Signature=Yaf3Numct8H9oeQhr2wtWzSZe6DMVLBynHcobbjxjqbAsyJmR2AD0ux25L5oC9GNTY1uM5mB-RSkyekw9OSgBU7bCH6iZ-ZARj63ofDsi-hEPrXxfOBNhOh2GllnVbdwa65zcv~FUwfIvnvdmWTRU4bx-OFgc0Muc327wS-9w~yj0hhIjgNVgu1L1BcH-163EL4k7Xdwlyne64JToVmF~yPvn7kyvFtqueakUC2J0sLC9phg3pOuLkc0jajovqC4lfLp0Wv3HlDs1p6GyuwneMHPerKuyFNs8Z2D0lw0YhFX-medooluoarZlpcXmdP~WJC1Br-Me7RBYRkwuyEsyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":133294,"name":"Land Surface Temperature","url":"https://www.academia.edu/Documents/in/Land_Surface_Temperature"},{"id":142810,"name":"Surface Water","url":"https://www.academia.edu/Documents/in/Surface_Water"},{"id":200896,"name":"Hydrothermal Alteration","url":"https://www.academia.edu/Documents/in/Hydrothermal_Alteration"},{"id":271756,"name":"Western Australia","url":"https://www.academia.edu/Documents/in/Western_Australia"},{"id":275177,"name":"Oxygen Isotope","url":"https://www.academia.edu/Documents/in/Oxygen_Isotope"},{"id":421956,"name":"Continental Crust","url":"https://www.academia.edu/Documents/in/Continental_Crust"},{"id":616972,"name":"Low Temperature","url":"https://www.academia.edu/Documents/in/Low_Temperature"},{"id":1029721,"name":"Instruments and Techniques","url":"https://www.academia.edu/Documents/in/Instruments_and_Techniques"},{"id":2579578,"name":"surface temperature","url":"https://www.academia.edu/Documents/in/surface_temperature"}],"urls":[{"id":8261978,"url":"http://adsabs.harvard.edu/abs/2001AGUSM...V51A01V"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270271"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270271/Liquid_Water_in_the_Early_Archean_Ion_Microprobe_Evidence_from_Oxygen_Isotopes_in_4_01_to_4_40_Ga_Detrital_Zircons"><img alt="Research paper thumbnail of Liquid Water in the Early Archean: Ion Microprobe Evidence from Oxygen Isotopes in 4.01 to 4.40 Ga Detrital Zircons" class="work-thumbnail" src="https://attachments.academia-assets.com/54178472/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270271/Liquid_Water_in_the_Early_Archean_Ion_Microprobe_Evidence_from_Oxygen_Isotopes_in_4_01_to_4_40_Ga_Detrital_Zircons">Liquid Water in the Early Archean: Ion Microprobe Evidence from Oxygen Isotopes in 4.01 to 4.40 Ga Detrital Zircons</a></div><div class="wp-workCard_item"><span>Eleventh Annual V M Goldschmidt Conference</span><span>, May 1, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0-to 4.4-Ga...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0-to 4.4-Ga) reveal variable magmatic ␦ 18 O values, including some that are high relative to the mantle, suggesting interaction between magmas and already-formed continental crust during the first 500 million yr of Earth's history. The high average ␦ 18 O value of these zircons is confirmed by conventional analysis. A metaconglomerate from the Jack Hills in the Yilgarn Craton (Western Australia) contains detrital zircons with ages Ͼ 4.0 Ga (Compston and Pidgeon, 1986) and one crystal that is 4.40-Ga old . The newly discovered 4.40-Ga grain is the oldest recognized terrestrial mineral. The Jack Hills metaconglomerate also contains a large 3.3-to 3.6-Ga-old zircon population with an average ␦ 18 O value of 6.3 Ϯ 0.1‰ (1 s.e., ; n ϭ 32 spot analyses). Two 4.15-Ga zircons have an average ␦ 18 O of 5.7 Ϯ 0.2‰ (n ϭ 13). In addition, a 4.13-Ga zircon has an average ␦ 18 O of 7.2 Ϯ 0.3‰ (n ϭ 8) and another 4.01-Ga zircon has an average ␦ 18 O of 6.8 Ϯ 0.4‰ (n ϭ 10). The oldest grain (4.40 Ga) is zoned with respect trace element composition (especially LREE), and intensity of cathodoluminescence, all of which correlate with oxygen isotope ratios (7.4‰ vs. 5.0‰). High LREE and high-␦ 18 O values from the 4.01-to 4.40-Ga grains are consistent with growth in evolved granitic magmas (␦ 18 O(WR) ϭ 8.5 to 9.5‰) that had interacted with supracrustal materials. High ␦ 18 O values show that low-temperature surficial processes (i.e., diagenesis, weathering, or low-temperature alteration) occurred before 4.0 Ga, and even before 4.40 Ga, shortly following the hypothesized date of core differentiation and impact of a Mars-sized body to form the Moon at ϳ4.45 Ga. This is the first evidence of continental crust as early as 4.40 Ga and suggests differentiation during the period of intense meteorite bombardment of the early Earth. The magnitude of water and rock interaction that would be necessary to cause the high ␦ 18 O values suggests the presence of liquid water and thus the possibility of an ocean at 4.40 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1251dbe81e1cc7b6942cefd7107ceb4a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178472,"asset_id":34270271,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178472/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270271"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270271]").text(description); $(".js-view-count[data-work-id=34270271]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270271']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1251dbe81e1cc7b6942cefd7107ceb4a" } } $('.js-work-strip[data-work-id=34270271]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270271,"title":"Liquid Water in the Early Archean: Ion Microprobe Evidence from Oxygen Isotopes in 4.01 to 4.40 Ga Detrital Zircons","internal_url":"https://www.academia.edu/34270271/Liquid_Water_in_the_Early_Archean_Ion_Microprobe_Evidence_from_Oxygen_Isotopes_in_4_01_to_4_40_Ga_Detrital_Zircons","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178472,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178472/thumbnails/1.jpg","file_name":"Liquid_Water_in_the_Early_Archean_Ion_Mi20170818-28885-1g2b6yg.pdf","download_url":"https://www.academia.edu/attachments/54178472/download_file","bulk_download_file_name":"Liquid_Water_in_the_Early_Archean_Ion_Mi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178472/Liquid_Water_in_the_Early_Archean_Ion_Mi20170818-28885-1g2b6yg-libre.pdf?1503099912=\u0026response-content-disposition=attachment%3B+filename%3DLiquid_Water_in_the_Early_Archean_Ion_Mi.pdf\u0026Expires=1739844624\u0026Signature=ekOta8xIs5Nl4i3zFTFIpNvlL8H~icdp8HgqBjS-XMWJpzUwLrMudwGs4vk41jBgtc~HMXlfifTf0g~WWqkP0bu8x~rwHhjWIbxE~wFAGmtHFo-1PfzbL1n6rWRZL~uy45JaXHI7yJcfUCAQbERgFPg~cbnEqqHMI~VYDLKxOZaY6sbxYfqFLQL1qN6j31AjsuHYstNiq~ckxwtcET4T~gl-hH4QeGTXxSWRcBlMVvxDGizBAuLFYc028a2aZCMJlWJoayGyLxrnU~Z1QadGOtXvFABh~yrfdOJB5dpx943Zk7qXJrS2xn2aHg3zZbXECMQaDGKD2M4pNxHC6dnLZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270270"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34270270/Slow_oxygen_diffusion_rates_in_igneous_zircons_from_metamorphic_rocks"><img alt="Research paper thumbnail of Slow oxygen diffusion rates in igneous zircons from metamorphic rocks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/34270270/Slow_oxygen_diffusion_rates_in_igneous_zircons_from_metamorphic_rocks">Slow oxygen diffusion rates in igneous zircons from metamorphic rocks</a></div><div class="wp-workCard_item"><span>The American Mineralogist</span><span>, Jul 1, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... different zircon sizes. Scenario 2 was evaluated using the Fast Grain Boundary (FGB) diffusio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... different zircon sizes. Scenario 2 was evaluated using the Fast Grain Boundary (FGB) diffusion model of Eiler et al. (1992), using the FGB code of Eiler et al. (1994) with minor modifications by Kohn and Valley (1998a). In using the ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270270"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270270"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270270; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270270]").text(description); $(".js-view-count[data-work-id=34270270]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270270; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270270']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34270270]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270270,"title":"Slow oxygen diffusion rates in igneous zircons from metamorphic rocks","internal_url":"https://www.academia.edu/34270270/Slow_oxygen_diffusion_rates_in_igneous_zircons_from_metamorphic_rocks","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270269"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270269/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon"><img alt="Research paper thumbnail of Empirical calibration of oxygen isotope fractionation in zircon" class="work-thumbnail" src="https://attachments.academia-assets.com/54178462/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270269/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon">Empirical calibration of oxygen isotope fractionation in zircon</a></div><div class="wp-workCard_item"><span>Geochimica Et Cosmochimica Acta</span><span>, Sep 1, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">New empirical calibrations for the fractionation of oxygen isotopes among zircon, almandine-rich ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">New empirical calibrations for the fractionation of oxygen isotopes among zircon, almandine-rich garnet, titanite, and quartz are combined with experimental values for quartz-grossular. The resulting A-coefficients (‰K 2) are: Zrc, Alm, Grs, Ttn</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cdc17ef2f2ffd1b254119062e03fbed6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178462,"asset_id":34270269,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178462/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270269"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270269"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270269; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270269]").text(description); $(".js-view-count[data-work-id=34270269]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270269; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270269']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cdc17ef2f2ffd1b254119062e03fbed6" } } $('.js-work-strip[data-work-id=34270269]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270269,"title":"Empirical calibration of oxygen isotope fractionation in zircon","internal_url":"https://www.academia.edu/34270269/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178462/thumbnails/1.jpg","file_name":"Valley2003GCA.pdf","download_url":"https://www.academia.edu/attachments/54178462/download_file","bulk_download_file_name":"Empirical_calibration_of_oxygen_isotope.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178462/Valley2003GCA-libre.pdf?1503099846=\u0026response-content-disposition=attachment%3B+filename%3DEmpirical_calibration_of_oxygen_isotope.pdf\u0026Expires=1739844624\u0026Signature=aq~OR3FSpkGHTDqyVkX39ZAX6-RGDkwC6lo~XzML4EHN6-6FppHkqcV8CR0MLATcg6D5g8PBlhLlbSRGnbVkIoq5TAexk3TnWuzNTEWoEAwDJwPNCez5EYyoUrAQAnOuCkX6Kyv4is8WzGHfVT850UHwoOKmqPhGFgM2FBkhGQi3VPBoQeU3~6koSbXM8SlaYhC-ZPPH39cDJx6rX2FYZNtJNiRHKRLsxtj1MsKGl0HgwucQ6mN8ybdesCHCmB7Ysaak6chhpmxeOpBiM7LJ4L2Kxdh4D~LdwuCmR6eVDakOQ7RzEfedxyUpgZhdV50mq733-9YSXhfPaM-FlsT7sg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270268"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270268/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province"><img alt="Research paper thumbnail of Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province" class="work-thumbnail" src="https://attachments.academia-assets.com/54178469/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270268/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province">Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province</a></div><div class="wp-workCard_item"><span>Geological Society of America Memoirs</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockitegranite plutonism stit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockitegranite plutonism stitch three terranes in the southwestern Grenville Province (Adirondack Highlands-Morin terrane, Frontenac terrane, Elzevir terrane). Because of the refractory nature of zircon (Zrn), analysis of oxygen-isotope ratios of dated igneous zircon from these rocks allows calculation of δ δ 18 O values of original magmas even if the rocks were subjected to late magmatic assimilation, postmagmatic alteration, or metamorphism. Documented variability in δ δ 18 O(Zrn) for these granitic rocks corresponds to their geographic location. Seven plutons from the central Frontenac terrane (Ontario) have a high average δ δ 18 O(Zrn) = 11.8 ± ± 1.0‰, which corresponds to δ δ 18 O magma values of 12.4-14.3‰. In contrast, twenty-seven other plutons and dikes of this suite (New York, Ontario, and Québec) average δ δ 18 O(Zrn) = 8.2 ± ± 0.6‰, with a typical igneous range of 8.6 to 10.3‰ for δ δ 18 O magma values. High δ δ 18 O values in the Frontenac terrane are some of the highest magmatic oxygen-isotope ratios recognized worldwide, but these plutons are not unusual with respect to whole-rock chemistry or radiogenic isotope compositions. Such high δ δ 18 O values can result from mixing between paragneiss (δ δ 18 O ≈ ≈ 15‰) and hydrothermally altered basalts and/or oceanic sediments (δ δ 18 O ≈ ≈ 12‰) in the source region. We propose that high-δ δ 18 O, hydrothermally altered basalts and sediments were subducted or underthrust to the base of the Frontenac terrane during closure of an ocean basin between the Frontenac terrane and the Adirondack Highlands at or prior to 1.2 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="57a9c48fad5cf2b9ae37e9e0bb64a9e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178469,"asset_id":34270268,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178469/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270268"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270268"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270268; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270268]").text(description); $(".js-view-count[data-work-id=34270268]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270268; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270268']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "57a9c48fad5cf2b9ae37e9e0bb64a9e8" } } $('.js-work-strip[data-work-id=34270268]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270268,"title":"Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province","internal_url":"https://www.academia.edu/34270268/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178469/thumbnails/1.jpg","file_name":"Oxygen-isotope_constraints_on_terrane_bo20170818-28889-7m0w7z.pdf","download_url":"https://www.academia.edu/attachments/54178469/download_file","bulk_download_file_name":"Oxygen_isotope_constraints_on_terrane_bo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178469/Oxygen-isotope_constraints_on_terrane_bo20170818-28889-7m0w7z-libre.pdf?1503099847=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_constraints_on_terrane_bo.pdf\u0026Expires=1739844624\u0026Signature=a3uUcIerqWnF4oDLwTRdJVk2GsPxU4e~kuujQsCngtAx6Tjbr2BA0ThpJJWlGVtx1Se86VolXvhk1vGGndpcf~PVqaQcWJPENdKtI0LHiFNthANHPENmsui2Ot~lBLH9TOM-oP17VpvdrT~8evqlxjrbj1W5STA5GrpkWgQdwU1jZdZ-wkNFFFG-cb384WTiedb7yDrN7e-z5EQZrABGuAiLXGbBnLVNUTVPoPw-Zxx0NNftqzR~-K4FFjl02JfTVm0k5ZqGOYmXal6eQ-oZd0BV0lyQBgSfajsDFWs~EIFbe~VgCqqTttESULJo-KlVQVZFqnfEX5gRZJRBDOUliQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270267"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270267/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province"><img alt="Research paper thumbnail of Oxygen-isotope constraints on terrane boundaries and origin of 1.18-1.13 Ga granitoids in the southern Grenville Province" class="work-thumbnail" src="https://attachments.academia-assets.com/54178470/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270267/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province">Oxygen-isotope constraints on terrane boundaries and origin of 1.18-1.13 Ga granitoids in the southern Grenville Province</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockitegranite plutonism stit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockitegranite plutonism stitch three terranes in the southwestern Grenville Province (Adirondack Highlands-Morin terrane, Frontenac terrane, Elzevir terrane). Because of the refractory nature of zircon (Zrn), analysis of oxygen-isotope ratios of dated igneous zircon from these rocks allows calculation of δ δ 18 O values of original magmas even if the rocks were subjected to late magmatic assimilation, postmagmatic alteration, or metamorphism. Documented variability in δ δ 18 O(Zrn) for these granitic rocks corresponds to their geographic location. Seven plutons from the central Frontenac terrane (Ontario) have a high average δ δ 18 O(Zrn) = 11.8 ± ± 1.0‰, which corresponds to δ δ 18 O magma values of 12.4-14.3‰. In contrast, twenty-seven other plutons and dikes of this suite (New York, Ontario, and Québec) average δ δ 18 O(Zrn) = 8.2 ± ± 0.6‰, with a typical igneous range of 8.6 to 10.3‰ for δ δ 18 O magma values. High δ δ 18 O values in the Frontenac terrane are some of the highest magmatic oxygen-isotope ratios recognized worldwide, but these plutons are not unusual with respect to whole-rock chemistry or radiogenic isotope compositions. Such high δ δ 18 O values can result from mixing between paragneiss (δ δ 18 O ≈ ≈ 15‰) and hydrothermally altered basalts and/or oceanic sediments (δ δ 18 O ≈ ≈ 12‰) in the source region. We propose that high-δ δ 18 O, hydrothermally altered basalts and sediments were subducted or underthrust to the base of the Frontenac terrane during closure of an ocean basin between the Frontenac terrane and the Adirondack Highlands at or prior to 1.2 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="16d451eecb21392ac11848f15323586b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178470,"asset_id":34270267,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178470/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270267"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270267"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270267; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270267]").text(description); $(".js-view-count[data-work-id=34270267]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270267; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270267']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "16d451eecb21392ac11848f15323586b" } } $('.js-work-strip[data-work-id=34270267]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270267,"title":"Oxygen-isotope constraints on terrane boundaries and origin of 1.18-1.13 Ga granitoids in the southern Grenville Province","internal_url":"https://www.academia.edu/34270267/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178470,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178470/thumbnails/1.jpg","file_name":"Oxygen-isotope_constraints_on_terrane_bo20170818-28889-fgtrwy.pdf","download_url":"https://www.academia.edu/attachments/54178470/download_file","bulk_download_file_name":"Oxygen_isotope_constraints_on_terrane_bo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178470/Oxygen-isotope_constraints_on_terrane_bo20170818-28889-fgtrwy-libre.pdf?1503099847=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_constraints_on_terrane_bo.pdf\u0026Expires=1739844624\u0026Signature=VQ1K-KixSdvH74ILNCyOzj438jRW8sHYLIo9lhem3Nq~WF580tQOLVBYRhr~6Nhae6A4SuvQGkMe3GLHQTEvw91J~OahnyOYgJD-kIfUn4yU9emXhmrATi~x0JvXUCkcoC1tBqPtVkN7C04o~W5dR6A43O0vclOp742tedJqe3roFbbTnhL9xT1U6VCBjeGP45bLnYcBH1VCo-J5FRfsiq8wSVP6jaHWlkdW9SjYi7IPhbo0LuAdChZw4PL4GNEMnLRDvQgFfrc7OZGVkffcUNOWUrpBxdwhb5iwCJJVRdgEvGo24KyeZPJhGU1DblarmIZlRca2LHr4Mp72Za03zA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270266"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270266/Comment_on_Heterogeneous_Hadean_Hafnium_Evidence_of_Continental_Crust_at_4_4_to_4_5_Ga"><img alt="Research paper thumbnail of Comment on "Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga" class="work-thumbnail" src="https://attachments.academia-assets.com/54178468/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270266/Comment_on_Heterogeneous_Hadean_Hafnium_Evidence_of_Continental_Crust_at_4_4_to_4_5_Ga">Comment on "Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga</a></div><div class="wp-workCard_item"><span>Science</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Harrison et al. (Reports, 23 December 2005, p. 1947 proposed that plate tectonics and granites ex...