CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;31 of 31 results for author: <span class="mathjax">Mridha, M F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Mridha%2C+M+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mridha, M F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mridha%2C+M+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mridha, M F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04685">arXiv:2411.04685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04685">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Solving Generalized Grouping Problems in Cellular Manufacturing Systems Using a Network Flow Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Uddin%2C+M+K">Md. Kutub Uddin</a>, <a href="/search/cs?searchtype=author&amp;query=Islam%2C+M+S">Md. Saiful Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Seam%2C+M+S+I">Md. Saiful Islam Seam</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04685v3-abstract-short" style="display: inline;"> This paper focuses on the generalized grouping problem in the context of cellular manufacturing systems (CMS), where parts may have more than one process route. A process route lists the machines corresponding to each part of the operation. Inspired by the extensive and widespread use of network flow algorithms, this research formulates the process route family formation for generalized grouping a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04685v3-abstract-full').style.display = 'inline'; document.getElementById('2411.04685v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04685v3-abstract-full" style="display: none;"> This paper focuses on the generalized grouping problem in the context of cellular manufacturing systems (CMS), where parts may have more than one process route. A process route lists the machines corresponding to each part of the operation. Inspired by the extensive and widespread use of network flow algorithms, this research formulates the process route family formation for generalized grouping as a unit capacity minimum cost network flow model. The objective is to minimize dissimilarity (based on the machines required) among the process routes within a family. The proposed model optimally solves the process route family formation problem without pre-specifying the number of part families to be formed. The process route of family formation is the first stage in a hierarchical procedure. For the second stage (machine cell formation), two procedures, a quadratic assignment programming (QAP) formulation, and a heuristic procedure, are proposed. The QAP simultaneously assigns process route families and machines to a pre-specified number of cells in such a way that total machine utilization is maximized. The heuristic procedure for machine cell formation is hierarchical in nature. Computational results for some test problems show that the QAP and the heuristic procedure yield the same results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04685v3-abstract-full').style.display = 'none'; document.getElementById('2411.04685v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03740">arXiv:2411.03740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03740">pdf</a>, <a href="https://arxiv.org/format/2411.03740">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> Human-in-the-Loop Feature Selection Using Interpretable Kolmogorov-Arnold Network-based Double Deep Q-Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Dey%2C+N">Nilanjan Dey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03740v1-abstract-short" style="display: inline;"> Feature selection is critical for improving the performance and interpretability of machine learning models, particularly in high-dimensional spaces where complex feature interactions can reduce accuracy and increase computational demands. Existing approaches often rely on static feature subsets or manual intervention, limiting adaptability and scalability. However, dynamic, per-instance feature s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03740v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03740v1-abstract-full" style="display: none;"> Feature selection is critical for improving the performance and interpretability of machine learning models, particularly in high-dimensional spaces where complex feature interactions can reduce accuracy and increase computational demands. Existing approaches often rely on static feature subsets or manual intervention, limiting adaptability and scalability. However, dynamic, per-instance feature selection methods and model-specific interpretability in reinforcement learning remain underexplored. This study proposes a human-in-the-loop (HITL) feature selection framework integrated into a Double Deep Q-Network (DDQN) using a Kolmogorov-Arnold Network (KAN). Our novel approach leverages simulated human feedback and stochastic distribution-based sampling, specifically Beta, to iteratively refine feature subsets per data instance, improving flexibility in feature selection. The KAN-DDQN achieved notable test accuracies of 93% on MNIST and 83% on FashionMNIST, outperforming conventional MLP-DDQN models by up to 9%. The KAN-based model provided high interpretability via symbolic representation while using 4 times fewer neurons in the hidden layer than MLPs did. Comparatively, the models without feature selection achieved test accuracies of only 58% on MNIST and 64% on FashionMNIST, highlighting significant gains with our framework. Pruning and visualization further enhanced model transparency by elucidating decision pathways. These findings present a