CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;19 of 19 results for author: <span class="mathjax">Pan, E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Pan%2C+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pan, E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pan%2C+E&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pan, E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04420">arXiv:2411.04420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04420">pdf</a>, <a href="https://arxiv.org/format/2411.04420">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> BendVLM: Test-Time Debiasing of Vision-Language Embeddings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gerych%2C+W">Walter Gerych</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+H">Haoran Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Hamidieh%2C+K">Kimia Hamidieh</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Eileen Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Sharma%2C+M">Maanas Sharma</a>, <a href="/search/cs?searchtype=author&amp;query=Hartvigsen%2C+T">Thomas Hartvigsen</a>, <a href="/search/cs?searchtype=author&amp;query=Ghassemi%2C+M">Marzyeh Ghassemi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04420v1-abstract-short" style="display: inline;"> Vision-language model (VLM) embeddings have been shown to encode biases present in their training data, such as societal biases that prescribe negative characteristics to members of various racial and gender identities. VLMs are being quickly adopted for a variety of tasks ranging from few-shot classification to text-guided image generation, making debiasing VLM embeddings crucial. Debiasing appro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04420v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04420v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04420v1-abstract-full" style="display: none;"> Vision-language model (VLM) embeddings have been shown to encode biases present in their training data, such as societal biases that prescribe negative characteristics to members of various racial and gender identities. VLMs are being quickly adopted for a variety of tasks ranging from few-shot classification to text-guided image generation, making debiasing VLM embeddings crucial. Debiasing approaches that fine-tune the VLM often suffer from catastrophic forgetting. On the other hand, fine-tuning-free methods typically utilize a &#34;one-size-fits-all&#34; approach that assumes that correlation with the spurious attribute can be explained using a single linear direction across all possible inputs. In this work, we propose Bend-VLM, a nonlinear, fine-tuning-free approach for VLM embedding debiasing that tailors the debiasing operation to each unique input. This allows for a more flexible debiasing approach. Additionally, we do not require knowledge of the set of inputs a priori to inference time, making our method more appropriate for online, open-set tasks such as retrieval and text guided image generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04420v1-abstract-full').style.display = 'none'; document.getElementById('2411.04420v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10489">arXiv:2410.10489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10489">pdf</a>, <a href="https://arxiv.org/format/2410.10489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Cultural Fidelity in Large-Language Models: An Evaluation of Online Language Resources as a Driver of Model Performance in Value Representation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kazemi%2C+S">Sharif Kazemi</a>, <a href="/search/cs?searchtype=author&amp;query=Gerhardt%2C+G">Gloria Gerhardt</a>, <a href="/search/cs?searchtype=author&amp;query=Katz%2C+J">Jonty Katz</a>, <a href="/search/cs?searchtype=author&amp;query=Kuria%2C+C+I">Caroline Ida Kuria</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Estelle Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Prabhakar%2C+U">Umang Prabhakar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10489v1-abstract-short" style="display: inline;"> The training data for LLMs embeds societal values, increasing their familiarity with the language&#39;s culture. Our analysis found that 44% of the variance in the ability of GPT-4o to reflect the societal values of a country, as measured by the World Values Survey, correlates with the availability of digital resources in that language. Notably, the error rate was more than five times higher for the l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10489v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10489v1-abstract-full" style="display: none;"> The training data for LLMs embeds societal values, increasing their familiarity with the language&#39;s culture. Our analysis found that 44% of the variance in the ability of GPT-4o to reflect the societal values of a country, as measured by the World Values Survey, correlates with the availability of digital resources in that language. Notably, the error rate was more than five times higher for the languages of the lowest resource compared to the languages of the highest resource. For GPT-4-turbo, this correlation rose to 72%, suggesting efforts to improve the familiarity with the non-English language beyond the web-scraped data. Our study developed one of the largest and most robust datasets in this topic area with 21 country-language pairs, each of which contain 94 survey questions verified by native speakers. Our results highlight the link between LLM performance and digital data availability in target languages. Weaker performance in low-resource languages, especially prominent in the Global South, may worsen digital divides. We discuss strategies proposed to address this, including developing multilingual LLMs from the ground up and enhancing fine-tuning on diverse linguistic datasets, as seen in African language initiatives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10489v1-abstract-full').style.display = 