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Harrison et al. (Reports, 23 December 2005, p. 1947 proposed that plate tectonics and granites existed 4.5 billion years ago (Ga), within 70 million years of Earth's formation, based on geochemistry of 94.0 Ga detrital zircons from Australia. We highlight the large uncertainties of this claim and make the more moderate proposal that some crust formed by 4.4 Ga and oceans formed by 4.2 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9314f0a79a3eb33fed5100c9bf798e64" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178468,"asset_id":34270266,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178468/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270266"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270266"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270266; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270266]").text(description); $(".js-view-count[data-work-id=34270266]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270266; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270266']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9314f0a79a3eb33fed5100c9bf798e64" } } $('.js-work-strip[data-work-id=34270266]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270266,"title":"Comment on \"Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga","internal_url":"https://www.academia.edu/34270266/Comment_on_Heterogeneous_Hadean_Hafnium_Evidence_of_Continental_Crust_at_4_4_to_4_5_Ga","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178468,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178468/thumbnails/1.jpg","file_name":"Comment_on_Heterogeneous_hadean_nafnium_20170818-28889-139dbjs.pdf","download_url":"https://www.academia.edu/attachments/54178468/download_file","bulk_download_file_name":"Comment_on_Heterogeneous_Hadean_Hafnium.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178468/Comment_on_Heterogeneous_hadean_nafnium_20170818-28889-139dbjs-libre.pdf?1503099845=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Heterogeneous_Hadean_Hafnium.pdf\u0026Expires=1739844624\u0026Signature=ddYMfoc1bUEHkdkbcaNPiTfLG1Uwm8fh3dRX0xtFBymsCwn3uAKar7Xe94c0L~XtLbr2FUzvKbda2QFe2CGmo83XhukoMGPrdnbQwAnRNfy8mpuTSd1868WSE-bn54junN1k9y6~rFALQwHvg93gsLuvAT83OHwKmpHjEAoYeGlVcY8lSgRlbbLOvQh2JylTP4YYZGg--fNwwDHiFYia7arQ3QaVAQAhUDVQiTYp3U8TobwcoJ2b1V1vqEnsDiJYhbcDBLk~svMKKeZX6pExpnVS0dLd6PNZnf9isXtkLqhLC3KGRXoU5fyNz5cUkWZiND4ie~H12pM-jGqKOHyIYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270265"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270265/Quartz_garnet_isotope_thermometry_in_the_southern_Adirondack_Highlands_Grenville_Province_New_York_"><img alt="Research paper thumbnail of Quartz-garnet isotope thermometry in the southern Adirondack Highlands (Grenville Province, New York)" class="work-thumbnail" src="https://attachments.academia-assets.com/54178465/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270265/Quartz_garnet_isotope_thermometry_in_the_southern_Adirondack_Highlands_Grenville_Province_New_York_">Quartz-garnet isotope thermometry in the southern Adirondack Highlands (Grenville Province, New York)</a></div><div class="wp-workCard_item"><span>Journal of Metamorphic Geology</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Quartz-garnet oxygen isotope thermometry of quartz-rich metasedimentary rocks from the southern A...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Quartz-garnet oxygen isotope thermometry of quartz-rich metasedimentary rocks from the southern Adirondack Highlands (Grenville Province, New York) yields metamorphic temperatures of 700-800°C, consistent with granulite facies mineral assemblages. Samples from the Irving Pond quartzite record D 18 O(Qtz-Grt) ¼ 2.68 ± 0.21& (1 S.D.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f85a5fbb5b388317f631938302cb53af" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178465,"asset_id":34270265,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178465/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270265"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270265"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270265; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270265]").text(description); $(".js-view-count[data-work-id=34270265]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270265; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270265']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f85a5fbb5b388317f631938302cb53af" } } $('.js-work-strip[data-work-id=34270265]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270265,"title":"Quartz-garnet isotope thermometry in the southern Adirondack Highlands (Grenville Province, New York)","internal_url":"https://www.academia.edu/34270265/Quartz_garnet_isotope_thermometry_in_the_southern_Adirondack_Highlands_Grenville_Province_New_York_","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178465/thumbnails/1.jpg","file_name":"j.1525-1314.2004.00547.x20170818-28883-srpnt.pdf","download_url":"https://www.academia.edu/attachments/54178465/download_file","bulk_download_file_name":"Quartz_garnet_isotope_thermometry_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178465/j.1525-1314.2004.00547.x20170818-28883-srpnt-libre.pdf?1503099846=\u0026response-content-disposition=attachment%3B+filename%3DQuartz_garnet_isotope_thermometry_in_the.pdf\u0026Expires=1739844624\u0026Signature=RsawWzm3DKClHMFIHfUlQekNwXEMb5ORFXB12BO7~RUcuoVmGO1k3V784YUmRhJM9Q-MpejYV23MwJC5bJjmdFnGPAolYKgNzLDi3AGIq9X9hx0BTy4Kd86W8-4bkrpO2fhVbSuBzGBUhoTwCHNA4T9SgyX54-cNwG7vMkmRTbDIVLje7pBskDdAK2lSjfTrlNn-p875cdnU-nagnQ17n~j~Bhw2Cs6ychky3TgzazLkD42Qsa87nBIz3KHfCDbVAz-ZME~2wNEhJL~LCbt3dtJVwGDsEcnL~MxyAJ1nTE9asO2OHkFU1I5peICMsNlZcNOGPkBEHHxLTYSLMtDPhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270264"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34270264/Oxygen_isotope_perspective_on_Precambrian_crustal_growth_and_maturation"><img alt="Research paper thumbnail of Oxygen isotope perspective on Precambrian crustal growth and maturation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/34270264/Oxygen_isotope_perspective_on_Precambrian_crustal_growth_and_maturation">Oxygen isotope perspective on Precambrian crustal growth and maturation</a></div><div class="wp-workCard_item"><span>Geology</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Quick Search: All GSW Journals, GSW + GeoRef. advanced search. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270264"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270264"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270264; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270264]").text(description); $(".js-view-count[data-work-id=34270264]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270264; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270264']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34270264]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270264,"title":"Oxygen isotope perspective on Precambrian crustal growth and maturation","internal_url":"https://www.academia.edu/34270264/Oxygen_isotope_perspective_on_Precambrian_crustal_growth_and_maturation","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270263"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270263/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon"><img alt="Research paper thumbnail of Empirical calibration of oxygen isotope fractionation in zircon" class="work-thumbnail" src="https://attachments.academia-assets.com/54178461/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270263/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon">Empirical calibration of oxygen isotope fractionation in zircon</a></div><div class="wp-workCard_item"><span>Geochimica et Cosmochimica Acta</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">New empirical calibrations for the fractionation of oxygen isotopes among zircon, almandine-rich ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">New empirical calibrations for the fractionation of oxygen isotopes among zircon, almandine-rich garnet, titanite, and quartz are combined with experimental values for quartz-grossular. The resulting A-coefficients (‰K 2 ) are:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c05161f40612809341621244fb7adef6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178461,"asset_id":34270263,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178461/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270263"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270263"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270263; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270263]").text(description); $(".js-view-count[data-work-id=34270263]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270263; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270263']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c05161f40612809341621244fb7adef6" } } $('.js-work-strip[data-work-id=34270263]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270263,"title":"Empirical calibration of oxygen isotope fractionation in zircon","internal_url":"https://www.academia.edu/34270263/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178461/thumbnails/1.jpg","file_name":"Valley2003GCA.pdf","download_url":"https://www.academia.edu/attachments/54178461/download_file","bulk_download_file_name":"Empirical_calibration_of_oxygen_isotope.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178461/Valley2003GCA-libre.pdf?1503099847=\u0026response-content-disposition=attachment%3B+filename%3DEmpirical_calibration_of_oxygen_isotope.pdf\u0026Expires=1739844624\u0026Signature=Bv3ba0UF8JqJ1iBRw9Y3WyKZfHtGouBupajdIuFeVDlzLXmzBchApTUXegxG3oZXjE0aWMLKySeE7efEKlNAOkOJsL8C5GRr40DTJzVfmWnNqi9jjFmimRcUFPKof4AdxvTIYcPSWFMFiZMz8Y42Kt8kVLB5DsqXwmjZS3zebbGztMyVgW9i2TPucpJ8tJhuXqIgxuc2SLEbJcYo4CKCLtuu9k-kBXaoWRKgy1O4rwvVqxS7PGCR1~JdnB2w2gNI0QTIcGKlHKG-uTliPwGUunnlAuyhR-xE5K~I7IsK~u9gSh4uLi9QUCvi0Um7gsecnsrBpAITwU~QMOKcRjkvZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270262"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270262/Large_crustal_input_to_high_and_x003B4_18_O_anorthosite_massifs_of_the_southern_Grenville_Province_new_evidence_from_the_Morin_Complex_Quebec"><img alt="Research paper thumbnail of Large crustal input to high &#x003B4; 18 O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec" class="work-thumbnail" src="https://attachments.academia-assets.com/54178464/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270262/Large_crustal_input_to_high_and_x003B4_18_O_anorthosite_massifs_of_the_southern_Grenville_Province_new_evidence_from_the_Morin_Complex_Quebec">Large crustal input to high &#x003B4; 18 O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec</a></div><div class="wp-workCard_item"><span>Contributions to Mineralogy and Petrology</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Large crustal input to high d 18 O anorthosite massifs of the southern Grenville Province: new ev...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Large crustal input to high d 18 O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec Abstract Mid-Proterozoic anorthosite-suite magmatism is a major volumetric component of the southern Grenville Province, and provides an important probe of the compositions and types of lower crustal rocks. The 1.15 Ga Morin Complex (Quebec) consists of two anorthosite plutons with distinct compositions. Plagioclase from the western lobe of the anorthosite has d 18 O values that average 9.6 0.7&, which is 3& higher than the values found in``normal'' anorthosites and in mantlederived ma®c igneous rocks worldwide. Plagioclase from the eastern lobe of the massif (deformed by the Morin Shear Zone) has d 18 O values that average 8.7 0.6&, also high compared to mantle-derived rocks. Numerous lines of evidence, including homogeneity of d 18 O values within individual plutons, O±Sr±Nd mixing relations, and preservation of igneous d 18 O in adjacent mangerite units argue against anorthosite interaction with high d 18 O¯uids as the cause of the high d 18 O values seen in both anorthosite lobes. High d 18 O values are best explained as primary magmatic compositions resulting from melting and assimilation of crustal materials by the anorthosite's parent magma. The Morin and Marcy massifs are located in the Allochthonous Monocyclic Belt of the Grenville Province, and have the highest known d 18 O values for anorthosites in the Grenville. Although the Monocyclic Belt is juvenile in terms of radiogenic isotope systematics, the new oxygen isotope data indicate the presence high d 18 O supracrustal materials at the base of the crust, probably buried during the 1.2 Ga Elzevirian orogeny in the Monocyclic Belt prior to anorthosite magmatism. This process is not recog-nized in other parts of the Grenville Province and points to dierences in the pre-1.2-Ga continental margins.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c2a0a0bb5652349467b343e794f09d14" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178464,"asset_id":34270262,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178464/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270262"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270262"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270262; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270262]").text(description); $(".js-view-count[data-work-id=34270262]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270262; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270262']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c2a0a0bb5652349467b343e794f09d14" } } $('.js-work-strip[data-work-id=34270262]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270262,"title":"Large crustal input to high \u0026#x003B4; 18 O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec","internal_url":"https://www.academia.edu/34270262/Large_crustal_input_to_high_and_x003B4_18_O_anorthosite_massifs_of_the_southern_Grenville_Province_new_evidence_from_the_Morin_Complex_Quebec","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178464/thumbnails/1.jpg","file_name":"s00410000014920170818-28883-142ko31.pdf","download_url":"https://www.academia.edu/attachments/54178464/download_file","bulk_download_file_name":"Large_crustal_input_to_high_and_x003B4_1.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178464/s00410000014920170818-28883-142ko31-libre.pdf?1503099846=\u0026response-content-disposition=attachment%3B+filename%3DLarge_crustal_input_to_high_and_x003B4_1.pdf\u0026Expires=1738958475\u0026Signature=GVawClCUIi0~i~sj8UiKJ-bs1yf5gHkVnF4TxQLeZRDfNAdXqj72Gwm07p2cBzw4QSG6KrpvMDFPJEEcjf0mfcDmYdB1z2upDETQcGgOD7ciUEl90ZKXCbxtqbtRIx5OJJcWod4buc~VkCWzN3XgThLAZnJssgnaN25KP8Ufi8Ri-z92Ot0p5MKeHOinaOUiJFqCa75Zc89Uy~pNLmFT~XlSQhzVUFwy3l51ZPuQWSI66G78OWJzk1csGc7bEAc91Ywqt4DI6foB7Kib4QWRGqIGawEqVhbZTvML9iaVeDtVi3id83RrOovKqb8dEHCkjSkGYdlgOucTlpWmEeYYvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270261"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34270261/Genesis_of_Cordierite_Gedrite_Gneisses_Central_Metasedimentary_Belt_Boundary_Thrust_Zone_Grenville_Province_Ontario_Canada"><img alt="Research paper thumbnail of Genesis of Cordierite - Gedrite Gneisses, Central Metasedimentary Belt Boundary Thrust Zone, Grenville Province, Ontario, Canada" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/34270261/Genesis_of_Cordierite_Gedrite_Gneisses_Central_Metasedimentary_Belt_Boundary_Thrust_Zone_Grenville_Province_Ontario_Canada">Genesis of Cordierite - Gedrite Gneisses, Central Metasedimentary Belt Boundary Thrust Zone, Grenville Province, Ontario, Canada</a></div><div class="wp-workCard_item"><span>The Canadian Mineralogist</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... User Name Password Sign In. GENESIS OF CORDIERITE GEDRITE GNEISSES, CENTRAL METASEDIMENTARY...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... User Name Password Sign In. GENESIS OF CORDIERITE GEDRITE GNEISSES, CENTRAL METASEDIMENTARY BELT BOUNDARY THRUST ZONE, GRENVILLE PROVINCE, ONTARIO, CANADA. ... 1997). Pehrsson et al.(1996) proposed that the Raglan gabbro belt (Fig. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270261"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270261"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270261; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270261]").text(description); $(".js-view-count[data-work-id=34270261]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270261; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270261']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34270261]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270261,"title":"Genesis of Cordierite - Gedrite Gneisses, Central Metasedimentary Belt Boundary Thrust Zone, Grenville Province, Ontario, Canada","internal_url":"https://www.academia.edu/34270261/Genesis_of_Cordierite_Gedrite_Gneisses_Central_Metasedimentary_Belt_Boundary_Thrust_Zone_Grenville_Province_Ontario_Canada","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270260"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270260/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga"><img alt="Research paper thumbnail of The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga" class="work-thumbnail" src="https://attachments.academia-assets.com/54178466/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270260/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga">The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">No known rocks have survived from the first 500 m.y. of Earth history, but studies of single zirc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">No known rocks have survived from the first 500 m.y. of Earth history, but studies of single zircons suggest that some continental crust formed as early as 4.4 Ga, 160 m.y. after accretion of the Earth, and that surface temperatures were low enough for liquid water. Surface temperatures are inferred from high ␦ 18 O values of zircons. The range of ␦ 18 O values is constant throughout the Archean (4.4-2.6 Ga), suggesting uniformity of processes and conditions. The hypothesis of a cool early Earth suggests long intervals of relatively temperate surface conditions from 4.4 to 4.0 Ga that were conducive to liquidwater oceans and possibly life. Meteorite impacts during this period may have been less frequent than previously thought.