scalable, interpretable solution for feature selection that is suitable for applications requiring real-time, adaptive decision-making with minimal human oversight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03740v1-abstract-full').style.display = 'none'; document.getElementById('2411.03740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to a journal under IEEE Transactions series</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01642">arXiv:2411.01642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01642">pdf</a>, <a href="https://arxiv.org/format/2411.01642">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Rationale-Aware Graph Contrastive Learning for Jet Discrimination </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Masud%2C+M+A">Md. Akmol Masud</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Dey%2C+N">Nilanjan Dey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01642v1-abstract-short" style="display: inline;"> In high-energy physics, particle jet tagging plays a pivotal role in distinguishing quark from gluon jets using data from collider experiments. While graph-based deep learning methods have advanced this task beyond traditional feature-engineered approaches, the complex data structure and limited labeled samples present ongoing challenges. However, existing contrastive learning (CL) frameworks stru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01642v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01642v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01642v1-abstract-full" style="display: none;"> In high-energy physics, particle jet tagging plays a pivotal role in distinguishing quark from gluon jets using data from collider experiments. While graph-based deep learning methods have advanced this task beyond traditional feature-engineered approaches, the complex data structure and limited labeled samples present ongoing challenges. However, existing contrastive learning (CL) frameworks struggle to leverage rationale-aware augmentations effectively, often lacking supervision signals that guide the extraction of salient features and facing computational efficiency issues such as high parameter counts. In this study, we demonstrate that integrating a quantum rationale generator (QRG) within our proposed Quantum Rationale-aware Graph Contrastive Learning (QRGCL) framework significantly enhances jet discrimination performance, reducing reliance on labeled data and capturing discriminative features. Evaluated on the quark-gluon jet dataset, QRGCL achieves an AUC score of 77.53% while maintaining a compact architecture of only 45 QRG parameters, outperforming classical, quantum, and hybrid GCL and GNN benchmarks. These results highlight QRGCL&#39;s potential to advance jet tagging and other complex classification tasks in high-energy physics, where computational efficiency and feature extraction limitations persist. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01642v1-abstract-full').style.display = 'none'; document.getElementById('2411.01642v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE Transactions series journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01641">arXiv:2411.01641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01641">pdf</a>, <a href="https://arxiv.org/format/2411.01641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Lorentz-Equivariant Quantum Graph Neural Network for High-Energy Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Masud%2C+M+A">Md. Akmol Masud</a>, <a href="/search/cs?searchtype=author&amp;query=Suva%2C+M+W">Md Wahiduzzaman Suva</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Dey%2C+N">Nilanjan Dey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01641v1-abstract-short" style="display: inline;"> The rapid data surge from the high-luminosity Large Hadron Collider introduces critical computational challenges requiring novel approaches for efficient data processing in particle physics. Quantum machine learning, with its capability to leverage the extensive Hilbert space of quantum hardware, offers a promising solution. However, current quantum graph neural networks (GNNs) lack robustness to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01641v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01641v1-abstract-full" style="display: none;"> The rapid data surge from the high-luminosity Large Hadron Collider introduces critical computational challenges requiring novel approaches for efficient data processing in particle physics. Quantum machine learning, with its capability to leverage the extensive Hilbert space of quantum hardware, offers a promising solution. However, current quantum graph neural networks (GNNs) lack robustness to noise and are often constrained by fixed symmetry groups, limiting adaptability in complex particle interaction modeling. This paper demonstrates that replacing the Lorentz Group Equivariant Block modules in LorentzNet with a dressed quantum circuit significantly enhances performance despite using nearly 5.5 times fewer parameters. Our Lorentz-Equivariant Quantum Graph Neural Network (Lorentz-EQGNN) achieved 74.00% test accuracy and an AUC of 87.38% on the Quark-Gluon jet tagging dataset, outperforming the classical and quantum GNNs with a reduced architecture using only 4 qubits. On the Electron-Photon dataset, Lorentz-EQGNN reached 67.00% test accuracy and an AUC of 68.20%, demonstrating competitive results with just 800 training samples. Evaluation of our model on generic MNIST and FashionMNIST datasets confirmed Lorentz-EQGNN&#39;s efficiency, achieving 88.10% and 74.80% test accuracy, respectively. Ablation