'none'; document.getElementById('2410.10489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03670">arXiv:2403.03670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03670">pdf</a>, <a href="https://arxiv.org/format/2403.03670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> CDC: A Simple Framework for Complex Data Clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kang%2C+Z">Zhao Kang</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+X">Xuanting Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+B">Bingheng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Erlin Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03670v1-abstract-short" style="display: inline;"> In today&#39;s data-driven digital era, the amount as well as complexity, such as multi-view, non-Euclidean, and multi-relational, of the collected data are growing exponentially or even faster. Clustering, which unsupervisely extracts valid knowledge from data, is extremely useful in practice. However, existing methods are independently developed to handle one particular challenge at the expense of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03670v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03670v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03670v1-abstract-full" style="display: none;"> In today&#39;s data-driven digital era, the amount as well as complexity, such as multi-view, non-Euclidean, and multi-relational, of the collected data are growing exponentially or even faster. Clustering, which unsupervisely extracts valid knowledge from data, is extremely useful in practice. However, existing methods are independently developed to handle one particular challenge at the expense of the others. In this work, we propose a simple but effective framework for complex data clustering (CDC) that can efficiently process different types of data with linear complexity. We first utilize graph filtering to fuse geometry structure and attribute information. We then reduce the complexity with high-quality anchors that are adaptively learned via a novel similarity-preserving regularizer. We illustrate the cluster-ability of our proposed method theoretically and experimentally. In particular, we deploy CDC to graph data of size 111M. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03670v1-abstract-full').style.display = 'none'; document.getElementById('2403.03670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03666">arXiv:2403.03666</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03666">pdf</a>, <a href="https://arxiv.org/format/2403.03666">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Provable Filter for Real-world Graph Clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xie%2C+X">Xuanting Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Erlin Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Kang%2C+Z">Zhao Kang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Wenyu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+B">Bingheng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03666v1-abstract-short" style="display: inline;"> Graph clustering, an important unsupervised problem, has been shown to be more resistant to advances in Graph Neural Networks (GNNs). In addition, almost all clustering methods focus on homophilic graphs and ignore heterophily. This significantly limits their applicability in practice, since real-world graphs exhibit a structural disparity and cannot simply be classified as homophily and heterophi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03666v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03666v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03666v1-abstract-full" style="display: none;"> Graph clustering, an important unsupervised problem, has been shown to be more resistant to advances in Graph Neural Networks (GNNs). In addition, almost all clustering methods focus on homophilic graphs and ignore heterophily. This significantly limits their applicability in practice, since real-world graphs exhibit a structural disparity and cannot simply be classified as homophily and heterophily. Thus, a principled way to handle practical graphs is urgently needed. To fill this gap, we provide a novel solution with theoretical support. Interestingly, we find that most homophilic and heterophilic edges can be correctly identified on the basis of neighbor information. Motivated by this finding, we construct two graphs that are highly homophilic and heterophilic, respectively. They are used to build low-pass and high-pass filters to capture holistic information. Important features are further enhanced by the squeeze-and-excitation block. We validate our approach through extensive experiments on both homophilic and heterophilic graphs. Empirical results demonstrate the superiority of our method compared to state-of-the-art clustering methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03666v1-abstract-full').style.display = 'none'; document.getElementById('2403.03666v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14438">arXiv:2312.14438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14438">pdf</a>, <a href="https://arxiv.org/format/2312.14438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> PC-Conv: Unifying Homophily and Heterophily with Two-fold Filtering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+B">Bingheng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Erlin Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Kang%2C+Z">Zhao Kang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14438v1-abstract-short" style="display: inline;"> Recently, many carefully crafted graph representation learning methods have achieved impressive performance on either strong heterophilic or homophilic graphs, but not both. Therefore, they are incapable of generalizing well across real-world graphs with different levels of homophily. This is attributed to their neglect of homophily in heterophilic graphs, and vice versa. In this paper, we propose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14438v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14438v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14438v1-abstract-full" style="display: none;"> Recently, many carefully crafted graph representation learning methods have achieved impressive performance on either strong heterophilic or homophilic graphs, but not both. Therefore, they are incapable of generalizing well across real-world graphs with different levels of homophily. This is attributed to their neglect of homophily in heterophilic graphs, and vice versa. In this paper, we propose a two-fold filtering mechanism to extract homophily in heterophilic graphs and vice versa. In particular, we extend the graph heat equation to perform heterophilic aggregation of global information from a long distance. The resultant filter can be exactly approximated by the Possion-Charlier (PC) polynomials. To further exploit information at multiple orders, we introduce a powerful graph convolution PC-Conv and its instantiation PCNet for the node classification task. Compared with state-of-the-art GNNs, PCNet shows competitive performance on well-known homophilic and heterophilic graphs. Our implementation is available at https://github.com/uestclbh/PC-Conv. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14438v1-abstract-full').style.display = 'none'; document.getElementById('2312.14438v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by AAAI2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05148">arXiv:2312.05148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05148">pdf</a>, <a href="https://arxiv.org/format/2312.05148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.59275/j.melba.2023-g3f8">10.59275/j.melba.2023-g3f8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shape-aware Segmentation of the Placenta in BOLD Fetal MRI Time Series </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Abulnaga%2C+S+M">S. Mazdak Abulnaga</a>, <a href="/search/cs?searchtype=author&amp;query=Dey%2C+N">Neel Dey</a>, <a href="/search/cs?searchtype=author&amp;query=Young%2C+S+I">Sean I. Young</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Eileen Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Hobgood%2C+K+I">Katherine I. Hobgood</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+C+J">Clinton J. Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Grant%2C+P+E">P. Ellen Grant</a>, <a href="/search/cs?searchtype=author&amp;query=Turk%2C+E+A">Esra Abaci Turk</a>, <a href="/search/cs?searchtype=author&amp;query=Golland%2C+P">Polina Golland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05148v1-abstract-short" style="display: inline;"> Blood oxygen level dependent (BOLD) MRI time series with maternal hyperoxia can assess placental oxygenation and function. Measuring precise BOLD changes in the placenta requires accurate temporal placental segmentation and is confounded by fetal and maternal motion, contractions, and hyperoxia-induced intensity changes. Current BOLD placenta segmentation methods warp a manually annotated subject-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05148v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05148v1-abstract-full" style="display: none;"> Blood oxygen level dependent (BOLD) MRI time series with maternal hyperoxia can assess placental oxygenation and function. Measuring precise BOLD changes in the placenta requires accurate temporal placental segmentation and is confounded by fetal and maternal motion, contractions, and hyperoxia-induced intensity changes. Current BOLD placenta segmentation methods warp a manually annotated subject-specific template to the entire time series. However, as the placenta is a thin, elongated, and highly non-rigid organ subject to large deformations and obfuscated edges, existing work cannot accurately segment the placental shape, especially near boundaries. In this work, we propose a machine learning segmentation framework for placental BOLD MRI and apply it to segmenting each volume in a time series. We use a placental-boundary weighted loss formulation and perform a comprehensive evaluation across several popular segmentation objectives. Our model is trained and tested on a cohort of 91 subjects containing healthy fetuses, fetuses with fetal growth restriction, and mothers with high BMI. Biomedically, our model performs reliably in segmenting volumes in both normoxic and hyperoxic points in the BOLD time series. We further find that boundary-weighting increases placental segmentation performance by 8.3% and 6.0% Dice coefficient for the cross-entropy and signed distance transform objectives, respectively. Our code and trained model is available at https://github.com/mabulnaga/automatic-placenta-segmentation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05148v1-abstract-full').style.display = 'none'; document.getElementById('2312.05148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2023:017. arXiv admin note: substantial text overlap with arXiv:2208.02895</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Machine.Learning.for.Biomedical.Imaging. 2 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16087">arXiv:2311.16087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16087">pdf</a>, <a href="https://arxiv.org/format/2311.16087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> DUnE: Dataset for Unified Editing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Aky%C3%BCrek%2C+A+F">Afra Feyza Aky眉rek</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Eric Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Kuwanto%2C+G">Garry Kuwanto</a>, <a href="/search/cs?searchtype=author&amp;query=Wijaya%2C+D">Derry Wijaya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16087v1-abstract-short" style="display: inline;"> Even the most advanced language models remain susceptible to errors necessitating to modify these models without initiating a comprehensive retraining process. Model editing refers to the modification of a model&#39;s knowledge or representations in a manner that produces the desired outcomes. Prior research primarily centered around editing factual data e.g. &#34;Messi plays for Inter Miami&#34; confining