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d7880690e757039a1760014cad11817" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178466,"asset_id":34270260,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178466/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270260"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270260"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270260; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270260]").text(description); $(".js-view-count[data-work-id=34270260]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270260; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270260']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d7880690e757039a1760014cad11817" } } $('.js-work-strip[data-work-id=34270260]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270260,"title":"The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga","internal_url":"https://www.academia.edu/34270260/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178466,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178466/thumbnails/1.jpg","file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-17guetz.pdf","download_url":"https://www.academia.edu/attachments/54178466/download_file","bulk_download_file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178466/The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-17guetz-libre.pdf?1503099846=\u0026response-content-disposition=attachment%3B+filename%3DThe_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf\u0026Expires=1739844624\u0026Signature=Z-1ygeb1YhakOUV6VyZTLm2KZAepUbdkLo~6BHQtrQ-cjk7ubGF3PYryMQx~MlMxrmRuxADlstvLsyQNbyAXQznVeAraA6qbg9n35Txxv8LCmQrXt2tZUmks~0GHVvzNTUy78JqN1JgjLvQmFrY9LdfzlxL-fSljf96~dsiXtJCmVGN4K8wN8BQOR-lnX0HSXxtHRjmGqSjG47u4df-zvZNmQYsB0~ghthkFYJfEtK1b27lKlelHpyn9hzbTQ~Xba9H-GHVG0HVWvcaIRuBRC9kQZPLVptf5po089a~zFicYa6US6O815VojFZPtDZy5O7-7XC7up7~cq~vT7HKY8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13416456"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/13416456/Calcite_Graphite_Thermometry_of_the_Franklin_Marble_New_Jersey_Highlands"><img alt="Research paper thumbnail of Calcite‐Graphite Thermometry of the Franklin Marble, New Jersey Highlands" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/13416456/Calcite_Graphite_Thermometry_of_the_Franklin_Marble_New_Jersey_Highlands">Calcite‐Graphite Thermometry of the Franklin Marble, New Jersey Highlands</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/WilliamPeck2">William Peck</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/RichardAVolkert">Richard A. Volkert</a></span></div><div class="wp-workCard_item"><span>The Journal of Geology</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... are C. These temperature estimates are similar to results of calcite‐graphite thermometry of ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... are C. These temperature estimates are similar to results of calcite‐graphite thermometry of Ottawan metamorphism in granulite facies marbles of the Adirondack Highlands, the Elzevir terrane of Ontario, the Morin terrane of Quebec, and the Honey Brook Upland of ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13416456"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13416456"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13416456; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13416456]").text(description); $(".js-view-count[data-work-id=13416456]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13416456; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13416456']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13416456]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13416456,"title":"Calcite‐Graphite Thermometry of the Franklin Marble, New Jersey Highlands","internal_url":"https://www.academia.edu/13416456/Calcite_Graphite_Thermometry_of_the_Franklin_Marble_New_Jersey_Highlands","owner_id":32025262,"coauthors_can_edit":true,"owner":{"id":32025262,"first_name":"Richard A.","middle_initials":null,"last_name":"Volkert","page_name":"RichardAVolkert","domain_name":"independent","created_at":"2015-06-09T06:53:22.436-07:00","display_name":"Richard A. Volkert","url":"https://independent.academia.edu/RichardAVolkert"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29234324"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29234324/Magmatic_zircon_oxygen_isotopes_of_1_88_1_87Ga_orogenic_and_1_65_1_54Ga_anorogenic_magmatism_in_Finland"><img alt="Research paper thumbnail of Magmatic zircon oxygen isotopes of 1.88-1.87Ga orogenic and 1.65-1.54Ga anorogenic magmatism in Finland" class="work-thumbnail" src="https://attachments.academia-assets.com/49686070/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29234324/Magmatic_zircon_oxygen_isotopes_of_1_88_1_87Ga_orogenic_and_1_65_1_54Ga_anorogenic_magmatism_in_Finland">Magmatic zircon oxygen isotopes of 1.88-1.87Ga orogenic and 1.65-1.54Ga anorogenic magmatism in Finland</a></div><div class="wp-workCard_item"><span>Miner Petrol</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Oxygen isotope ratios of igneous zircon from magmatic rocks in Finland provide insights into the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Oxygen isotope ratios of igneous zircon from magmatic rocks in Finland provide insights into the evolution and growth of the Precambrian crust during the Svecofennian orogeny. These data preserve magmatic 18 O values and correlate with major discontinuities in the lower crust. Oxygen isotope ratios of zircon across the 1.88-1.87 Ga Central Finland granitoid complex (CFGC) range from 5.50ø to 6.84ø, except for three plutons in contact with the adjacent greenstone and metasedimentary belts ( 18 OðZrcÞ ¼ 7.60ø-7.78ø). There is a systematic variation in 18 OðZrcÞ with respect to geographic location in the CFGC, ranging from 6.60 AE 0.23ø () in the northeast to 5.90 AE 0.40ø in the west-southwest. These values correlate with a change in crustal thickness and shift in geochemical composition. The oxygen isotope composition of the 1.65-1.54 Ga rapakivi granites and related rocks in southern Finland show a decreasing trend from north to south, independent of their emplacement age. The southern anorogenic granite group has an average 18 O in zircon of 6.14 AE 0.07ø and the northern anorogenic group has an average 18 O in zircon of 8.14 AE 0.59ø. This difference reflects the boundary between island arc terrains accreted during the Paleoproterozoic. y Deceased 224 B. A. Elliott et al.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fd26173dcd15e66c06be98b5e330681a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":49686070,"asset_id":29234324,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/49686070/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29234324"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29234324"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29234324; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29234324]").text(description); $(".js-view-count[data-work-id=29234324]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29234324; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29234324']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fd26173dcd15e66c06be98b5e330681a" } } $('.js-work-strip[data-work-id=29234324]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29234324,"title":"Magmatic zircon oxygen isotopes of 1.88-1.87Ga orogenic and 1.65-1.54Ga anorogenic magmatism in Finland","internal_url":"https://www.academia.edu/29234324/Magmatic_zircon_oxygen_isotopes_of_1_88_1_87Ga_orogenic_and_1_65_1_54Ga_anorogenic_magmatism_in_Finland","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":49686070,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/49686070/thumbnails/1.jpg","file_name":"s00710-005-0087-320161018-32236-7e2r9z.pdf","download_url":"https://www.academia.edu/attachments/49686070/download_file","bulk_download_file_name":"Magmatic_zircon_oxygen_isotopes_of_1_88.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/49686070/s00710-005-0087-320161018-32236-7e2r9z-libre.pdf?1476789995=\u0026response-content-disposition=attachment%3B+filename%3DMagmatic_zircon_oxygen_isotopes_of_1_88.pdf\u0026Expires=1739844624\u0026Signature=aPzhvNpwM68oTLQMPNRHOrVwpx9LRxlD4QndpyyBSdWRsfEqgpxEGJCKa72Q6TL9nnvtwMUNxkHys6X4hXzJUxutZBccU4aztA4oFcEEwgGphvZq1Q1JcCXsTqAw4NOUCb4WmqCCzamCDUMBuhHb31kM9tg-iiZ2KgCiJok2CUERxFafzsxfZeqqjRQRmoFeeflGtXNrh~7XL0xrB3fzK7BZ2GkDoruJwg54TtVARCHNrCKYpRc5XfotOultcZzadgMHo1F45tuwfvrrh7kDzc9fyI57EgcuuRkQgmaMrrrO1bGuKHyGtWhoLFV7qY-nl~iHmcCY~9QW9jrpA7mVRg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29234323"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29234323/Oxygen_isotope_ratios_and_rare_earth_elements_in_3_3_to_4_4_Ga_zircons_Ion_microprobe_evidence_for_high_%CE%B4_18O_continental_crust_and_oceans_in_the_Early_Archean"><img alt="Research paper thumbnail of Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18O continental crust and oceans in the Early Archean" class="work-thumbnail" src="https://attachments.academia-assets.com/49686066/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29234323/Oxygen_isotope_ratios_and_rare_earth_elements_in_3_3_to_4_4_Ga_zircons_Ion_microprobe_evidence_for_high_%CE%B4_18O_continental_crust_and_oceans_in_the_Early_Archean">Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18O continental crust and oceans in the Early Archean</a></div><div class="wp-workCard_item"><span>Geochim Cosmochim Acta</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0- to 4.4-G...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0- to 4.4-Ga) reveal variable magmatic δ18O values, including some that are high relative to the mantle, suggesting interaction between magmas and already-formed continental crust during the first 500 million yr of Earth’s history. The high average δ18O value of these zircons is confirmed by conventional analysis. A metaconglomerate from the Jack Hills in the Yilgarn Craton (Western Australia) contains detrital zircons with ages > 4.0 Ga (Compston and Pidgeon, 1986) and one crystal that is 4.40-Ga old (Wilde et al., 2001). The newly discovered 4.40-Ga grain is the oldest recognized terrestrial mineral. The Jack Hills metaconglomerate also contains a large 3.3- to 3.6-Ga-old zircon population with an average δ18O value of 6.3 ± 0.1‰ (1 s.e.,; n = 32 spot analyses). Two 4.15-Ga zircons have an average δ18O of 5.7 ± 0.2‰ (n = 13). In addition, a 4.13-Ga zircon has an average δ18O of 7.2 ± 0.3‰ (n = 8) and another 4.01-Ga zircon has an average δ18O of 6.8 ± 0.4‰ (n = 10). The oldest grain (4.40 Ga) is zoned with respect trace element composition (especially LREE), and intensity of cathodoluminescence, all of which correlate with oxygen isotope ratios (7.4‰ vs. 5.0‰). High LREE and high-δ18O values from the 4.01- to 4.40-Ga grains are consistent with growth in evolved granitic magmas (δ18O(WR) = 8.5 to 9.5‰) that had interacted with supracrustal materials. High δ18O values show that low-temperature surficial processes (i.e., diagenesis, weathering, or low-temperature alteration) occurred before 4.0 Ga, and even before 4.40 Ga, shortly following the hypothesized date of core differentiation and impact of a Mars-sized body to form the Moon at ∼4.45 Ga. This is the first evidence of continental crust as early as 4.40 Ga and suggests differentiation during the period of intense meteorite bombardment of the early Earth. The magnitude of water and rock interaction that would be necessary to cause the high δ18O values suggests the presence of liquid water and thus the possibility of an ocean at 4.40 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="97c5e6cd7d212bb4906d2bf430c19569" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":49686066,"asset_id":29234323,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/49686066/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29234323"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29234323"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29234323; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29234323]").text(description); $(".js-view-count[data-work-id=29234323]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29234323; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29234323']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "97c5e6cd7d212bb4906d2bf430c19569" } } $('.js-work-strip[data-work-id=29234323]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29234323,"title":"Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18O continental crust and oceans in the Early Archean","translated_title":"","metadata":{"abstract":"Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0- to 4.4-Ga) reveal variable magmatic δ18O values, including some that are high relative to the mantle, suggesting interaction between magmas and already-formed continental crust during the first 500 million yr of Earth’s history. The high average δ18O value of these zircons is confirmed by conventional analysis. A metaconglomerate from the Jack Hills in the Yilgarn Craton (Western Australia) contains detrital zircons with ages \u003e 4.0 Ga (Compston and Pidgeon, 1986) and one crystal that is 4.40-Ga old (Wilde et al., 2001). The newly discovered 4.40-Ga grain is the oldest recognized terrestrial mineral. The Jack Hills metaconglomerate also contains a large 3.3- to 3.6-Ga-old zircon population with an average δ18O value of 6.3 ± 0.1‰ (1 s.e.,; n = 32 spot analyses). Two 4.15-Ga zircons have an average δ18O of 5.7 ± 0.2‰ (n = 13). In addition, a 4.13-Ga zircon has an average δ18O of 7.2 ± 0.3‰ (n = 8) and another 4.01-Ga zircon has an average δ18O of 6.8 ± 0.4‰ (n = 10). The oldest grain (4.40 Ga) is zoned with respect trace element composition (especially LREE), and intensity of cathodoluminescence, all of which correlate with oxygen isotope ratios (7.4‰ vs. 5.0‰). High LREE and high-δ18O values from the 4.01- to 4.40-Ga grains are consistent with growth in evolved granitic magmas (δ18O(WR) = 8.5 to 9.5‰) that had interacted with supracrustal materials. High δ18O values show that low-temperature surficial processes (i.e., diagenesis, weathering, or low-temperature alteration) occurred before 4.0 Ga, and even before 4.40 Ga, shortly following the hypothesized date of core differentiation and impact of a Mars-sized body to form the Moon at ∼4.45 Ga. This is the first evidence of continental crust as early as 4.40 Ga and suggests differentiation during the period of intense meteorite bombardment of the early Earth. The magnitude of water and rock interaction that would be necessary to cause the high δ18O values suggests the presence of liquid water and thus the possibility of an ocean at 4.40 Ga.","ai_title_tag":"Ancient Zircon δ18O Evidence for Early Oceans","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Geochim Cosmochim Acta"},"translated_abstract":"Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0- to 4.4-Ga) reveal variable magmatic δ18O values, including some that are high relative to the mantle, suggesting interaction between magmas and already-formed continental crust during the first 500 million yr of Earth’s history. The high average δ18O value of these zircons is confirmed by conventional analysis. A metaconglomerate from the Jack Hills in the Yilgarn Craton (Western Australia) contains detrital zircons with ages \u003e 4.0 Ga (Compston and Pidgeon, 1986) and one crystal that is 4.40-Ga old (Wilde et al., 2001). The newly discovered 4.40-Ga grain is the oldest recognized terrestrial mineral. The Jack Hills metaconglomerate also contains a large 3.3- to 3.6-Ga-old zircon population with an average δ18O value of 6.3 ± 0.1‰ (1 s.e.,; n = 32 spot analyses). Two 4.15-Ga zircons have an average δ18O of 5.7 ± 0.2‰ (n = 13). In addition, a 4.13-Ga zircon has an average δ18O of 7.2 ± 0.3‰ (n = 8) and another 4.01-Ga zircon has an average δ18O of 6.8 ± 0.4‰ (n = 10). The oldest grain (4.40 Ga) is zoned with respect trace element composition (especially LREE), and intensity of cathodoluminescence, all of which correlate with oxygen isotope ratios (7.4‰ vs. 5.0‰). High LREE and high-δ18O values from the 4.01- to 4.40-Ga grains are consistent with growth in evolved granitic magmas (δ18O(WR) = 8.5 to 9.5‰) that had interacted with supracrustal materials. High δ18O values show that low-temperature surficial processes (i.e., diagenesis, weathering, or low-temperature alteration) occurred before 4.0 Ga, and even before 4.40 Ga, shortly following the hypothesized date of core differentiation and impact of a Mars-sized body to form the Moon at ∼4.45 Ga. This is the first evidence of continental crust as early as 4.40 Ga and suggests differentiation during the period of intense meteorite bombardment of the early Earth. The magnitude of water and rock interaction that would be necessary to cause the high δ18O values suggests the presence of liquid water and thus the possibility of an ocean at 4.40 Ga.","internal_url":"https://www.academia.edu/29234323/Oxygen_isotope_ratios_and_rare_earth_elements_in_3_3_to_4_4_Ga_zircons_Ion_microprobe_evidence_for_high_%CE%B4_18O_continental_crust_and_oceans_in_the_Early_Archean","translated_internal_url":"","created_at":"2016-10-18T04:19:38.575-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":55204412,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25211464,"work_id":29234323,"tagging_user_id":55204412,"tagged_user_id":30027441,"co_author_invite_id":5592902,"email":"c***m@ed.ac.uk","display_order":0,"name":"Colin Graham","title":"Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18O continental crust and oceans in the Early Archean"}],"downloadable_attachments":[{"id":49686066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/49686066/thumbnails/1.jpg","file_name":"Oxygen_isotope_ratios_and_rare_earth_ele20161018-32231-1s4km52.pdf","download_url":"https://www.academia.edu/attachments/49686066/download_file","bulk_download_file_name":"Oxygen_isotope_ratios_and_rare_earth_ele.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/49686066/Oxygen_isotope_ratios_and_rare_earth_ele20161018-32231-1s4km52-libre.pdf?1476790002=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_ratios_and_rare_earth_ele.pdf\u0026Expires=1738628723\u0026Signature=H1gF--bdfkyQkxefBkS6OT274hCDWU7dt2Mu6flj7kYp3uR5zWtaANNIWy7lp7lhtq2SKjwSH4064cgOZr~kWSuigJtk--1xWiTGGPkhHBdnvMizlOd0oKfAR2RfETGZN6rU7U8soVH7sePtSZRzhdY44IQkuaDWRvPMc5Rrs3TW2JYHOqhDndZB~GqxTHTYeBNRAuSz0uxeeKTh67Huj4LsSAJ~177xG3B5A10CV4Ai49gTk~z1XuZqJOqpcKcM65pQxDt7cBKTlzAjcVQ49ik2Nh3BmR5DvU6zeJHMn4ZdzMyJPEeEFVsBBAZlcdFb3wezto~AYeGZJ~BqrmF~0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Oxygen_isotope_ratios_and_rare_earth_elements_in_3_3_to_4_4_Ga_zircons_Ion_microprobe_evidence_for_high_δ_18O_continental_crust_and_oceans_in_the_Early_Archean","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0- to 4.4-Ga) reveal variable magmatic δ18O values, including some that are high relative to the mantle, suggesting interaction between magmas and already-formed continental crust during the first 500 million yr of Earth’s history. The high average δ18O value of these zircons is confirmed by conventional analysis. A metaconglomerate from the Jack Hills in the Yilgarn Craton (Western Australia) contains detrital zircons with ages \u003e 4.0 Ga (Compston and Pidgeon, 1986) and one crystal that is 4.40-Ga old (Wilde et al., 2001). The newly discovered 4.40-Ga grain is the oldest recognized terrestrial mineral. The Jack Hills metaconglomerate also contains a large 3.3- to 3.6-Ga-old zircon population with an average δ18O value of 6.3 ± 0.1‰ (1 s.e.,; n = 32 spot analyses). Two 4.15-Ga zircons have an average δ18O of 5.7 ± 0.2‰ (n = 13). In addition, a 4.13-Ga zircon has an average δ18O of 7.2 ± 0.3‰ (n = 8) and another 4.01-Ga zircon has an average δ18O of 6.8 ± 0.4‰ (n = 10). The oldest grain (4.40 Ga) is zoned with respect trace element composition (especially LREE), and intensity of cathodoluminescence, all of which correlate with oxygen isotope ratios (7.4‰ vs. 5.0‰). High LREE and high-δ18O values from the 4.01- to 4.40-Ga grains are consistent with growth in evolved granitic magmas (δ18O(WR) = 8.5 to 9.5‰) that had interacted with supracrustal materials. High δ18O values show that low-temperature surficial processes (i.e., diagenesis, weathering, or low-temperature alteration) occurred before 4.0 Ga, and even before 4.40 Ga, shortly following the hypothesized date of core differentiation and impact of a Mars-sized body to form the Moon at ∼4.45 Ga. This is the first evidence of continental crust as early as 4.40 Ga and suggests differentiation during the period of intense meteorite bombardment of the early Earth. The magnitude of water and rock interaction that would be necessary to cause the high δ18O values suggests the presence of liquid water and thus the possibility of an ocean at 4.40 Ga.","owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":49686066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/49686066/thumbnails/1.jpg","file_name":"Oxygen_isotope_ratios_and_rare_earth_ele20161018-32231-1s4km52.pdf","download_url":"https://www.academia.edu/attachments/49686066/download_file","bulk_download_file_name":"Oxygen_isotope_ratios_and_rare_earth_ele.