studies validated the impact of quantum components on performance, with notable improvements in background rejection rates over classical counterparts. These results highlight Lorentz-EQGNN&#39;s potential for immediate applications in noise-resilient jet tagging, event classification, and broader data-scarce HEP tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01641v1-abstract-full').style.display = 'none'; document.getElementById('2411.01641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07446">arXiv:2410.07446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07446">pdf</a>, <a href="https://arxiv.org/format/2410.07446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> KACQ-DCNN: Uncertainty-Aware Interpretable Kolmogorov-Arnold Classical-Quantum Dual-Channel Neural Network for Heart Disease Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Masud%2C+M+A">Md. Akmol Masud</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Aung%2C+Z">Zeyar Aung</a>, <a href="/search/cs?searchtype=author&amp;query=Dey%2C+N">Nilanjan Dey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07446v2-abstract-short" style="display: inline;"> Heart failure remains a major global health challenge, contributing significantly to the 17.8 million annual deaths from cardiovascular disease, highlighting the need for improved diagnostic tools. Current heart disease prediction models based on classical machine learning face limitations, including poor handling of high-dimensional, imbalanced data, limited performance on small datasets, and a l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07446v2-abstract-full').style.display = 'inline'; document.getElementById('2410.07446v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07446v2-abstract-full" style="display: none;"> Heart failure remains a major global health challenge, contributing significantly to the 17.8 million annual deaths from cardiovascular disease, highlighting the need for improved diagnostic tools. Current heart disease prediction models based on classical machine learning face limitations, including poor handling of high-dimensional, imbalanced data, limited performance on small datasets, and a lack of uncertainty quantification, while also being difficult for healthcare professionals to interpret. To address these issues, we introduce KACQ-DCNN, a novel classical-quantum hybrid dual-channel neural network that replaces traditional multilayer perceptrons and convolutional layers with Kolmogorov-Arnold Networks (KANs). This approach enhances function approximation with learnable univariate activation functions, reducing model complexity and improving generalization. The KACQ-DCNN 4-qubit 1-layered model significantly outperforms 37 benchmark models across multiple metrics, achieving an accuracy of 92.03%, a macro-average precision, recall, and F1 score of 92.00%, and an ROC-AUC score of 94.77%. Ablation studies demonstrate the synergistic benefits of combining classical and quantum components with KAN. Additionally, explainability techniques like LIME and SHAP provide feature-level insights, improving model transparency, while uncertainty quantification via conformal prediction ensures robust probability estimates. These results suggest that KACQ-DCNN offers a promising path toward more accurate, interpretable, and reliable heart disease predictions, paving the way for advancements in cardiovascular healthcare. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07446v2-abstract-full').style.display = 'none'; document.getElementById('2410.07446v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06658">arXiv:2407.06658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06658">pdf</a>, <a href="https://arxiv.org/format/2407.06658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> TriQXNet: Forecasting Dst Index from Solar Wind Data Using an Interpretable Parallel Classical-Quantum Framework with Uncertainty Quantification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Aung%2C+Z">Zeyar Aung</a>, <a href="/search/cs?searchtype=author&amp;query=Dey%2C+N">Nilanjan Dey</a>, <a href="/search/cs?searchtype=author&amp;query=Sherratt%2C+R+S">R. Simon Sherratt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06658v2-abstract-short" style="display: inline;"> Geomagnetic storms, caused by solar wind energy transfer to Earth&#39;s magnetic field, can disrupt critical infrastructure like GPS, satellite communications, and power grids. The disturbance storm-time (Dst) index measures storm intensity. Despite advancements in empirical, physics-based, and machine-learning models using real-time solar wind data, accurately forecasting extreme geomagnetic events r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06658v2-abstract-full').style.display = 'inline'; document.getElementById('2407.06658v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06658v2-abstract-full" style="display: none;"> Geomagnetic storms, caused by solar wind energy transfer to Earth&#39;s magnetic field, can disrupt critical infrastructure like GPS, satellite communications, and power grids. The disturbance storm-time (Dst) index measures storm intensity. Despite advancements in empirical, physics-based, and machine-learning models using real-time solar wind data, accurately forecasting extreme geomagnetic events remains challenging due to noise and sensor failures. This research introduces TriQXNet, a novel hybrid classical-quantum neural network for Dst forecasting. Our model integrates classical and quantum computing, conformal prediction, and explainable AI (XAI) within a hybrid architecture. To ensure