th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16087v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16087v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16087v1-abstract-full" style="display: none;"> Even the most advanced language models remain susceptible to errors necessitating to modify these models without initiating a comprehensive retraining process. Model editing refers to the modification of a model&#39;s knowledge or representations in a manner that produces the desired outcomes. Prior research primarily centered around editing factual data e.g. &#34;Messi plays for Inter Miami&#34; confining the definition of an edit to a knowledge triplet i.e. (subject, object, relation). However, as the applications of language models expand, so do the diverse ways in which we wish to edit and refine their outputs. In this study, we broaden the scope of the editing problem to include an array of editing cases such as debiasing and rectifying reasoning errors and define an edit as any natural language expression that solicits a change in the model&#39;s outputs. We are introducing DUnE-an editing benchmark where edits are natural language sentences and propose that DUnE presents a challenging yet relevant task. To substantiate this claim, we conduct an extensive series of experiments testing various editing approaches to address DUnE, demonstrating their respective strengths and weaknesses. We show that retrieval-augmented language modeling can outperform specialized editing techniques and neither set of approaches has fully solved the generalized editing problem covered by our benchmark. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16087v1-abstract-full').style.display = 'none'; document.getElementById('2311.16087v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at EMNLP 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02931">arXiv:2305.02931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02931">pdf</a>, <a href="https://arxiv.org/format/2305.02931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Erlin Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Kang%2C+Z">Zhao Kang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02931v1-abstract-short" style="display: inline;"> Graph neural networks (GNNs) based methods have achieved impressive performance on node clustering task. However, they are designed on the homophilic assumption of graph and clustering on heterophilic graph is overlooked. Due to the lack of labels, it is impossible to first identify a graph as homophilic or heterophilic before a suitable GNN model can be found. Hence, clustering on real-world grap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02931v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02931v1-abstract-full" style="display: none;"> Graph neural networks (GNNs) based methods have achieved impressive performance on node clustering task. However, they are designed on the homophilic assumption of graph and clustering on heterophilic graph is overlooked. Due to the lack of labels, it is impossible to first identify a graph as homophilic or heterophilic before a suitable GNN model can be found. Hence, clustering on real-world graph with various levels of homophily poses a new challenge to the graph research community. To fill this gap, we propose a novel graph clustering method, which contains three key components: graph reconstruction, a mixed filter, and dual graph clustering network. To be graph-agnostic, we empirically construct two graphs which are high homophily and heterophily from each data. The mixed filter based on the new graphs extracts both low-frequency and high-frequency information. To reduce the adverse coupling between node attribute and topological structure, we separately map them into two subspaces in dual graph clustering network. Extensive experiments on 11 benchmark graphs demonstrate our promising performance. In particular, our method dominates others on heterophilic graphs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02931v1-abstract-full').style.display = 'none'; document.getElementById('2305.02931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ICML 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.11931">arXiv:2210.11931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.11931">pdf</a>, <a href="https://arxiv.org/format/2210.11931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Deep Reinforcement Learning for Inverse Inorganic Materials Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Elton Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Karpovich%2C+C">Christopher Karpovich</a>, <a href="/search/cs?searchtype=author&amp;query=Olivetti%2C+E">Elsa Olivetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.11931v1-abstract-short" style="display: inline;"> A major obstacle to the realization of novel inorganic materials with desirable properties is the inability to perform efficient optimization across both materials properties and synthesis of those materials. In this work, we propose a reinforcement learning (RL) approach to inverse inorganic materials design, which can identify promising compounds with specified properties and synthesizability co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11931v1-abstract-full').style.display = 'inline'; document.getElementById('2210.11931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.11931v1-abstract-full" style="display: none;"> A major obstacle to the realization of novel inorganic materials with desirable properties is the inability to perform efficient optimization across both materials properties and synthesis of those materials. In this work, we propose a reinforcement learning (RL) approach to inverse inorganic materials design, which can identify promising compounds with specified properties and synthesizability constraints. Our model learns chemical guidelines such as charge and electronegativity neutrality while maintaining chemical diversity and uniqueness. We demonstrate a multi-objective RL approach, which can generate novel compounds with targeted materials properties including