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/49686066/Oxygen_isotope_ratios_and_rare_earth_ele20161018-32231-1s4km52-libre.pdf?1476790002=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_ratios_and_rare_earth_ele.pdf\u0026Expires=1738628723\u0026Signature=H1gF--bdfkyQkxefBkS6OT274hCDWU7dt2Mu6flj7kYp3uR5zWtaANNIWy7lp7lhtq2SKjwSH4064cgOZr~kWSuigJtk--1xWiTGGPkhHBdnvMizlOd0oKfAR2RfETGZN6rU7U8soVH7sePtSZRzhdY44IQkuaDWRvPMc5Rrs3TW2JYHOqhDndZB~GqxTHTYeBNRAuSz0uxeeKTh67Huj4LsSAJ~177xG3B5A10CV4Ai49gTk~z1XuZqJOqpcKcM65pQxDt7cBKTlzAjcVQ49ik2Nh3BmR5DvU6zeJHMn4ZdzMyJPEeEFVsBBAZlcdFb3wezto~AYeGZJ~BqrmF~0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":271756,"name":"Western Australia","url":"https://www.academia.edu/Documents/in/Western_Australia"},{"id":274263,"name":"Rare Earth Element Mineralization","url":"https://www.academia.edu/Documents/in/Rare_Earth_Element_Mineralization"},{"id":275177,"name":"Oxygen Isotope","url":"https://www.academia.edu/Documents/in/Oxygen_Isotope"},{"id":421956,"name":"Continental Crust","url":"https://www.academia.edu/Documents/in/Continental_Crust"},{"id":616972,"name":"Low Temperature","url":"https://www.academia.edu/Documents/in/Low_Temperature"},{"id":709300,"name":"Trace element","url":"https://www.academia.edu/Documents/in/Trace_element"}],"urls":[{"id":7653433,"url":"http://sciencedirect.com/science/article/pii/s0016703701007116"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29234322"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/29234322/Changing_Carbon_Isotope_Ratio_of_Atmospheric_Carbon_Dioxide_Implications_For_Food_Authentication"><img alt="Research paper thumbnail of Changing Carbon Isotope Ratio of Atmospheric Carbon Dioxide: Implications For Food Authentication" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/29234322/Changing_Carbon_Isotope_Ratio_of_Atmospheric_Carbon_Dioxide_Implications_For_Food_Authentication">Changing Carbon Isotope Ratio of Atmospheric Carbon Dioxide: Implications For Food Authentication</a></div><div class="wp-workCard_item"><span>Journal of Agricultural and Food Chemistry</span><span>, Feb 24, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Carbon isotopes are often used to detect the addition of foreign sugars to foods. This technique ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Carbon isotopes are often used to detect the addition of foreign sugars to foods. This technique takes advantage of the natural difference in carbon isotope ratio between C(3) and C(4) plants. Many foods are derived from C(3) plants, but the low-cost sweeteners corn and sugar cane are C(4) plants. Most adulteration studies do not take into account the secular shift of the carbon isotope ratio of atmospheric carbon dioxide caused by fossil fuel burning, a shift also seen in plant tissues. As a result statistical tests and threshold values that evaluate authenticity of foods based on carbon isotope ratios may need to be corrected for changing atmospheric isotope values. Literature and new data show that the atmospheric trend in carbon isotopes is seen in a 36-year data set of maple syrup analyses (n = 246), demonstrating that published thresholds for cane or corn sugar adulteration in maple syrup (and other foods) have become progressively more lenient over time.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29234322"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29234322"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29234322; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29234322]").text(description); $(".js-view-count[data-work-id=29234322]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29234322; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29234322']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29234322]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29234322,"title":"Changing Carbon Isotope Ratio of Atmospheric Carbon Dioxide: Implications For Food Authentication","internal_url":"https://www.academia.edu/29234322/Changing_Carbon_Isotope_Ratio_of_Atmospheric_Carbon_Dioxide_Implications_For_Food_Authentication","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12356176"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12356176/Evidence_from_detrital_zircons_for_the_existence_of_continental_crust_and_oceans_on_the_Earth_4_4_Gyr_ago"><img alt="Research paper thumbnail of Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago" class="work-thumbnail" src="https://attachments.academia-assets.com/46225760/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12356176/Evidence_from_detrital_zircons_for_the_existence_of_continental_crust_and_oceans_on_the_Earth_4_4_Gyr_ago">Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://wisc.academia.edu/JohnValley">John Valley</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/WilliamPeck2">William Peck</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f76c37050fd1d6713caf6d931a4464e6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46225760,"asset_id":12356176,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46225760/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12356176"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12356176"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12356176; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12356176]").text(description); $(".js-view-count[data-work-id=12356176]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12356176; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12356176']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f76c37050fd1d6713caf6d931a4464e6" } } $('.js-work-strip[data-work-id=12356176]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12356176,"title":"Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago","internal_url":"https://www.academia.edu/12356176/Evidence_from_detrital_zircons_for_the_existence_of_continental_crust_and_oceans_on_the_Earth_4_4_Gyr_ago","owner_id":31054590,"coauthors_can_edit":true,"owner":{"id":31054590,"first_name":"John","middle_initials":null,"last_name":"Valley","page_name":"JohnValley","domain_name":"wisc","created_at":"2015-05-12T12:38:50.266-07:00","display_name":"John Valley","url":"https://wisc.academia.edu/JohnValley"},"attachments":[{"id":46225760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46225760/thumbnails/1.jpg","file_name":"Evidence_from_detrital_zircons_for_the_e20160604-11909-15rdi0j.pdf","download_url":"https://www.academia.edu/attachments/46225760/download_file","bulk_download_file_name":"Evidence_from_detrital_zircons_for_the_e.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46225760/Evidence_from_detrital_zircons_for_the_e20160604-11909-15rdi0j-libre.pdf?1465053742=\u0026response-content-disposition=attachment%3B+filename%3DEvidence_from_detrital_zircons_for_the_e.pdf\u0026Expires=1739720364\u0026Signature=OI5-q9BamksMONFL2m9yEWhU324fp3NkUrnr-U79ujsm71Vdf8NvA8BR8iNPzjIURPmeuI45rMtKtISS5z3K2WWfKsCAJ96lzJH8847uB9I6LOlUCBc61WV~TBHyQc-jLSzlri--X4pQe6Kk9Q4vvhFFKFB1rot0cvcs1yXX3k3d1RzejYrWHcTjZcu2eiqTzx-dZU8MOqN8YLduI~SdZEadxW8tOolPBVHEDt-J9bNw2ZeRnfyLkveqLs~wTFQcG5pur6qlac5sL2MpQdOzYIkwyzGUVAkzXm32pUMfhYVZZ5reio5tatCQHorIYDsyeftiNFBTD5i8VhoZBIvkEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5997177" id="papers"><div class="js-work-strip profile--work_container" data-work-id="34839041"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34839041/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province"><img alt="Research paper thumbnail of Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province" class="work-thumbnail" src="https://attachments.academia-assets.com/54697300/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34839041/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province">Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/WilliamPeck2">William Peck</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://colgate.academia.edu/WilliamPeck">William Peck</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://wisc.academia.edu/JohnValley">John Valley</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockite-granite plutonism sti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockite-granite plutonism stitch three terranes in the southwestern Grenville Province (Adirondack Highlands–Morin terrane, Frontenac terrane, Elzevir terrane). Because of the refractory nature of zircon (Zrn), analysis of oxygen-isotope ratios of dated igneous zircon from these rocks allows calculation of δ δ 18 O values of original magmas even if the rocks were subjected to late magmatic assimilation, postmagmatic alteration , or metamorphism. Documented variability in δ δ 18 O(Zrn) for these granitic rocks corresponds to their geographic location. Seven plutons from the central Frontenac terrane (Ontario) have a high average δ δ 18 O(Zrn) = 11.8 ± ± 1.0‰, which corresponds to δ δ 18 O magma values of 12.4–14.3‰. In contrast, twenty-seven other plutons and dikes of this suite (New York, Ontario, and Québec) average δ δ 18 O(Zrn) = 8.2 ± ± 0.6‰, with a typical igneous range of 8.6 to 10.3‰ for δ δ 18 O magma values. High δ δ 18 O values in the Frontenac terrane are some of the highest magmatic oxygen-isotope ratios recognized worldwide, but these plutons are not unusual with respect to whole-rock chemistry or radiogenic isotope compositions. Such high δ δ 18 O values can result from mixing between paragneiss (δ δ 18 O ≈ ≈ 15‰) and hydrothermally altered basalts and/or oceanic sediments (δ δ 18 O ≈ ≈ 12‰) in the source region. We propose that high-δ δ 18 O, hydrother-mally altered basalts and sediments were subducted or underthrust to the base of the Frontenac terrane during closure of an ocean basin between the Frontenac terrane and the Adirondack Highlands at or prior to 1.2 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e85d81ee50879ebeebae3446480042b0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54697300,"asset_id":34839041,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54697300/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34839041"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34839041"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34839041; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34839041]").text(description); $(".js-view-count[data-work-id=34839041]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34839041; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34839041']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e85d81ee50879ebeebae3446480042b0" } } $('.js-work-strip[data-work-id=34839041]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34839041,"title":"Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province","internal_url":"https://www.academia.edu/34839041/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54697300,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54697300/thumbnails/1.jpg","file_name":"GSAMem2004.pdf","download_url":"https://www.academia.edu/attachments/54697300/download_file","bulk_download_file_name":"Oxygen_isotope_constraints_on_terrane_bo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54697300/GSAMem2004-libre.pdf?1507805335=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_constraints_on_terrane_bo.pdf\u0026Expires=1738823226\u0026Signature=EbbU6GjHCzHyZQbT7-ujRARhEEPdY3yS6DQqQ5ec1-bRKgXh7ZdHZWM6PxH9w5haxuTPegFeKgQpJmudmeSO1PWDEnTrvrrKIJZV-35Z3~Bl7s4Qcg43qT4CVwBfmNbBYHa3aqdXUXAwQlYswKmyM6gSm8gMcUy96WkGtMCyKd1bCxGQ7xEsOnzkO-ClznwTMo0QE8tPBl7U3g8wjmRxSJ6LKR1fSBOuCsyENsTcMs1acNpFtPHp-ZjB~aHT5zhC2e16A3ceOk9VMC~0eC3xSOM2wfGFfN~ah3z~~pTriW2YsXl5jBJQrfVku3pPY2gdr14qbTL6k4EFZ9wRO6~zJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270273"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34270273/Fiskenaesset_Anorthosite_Complex_Stable_isotope_evidence_for_shallow_emplacement_into_Archean_ocean_crust"><img alt="Research paper thumbnail of Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/34270273/Fiskenaesset_Anorthosite_Complex_Stable_isotope_evidence_for_shallow_emplacement_into_Archean_ocean_crust">Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust</a></div><div class="wp-workCard_item"><span>Geology</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270273"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270273]").text(description); $(".js-view-count[data-work-id=34270273]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270273']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34270273]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270273,"title":"Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust","internal_url":"https://www.academia.edu/34270273/Fiskenaesset_Anorthosite_Complex_Stable_isotope_evidence_for_shallow_emplacement_into_Archean_ocean_crust","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270272"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270272/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga"><img alt="Research paper thumbnail of The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga" class="work-thumbnail" src="https://attachments.academia-assets.com/54178473/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270272/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga">The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga</a></div><div class="wp-workCard_item"><span>Agu Spring Meeting Abstracts</span><span>, Apr 29, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous rocks. The d18-O of non-metamict zircon is unaffected even by hydrothermal alteration and high-grade metamorphism. Ion microprobe analysis of detrital zircons from the \sim3 Ga Jack Hills metaconglomerate (Narryer Gneiss Terrane, Yilgarn Craton, Western Australia) yield U-Pb ages from 3.1 to 4.4 Ga (SHRIMP II, Wilde et al. 2001 Nature) and d18-O from 5 to 8 permil (Cameca 4f, Peck et al. 2001 GCA). The d18-O of these zircons averages 6.3, and is 1 permil higher than that in equilibrium with the mantle and that of normal Archean granitic zircons (5.3+-0.3, 5.5+-0.4, respectively; King et al. 1998 Pre-C Res, Peck et al. 2000 Geology). The distribution of mantle-like vs. mildly elevated d18-O values for magmas is constant from 2.7 to 4.4 Ga, and on 4 continents. The age of 4.404+-0.008 Ga from one 200 micron zircon is >99% concordant and represents the oldest recognized terrestrial material. This crystal is zoned in d18-O (5.0+-0.7 vs. 7.4+-0.7) and REEs (La=0.3 to 13.6 ppm), and contains inclusions of SiO2. REE patterns are HREE enriched with positive Ce and negative Eu anomalies; calculated melts are LREE enriched. Taken together, these results suggest crystallization from a quartz-saturated granitic magma and thus the existence of continental crust, possibly in a setting like Iceland. The high d18-O portion of the crystal would be in equilibrium with a magma at d18-O(WR)= 8.5-9.5. There is no known mantle reservoir with such high values. d18-O(WR) values above 8.5 are typical of "S-type" granites that have melted or assimilated material that was altered by low temperature interaction with water at the surface of the Earth (i.e., weathering, diagenesis, low T hydrothermal alteration). Thus the high d18-O value of the 4.4 Ga zircon suggests that surface temperatures were cool enough for liquid water suggesting that the early steam-rich atmosphere condensed to form oceans at that time. The evidence for liquid water and possibly oceans at 4.4 Ga suggests a Cool Early Earth. This contrasts with the Hot Early Earth and global magma oceans envisioned at 4.5-4.3 Ga based on: an impact origin of the Moon (4.45-4.50 Ga), core formation, higher Hadean radioactive heat production, and intense early meteorite bombardment. Magma on the surface of the Earth cools quickly by radiation to form a crust, but a magma ocean caused by these processes might persist beneath the initially thin crust for up to 400 m.y. and might erupt as massive flood basalts in response to major meteorite impacts, boiling surface waters. The thermal contrasts presented by these lines of evidence are minimized if the Moon and core formed earlier (\sim4.5 Ga), if the Moon formed by a process not involving a Mars-size impactor, or if the early meteorite bombardment was less intense or irregular in timing. It is possible that periods of Cool vs. Hot Early Earth alternated, with boiling of early oceans after major impact events followed by periods of cooler surface conditions. If life evolved in these seas, multiple extinctions before 3.9 Ga are suggested.