high-quality input data, we developed a comprehensive preprocessing pipeline that included feature selection, normalization, aggregation, and imputation. TriQXNet processes preprocessed solar wind data from NASA&#39;s ACE and NOAA&#39;s DSCOVR satellites, predicting the Dst index for the current hour and the next, providing vital advance notice to mitigate geomagnetic storm impacts. TriQXNet outperforms 13 state-of-the-art hybrid deep-learning models, achieving a root mean squared error of 9.27 nanoteslas (nT). Rigorous evaluation through 10-fold cross-validated paired t-tests confirmed its superior performance with 95% confidence. Conformal prediction techniques provide quantifiable uncertainty, which is essential for operational decisions, while XAI methods like ShapTime enhance interpretability. Comparative analysis shows TriQXNet&#39;s superior forecasting accuracy, setting a new level of expectations for geomagnetic storm prediction and highlighting the potential of classical-quantum hybrid models in space weather forecasting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06658v2-abstract-full').style.display = 'none'; document.getElementById('2407.06658v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19690">arXiv:2406.19690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19690">pdf</a>, <a href="https://arxiv.org/format/2406.19690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Deep Fusion Model for Brain Tumor Classification Using Fine-Grained Gradient Preservation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Islam%2C+N">Niful Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Bhuiyan%2C+M+I">Mohaiminul Islam Bhuiyan</a>, <a href="/search/cs?searchtype=author&amp;query=Raya%2C+J+T">Jarin Tasnim Raya</a>, <a href="/search/cs?searchtype=author&amp;query=Kamarudin%2C+N+S">Nur Shazwani Kamarudin</a>, <a href="/search/cs?searchtype=author&amp;query=Hasib%2C+K+M">Khan Md Hasib</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Farid%2C+D+M">Dewan Md. Farid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19690v1-abstract-short" style="display: inline;"> Brain tumors are one of the most common diseases that lead to early death if not diagnosed at an early stage. Traditional diagnostic approaches are extremely time-consuming and prone to errors. In this context, computer vision-based approaches have emerged as an effective tool for accurate brain tumor classification. While some of the existing solutions demonstrate noteworthy accuracy, the models&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19690v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19690v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19690v1-abstract-full" style="display: none;"> Brain tumors are one of the most common diseases that lead to early death if not diagnosed at an early stage. Traditional diagnostic approaches are extremely time-consuming and prone to errors. In this context, computer vision-based approaches have emerged as an effective tool for accurate brain tumor classification. While some of the existing solutions demonstrate noteworthy accuracy, the models become infeasible to deploy in areas where computational resources are limited. This research addresses the need for accurate and fast classification of brain tumors with a priority of deploying the model in technologically underdeveloped regions. The research presents a novel architecture for precise brain tumor classification fusing pretrained ResNet152V2 and modified VGG16 models. The proposed architecture undergoes a diligent fine-tuning process that ensures fine gradients are preserved in deep neural networks, which are essential for effective brain tumor classification. The proposed solution incorporates various image processing techniques to improve image quality and achieves an astounding accuracy of 98.36% and 98.04% in Figshare and Kaggle datasets respectively. This architecture stands out for having a streamlined profile, with only 2.8 million trainable parameters. We have leveraged 8-bit quantization to produce a model of size 73.881 MB, significantly reducing it from the previous size of 289.45 MB, ensuring smooth deployment in edge devices even in resource-constrained areas. Additionally, the use of Grad-CAM improves the interpretability of the model, offering insightful information regarding its decision-making process. Owing to its high discriminative ability, this model can be a reliable option for accurate brain tumor classification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19690v1-abstract-full').style.display = 'none'; document.getElementById('2406.19690v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08534">arXiv:2406.08534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08534">pdf</a>, <a href="https://arxiv.org/ps/2406.08534">ps</a>, <a href="https://arxiv.org/format/2406.08534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Optimizing Container Loading and Unloading through Dual-Cycling and Dockyard Rehandle Reduction Using a Hybrid Genetic Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Rahman%2C+M+M">Md. Mahfuzur Rahman</a>, <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Islam%2C+M+S">Md. Saiful Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08534v1-abstract-short" style="display: inline;"> This paper addresses the optimization of container unloading and loading operations at ports, integrating quay-crane dual-cycling with dockyard rehandle minimization. We present a unified model encompassing both operations: ship container unloading and loading by quay crane, and the other is reducing dockyard rehandles