formation energy and bulk/shear modulus alongside a lower sintering temperature synthesis objectives. Using this approach, the model can predict promising compounds of interest, while suggesting an optimized chemical design space for inorganic materials discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11931v1-abstract-full').style.display = 'none'; document.getElementById('2210.11931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS AI4Mat Workshop 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10838">arXiv:2209.10838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10838">pdf</a>, <a href="https://arxiv.org/format/2209.10838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> High-order Multi-view Clustering for Generic Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Erlin Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Kang%2C+Z">Zhao Kang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10838v1-abstract-short" style="display: inline;"> Graph-based multi-view clustering has achieved better performance than most non-graph approaches. However, in many real-world scenarios, the graph structure of data is not given or the quality of initial graph is poor. Additionally, existing methods largely neglect the high-order neighborhood information that characterizes complex intrinsic interactions. To tackle these problems, we introduce an a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10838v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10838v1-abstract-full" style="display: none;"> Graph-based multi-view clustering has achieved better performance than most non-graph approaches. However, in many real-world scenarios, the graph structure of data is not given or the quality of initial graph is poor. Additionally, existing methods largely neglect the high-order neighborhood information that characterizes complex intrinsic interactions. To tackle these problems, we introduce an approach called high-order multi-view clustering (HMvC) to explore the topology structure information of generic data. Firstly, graph filtering is applied to encode structure information, which unifies the processing of attributed graph data and non-graph data in a single framework. Secondly, up to infinity-order intrinsic relationships are exploited to enrich the learned graph. Thirdly, to explore the consistent and complementary information of various views, an adaptive graph fusion mechanism is proposed to achieve a consensus graph. Comprehensive experimental results on both non-graph and attributed graph data show the superior performance of our method with respect to various state-of-the-art techniques, including some deep learning methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10838v1-abstract-full').style.display = 'none'; document.getElementById('2209.10838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02895">arXiv:2208.02895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.02895">pdf</a>, <a href="https://arxiv.org/format/2208.02895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Automatic Segmentation of the Placenta in BOLD MRI Time Series </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Abulnaga%2C+S+M">S. Mazdak Abulnaga</a>, <a href="/search/cs?searchtype=author&amp;query=Young%2C+S+I">Sean I. Young</a>, <a href="/search/cs?searchtype=author&amp;query=Hobgood%2C+K">Katherine Hobgood</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Eileen Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+C+J">Clinton J. Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Grant%2C+P+E">P. Ellen Grant</a>, <a href="/search/cs?searchtype=author&amp;query=Turk%2C+E+A">Esra Abaci Turk</a>, <a href="/search/cs?searchtype=author&amp;query=Golland%2C+P">Polina Golland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02895v1-abstract-short" style="display: inline;"> Blood oxygen level dependent (BOLD) MRI with maternal hyperoxia can assess oxygen transport within the placenta and has emerged as a promising tool to study placental function. Measuring signal changes over time requires segmenting the placenta in each volume of the time series. Due to the large number of volumes in the BOLD time series, existing studies rely on registration to map all volumes to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02895v1-abstract-full').style.display = 'inline'; document.getElementById('2208.02895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02895v1-abstract-full" style="display: none;"> Blood oxygen level dependent (BOLD) MRI with maternal hyperoxia can assess oxygen transport within the placenta and has emerged as a promising tool to study placental function. Measuring signal changes over time requires segmenting the placenta in each volume of the time series. Due to the large number of volumes in the BOLD time series, existing studies rely on registration to map all volumes to a manually segmented template. As the placenta can undergo large deformation due to fetal motion, maternal motion, and contractions, this approach often results in a large number of discarded volumes, where the registration approach fails. In this work, we propose a machine learning model based on a U-Net neural network architecture to automatically segment the placenta in BOLD MRI and apply it to segmenting each volume in a time series. We use a boundary-weighted loss function to accurately capture the placental shape. Our model is trained and tested on a cohort of 91 subjects containing healthy fetuses, fetuses with fetal growth restriction, and mothers with high BMI. We achieve a Dice score of 0.83+/-0.04 when matching with ground truth labels and our model performs reliably in segmenting volumes in both normoxic and hyperoxic points in the BOLD time series. Our code and trained model are available at https://github.com/mabulnaga/automatic-placenta-segmentation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02895v1-abstract-full').style.display = 'none'; document.getElementById('2208.02895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at MICCAI PIPPI 