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ce307aff8f0570a8cae65acdda067a3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178473,"asset_id":34270272,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178473/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270272"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270272"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270272; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270272]").text(description); $(".js-view-count[data-work-id=34270272]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270272; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270272']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ce307aff8f0570a8cae65acdda067a3" } } $('.js-work-strip[data-work-id=34270272]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270272,"title":"The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga","translated_title":"","metadata":{"abstract":"Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous rocks. The d18-O of non-metamict zircon is unaffected even by hydrothermal alteration and high-grade metamorphism. Ion microprobe analysis of detrital zircons from the \\sim3 Ga Jack Hills metaconglomerate (Narryer Gneiss Terrane, Yilgarn Craton, Western Australia) yield U-Pb ages from 3.1 to 4.4 Ga (SHRIMP II, Wilde et al. 2001 Nature) and d18-O from 5 to 8 permil (Cameca 4f, Peck et al. 2001 GCA). The d18-O of these zircons averages 6.3, and is 1 permil higher than that in equilibrium with the mantle and that of normal Archean granitic zircons (5.3+-0.3, 5.5+-0.4, respectively; King et al. 1998 Pre-C Res, Peck et al. 2000 Geology). The distribution of mantle-like vs. mildly elevated d18-O values for magmas is constant from 2.7 to 4.4 Ga, and on 4 continents. The age of 4.404+-0.008 Ga from one 200 micron zircon is \u003e99% concordant and represents the oldest recognized terrestrial material. This crystal is zoned in d18-O (5.0+-0.7 vs. 7.4+-0.7) and REEs (La=0.3 to 13.6 ppm), and contains inclusions of SiO2. REE patterns are HREE enriched with positive Ce and negative Eu anomalies; calculated melts are LREE enriched. Taken together, these results suggest crystallization from a quartz-saturated granitic magma and thus the existence of continental crust, possibly in a setting like Iceland. The high d18-O portion of the crystal would be in equilibrium with a magma at d18-O(WR)= 8.5-9.5. There is no known mantle reservoir with such high values. d18-O(WR) values above 8.5 are typical of \"S-type\" granites that have melted or assimilated material that was altered by low temperature interaction with water at the surface of the Earth (i.e., weathering, diagenesis, low T hydrothermal alteration). Thus the high d18-O value of the 4.4 Ga zircon suggests that surface temperatures were cool enough for liquid water suggesting that the early steam-rich atmosphere condensed to form oceans at that time. The evidence for liquid water and possibly oceans at 4.4 Ga suggests a Cool Early Earth. This contrasts with the Hot Early Earth and global magma oceans envisioned at 4.5-4.3 Ga based on: an impact origin of the Moon (4.45-4.50 Ga), core formation, higher Hadean radioactive heat production, and intense early meteorite bombardment. Magma on the surface of the Earth cools quickly by radiation to form a crust, but a magma ocean caused by these processes might persist beneath the initially thin crust for up to 400 m.y. and might erupt as massive flood basalts in response to major meteorite impacts, boiling surface waters. The thermal contrasts presented by these lines of evidence are minimized if the Moon and core formed earlier (\\sim4.5 Ga), if the Moon formed by a process not involving a Mars-size impactor, or if the early meteorite bombardment was less intense or irregular in timing. It is possible that periods of Cool vs. Hot Early Earth alternated, with boiling of early oceans after major impact events followed by periods of cooler surface conditions. If life evolved in these seas, multiple extinctions before 3.9 Ga are suggested.","publication_date":{"day":29,"month":4,"year":2001,"errors":{}},"publication_name":"Agu Spring Meeting Abstracts"},"translated_abstract":"Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous rocks. The d18-O of non-metamict zircon is unaffected even by hydrothermal alteration and high-grade metamorphism. Ion microprobe analysis of detrital zircons from the \\sim3 Ga Jack Hills metaconglomerate (Narryer Gneiss Terrane, Yilgarn Craton, Western Australia) yield U-Pb ages from 3.1 to 4.4 Ga (SHRIMP II, Wilde et al. 2001 Nature) and d18-O from 5 to 8 permil (Cameca 4f, Peck et al. 2001 GCA). The d18-O of these zircons averages 6.3, and is 1 permil higher than that in equilibrium with the mantle and that of normal Archean granitic zircons (5.3+-0.3, 5.5+-0.4, respectively; King et al. 1998 Pre-C Res, Peck et al. 2000 Geology). The distribution of mantle-like vs. mildly elevated d18-O values for magmas is constant from 2.7 to 4.4 Ga, and on 4 continents. The age of 4.404+-0.008 Ga from one 200 micron zircon is \u003e99% concordant and represents the oldest recognized terrestrial material. This crystal is zoned in d18-O (5.0+-0.7 vs. 7.4+-0.7) and REEs (La=0.3 to 13.6 ppm), and contains inclusions of SiO2. REE patterns are HREE enriched with positive Ce and negative Eu anomalies; calculated melts are LREE enriched. Taken together, these results suggest crystallization from a quartz-saturated granitic magma and thus the existence of continental crust, possibly in a setting like Iceland. The high d18-O portion of the crystal would be in equilibrium with a magma at d18-O(WR)= 8.5-9.5. There is no known mantle reservoir with such high values. d18-O(WR) values above 8.5 are typical of \"S-type\" granites that have melted or assimilated material that was altered by low temperature interaction with water at the surface of the Earth (i.e., weathering, diagenesis, low T hydrothermal alteration). Thus the high d18-O value of the 4.4 Ga zircon suggests that surface temperatures were cool enough for liquid water suggesting that the early steam-rich atmosphere condensed to form oceans at that time. The evidence for liquid water and possibly oceans at 4.4 Ga suggests a Cool Early Earth. This contrasts with the Hot Early Earth and global magma oceans envisioned at 4.5-4.3 Ga based on: an impact origin of the Moon (4.45-4.50 Ga), core formation, higher Hadean radioactive heat production, and intense early meteorite bombardment. Magma on the surface of the Earth cools quickly by radiation to form a crust, but a magma ocean caused by these processes might persist beneath the initially thin crust for up to 400 m.y. and might erupt as massive flood basalts in response to major meteorite impacts, boiling surface waters. The thermal contrasts presented by these lines of evidence are minimized if the Moon and core formed earlier (\\sim4.5 Ga), if the Moon formed by a process not involving a Mars-size impactor, or if the early meteorite bombardment was less intense or irregular in timing. It is possible that periods of Cool vs. Hot Early Earth alternated, with boiling of early oceans after major impact events followed by periods of cooler surface conditions. If life evolved in these seas, multiple extinctions before 3.9 Ga are suggested.","internal_url":"https://www.academia.edu/34270272/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga","translated_internal_url":"","created_at":"2017-08-18T16:38:49.523-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":55204412,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":54178473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178473/thumbnails/1.jpg","file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-16xx2ok.pdf","download_url":"https://www.academia.edu/attachments/54178473/download_file","bulk_download_file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178473/The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-16xx2ok-libre.pdf?1503099912=\u0026response-content-disposition=attachment%3B+filename%3DThe_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf\u0026Expires=1738628723\u0026Signature=Yaf3Numct8H9oeQhr2wtWzSZe6DMVLBynHcobbjxjqbAsyJmR2AD0ux25L5oC9GNTY1uM5mB-RSkyekw9OSgBU7bCH6iZ-ZARj63ofDsi-hEPrXxfOBNhOh2GllnVbdwa65zcv~FUwfIvnvdmWTRU4bx-OFgc0Muc327wS-9w~yj0hhIjgNVgu1L1BcH-163EL4k7Xdwlyne64JToVmF~yPvn7kyvFtqueakUC2J0sLC9phg3pOuLkc0jajovqC4lfLp0Wv3HlDs1p6GyuwneMHPerKuyFNs8Z2D0lw0YhFX-medooluoarZlpcXmdP~WJC1Br-Me7RBYRkwuyEsyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous rocks. The d18-O of non-metamict zircon is unaffected even by hydrothermal alteration and high-grade metamorphism. Ion microprobe analysis of detrital zircons from the \\sim3 Ga Jack Hills metaconglomerate (Narryer Gneiss Terrane, Yilgarn Craton, Western Australia) yield U-Pb ages from 3.1 to 4.4 Ga (SHRIMP II, Wilde et al. 2001 Nature) and d18-O from 5 to 8 permil (Cameca 4f, Peck et al. 2001 GCA). The d18-O of these zircons averages 6.3, and is 1 permil higher than that in equilibrium with the mantle and that of normal Archean granitic zircons (5.3+-0.3, 5.5+-0.4, respectively; King et al. 1998 Pre-C Res, Peck et al. 2000 Geology). The distribution of mantle-like vs. mildly elevated d18-O values for magmas is constant from 2.7 to 4.4 Ga, and on 4 continents. The age of 4.404+-0.008 Ga from one 200 micron zircon is \u003e99% concordant and represents the oldest recognized terrestrial material. This crystal is zoned in d18-O (5.0+-0.7 vs. 7.4+-0.7) and REEs (La=0.3 to 13.6 ppm), and contains inclusions of SiO2. REE patterns are HREE enriched with positive Ce and negative Eu anomalies; calculated melts are LREE enriched. Taken together, these results suggest crystallization from a quartz-saturated granitic magma and thus the existence of continental crust, possibly in a setting like Iceland. The high d18-O portion of the crystal would be in equilibrium with a magma at d18-O(WR)= 8.5-9.5. There is no known mantle reservoir with such high values. d18-O(WR) values above 8.5 are typical of \"S-type\" granites that have melted or assimilated material that was altered by low temperature interaction with water at the surface of the Earth (i.e., weathering, diagenesis, low T hydrothermal alteration). Thus the high d18-O value of the 4.4 Ga zircon suggests that surface temperatures were cool enough for liquid water suggesting that the early steam-rich atmosphere condensed to form oceans at that time. The evidence for liquid water and possibly oceans at 4.4 Ga suggests a Cool Early Earth. This contrasts with the Hot Early Earth and global magma oceans envisioned at 4.5-4.3 Ga based on: an impact origin of the Moon (4.45-4.50 Ga), core formation, higher Hadean radioactive heat production, and intense early meteorite bombardment. Magma on the surface of the Earth cools quickly by radiation to form a crust, but a magma ocean caused by these processes might persist beneath the initially thin crust for up to 400 m.y. and might erupt as massive flood basalts in response to major meteorite impacts, boiling surface waters. The thermal contrasts presented by these lines of evidence are minimized if the Moon and core formed earlier (\\sim4.5 Ga), if the Moon formed by a process not involving a Mars-size impactor, or if the early meteorite bombardment was less intense or irregular in timing. It is possible that periods of Cool vs. Hot Early Earth alternated, with boiling of early oceans after major impact events followed by periods of cooler surface conditions. If life evolved in these seas, multiple extinctions before 3.9 Ga are suggested.","owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178473/thumbnails/1.jpg","file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-16xx2ok.pdf","download_url":"https://www.academia.edu/attachments/54178473/download_file","bulk_download_file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178473/The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-16xx2ok-libre.pdf?1503099912=\u0026response-content-disposition=attachment%3B+filename%3DThe_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf\u0026Expires=1738628723\u0026Signature=Yaf3Numct8H9oeQhr2wtWzSZe6DMVLBynHcobbjxjqbAsyJmR2AD0ux25L5oC9GNTY1uM5mB-RSkyekw9OSgBU7bCH6iZ-ZARj63ofDsi-hEPrXxfOBNhOh2GllnVbdwa65zcv~FUwfIvnvdmWTRU4bx-OFgc0Muc327wS-9w~yj0hhIjgNVgu1L1BcH-163EL4k7Xdwlyne64JToVmF~yPvn7kyvFtqueakUC2J0sLC9phg3pOuLkc0jajovqC4lfLp0Wv3HlDs1p6GyuwneMHPerKuyFNs8Z2D0lw0YhFX-medooluoarZlpcXmdP~WJC1Br-Me7RBYRkwuyEsyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":133294,"name":"Land Surface Temperature","url":"https://www.academia.edu/Documents/in/Land_Surface_Temperature"},{"id":142810,"name":"Surface Water","url":"https://www.academia.edu/Documents/in/Surface_Water"},{"id":200896,"name":"Hydrothermal Alteration","url":"https://www.academia.edu/Documents/in/Hydrothermal_Alteration"},{"id":271756,"name":"Western Australia","url":"https://www.academia.edu/Documents/in/Western_Australia"},{"id":275177,"name":"Oxygen Isotope","url":"https://www.academia.edu/Documents/in/Oxygen_Isotope"},{"id":421956,"name":"Continental Crust","url":"https://www.academia.edu/Documents/in/Continental_Crust"},{"id":616972,"name":"Low Temperature","url":"https://www.academia.edu/Documents/in/Low_Temperature"},{"id":1029721,"name":"Instruments and Techniques","url":"https://www.academia.edu/Documents/in/Instruments_and_Techniques"},{"id":2579578,"name":"surface temperature","url":"https://www.academia.edu/Documents/in/surface_temperature"}],"urls":[{"id":8261978,"url":"http://adsabs.harvard.edu/abs/2001AGUSM...V51A01V"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270271"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270271/Liquid_Water_in_the_Early_Archean_Ion_Microprobe_Evidence_from_Oxygen_Isotopes_in_4_01_to_4_40_Ga_Detrital_Zircons"><img alt="Research paper thumbnail of Liquid Water in the Early Archean: Ion Microprobe Evidence from Oxygen Isotopes in 4.01 to 4.40 Ga Detrital Zircons" class="work-thumbnail" src="https://attachments.academia-assets.com/54178472/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270271/Liquid_Water_in_the_Early_Archean_Ion_Microprobe_Evidence_from_Oxygen_Isotopes_in_4_01_to_4_40_Ga_Detrital_Zircons">Liquid Water in the Early Archean: Ion Microprobe Evidence from Oxygen Isotopes in 4.01 to 4.40 Ga Detrital Zircons</a></div><div class="wp-workCard_item"><span>Eleventh Annual V M Goldschmidt Conference</span><span>, May 1, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0-to 4.4-Ga...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0-to 4.4-Ga) reveal variable magmatic ␦ 18 O values, including some that are high relative to the mantle, suggesting interaction between magmas and already-formed continental crust during the first 500 million yr of Earth's history. The high average ␦ 18 O value of these zircons is confirmed by conventional analysis. A metaconglomerate from the Jack Hills in the Yilgarn Craton (Western Australia) contains detrital zircons with ages Ͼ 4.0 Ga (Compston and Pidgeon, 1986) and one crystal that is 4.40-Ga old . The newly discovered 4.40-Ga grain is the oldest recognized terrestrial mineral. The Jack Hills metaconglomerate also contains a large 3.3-to 3.6-Ga-old zircon population with an average ␦ 18 O value of 6.3 Ϯ 0.1‰ (1 s.e., ; n ϭ 32 spot analyses). Two 4.15-Ga zircons have an average ␦ 18 O of 5.7 Ϯ 0.2‰ (n ϭ 13). In addition, a 4.13-Ga zircon has an average ␦ 18 O of 7.2 Ϯ 0.3‰ (n ϭ 8) and another 4.01-Ga zircon has an average ␦ 18 O of 6.8 Ϯ 0.4‰ (n ϭ 10). The oldest grain (4.40 Ga) is zoned with respect trace element composition (especially LREE), and intensity of cathodoluminescence, all of which correlate with oxygen isotope ratios (7.4‰ vs. 5.0‰). High LREE and high-␦ 18 O values from the 4.01-to 4.40-Ga grains are consistent with growth in evolved granitic magmas (␦ 18 O(WR) ϭ 8.5 to 9.5‰) that had interacted with supracrustal materials. High ␦ 18 O values show that low-temperature surficial processes (i.e., diagenesis, weathering, or low-temperature alteration) occurred before 4.0 Ga, and even before 4.40 Ga, shortly following the hypothesized date of core differentiation and impact of a Mars-sized body to form the Moon at ϳ4.45 Ga. This is the first evidence of continental crust as early as 4.40 Ga and suggests differentiation during the period of intense meteorite bombardment of the early Earth. The magnitude of water and rock interaction that would be necessary to cause the high ␦ 18 O values suggests the presence of liquid water and thus the possibility of an ocean at 4.40 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1251dbe81e1cc7b6942cefd7107ceb4a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178472,"asset_id":34270271,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178472/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270271"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270271]").text(description); $(".js-view-count[data-work-id=34270271]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270271']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1251dbe81e1cc7b6942cefd7107ceb4a" } } $('.js-work-strip[data-work-id=34270271]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270271,"title":"Liquid Water in the Early Archean: Ion Microprobe Evidence from Oxygen Isotopes in 4.01 to 4.40 Ga Detrital Zircons","internal_url":"https://www.academia.edu/34270271/Liquid_Water_in_the_Early_Archean_Ion_Microprobe_Evidence_from_Oxygen_Isotopes_in_4_01_to_4_40_Ga_Detrital_Zircons","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178472,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178472/thumbnails/1.jpg","file_name":"Liquid_Water_in_the_Early_Archean_Ion_Mi20170818-28885-1g2b6yg.pdf","download_url":"https://www.academia.edu/attachments/54178472/download_file","bulk_download_file_name":"Liquid_Water_in_the_Early_Archean_Ion_Mi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178472/Liquid_Water_in_the_Early_Archean_Ion_Mi20170818-28885-1g2b6yg-libre.pdf?1503099912=\u0026response-content-disposition=attachment%3B+filename%3DLiquid_Water_in_the_Early_Archean_Ion_Mi.pdf\u0026Expires=1739844624\u0026Signature=ekOta8xIs5Nl4i3zFTFIpNvlL8H~icdp8HgqBjS-XMWJpzUwLrMudwGs4vk41jBgtc~HMXlfifTf0g~WWqkP0bu8x~rwHhjWIbxE~wFAGmtHFo-1PfzbL1n6rWRZL~uy45JaXHI7yJcfUCAQbERgFPg~cbnEqqHMI~VYDLKxOZaY6sbxYfqFLQL1qN6j31AjsuHYstNiq~ckxwtcET4T~gl-hH4QeGTXxSWRcBlMVvxDGizBAuLFYc028a2aZCMJlWJoayGyLxrnU~Z1QadGOtXvFABh~yrfdOJB5dpx943Zk7qXJrS2xn2aHg3zZbXECMQaDGKD2M4pNxHC6dnLZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270270"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34270270/Slow_oxygen_diffusion_rates_in_igneous_zircons_from_metamorphic_rocks"><img alt="Research paper thumbnail of Slow oxygen diffusion rates in igneous zircons from metamorphic rocks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/34270270/Slow_oxygen_diffusion_rates_in_igneous_zircons_from_metamorphic_rocks">Slow oxygen diffusion rates in igneous zircons from metamorphic rocks</a></div><div class="wp-workCard_item"><span>The American Mineralogist</span><span>, Jul 1, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... different zircon sizes. Scenario 2 was evaluated using the Fast Grain Boundary (FGB) diffusio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... different zircon sizes. Scenario 2 was evaluated using the Fast Grain Boundary (FGB) diffusion model of Eiler et al. (1992), using the FGB code of Eiler et al. (1994) with minor modifications by Kohn and Valley (1998a). In using the ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270270"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270270"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270270; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270270]").text(description); $(".js-view-count[data-work-id=34270270]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270270; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270270']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34270270]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270270,"title":"Slow oxygen diffusion rates in igneous zircons from metamorphic rocks","internal_url":"https://www.academia.edu/34270270/Slow_oxygen_diffusion_rates_in_igneous_zircons_from_metamorphic_rocks","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270269"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270269/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon"><img alt="Research paper thumbnail of Empirical calibration of oxygen isotope fractionation in zircon" class="work-thumbnail" src="https://attachments.academia-assets.com/54178462/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270269/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon">Empirical calibration of oxygen isotope fractionation in zircon</a></div><div class="wp-workCard_item"><span>Geochimica Et Cosmochimica Acta</span><span>, Sep 1, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">New empirical calibrations for the fractionation of oxygen isotopes among zircon, almandine-rich ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">New empirical calibrations for the fractionation of oxygen isotopes among zircon, almandine-rich garnet, titanite, and quartz are combined with experimental values for quartz-grossular. The resulting A-coefficients (‰K 2) are: Zrc, Alm, Grs, Ttn</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cdc17ef2f2ffd1b254119062e03fbed6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178462,"asset_id":34270269,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178462/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270269"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270269"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270269; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270269]").text(description); $(".js-view-count[data-work-id=34270269]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270269; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270269']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cdc17ef2f2ffd1b254119062e03fbed6" } } $('.js-work-strip[data-work-id=34270269]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270269,"title":"Empirical calibration of oxygen isotope fractionation in zircon","internal_url":"https://www.academia.edu/34270269/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178462/thumbnails/1.jpg","file_name":"Valley2003GCA.pdf","download_url":"https://www.academia.edu/attachments/54178462/download_file","bulk_download_file_name":"Empirical_calibration_of_oxygen_isotope.