while loading the ship. We recognize that optimizing one aspect in isolation ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08534v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08534v1-abstract-full" style="display: none;"> This paper addresses the optimization of container unloading and loading operations at ports, integrating quay-crane dual-cycling with dockyard rehandle minimization. We present a unified model encompassing both operations: ship container unloading and loading by quay crane, and the other is reducing dockyard rehandles while loading the ship. We recognize that optimizing one aspect in isolation can lead to suboptimal outcomes due to interdependencies. Specifically, optimizing unloading sequences for minimal operation time may inadvertently increase dockyard rehandles during loading and vice versa. To address this NP-hard problem, we propose a hybrid genetic algorithm (GA) QCDC-DR-GA comprising one-dimensional and two-dimensional GA components. Our model, QCDC-DR-GA, consistently outperforms four state-of-the-art methods in maximizing dual cycles and minimizing dockyard rehandles. Compared to those methods, it reduced 15-20% of total operation time for large vessels. Statistical validation through a two-tailed paired t-test confirms the superiority of QCDC-DR-GA at a 5% significance level. The approach effectively combines QCDC optimization with dockyard rehandle minimization, optimizing the total unloading-loading time. Results underscore the inefficiency of separately optimizing QCDC and dockyard rehandles. Fragmented approaches, such as QCDC Scheduling Optimized by bi-level GA and GA-ILSRS (Scenario 2), show limited improvement compared to QCDC-DR-GA. As in GA-ILSRS (Scenario 1), neglecting dual-cycle optimization leads to inferior performance than QCDC-DR-GA. This emphasizes the necessity of simultaneously considering both aspects for optimal resource utilization and overall operational efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08534v1-abstract-full').style.display = 'none'; document.getElementById('2406.08534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00297">arXiv:2404.00297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00297">pdf</a>, <a href="https://arxiv.org/format/2404.00297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-024-76079-5">10.1038/s41598-024-76079-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A hybrid transformer and attention based recurrent neural network for robust and interpretable sentiment analysis of tweets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Shovon%2C+M+S+H">Md Sakib Hossain Shovon</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Islam%2C+M+R">Md Rashedul Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Watanobe%2C+Y">Yutaka Watanobe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00297v5-abstract-short" style="display: inline;"> Sentiment analysis is crucial for understanding public opinion and consumer behavior. Existing models face challenges with linguistic diversity, generalizability, and explainability. We propose TRABSA, a hybrid framework integrating transformer-based architectures, attention mechanisms, and BiLSTM networks to address this. Leveraging RoBERTa-trained on 124M tweets, we bridge gaps in sentiment anal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00297v5-abstract-full').style.display = 'inline'; document.getElementById('2404.00297v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00297v5-abstract-full" style="display: none;"> Sentiment analysis is crucial for understanding public opinion and consumer behavior. Existing models face challenges with linguistic diversity, generalizability, and explainability. We propose TRABSA, a hybrid framework integrating transformer-based architectures, attention mechanisms, and BiLSTM networks to address this. Leveraging RoBERTa-trained on 124M tweets, we bridge gaps in sentiment analysis benchmarks, ensuring state-of-the-art accuracy. Augmenting datasets with tweets from 32 countries and US states, we compare six word-embedding techniques and three lexicon-based labeling techniques, selecting the best for optimal sentiment analysis. TRABSA outperforms traditional ML and deep learning models with 94% accuracy and significant precision, recall, and F1-score gains. Evaluation across diverse datasets demonstrates consistent superiority and generalizability. SHAP and LIME analyses enhance interpretability, improving confidence in predictions. Our study facilitates pandemic resource management, aiding resource planning, policy formation, and vaccination tactics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00297v5-abstract-full').style.display = 'none'; document.getElementById('2404.00297v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci Rep 14, 24882 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15594">arXiv:2403.15594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15594">pdf</a>, <a href="https://arxiv.org/format/2403.15594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Analyzing Male Domestic Violence through Exploratory Data Analysis and Explainable Machine Learning Insights </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Naife%2C+S+A">Saleh Akram Naife</a>, <a href="/search/cs?searchtype=author&amp;query=Lima%2C+F+T+J">Fatema Tuj Johora Lima</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Shin%2C+J">Jungpil Shin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15594v1-abstract-short" style="display: inline;"> Domestic violence, which is often perceived as a gendered issue among female victims, has gained increasing