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11842">arXiv:2110.11842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.11842">pdf</a>, <a href="https://arxiv.org/format/2110.11842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> Multi-view Contrastive Graph Clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Erlin Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Kang%2C+Z">Zhao Kang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11842v1-abstract-short" style="display: inline;"> With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11842v1-abstract-full').style.display = 'inline'; document.getElementById('2110.11842v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11842v1-abstract-full" style="display: none;"> With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11842v1-abstract-full').style.display = 'none'; document.getElementById('2110.11842v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by NeurIPS 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12545">arXiv:2103.12545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.12545">pdf</a>, <a href="https://arxiv.org/format/2103.12545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> MetaHDR: Model-Agnostic Meta-Learning for HDR Image Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Edwin Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Vento%2C+A">Anthony Vento</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12545v1-abstract-short" style="display: inline;"> Capturing scenes with a high dynamic range is crucial to reproducing images that appear similar to those seen by the human visual system. Despite progress in developing data-driven deep learning approaches for converting low dynamic range images to high dynamic range images, existing approaches are limited by the assumption that all conversions are governed by the same nonlinear mapping. To addres&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12545v1-abstract-full').style.display = 'inline'; document.getElementById('2103.12545v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12545v1-abstract-full" style="display: none;"> Capturing scenes with a high dynamic range is crucial to reproducing images that appear similar to those seen by the human visual system. Despite progress in developing data-driven deep learning approaches for converting low dynamic range images to high dynamic range images, existing approaches are limited by the assumption that all conversions are governed by the same nonlinear mapping. To address this problem, we propose &#34;Model-Agnostic Meta-Learning for HDR Image Reconstruction&#34; (MetaHDR), which applies meta-learning to the LDR-to-HDR conversion problem using existing HDR datasets. Our key novelty is the reinterpretation of LDR-to-HDR conversion scenes as independently sampled tasks from a common LDR-to-HDR conversion task distribution. Naturally, we use a meta-learning framework that learns a set of meta-parameters which capture the common structure consistent across all LDR-to-HDR conversion tasks. Finally, we perform experimentation with MetaHDR to demonstrate its capacity to tackle challenging LDR-to-HDR image conversions. Code and pretrained models are available at https://github.com/edwin-pan/MetaHDR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12545v1-abstract-full').style.display = 'none'; document.getElementById('2103.12545v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09819">arXiv:2101.09819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09819">pdf</a>, <a href="https://arxiv.org/format/2101.09819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Meta-Regularization by Enforcing Mutual-Exclusiveness </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Edwin Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Rajak%2C+P">Pankaj Rajak</a>, <a href="/search/cs?searchtype=author&amp;query=Shrivastava%2C+S">Shubham Shrivastava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09819v1-abstract-short" style="display: inline;"> Meta-learning models have two objectives. First, they need to be able to make predictions over a range of task distributions while utilizing only a small amount of training data. Second, they also need to adapt to new novel unseen tasks at meta-test time again by using only a small amount of training data from that task. It is the second objective where meta-learning models fail for non-mutually e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09819v1-abstract-full').style.display = 'inline'; document.getElementById('2101.09819v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09819v1-abstract-full" style="display: none;"> Meta-learning models have two objectives. First, they need to be able to make predictions over a range of task distributions while utilizing only a small amount of training data. Second, they also need to adapt to new novel unseen tasks at meta-test time again by using only a small amount of training data from that task. It is the second objective where meta-learning models fail for non-mutually exclusive tasks due to task overfitting. Given that guaranteeing mutually exclusive tasks is often difficult, there is a significant need for regularization methods that can help reduce the impact of task-memorization in meta-learning. For example, in the case of N-way, K-shot classification problems, tasks becomes non-mutually exclusive when the labels associated with each task is fixed. Under this design, the model will simply memorize the class labels of all the training tasks, and thus will fail to recognize a new task (class) at meta-test time. A direct observable consequence of this memorization is that the meta-learning model simply ignores the task-specific training data in favor of directly classifying based on the test-data input. In our work, we propose a regularization technique for meta-learning models that gives the model designer more control over the information flow during meta-training. Our method consists of a regularization function that is constructed by maximizing the distance between task-summary statistics, in the case of black-box