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178462/Valley2003GCA-libre.pdf?1503099846=\u0026response-content-disposition=attachment%3B+filename%3DEmpirical_calibration_of_oxygen_isotope.pdf\u0026Expires=1739844624\u0026Signature=aq~OR3FSpkGHTDqyVkX39ZAX6-RGDkwC6lo~XzML4EHN6-6FppHkqcV8CR0MLATcg6D5g8PBlhLlbSRGnbVkIoq5TAexk3TnWuzNTEWoEAwDJwPNCez5EYyoUrAQAnOuCkX6Kyv4is8WzGHfVT850UHwoOKmqPhGFgM2FBkhGQi3VPBoQeU3~6koSbXM8SlaYhC-ZPPH39cDJx6rX2FYZNtJNiRHKRLsxtj1MsKGl0HgwucQ6mN8ybdesCHCmB7Ysaak6chhpmxeOpBiM7LJ4L2Kxdh4D~LdwuCmR6eVDakOQ7RzEfedxyUpgZhdV50mq733-9YSXhfPaM-FlsT7sg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270268"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270268/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province"><img alt="Research paper thumbnail of Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province" class="work-thumbnail" src="https://attachments.academia-assets.com/54178469/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270268/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province">Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province</a></div><div class="wp-workCard_item"><span>Geological Society of America Memoirs</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockitegranite plutonism stit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockitegranite plutonism stitch three terranes in the southwestern Grenville Province (Adirondack Highlands-Morin terrane, Frontenac terrane, Elzevir terrane). Because of the refractory nature of zircon (Zrn), analysis of oxygen-isotope ratios of dated igneous zircon from these rocks allows calculation of δ δ 18 O values of original magmas even if the rocks were subjected to late magmatic assimilation, postmagmatic alteration, or metamorphism. Documented variability in δ δ 18 O(Zrn) for these granitic rocks corresponds to their geographic location. Seven plutons from the central Frontenac terrane (Ontario) have a high average δ δ 18 O(Zrn) = 11.8 ± ± 1.0‰, which corresponds to δ δ 18 O magma values of 12.4-14.3‰. In contrast, twenty-seven other plutons and dikes of this suite (New York, Ontario, and Québec) average δ δ 18 O(Zrn) = 8.2 ± ± 0.6‰, with a typical igneous range of 8.6 to 10.3‰ for δ δ 18 O magma values. High δ δ 18 O values in the Frontenac terrane are some of the highest magmatic oxygen-isotope ratios recognized worldwide, but these plutons are not unusual with respect to whole-rock chemistry or radiogenic isotope compositions. Such high δ δ 18 O values can result from mixing between paragneiss (δ δ 18 O ≈ ≈ 15‰) and hydrothermally altered basalts and/or oceanic sediments (δ δ 18 O ≈ ≈ 12‰) in the source region. We propose that high-δ δ 18 O, hydrothermally altered basalts and sediments were subducted or underthrust to the base of the Frontenac terrane during closure of an ocean basin between the Frontenac terrane and the Adirondack Highlands at or prior to 1.2 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="57a9c48fad5cf2b9ae37e9e0bb64a9e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178469,"asset_id":34270268,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178469/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270268"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270268"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270268; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270268]").text(description); $(".js-view-count[data-work-id=34270268]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270268; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270268']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "57a9c48fad5cf2b9ae37e9e0bb64a9e8" } } $('.js-work-strip[data-work-id=34270268]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270268,"title":"Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province","internal_url":"https://www.academia.edu/34270268/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178469/thumbnails/1.jpg","file_name":"Oxygen-isotope_constraints_on_terrane_bo20170818-28889-7m0w7z.pdf","download_url":"https://www.academia.edu/attachments/54178469/download_file","bulk_download_file_name":"Oxygen_isotope_constraints_on_terrane_bo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178469/Oxygen-isotope_constraints_on_terrane_bo20170818-28889-7m0w7z-libre.pdf?1503099847=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_constraints_on_terrane_bo.pdf\u0026Expires=1739844624\u0026Signature=a3uUcIerqWnF4oDLwTRdJVk2GsPxU4e~kuujQsCngtAx6Tjbr2BA0ThpJJWlGVtx1Se86VolXvhk1vGGndpcf~PVqaQcWJPENdKtI0LHiFNthANHPENmsui2Ot~lBLH9TOM-oP17VpvdrT~8evqlxjrbj1W5STA5GrpkWgQdwU1jZdZ-wkNFFFG-cb384WTiedb7yDrN7e-z5EQZrABGuAiLXGbBnLVNUTVPoPw-Zxx0NNftqzR~-K4FFjl02JfTVm0k5ZqGOYmXal6eQ-oZd0BV0lyQBgSfajsDFWs~EIFbe~VgCqqTttESULJo-KlVQVZFqnfEX5gRZJRBDOUliQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270267"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270267/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province"><img alt="Research paper thumbnail of Oxygen-isotope constraints on terrane boundaries and origin of 1.18-1.13 Ga granitoids in the southern Grenville Province" class="work-thumbnail" src="https://attachments.academia-assets.com/54178470/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270267/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province">Oxygen-isotope constraints on terrane boundaries and origin of 1.18-1.13 Ga granitoids in the southern Grenville Province</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockitegranite plutonism stit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Granitic rocks related to 1.18 to 1.13 Ga anorthosite-mangerite-charnockitegranite plutonism stitch three terranes in the southwestern Grenville Province (Adirondack Highlands-Morin terrane, Frontenac terrane, Elzevir terrane). Because of the refractory nature of zircon (Zrn), analysis of oxygen-isotope ratios of dated igneous zircon from these rocks allows calculation of δ δ 18 O values of original magmas even if the rocks were subjected to late magmatic assimilation, postmagmatic alteration, or metamorphism. Documented variability in δ δ 18 O(Zrn) for these granitic rocks corresponds to their geographic location. Seven plutons from the central Frontenac terrane (Ontario) have a high average δ δ 18 O(Zrn) = 11.8 ± ± 1.0‰, which corresponds to δ δ 18 O magma values of 12.4-14.3‰. In contrast, twenty-seven other plutons and dikes of this suite (New York, Ontario, and Québec) average δ δ 18 O(Zrn) = 8.2 ± ± 0.6‰, with a typical igneous range of 8.6 to 10.3‰ for δ δ 18 O magma values. High δ δ 18 O values in the Frontenac terrane are some of the highest magmatic oxygen-isotope ratios recognized worldwide, but these plutons are not unusual with respect to whole-rock chemistry or radiogenic isotope compositions. Such high δ δ 18 O values can result from mixing between paragneiss (δ δ 18 O ≈ ≈ 15‰) and hydrothermally altered basalts and/or oceanic sediments (δ δ 18 O ≈ ≈ 12‰) in the source region. We propose that high-δ δ 18 O, hydrothermally altered basalts and sediments were subducted or underthrust to the base of the Frontenac terrane during closure of an ocean basin between the Frontenac terrane and the Adirondack Highlands at or prior to 1.2 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="16d451eecb21392ac11848f15323586b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178470,"asset_id":34270267,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178470/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270267"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270267"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270267; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270267]").text(description); $(".js-view-count[data-work-id=34270267]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270267; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270267']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "16d451eecb21392ac11848f15323586b" } } $('.js-work-strip[data-work-id=34270267]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270267,"title":"Oxygen-isotope constraints on terrane boundaries and origin of 1.18-1.13 Ga granitoids in the southern Grenville Province","internal_url":"https://www.academia.edu/34270267/Oxygen_isotope_constraints_on_terrane_boundaries_and_origin_of_1_18_1_13_Ga_granitoids_in_the_southern_Grenville_Province","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178470,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178470/thumbnails/1.jpg","file_name":"Oxygen-isotope_constraints_on_terrane_bo20170818-28889-fgtrwy.pdf","download_url":"https://www.academia.edu/attachments/54178470/download_file","bulk_download_file_name":"Oxygen_isotope_constraints_on_terrane_bo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178470/Oxygen-isotope_constraints_on_terrane_bo20170818-28889-fgtrwy-libre.pdf?1503099847=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_constraints_on_terrane_bo.pdf\u0026Expires=1739844624\u0026Signature=VQ1K-KixSdvH74ILNCyOzj438jRW8sHYLIo9lhem3Nq~WF580tQOLVBYRhr~6Nhae6A4SuvQGkMe3GLHQTEvw91J~OahnyOYgJD-kIfUn4yU9emXhmrATi~x0JvXUCkcoC1tBqPtVkN7C04o~W5dR6A43O0vclOp742tedJqe3roFbbTnhL9xT1U6VCBjeGP45bLnYcBH1VCo-J5FRfsiq8wSVP6jaHWlkdW9SjYi7IPhbo0LuAdChZw4PL4GNEMnLRDvQgFfrc7OZGVkffcUNOWUrpBxdwhb5iwCJJVRdgEvGo24KyeZPJhGU1DblarmIZlRca2LHr4Mp72Za03zA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270266"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270266/Comment_on_Heterogeneous_Hadean_Hafnium_Evidence_of_Continental_Crust_at_4_4_to_4_5_Ga"><img alt="Research paper thumbnail of Comment on "Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga" class="work-thumbnail" src="https://attachments.academia-assets.com/54178468/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270266/Comment_on_Heterogeneous_Hadean_Hafnium_Evidence_of_Continental_Crust_at_4_4_to_4_5_Ga">Comment on "Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga</a></div><div class="wp-workCard_item"><span>Science</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Harrison et al. (Reports, 23 December 2005, p. 1947 proposed that plate tectonics and granites ex...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Harrison et al. (Reports, 23 December 2005, p. 1947 proposed that plate tectonics and granites existed 4.5 billion years ago (Ga), within 70 million years of Earth's formation, based on geochemistry of 94.0 Ga detrital zircons from Australia. We highlight the large uncertainties of this claim and make the more moderate proposal that some crust formed by 4.4 Ga and oceans formed by 4.2 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9314f0a79a3eb33fed5100c9bf798e64" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178468,"asset_id":34270266,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178468/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270266"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270266"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270266; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270266]").text(description); $(".js-view-count[data-work-id=34270266]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270266; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270266']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9314f0a79a3eb33fed5100c9bf798e64" } } $('.js-work-strip[data-work-id=34270266]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270266,"title":"Comment on \"Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga","internal_url":"https://www.academia.edu/34270266/Comment_on_Heterogeneous_Hadean_Hafnium_Evidence_of_Continental_Crust_at_4_4_to_4_5_Ga","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178468,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178468/thumbnails/1.jpg","file_name":"Comment_on_Heterogeneous_hadean_nafnium_20170818-28889-139dbjs.pdf","download_url":"https://www.academia.edu/attachments/54178468/download_file","bulk_download_file_name":"Comment_on_Heterogeneous_Hadean_Hafnium.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178468/Comment_on_Heterogeneous_hadean_nafnium_20170818-28889-139dbjs-libre.pdf?1503099845=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Heterogeneous_Hadean_Hafnium.pdf\u0026Expires=1739844624\u0026Signature=ddYMfoc1bUEHkdkbcaNPiTfLG1Uwm8fh3dRX0xtFBymsCwn3uAKar7Xe94c0L~XtLbr2FUzvKbda2QFe2CGmo83XhukoMGPrdnbQwAnRNfy8mpuTSd1868WSE-bn54junN1k9y6~rFALQwHvg93gsLuvAT83OHwKmpHjEAoYeGlVcY8lSgRlbbLOvQh2JylTP4YYZGg--fNwwDHiFYia7arQ3QaVAQAhUDVQiTYp3U8TobwcoJ2b1V1vqEnsDiJYhbcDBLk~svMKKeZX6pExpnVS0dLd6PNZnf9isXtkLqhLC3KGRXoU5fyNz5cUkWZiND4ie~H12pM-jGqKOHyIYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270265"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270265/Quartz_garnet_isotope_thermometry_in_the_southern_Adirondack_Highlands_Grenville_Province_New_York_"><img alt="Research paper thumbnail of Quartz-garnet isotope thermometry in the southern Adirondack Highlands (Grenville Province, New York)" class="work-thumbnail" src="https://attachments.academia-assets.com/54178465/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270265/Quartz_garnet_isotope_thermometry_in_the_southern_Adirondack_Highlands_Grenville_Province_New_York_">Quartz-garnet isotope thermometry in the southern Adirondack Highlands (Grenville Province, New York)</a></div><div class="wp-workCard_item"><span>Journal of Metamorphic Geology</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Quartz-garnet oxygen isotope thermometry of quartz-rich metasedimentary rocks from the southern A...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Quartz-garnet oxygen isotope thermometry of quartz-rich metasedimentary rocks from the southern Adirondack Highlands (Grenville Province, New York) yields metamorphic temperatures of 700-800°C, consistent with granulite facies mineral assemblages. Samples from the Irving Pond quartzite record D 18 O(Qtz-Grt) ¼ 2.68 ± 0.21& (1 S.D.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f85a5fbb5b388317f631938302cb53af" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178465,"asset_id":34270265,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178465/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270265"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270265"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270265; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270265]").text(description); $(".js-view-count[data-work-id=34270265]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270265; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270265']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f85a5fbb5b388317f631938302cb53af" } } $('.js-work-strip[data-work-id=34270265]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270265,"title":"Quartz-garnet isotope thermometry in the southern Adirondack Highlands (Grenville Province, New York)","internal_url":"https://www.academia.edu/34270265/Quartz_garnet_isotope_thermometry_in_the_southern_Adirondack_Highlands_Grenville_Province_New_York_","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178465/thumbnails/1.jpg","file_name":"j.1525-1314.2004.00547.x20170818-28883-srpnt.pdf","download_url":"https://www.academia.edu/attachments/54178465/download_file","bulk_download_file_name":"Quartz_garnet_isotope_thermometry_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178465/j.1525-1314.2004.00547.x20170818-28883-srpnt-libre.pdf?1503099846=\u0026response-content-disposition=attachment%3B+filename%3DQuartz_garnet_isotope_thermometry_in_the.pdf\u0026Expires=1739844624\u0026Signature=RsawWzm3DKClHMFIHfUlQekNwXEMb5ORFXB12BO7~RUcuoVmGO1k3V784YUmRhJM9Q-MpejYV23MwJC5bJjmdFnGPAolYKgNzLDi3AGIq9X9hx0BTy4Kd86W8-4bkrpO2fhVbSuBzGBUhoTwCHNA4T9SgyX54-cNwG7vMkmRTbDIVLje7pBskDdAK2lSjfTrlNn-p875cdnU-nagnQ17n~j~Bhw2Cs6ychky3TgzazLkD42Qsa87nBIz3KHfCDbVAz-ZME~2wNEhJL~LCbt3dtJVwGDsEcnL~MxyAJ1nTE9asO2OHkFU1I5peICMsNlZcNOGPkBEHHxLTYSLMtDPhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270264"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34270264/Oxygen_isotope_perspective_on_Precambrian_crustal_growth_and_maturation"><img alt="Research paper thumbnail of Oxygen isotope perspective on Precambrian crustal growth and maturation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/34270264/Oxygen_isotope_perspective_on_Precambrian_crustal_growth_and_maturation">Oxygen isotope perspective on Precambrian crustal growth and maturation</a></div><div class="wp-workCard_item"><span>Geology</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Quick Search: All GSW Journals, GSW + GeoRef. advanced search. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270264"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270264"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270264; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270264]").text(description); $(".js-view-count[data-work-id=34270264]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270264; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270264']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34270264]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270264,"title":"Oxygen isotope perspective on Precambrian crustal growth and maturation","internal_url":"https://www.academia.edu/34270264/Oxygen_isotope_perspective_on_Precambrian_crustal_growth_and_maturation","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270263"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270263/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon"><img alt="Research paper thumbnail of Empirical calibration of oxygen isotope fractionation in zircon" class="work-thumbnail" src="https://attachments.academia-assets.com/54178461/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270263/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon">Empirical calibration of oxygen isotope fractionation in zircon</a></div><div class="wp-workCard_item"><span>Geochimica et Cosmochimica Acta</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">New empirical calibrations for the fractionation of oxygen isotopes among zircon, almandine-rich ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">New empirical calibrations for the fractionation of oxygen isotopes among zircon, almandine-rich garnet, titanite, and quartz are combined with experimental values for quartz-grossular. The resulting A-coefficients (‰K 2 ) are:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c05161f40612809341621244fb7adef6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178461,"asset_id":34270263,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178461/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270263"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270263"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270263; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270263]").text(description); $(".js-view-count[data-work-id=34270263]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270263; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270263']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c05161f40612809341621244fb7adef6" } } $('.js-work-strip[data-work-id=34270263]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270263,"title":"Empirical calibration of oxygen isotope fractionation in zircon","internal_url":"https://www.academia.edu/34270263/Empirical_calibration_of_oxygen_isotope_fractionation_in_zircon","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178461/thumbnails/1.jpg","file_name":"Valley2003GCA.pdf","download_url":"https://www.academia.edu/attachments/54178461/download_file","bulk_download_file_name":"Empirical_calibration_of_oxygen_isotope.