attention in recent years. Despite this focus, male victims of domestic abuse remain primarily overlooked, particularly in Bangladesh. Our study represents a pioneering exploration of the underexplored realm of male domestic violence (MDV) within the Bangladeshi context, shedding light on it&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15594v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15594v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15594v1-abstract-full" style="display: none;"> Domestic violence, which is often perceived as a gendered issue among female victims, has gained increasing attention in recent years. Despite this focus, male victims of domestic abuse remain primarily overlooked, particularly in Bangladesh. Our study represents a pioneering exploration of the underexplored realm of male domestic violence (MDV) within the Bangladeshi context, shedding light on its prevalence, patterns, and underlying factors. Existing literature predominantly emphasizes female victimization in domestic violence scenarios, leading to an absence of research on male victims. We collected data from the major cities of Bangladesh and conducted exploratory data analysis to understand the underlying dynamics. We implemented 11 traditional machine learning models with default and optimized hyperparameters, 2 deep learning, and 4 ensemble models. Despite various approaches, CatBoost has emerged as the top performer due to its native support for categorical features, efficient handling of missing values, and robust regularization techniques, achieving 76% accuracy. In contrast, other models achieved accuracy rates in the range of 58-75%. The eXplainable AI techniques, SHAP and LIME, were employed to gain insights into the decision-making of black-box machine learning models. By shedding light on this topic and identifying factors associated with domestic abuse, the study contributes to identifying groups of people vulnerable to MDV, raising awareness, and informing policies and interventions aimed at reducing MDV. Our findings challenge the prevailing notion that domestic abuse primarily affects women, thus emphasizing the need for tailored interventions and support systems for male victims. ML techniques enhance the analysis and understanding of the data, providing valuable insights for developing effective strategies to combat this pressing social issue. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15594v1-abstract-full').style.display = 'none'; document.getElementById('2403.15594v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05589">arXiv:2403.05589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05589">pdf</a>, <a href="https://arxiv.org/format/2403.05589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.heliyon.2024.e34063">10.1016/j.heliyon.2024.e34063 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ergonomic Design of Computer Laboratory Furniture: Mismatch Analysis Utilizing Anthropometric Data of University Students </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saha%2C+A+K">Anik Kumar Saha</a>, <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Rafiquzzaman%2C+M">Md. Rafiquzzaman</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05589v4-abstract-short" style="display: inline;"> Many studies have shown how ergonomically designed furniture improves productivity and well-being. As computers have become a part of students&#39; academic lives, they will grow further in the future. We propose anthropometric-based furniture dimensions suitable for university students to improve computer laboratory ergonomics. We collected data from 380 participants and analyzed 11 anthropometric me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05589v4-abstract-full').style.display = 'inline'; document.getElementById('2403.05589v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05589v4-abstract-full" style="display: none;"> Many studies have shown how ergonomically designed furniture improves productivity and well-being. As computers have become a part of students&#39; academic lives, they will grow further in the future. We propose anthropometric-based furniture dimensions suitable for university students to improve computer laboratory ergonomics. We collected data from 380 participants and analyzed 11 anthropometric measurements, correlating them to 11 furniture dimensions. Two types of furniture were studied: a non-adjustable chair with a non-adjustable table and an adjustable chair with a non-adjustable table. The mismatch calculation showed a significant difference between furniture dimensions and anthropometric measurements. The one-way ANOVA test with a significance level of 5% also showed a significant difference between proposed and existing furniture dimensions. The proposed dimensions were found to be more compatible and reduced mismatch percentages for both males and females compared to existing furniture. The proposed dimensions of the furniture set with adjustable seat height showed slightly improved results compared to the non-adjustable furniture set. This suggests that the proposed dimensions can improve comfort levels and reduce the risk of musculoskeletal disorders among students. Further studies on the implementation and long-term effects of these proposed dimensions in real-world computer laboratory settings are recommended. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05589v4-abstract-full').style.display = 'none'; document.getElementById('2403.05589v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Heliyon, vol. 10, no. 14, Jul. 