models and task specific network parameters in the case of optimization based models during meta-training. Our proposed regularization function shows an accuracy boost of $\sim$ $36\%$ on the Omniglot dataset for 5-way, 1-shot classification using black-box method and for 20-way, 1-shot classification problem using optimization-based method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09819v1-abstract-full').style.display = 'none'; document.getElementById('2101.09819v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07925">arXiv:2011.07925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.07925">pdf</a>, <a href="https://arxiv.org/format/2011.07925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Constrained Model-Free Reinforcement Learning for Process Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Elton Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Petsagkourakis%2C+P">Panagiotis Petsagkourakis</a>, <a href="/search/cs?searchtype=author&amp;query=Mowbray%2C+M">Max Mowbray</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+D">Dongda Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=del+Rio-Chanona%2C+A">Antonio del Rio-Chanona</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07925v2-abstract-short" style="display: inline;"> Reinforcement learning (RL) is a control approach that can handle nonlinear stochastic optimal control problems. However, despite the promise exhibited, RL has yet to see marked translation to industrial practice primarily due to its inability to satisfy state constraints. In this work we aim to address this challenge. We propose an &#39;oracle&#39;-assisted constrained Q-learning algorithm that guarantee&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07925v2-abstract-full').style.display = 'inline'; document.getElementById('2011.07925v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07925v2-abstract-full" style="display: none;"> Reinforcement learning (RL) is a control approach that can handle nonlinear stochastic optimal control problems. However, despite the promise exhibited, RL has yet to see marked translation to industrial practice primarily due to its inability to satisfy state constraints. In this work we aim to address this challenge. We propose an &#39;oracle&#39;-assisted constrained Q-learning algorithm that guarantees the satisfaction of joint chance constraints with a high probability, which is crucial for safety critical tasks. To achieve this, constraint tightening (backoffs) are introduced and adjusted using Broyden&#39;s method, hence making them self-tuned. This results in a general methodology that can be imbued into approximate dynamic programming-based algorithms to ensure constraint satisfaction with high probability. Finally, we present case studies that analyze the performance of the proposed approach and compare this algorithm with model predictive control (MPC). The favorable performance of this algorithm signifies a step toward the incorporation of RL into real world optimization and control of engineering systems, where constraints are essential in ensuring safety. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07925v2-abstract-full').style.display = 'none'; document.getElementById('2011.07925v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13081">arXiv:2009.13081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13081">pdf</a>, <a href="https://arxiv.org/ps/2009.13081">ps</a>, <a href="https://arxiv.org/format/2009.13081">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> What Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from Medical Exams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jin%2C+D">Di Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Eileen Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Oufattole%2C+N">Nassim Oufattole</a>, <a href="/search/cs?searchtype=author&amp;query=Weng%2C+W">Wei-Hung Weng</a>, <a href="/search/cs?searchtype=author&amp;query=Fang%2C+H">Hanyi Fang</a>, <a href="/search/cs?searchtype=author&amp;query=Szolovits%2C+P">Peter Szolovits</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13081v1-abstract-short" style="display: inline;"> Open domain question answering (OpenQA) tasks have been recently attracting more and more attention from the natural language processing (NLP) community. In this work, we present the first free-form multiple-choice OpenQA dataset for solving medical problems, MedQA, collected from the professional medical board exams. It covers three languages: English, simplified Chinese, and traditional Chinese,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13081v1-abstract-full').style.display = 'inline'; document.getElementById('2009.13081v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13081v1-abstract-full" style="display: none;"> Open domain question answering (OpenQA) tasks have been recently attracting more and more attention from the natural language processing (NLP) community. In this work, we present the first free-form multiple-choice OpenQA dataset for solving medical problems, MedQA, collected from the professional medical board exams. It covers three languages: English, simplified Chinese, and traditional Chinese, and contains 12,723, 34,251, and 14,123 questions for the three languages, respectively. We implement both rule-based and popular neural methods by sequentially combining a document retriever and a machine comprehension model. Through experiments, we find that even the current best method can only achieve 36.7\%, 42.0\%, and 70.1\% of test accuracy on the English, traditional Chinese, and simplified Chinese questions, respectively. We expect MedQA to present great challenges to existing OpenQA systems and hope that it can serve as a platform to promote much stronger OpenQA models from the NLP community in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13081v1-abstract-full').style.display = 'none'; document.getElementById('2009.13081v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to AAAI 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.12395">arXiv:1912.12395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.12395">pdf</a>, <a