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178461/Valley2003GCA-libre.pdf?1503099847=\u0026response-content-disposition=attachment%3B+filename%3DEmpirical_calibration_of_oxygen_isotope.pdf\u0026Expires=1739844624\u0026Signature=Bv3ba0UF8JqJ1iBRw9Y3WyKZfHtGouBupajdIuFeVDlzLXmzBchApTUXegxG3oZXjE0aWMLKySeE7efEKlNAOkOJsL8C5GRr40DTJzVfmWnNqi9jjFmimRcUFPKof4AdxvTIYcPSWFMFiZMz8Y42Kt8kVLB5DsqXwmjZS3zebbGztMyVgW9i2TPucpJ8tJhuXqIgxuc2SLEbJcYo4CKCLtuu9k-kBXaoWRKgy1O4rwvVqxS7PGCR1~JdnB2w2gNI0QTIcGKlHKG-uTliPwGUunnlAuyhR-xE5K~I7IsK~u9gSh4uLi9QUCvi0Um7gsecnsrBpAITwU~QMOKcRjkvZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270262"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270262/Large_crustal_input_to_high_and_x003B4_18_O_anorthosite_massifs_of_the_southern_Grenville_Province_new_evidence_from_the_Morin_Complex_Quebec"><img alt="Research paper thumbnail of Large crustal input to high &#x003B4; 18 O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec" class="work-thumbnail" src="https://attachments.academia-assets.com/54178464/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270262/Large_crustal_input_to_high_and_x003B4_18_O_anorthosite_massifs_of_the_southern_Grenville_Province_new_evidence_from_the_Morin_Complex_Quebec">Large crustal input to high &#x003B4; 18 O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec</a></div><div class="wp-workCard_item"><span>Contributions to Mineralogy and Petrology</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Large crustal input to high d 18 O anorthosite massifs of the southern Grenville Province: new ev...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Large crustal input to high d 18 O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec Abstract Mid-Proterozoic anorthosite-suite magmatism is a major volumetric component of the southern Grenville Province, and provides an important probe of the compositions and types of lower crustal rocks. The 1.15 Ga Morin Complex (Quebec) consists of two anorthosite plutons with distinct compositions. Plagioclase from the western lobe of the anorthosite has d 18 O values that average 9.6 0.7&, which is 3& higher than the values found in``normal'' anorthosites and in mantlederived ma®c igneous rocks worldwide. Plagioclase from the eastern lobe of the massif (deformed by the Morin Shear Zone) has d 18 O values that average 8.7 0.6&, also high compared to mantle-derived rocks. Numerous lines of evidence, including homogeneity of d 18 O values within individual plutons, O±Sr±Nd mixing relations, and preservation of igneous d 18 O in adjacent mangerite units argue against anorthosite interaction with high d 18 O¯uids as the cause of the high d 18 O values seen in both anorthosite lobes. High d 18 O values are best explained as primary magmatic compositions resulting from melting and assimilation of crustal materials by the anorthosite's parent magma. The Morin and Marcy massifs are located in the Allochthonous Monocyclic Belt of the Grenville Province, and have the highest known d 18 O values for anorthosites in the Grenville. Although the Monocyclic Belt is juvenile in terms of radiogenic isotope systematics, the new oxygen isotope data indicate the presence high d 18 O supracrustal materials at the base of the crust, probably buried during the 1.2 Ga Elzevirian orogeny in the Monocyclic Belt prior to anorthosite magmatism. This process is not recog-nized in other parts of the Grenville Province and points to dierences in the pre-1.2-Ga continental margins.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c2a0a0bb5652349467b343e794f09d14" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178464,"asset_id":34270262,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178464/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270262"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270262"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270262; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270262]").text(description); $(".js-view-count[data-work-id=34270262]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270262; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270262']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c2a0a0bb5652349467b343e794f09d14" } } $('.js-work-strip[data-work-id=34270262]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270262,"title":"Large crustal input to high \u0026#x003B4; 18 O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec","internal_url":"https://www.academia.edu/34270262/Large_crustal_input_to_high_and_x003B4_18_O_anorthosite_massifs_of_the_southern_Grenville_Province_new_evidence_from_the_Morin_Complex_Quebec","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178464/thumbnails/1.jpg","file_name":"s00410000014920170818-28883-142ko31.pdf","download_url":"https://www.academia.edu/attachments/54178464/download_file","bulk_download_file_name":"Large_crustal_input_to_high_and_x003B4_1.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178464/s00410000014920170818-28883-142ko31-libre.pdf?1503099846=\u0026response-content-disposition=attachment%3B+filename%3DLarge_crustal_input_to_high_and_x003B4_1.pdf\u0026Expires=1738958475\u0026Signature=GVawClCUIi0~i~sj8UiKJ-bs1yf5gHkVnF4TxQLeZRDfNAdXqj72Gwm07p2cBzw4QSG6KrpvMDFPJEEcjf0mfcDmYdB1z2upDETQcGgOD7ciUEl90ZKXCbxtqbtRIx5OJJcWod4buc~VkCWzN3XgThLAZnJssgnaN25KP8Ufi8Ri-z92Ot0p5MKeHOinaOUiJFqCa75Zc89Uy~pNLmFT~XlSQhzVUFwy3l51ZPuQWSI66G78OWJzk1csGc7bEAc91Ywqt4DI6foB7Kib4QWRGqIGawEqVhbZTvML9iaVeDtVi3id83RrOovKqb8dEHCkjSkGYdlgOucTlpWmEeYYvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270261"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34270261/Genesis_of_Cordierite_Gedrite_Gneisses_Central_Metasedimentary_Belt_Boundary_Thrust_Zone_Grenville_Province_Ontario_Canada"><img alt="Research paper thumbnail of Genesis of Cordierite - Gedrite Gneisses, Central Metasedimentary Belt Boundary Thrust Zone, Grenville Province, Ontario, Canada" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/34270261/Genesis_of_Cordierite_Gedrite_Gneisses_Central_Metasedimentary_Belt_Boundary_Thrust_Zone_Grenville_Province_Ontario_Canada">Genesis of Cordierite - Gedrite Gneisses, Central Metasedimentary Belt Boundary Thrust Zone, Grenville Province, Ontario, Canada</a></div><div class="wp-workCard_item"><span>The Canadian Mineralogist</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... User Name Password Sign In. GENESIS OF CORDIERITE GEDRITE GNEISSES, CENTRAL METASEDIMENTARY...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... User Name Password Sign In. GENESIS OF CORDIERITE GEDRITE GNEISSES, CENTRAL METASEDIMENTARY BELT BOUNDARY THRUST ZONE, GRENVILLE PROVINCE, ONTARIO, CANADA. ... 1997). Pehrsson et al.(1996) proposed that the Raglan gabbro belt (Fig. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270261"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270261"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270261; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270261]").text(description); $(".js-view-count[data-work-id=34270261]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270261; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270261']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34270261]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270261,"title":"Genesis of Cordierite - Gedrite Gneisses, Central Metasedimentary Belt Boundary Thrust Zone, Grenville Province, Ontario, Canada","internal_url":"https://www.academia.edu/34270261/Genesis_of_Cordierite_Gedrite_Gneisses_Central_Metasedimentary_Belt_Boundary_Thrust_Zone_Grenville_Province_Ontario_Canada","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="34270260"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34270260/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga"><img alt="Research paper thumbnail of The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga" class="work-thumbnail" src="https://attachments.academia-assets.com/54178466/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34270260/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga">The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">No known rocks have survived from the first 500 m.y. of Earth history, but studies of single zirc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">No known rocks have survived from the first 500 m.y. of Earth history, but studies of single zircons suggest that some continental crust formed as early as 4.4 Ga, 160 m.y. after accretion of the Earth, and that surface temperatures were low enough for liquid water. Surface temperatures are inferred from high ␦ 18 O values of zircons. The range of ␦ 18 O values is constant throughout the Archean (4.4-2.6 Ga), suggesting uniformity of processes and conditions. The hypothesis of a cool early Earth suggests long intervals of relatively temperate surface conditions from 4.4 to 4.0 Ga that were conducive to liquidwater oceans and possibly life. Meteorite impacts during this period may have been less frequent than previously thought.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d7880690e757039a1760014cad11817" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54178466,"asset_id":34270260,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54178466/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34270260"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34270260"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34270260; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34270260]").text(description); $(".js-view-count[data-work-id=34270260]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34270260; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34270260']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d7880690e757039a1760014cad11817" } } $('.js-work-strip[data-work-id=34270260]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34270260,"title":"The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga","internal_url":"https://www.academia.edu/34270260/The_Cool_Early_Earth_Oxygen_Isotope_Evidence_for_Continental_Crust_and_Oceans_on_Earth_at_4_4_Ga","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":54178466,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54178466/thumbnails/1.jpg","file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-17guetz.pdf","download_url":"https://www.academia.edu/attachments/54178466/download_file","bulk_download_file_name":"The_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54178466/The_Cool_Early_Earth_Oxygen_Isotope_Evid20170818-28885-17guetz-libre.pdf?1503099846=\u0026response-content-disposition=attachment%3B+filename%3DThe_Cool_Early_Earth_Oxygen_Isotope_Evid.pdf\u0026Expires=1739844624\u0026Signature=Z-1ygeb1YhakOUV6VyZTLm2KZAepUbdkLo~6BHQtrQ-cjk7ubGF3PYryMQx~MlMxrmRuxADlstvLsyQNbyAXQznVeAraA6qbg9n35Txxv8LCmQrXt2tZUmks~0GHVvzNTUy78JqN1JgjLvQmFrY9LdfzlxL-fSljf96~dsiXtJCmVGN4K8wN8BQOR-lnX0HSXxtHRjmGqSjG47u4df-zvZNmQYsB0~ghthkFYJfEtK1b27lKlelHpyn9hzbTQ~Xba9H-GHVG0HVWvcaIRuBRC9kQZPLVptf5po089a~zFicYa6US6O815VojFZPtDZy5O7-7XC7up7~cq~vT7HKY8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13416456"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/13416456/Calcite_Graphite_Thermometry_of_the_Franklin_Marble_New_Jersey_Highlands"><img alt="Research paper thumbnail of Calcite‐Graphite Thermometry of the Franklin Marble, New Jersey Highlands" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/13416456/Calcite_Graphite_Thermometry_of_the_Franklin_Marble_New_Jersey_Highlands">Calcite‐Graphite Thermometry of the Franklin Marble, New Jersey Highlands</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/WilliamPeck2">William Peck</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/RichardAVolkert">Richard A. Volkert</a></span></div><div class="wp-workCard_item"><span>The Journal of Geology</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... are C. These temperature estimates are similar to results of calcite‐graphite thermometry of ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... are C. These temperature estimates are similar to results of calcite‐graphite thermometry of Ottawan metamorphism in granulite facies marbles of the Adirondack Highlands, the Elzevir terrane of Ontario, the Morin terrane of Quebec, and the Honey Brook Upland of ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13416456"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13416456"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13416456; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13416456]").text(description); $(".js-view-count[data-work-id=13416456]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13416456; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13416456']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13416456]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13416456,"title":"Calcite‐Graphite Thermometry of the Franklin Marble, New Jersey Highlands","internal_url":"https://www.academia.edu/13416456/Calcite_Graphite_Thermometry_of_the_Franklin_Marble_New_Jersey_Highlands","owner_id":32025262,"coauthors_can_edit":true,"owner":{"id":32025262,"first_name":"Richard A.","middle_initials":null,"last_name":"Volkert","page_name":"RichardAVolkert","domain_name":"independent","created_at":"2015-06-09T06:53:22.436-07:00","display_name":"Richard A. Volkert","url":"https://independent.academia.edu/RichardAVolkert"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29234324"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29234324/Magmatic_zircon_oxygen_isotopes_of_1_88_1_87Ga_orogenic_and_1_65_1_54Ga_anorogenic_magmatism_in_Finland"><img alt="Research paper thumbnail of Magmatic zircon oxygen isotopes of 1.88-1.87Ga orogenic and 1.65-1.54Ga anorogenic magmatism in Finland" class="work-thumbnail" src="https://attachments.academia-assets.com/49686070/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29234324/Magmatic_zircon_oxygen_isotopes_of_1_88_1_87Ga_orogenic_and_1_65_1_54Ga_anorogenic_magmatism_in_Finland">Magmatic zircon oxygen isotopes of 1.88-1.87Ga orogenic and 1.65-1.54Ga anorogenic magmatism in Finland</a></div><div class="wp-workCard_item"><span>Miner Petrol</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Oxygen isotope ratios of igneous zircon from magmatic rocks in Finland provide insights into the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Oxygen isotope ratios of igneous zircon from magmatic rocks in Finland provide insights into the evolution and growth of the Precambrian crust during the Svecofennian orogeny. These data preserve magmatic 18 O values and correlate with major discontinuities in the lower crust. Oxygen isotope ratios of zircon across the 1.88-1.87 Ga Central Finland granitoid complex (CFGC) range from 5.50ø to 6.84ø, except for three plutons in contact with the adjacent greenstone and metasedimentary belts ( 18 OðZrcÞ ¼ 7.60ø-7.78ø). There is a systematic variation in 18 OðZrcÞ with respect to geographic location in the CFGC, ranging from 6.60 AE 0.23ø () in the northeast to 5.90 AE 0.40ø in the west-southwest. These values correlate with a change in crustal thickness and shift in geochemical composition. The oxygen isotope composition of the 1.65-1.54 Ga rapakivi granites and related rocks in southern Finland show a decreasing trend from north to south, independent of their emplacement age. The southern anorogenic granite group has an average 18 O in zircon of 6.14 AE 0.07ø and the northern anorogenic group has an average 18 O in zircon of 8.14 AE 0.59ø. This difference reflects the boundary between island arc terrains accreted during the Paleoproterozoic. y Deceased 224 B. A. Elliott et al.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fd26173dcd15e66c06be98b5e330681a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":49686070,"asset_id":29234324,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/49686070/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29234324"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29234324"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29234324; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29234324]").text(description); $(".js-view-count[data-work-id=29234324]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29234324; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29234324']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fd26173dcd15e66c06be98b5e330681a" } } $('.js-work-strip[data-work-id=29234324]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29234324,"title":"Magmatic zircon oxygen isotopes of 1.88-1.87Ga orogenic and 1.65-1.54Ga anorogenic magmatism in Finland","internal_url":"https://www.academia.edu/29234324/Magmatic_zircon_oxygen_isotopes_of_1_88_1_87Ga_orogenic_and_1_65_1_54Ga_anorogenic_magmatism_in_Finland","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":49686070,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/49686070/thumbnails/1.jpg","file_name":"s00710-005-0087-320161018-32236-7e2r9z.pdf","download_url":"https://www.academia.edu/attachments/49686070/download_file","bulk_download_file_name":"Magmatic_zircon_oxygen_isotopes_of_1_88.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/49686070/s00710-005-0087-320161018-32236-7e2r9z-libre.pdf?1476789995=\u0026response-content-disposition=attachment%3B+filename%3DMagmatic_zircon_oxygen_isotopes_of_1_88.pdf\u0026Expires=1739844624\u0026Signature=aPzhvNpwM68oTLQMPNRHOrVwpx9LRxlD4QndpyyBSdWRsfEqgpxEGJCKa72Q6TL9nnvtwMUNxkHys6X4hXzJUxutZBccU4aztA4oFcEEwgGphvZq1Q1JcCXsTqAw4NOUCb4WmqCCzamCDUMBuhHb31kM9tg-iiZ2KgCiJok2CUERxFafzsxfZeqqjRQRmoFeeflGtXNrh~7XL0xrB3fzK7BZ2GkDoruJwg54TtVARCHNrCKYpRc5XfotOultcZzadgMHo1F45tuwfvrrh7kDzc9fyI57EgcuuRkQgmaMrrrO1bGuKHyGtWhoLFV7qY-nl~iHmcCY~9QW9jrpA7mVRg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29234323"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29234323/Oxygen_isotope_ratios_and_rare_earth_elements_in_3_3_to_4_4_Ga_zircons_Ion_microprobe_evidence_for_high_%CE%B4_18O_continental_crust_and_oceans_in_the_Early_Archean"><img alt="Research paper thumbnail of Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18O continental crust and oceans in the Early Archean" class="work-thumbnail" src="https://attachments.academia-assets.com/49686066/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29234323/Oxygen_isotope_ratios_and_rare_earth_elements_in_3_3_to_4_4_Ga_zircons_Ion_microprobe_evidence_for_high_%CE%B4_18O_continental_crust_and_oceans_in_the_Early_Archean">Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18O continental crust and oceans in the Early Archean</a></div><div class="wp-workCard_item"><span>Geochim Cosmochim Acta</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0- to 4.4-G...