href="https://arxiv.org/ps/1912.12395">ps</a>, <a href="https://arxiv.org/format/1912.12395">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> </div> </div> <p class="title is-5 mathjax"> OpenRadar: A Toolkit for Prototyping mmWave Radar Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gupta%2C+A">Arjun Gupta</a>, <a href="/search/cs?searchtype=author&amp;query=Kosaka%2C+D">Dashiell Kosaka</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Edwin Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+J">Jingning Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Yao%2C+R">Ruihao Yao</a>, <a href="/search/cs?searchtype=author&amp;query=Patel%2C+S">Sanjay Patel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.12395v1-abstract-short" style="display: inline;"> Millimeter-Wave (mmWave) radar sensors are gaining popularity for their robust sensing and increasing imaging capabilities. However, current radar signal processing is hardware specific, which makes it impossible to build sensor agnostic solutions. OpenRadar serves as an interface to prototype, research, and benchmark solutions in a modular manner. This enables creating software processing stacks&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12395v1-abstract-full').style.display = 'inline'; document.getElementById('1912.12395v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.12395v1-abstract-full" style="display: none;"> Millimeter-Wave (mmWave) radar sensors are gaining popularity for their robust sensing and increasing imaging capabilities. However, current radar signal processing is hardware specific, which makes it impossible to build sensor agnostic solutions. OpenRadar serves as an interface to prototype, research, and benchmark solutions in a modular manner. This enables creating software processing stacks in a way that has not yet been extensively explored. In the wake of increased AI adoption, OpenRadar can accelerate the growth of the combined fields of radar and AI. The OpenRadar API was released on Oct 2, 2019 as an open-source package under the Apache 2.0 license. The codebase exists at https://github.com/presenseradar/openradar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12395v1-abstract-full').style.display = 'none'; document.getElementById('1912.12395v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> I.2.0; I.5.4; J.7 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.0; I.5.4; J.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.04572">arXiv:1706.04572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.04572">pdf</a>, <a href="https://arxiv.org/format/1706.04572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning Methods for Efficient Large Scale Video Labeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Skalic%2C+M">Miha Skalic</a>, <a href="/search/cs?searchtype=author&amp;query=Pekalski%2C+M">Marcin Pekalski</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+X+E">Xingguo E. Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.04572v1-abstract-short" style="display: inline;"> We present a solution to &#34;Google Cloud and YouTube-8M Video Understanding Challenge&#34; that ranked 5th place. The proposed model is an ensemble of three model families, two frame level and one video level. The training was performed on augmented dataset, with cross validation. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.04572v1-abstract-full" style="display: none;"> We present a solution to &#34;Google Cloud and YouTube-8M Video Understanding Challenge&#34; that ranked 5th place. The proposed model is an ensemble of three model families, two frame level and one video level. The training was performed on augmented dataset, with cross validation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04572v1-abstract-full').style.display = 'none'; document.getElementById('1706.04572v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 tables, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.4599">arXiv:1410.4599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.4599">pdf</a>, <a href="https://arxiv.org/format/1410.4599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Non-parametric Bayesian Learning with Deep Learning Structure and Its Applications in Wireless Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pan%2C+E">Erte Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+Z">Zhu Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.4599v2-abstract-short" style="display: inline;"> In this paper, we present an infinite hierarchical non-parametric Bayesian model to extract the hidden factors over observed data, where the number of hidden factors for each layer is unknown and can be potentially infinite. Moreover, the number of layers can also be infinite. We construct the model structure that allows continuous values for the hidden factors and weights, which makes the model s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.4599v2-abstract-full').style.display = 'inline'; document.getElementById('1410.4599v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.4599v2-abstract-full" style="display: none;"> In this paper, we present an infinite hierarchical non-parametric Bayesian model to extract the hidden factors over observed data, where the number of hidden factors for each layer is unknown and can be potentially infinite. Moreover, the number of layers can also be infinite. We construct the model structure that allows continuous values for the hidden factors and weights, which makes the model suitable for various applications. We use the Metropolis-Hastings method to infer the model structure. Then the performance of the algorithm is evaluated by the experiments. Simulation results show that the model fits the underlying structure of simulated data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.4599v2-abstract-full').style.display = 'none'; document.getElementById('1410.4599v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures and 1 algorithm list</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10