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0- to 4.4-Ga) reveal variable magmatic δ18O values, including some that are high relative to the mantle, suggesting interaction between magmas and already-formed continental crust during the first 500 million yr of Earth’s history. The high average δ18O value of these zircons is confirmed by conventional analysis. A metaconglomerate from the Jack Hills in the Yilgarn Craton (Western Australia) contains detrital zircons with ages > 4.0 Ga (Compston and Pidgeon, 1986) and one crystal that is 4.40-Ga old (Wilde et al., 2001). The newly discovered 4.40-Ga grain is the oldest recognized terrestrial mineral. The Jack Hills metaconglomerate also contains a large 3.3- to 3.6-Ga-old zircon population with an average δ18O value of 6.3 ± 0.1‰ (1 s.e.,; n = 32 spot analyses). Two 4.15-Ga zircons have an average δ18O of 5.7 ± 0.2‰ (n = 13). In addition, a 4.13-Ga zircon has an average δ18O of 7.2 ± 0.3‰ (n = 8) and another 4.01-Ga zircon has an average δ18O of 6.8 ± 0.4‰ (n = 10). The oldest grain (4.40 Ga) is zoned with respect trace element composition (especially LREE), and intensity of cathodoluminescence, all of which correlate with oxygen isotope ratios (7.4‰ vs. 5.0‰). High LREE and high-δ18O values from the 4.01- to 4.40-Ga grains are consistent with growth in evolved granitic magmas (δ18O(WR) = 8.5 to 9.5‰) that had interacted with supracrustal materials. High δ18O values show that low-temperature surficial processes (i.e., diagenesis, weathering, or low-temperature alteration) occurred before 4.0 Ga, and even before 4.40 Ga, shortly following the hypothesized date of core differentiation and impact of a Mars-sized body to form the Moon at ∼4.45 Ga. This is the first evidence of continental crust as early as 4.40 Ga and suggests differentiation during the period of intense meteorite bombardment of the early Earth. The magnitude of water and rock interaction that would be necessary to cause the high δ18O values suggests the presence of liquid water and thus the possibility of an ocean at 4.40 Ga.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="97c5e6cd7d212bb4906d2bf430c19569" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":49686066,"asset_id":29234323,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/49686066/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29234323"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29234323"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29234323; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29234323]").text(description); $(".js-view-count[data-work-id=29234323]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29234323; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29234323']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "97c5e6cd7d212bb4906d2bf430c19569" } } $('.js-work-strip[data-work-id=29234323]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29234323,"title":"Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18O continental crust and oceans in the Early Archean","translated_title":"","metadata":{"abstract":"Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0- to 4.4-Ga) reveal variable magmatic δ18O values, including some that are high relative to the mantle, suggesting interaction between magmas and already-formed continental crust during the first 500 million yr of Earth’s history. The high average δ18O value of these zircons is confirmed by conventional analysis. A metaconglomerate from the Jack Hills in the Yilgarn Craton (Western Australia) contains detrital zircons with ages \u003e 4.0 Ga (Compston and Pidgeon, 1986) and one crystal that is 4.40-Ga old (Wilde et al., 2001). The newly discovered 4.40-Ga grain is the oldest recognized terrestrial mineral. The Jack Hills metaconglomerate also contains a large 3.3- to 3.6-Ga-old zircon population with an average δ18O value of 6.3 ± 0.1‰ (1 s.e.,; n = 32 spot analyses). Two 4.15-Ga zircons have an average δ18O of 5.7 ± 0.2‰ (n = 13). In addition, a 4.13-Ga zircon has an average δ18O of 7.2 ± 0.3‰ (n = 8) and another 4.01-Ga zircon has an average δ18O of 6.8 ± 0.4‰ (n = 10). The oldest grain (4.40 Ga) is zoned with respect trace element composition (especially LREE), and intensity of cathodoluminescence, all of which correlate with oxygen isotope ratios (7.4‰ vs. 5.0‰). High LREE and high-δ18O values from the 4.01- to 4.40-Ga grains are consistent with growth in evolved granitic magmas (δ18O(WR) = 8.5 to 9.5‰) that had interacted with supracrustal materials. High δ18O values show that low-temperature surficial processes (i.e., diagenesis, weathering, or low-temperature alteration) occurred before 4.0 Ga, and even before 4.40 Ga, shortly following the hypothesized date of core differentiation and impact of a Mars-sized body to form the Moon at ∼4.45 Ga. This is the first evidence of continental crust as early as 4.40 Ga and suggests differentiation during the period of intense meteorite bombardment of the early Earth. The magnitude of water and rock interaction that would be necessary to cause the high δ18O values suggests the presence of liquid water and thus the possibility of an ocean at 4.40 Ga.","ai_title_tag":"Ancient Zircon δ18O Evidence for Early Oceans","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Geochim Cosmochim Acta"},"translated_abstract":"Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0- to 4.4-Ga) reveal variable magmatic δ18O values, including some that are high relative to the mantle, suggesting interaction between magmas and already-formed continental crust during the first 500 million yr of Earth’s history. The high average δ18O value of these zircons is confirmed by conventional analysis. A metaconglomerate from the Jack Hills in the Yilgarn Craton (Western Australia) contains detrital zircons with ages \u003e 4.0 Ga (Compston and Pidgeon, 1986) and one crystal that is 4.40-Ga old (Wilde et al., 2001). The newly discovered 4.40-Ga grain is the oldest recognized terrestrial mineral. The Jack Hills metaconglomerate also contains a large 3.3- to 3.6-Ga-old zircon population with an average δ18O value of 6.3 ± 0.1‰ (1 s.e.,; n = 32 spot analyses). Two 4.15-Ga zircons have an average δ18O of 5.7 ± 0.2‰ (n = 13). In addition, a 4.13-Ga zircon has an average δ18O of 7.2 ± 0.3‰ (n = 8) and another 4.01-Ga zircon has an average δ18O of 6.8 ± 0.4‰ (n = 10). The oldest grain (4.40 Ga) is zoned with respect trace element composition (especially LREE), and intensity of cathodoluminescence, all of which correlate with oxygen isotope ratios (7.4‰ vs. 5.0‰). High LREE and high-δ18O values from the 4.01- to 4.40-Ga grains are consistent with growth in evolved granitic magmas (δ18O(WR) = 8.5 to 9.5‰) that had interacted with supracrustal materials. High δ18O values show that low-temperature surficial processes (i.e., diagenesis, weathering, or low-temperature alteration) occurred before 4.0 Ga, and even before 4.40 Ga, shortly following the hypothesized date of core differentiation and impact of a Mars-sized body to form the Moon at ∼4.45 Ga. This is the first evidence of continental crust as early as 4.40 Ga and suggests differentiation during the period of intense meteorite bombardment of the early Earth. The magnitude of water and rock interaction that would be necessary to cause the high δ18O values suggests the presence of liquid water and thus the possibility of an ocean at 4.40 Ga.","internal_url":"https://www.academia.edu/29234323/Oxygen_isotope_ratios_and_rare_earth_elements_in_3_3_to_4_4_Ga_zircons_Ion_microprobe_evidence_for_high_%CE%B4_18O_continental_crust_and_oceans_in_the_Early_Archean","translated_internal_url":"","created_at":"2016-10-18T04:19:38.575-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":55204412,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25211464,"work_id":29234323,"tagging_user_id":55204412,"tagged_user_id":30027441,"co_author_invite_id":5592902,"email":"c***m@ed.ac.uk","display_order":0,"name":"Colin Graham","title":"Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18O continental crust and oceans in the Early Archean"}],"downloadable_attachments":[{"id":49686066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/49686066/thumbnails/1.jpg","file_name":"Oxygen_isotope_ratios_and_rare_earth_ele20161018-32231-1s4km52.pdf","download_url":"https://www.academia.edu/attachments/49686066/download_file","bulk_download_file_name":"Oxygen_isotope_ratios_and_rare_earth_ele.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/49686066/Oxygen_isotope_ratios_and_rare_earth_ele20161018-32231-1s4km52-libre.pdf?1476790002=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_ratios_and_rare_earth_ele.pdf\u0026Expires=1738628723\u0026Signature=H1gF--bdfkyQkxefBkS6OT274hCDWU7dt2Mu6flj7kYp3uR5zWtaANNIWy7lp7lhtq2SKjwSH4064cgOZr~kWSuigJtk--1xWiTGGPkhHBdnvMizlOd0oKfAR2RfETGZN6rU7U8soVH7sePtSZRzhdY44IQkuaDWRvPMc5Rrs3TW2JYHOqhDndZB~GqxTHTYeBNRAuSz0uxeeKTh67Huj4LsSAJ~177xG3B5A10CV4Ai49gTk~z1XuZqJOqpcKcM65pQxDt7cBKTlzAjcVQ49ik2Nh3BmR5DvU6zeJHMn4ZdzMyJPEeEFVsBBAZlcdFb3wezto~AYeGZJ~BqrmF~0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Oxygen_isotope_ratios_and_rare_earth_elements_in_3_3_to_4_4_Ga_zircons_Ion_microprobe_evidence_for_high_δ_18O_continental_crust_and_oceans_in_the_Early_Archean","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"Ion microprobe analyses of oxygen isotope ratios in Early Archean (Hadean) zircons (4.0- to 4.4-Ga) reveal variable magmatic δ18O values, including some that are high relative to the mantle, suggesting interaction between magmas and already-formed continental crust during the first 500 million yr of Earth’s history. The high average δ18O value of these zircons is confirmed by conventional analysis. A metaconglomerate from the Jack Hills in the Yilgarn Craton (Western Australia) contains detrital zircons with ages \u003e 4.0 Ga (Compston and Pidgeon, 1986) and one crystal that is 4.40-Ga old (Wilde et al., 2001). The newly discovered 4.40-Ga grain is the oldest recognized terrestrial mineral. The Jack Hills metaconglomerate also contains a large 3.3- to 3.6-Ga-old zircon population with an average δ18O value of 6.3 ± 0.1‰ (1 s.e.,; n = 32 spot analyses). Two 4.15-Ga zircons have an average δ18O of 5.7 ± 0.2‰ (n = 13). In addition, a 4.13-Ga zircon has an average δ18O of 7.2 ± 0.3‰ (n = 8) and another 4.01-Ga zircon has an average δ18O of 6.8 ± 0.4‰ (n = 10). The oldest grain (4.40 Ga) is zoned with respect trace element composition (especially LREE), and intensity of cathodoluminescence, all of which correlate with oxygen isotope ratios (7.4‰ vs. 5.0‰). High LREE and high-δ18O values from the 4.01- to 4.40-Ga grains are consistent with growth in evolved granitic magmas (δ18O(WR) = 8.5 to 9.5‰) that had interacted with supracrustal materials. High δ18O values show that low-temperature surficial processes (i.e., diagenesis, weathering, or low-temperature alteration) occurred before 4.0 Ga, and even before 4.40 Ga, shortly following the hypothesized date of core differentiation and impact of a Mars-sized body to form the Moon at ∼4.45 Ga. This is the first evidence of continental crust as early as 4.40 Ga and suggests differentiation during the period of intense meteorite bombardment of the early Earth. The magnitude of water and rock interaction that would be necessary to cause the high δ18O values suggests the presence of liquid water and thus the possibility of an ocean at 4.40 Ga.","owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[{"id":49686066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/49686066/thumbnails/1.jpg","file_name":"Oxygen_isotope_ratios_and_rare_earth_ele20161018-32231-1s4km52.pdf","download_url":"https://www.academia.edu/attachments/49686066/download_file","bulk_download_file_name":"Oxygen_isotope_ratios_and_rare_earth_ele.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/49686066/Oxygen_isotope_ratios_and_rare_earth_ele20161018-32231-1s4km52-libre.pdf?1476790002=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_ratios_and_rare_earth_ele.pdf\u0026Expires=1738628723\u0026Signature=H1gF--bdfkyQkxefBkS6OT274hCDWU7dt2Mu6flj7kYp3uR5zWtaANNIWy7lp7lhtq2SKjwSH4064cgOZr~kWSuigJtk--1xWiTGGPkhHBdnvMizlOd0oKfAR2RfETGZN6rU7U8soVH7sePtSZRzhdY44IQkuaDWRvPMc5Rrs3TW2JYHOqhDndZB~GqxTHTYeBNRAuSz0uxeeKTh67Huj4LsSAJ~177xG3B5A10CV4Ai49gTk~z1XuZqJOqpcKcM65pQxDt7cBKTlzAjcVQ49ik2Nh3BmR5DvU6zeJHMn4ZdzMyJPEeEFVsBBAZlcdFb3wezto~AYeGZJ~BqrmF~0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":271756,"name":"Western Australia","url":"https://www.academia.edu/Documents/in/Western_Australia"},{"id":274263,"name":"Rare Earth Element Mineralization","url":"https://www.academia.edu/Documents/in/Rare_Earth_Element_Mineralization"},{"id":275177,"name":"Oxygen Isotope","url":"https://www.academia.edu/Documents/in/Oxygen_Isotope"},{"id":421956,"name":"Continental Crust","url":"https://www.academia.edu/Documents/in/Continental_Crust"},{"id":616972,"name":"Low Temperature","url":"https://www.academia.edu/Documents/in/Low_Temperature"},{"id":709300,"name":"Trace element","url":"https://www.academia.edu/Documents/in/Trace_element"}],"urls":[{"id":7653433,"url":"http://sciencedirect.com/science/article/pii/s0016703701007116"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29234322"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/29234322/Changing_Carbon_Isotope_Ratio_of_Atmospheric_Carbon_Dioxide_Implications_For_Food_Authentication"><img alt="Research paper thumbnail of Changing Carbon Isotope Ratio of Atmospheric Carbon Dioxide: Implications For Food Authentication" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/29234322/Changing_Carbon_Isotope_Ratio_of_Atmospheric_Carbon_Dioxide_Implications_For_Food_Authentication">Changing Carbon Isotope Ratio of Atmospheric Carbon Dioxide: Implications For Food Authentication</a></div><div class="wp-workCard_item"><span>Journal of Agricultural and Food Chemistry</span><span>, Feb 24, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Carbon isotopes are often used to detect the addition of foreign sugars to foods. This technique ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Carbon isotopes are often used to detect the addition of foreign sugars to foods. This technique takes advantage of the natural difference in carbon isotope ratio between C(3) and C(4) plants. Many foods are derived from C(3) plants, but the low-cost sweeteners corn and sugar cane are C(4) plants. Most adulteration studies do not take into account the secular shift of the carbon isotope ratio of atmospheric carbon dioxide caused by fossil fuel burning, a shift also seen in plant tissues. As a result statistical tests and threshold values that evaluate authenticity of foods based on carbon isotope ratios may need to be corrected for changing atmospheric isotope values. Literature and new data show that the atmospheric trend in carbon isotopes is seen in a 36-year data set of maple syrup analyses (n = 246), demonstrating that published thresholds for cane or corn sugar adulteration in maple syrup (and other foods) have become progressively more lenient over time.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29234322"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29234322"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29234322; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29234322]").text(description); $(".js-view-count[data-work-id=29234322]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29234322; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29234322']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29234322]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29234322,"title":"Changing Carbon Isotope Ratio of Atmospheric Carbon Dioxide: Implications For Food Authentication","internal_url":"https://www.academia.edu/29234322/Changing_Carbon_Isotope_Ratio_of_Atmospheric_Carbon_Dioxide_Implications_For_Food_Authentication","owner_id":55204412,"coauthors_can_edit":true,"owner":{"id":55204412,"first_name":"William","middle_initials":null,"last_name":"Peck","page_name":"WilliamPeck2","domain_name":"independent","created_at":"2016-10-18T04:17:40.668-07:00","display_name":"William Peck","url":"https://independent.academia.edu/WilliamPeck2"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12356176"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12356176/Evidence_from_detrital_zircons_for_the_existence_of_continental_crust_and_oceans_on_the_Earth_4_4_Gyr_ago"><img alt="Research paper thumbnail of Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago" class="work-thumbnail" src="https://attachments.academia-assets.com/46225760/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12356176/Evidence_from_detrital_zircons_for_the_existence_of_continental_crust_and_oceans_on_the_Earth_4_4_Gyr_ago">Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://wisc.academia.edu/JohnValley">John Valley</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/WilliamPeck2">William Peck</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f76c37050fd1d6713caf6d931a4464e6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46225760,"asset_id":12356176,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46225760/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12356176"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12356176"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12356176; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12356176]").text(description); $(".js-view-count[data-work-id=12356176]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12356176; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12356176']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f76c37050fd1d6713caf6d931a4464e6" } } $('.js-work-strip[data-work-id=12356176]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12356176,"title":"Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago","internal_url":"https://www.academia.edu/12356176/Evidence_from_detrital_zircons_for_the_existence_of_continental_crust_and_oceans_on_the_Earth_4_4_Gyr_ago","owner_id":31054590,"coauthors_can_edit":true,"owner":{"id":31054590,"first_name":"John","middle_initials":null,"last_name":"Valley","page_name":"JohnValley","domain_name":"wisc","created_at":"2015-05-12T12:38:50.266-07:00","display_name":"John Valley","url":"https://wisc.academia.edu/JohnValley"},"attachments":[{"id":46225760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46225760/thumbnails/1.jpg","file_name":"Evidence_from_detrital_zircons_for_the_e20160604-11909-15rdi0j.pdf","download_url":"https://www.academia.edu/attachments/46225760/download_file","bulk_download_file_name":"Evidence_from_detrital_zircons_for_the_e.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46225760/Evidence_from_detrital_zircons_for_the_e20160604-11909-15rdi0j-libre.pdf?1465053742=\u0026response-content-disposition=attachment%3B+filename%3DEvidence_from_detrital_zircons_for_the_e.pdf\u0026Expires=1739720364\u0026Signature=OI5-q9BamksMONFL2m9yEWhU324fp3NkUrnr-U79ujsm71Vdf8NvA8BR8iNPzjIURPmeuI45rMtKtISS5z3K2WWfKsCAJ96lzJH8847uB9I6LOlUCBc61WV~TBHyQc-jLSzlri--X4pQe6Kk9Q4vvhFFKFB1rot0cvcs1yXX3k3d1RzejYrWHcTjZcu2eiqTzx-dZU8MOqN8YLduI~SdZEadxW8tOolPBVHEDt-J9bNw2ZeRnfyLkveqLs~wTFQcG5pur6qlac5sL2MpQdOzYIkwyzGUVAkzXm32pUMfhYVZZ5reio5tatCQHorIYDsyeftiNFBTD5i8VhoZBIvkEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "02eff5a72cde6477df8e544c3477359e6d2559dff9040a7e74c10096794a71da", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="ow85YptySzvb_40_5He8VbYKqyjTRUpSiCuIlZm_m0bbDrn5otI4YdB1qRCV271NWQhKjEHEPcZ5_JLlBuG_pQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/WilliamPeck2" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="7sTyu4I_SDLCI4ZAOJ3KA1ifp6luoU7pyR1EycPTz5mWxXIgu587aMmpom9JMcsbt51GDfwgOX04yl65XI3reg" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>