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01804">arXiv:2402.01804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.01804">pdf</a>, <a href="https://arxiv.org/format/2402.01804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1371/journal.pone.0304118">10.1371/journal.pone.0304118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of Internet of Things Implementation Barriers in the Cold Supply Chain: An Integrated ISM-MICMAC and DEMATEL Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ahmad%2C+K">Kazrin Ahmad</a>, <a href="/search/cs?searchtype=author&amp;query=Islam%2C+M+S">Md. Saiful Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01804v4-abstract-short" style="display: inline;"> Integrating Internet of Things (IoT) technology inside the cold supply chain can enhance transparency, efficiency, and quality, optimizing operating procedures and increasing productivity. The integration of IoT in this complicated setting is hindered by specific barriers that need a thorough examination. Prominent barriers to IoT implementation in the cold supply chain are identified using a two-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01804v4-abstract-full').style.display = 'inline'; document.getElementById('2402.01804v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01804v4-abstract-full" style="display: none;"> Integrating Internet of Things (IoT) technology inside the cold supply chain can enhance transparency, efficiency, and quality, optimizing operating procedures and increasing productivity. The integration of IoT in this complicated setting is hindered by specific barriers that need a thorough examination. Prominent barriers to IoT implementation in the cold supply chain are identified using a two-stage model. After reviewing the available literature on the topic of IoT implementation, a total of 13 barriers were found. The survey data was cross-validated for quality, and Cronbach&#39;s alpha test was employed to ensure validity. This research applies the interpretative structural modeling technique in the first phase to identify the main barriers. Among those barriers, &#34;regularity compliance&#34; and &#34;cold chain networks&#34; are key drivers for IoT adoption strategies. MICMAC&#39;s driving and dependence power element categorization helps evaluate the barrier interactions. In the second phase of this research, a decision-making trial and evaluation laboratory methodology was employed to identify causal relationships between barriers and evaluate them according to their relative importance. Each cause is a potential drive, and if its efficiency can be enhanced, the system as a whole benefits. The research findings provide industry stakeholders, governments, and organizations with significant drivers of IoT adoption to overcome these barriers and optimize the utilization of IoT technology to improve the effectiveness and reliability of the cold supply chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01804v4-abstract-full').style.display = 'none'; document.getElementById('2402.01804v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PLoS ONE 19(7): e0304118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10895">arXiv:2401.10895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10895">pdf</a>, <a href="https://arxiv.org/format/2401.10895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Naife%2C+S+A">Saleh Akram Naife</a>, <a href="/search/cs?searchtype=author&amp;query=Saha%2C+A+K">Anik Kumar Saha</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10895v2-abstract-short" style="display: inline;"> Supply chain risk assessment (SCRA) has witnessed a profound evolution through the integration of artificial intelligence (AI) and machine learning (ML) techniques, revolutionizing predictive capabilities and risk mitigation strategies. The significance of this evolution stems from the critical role of robust risk management strategies in ensuring operational resilience and continuity within moder&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10895v2-abstract-full').style.display = 'inline'; document.getElementById('2401.10895v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10895v2-abstract-full" style="display: none;"> Supply chain risk assessment (SCRA) has witnessed a profound evolution through the integration of artificial intelligence (AI) and machine learning (ML) techniques, revolutionizing predictive capabilities and risk mitigation strategies. The significance of this evolution stems from the critical role of robust risk management strategies in ensuring operational resilience and continuity within modern supply chains. Previous reviews have outlined established methodologies but have overlooked emerging AI/ML techniques, leaving a notable research gap in understanding their practical implications within SCRA. This paper conducts a systematic literature review combined with a comprehensive bibliometric analysis. We meticulously examined 1,717 papers and derived key insights from a select group of 48 articles published between 2014 and 2023. The review fills this research gap by addressing pivotal research questions, and exploring existing AI/ML techniques, methodologies, findings, and future trajectories, thereby providing a more encompassing view of the evolving landscape of SCRA. Our study unveils the transformative impact of AI/ML models, such as Random Forest, XGBoost, and hybrids, in substantially enhancing precision within SCRA. It underscores adaptable post-COVID strategies, advocating for resilient contingency plans and aligning with evolving risk landscapes. Significantly, this review surpasses previous examinations by accentuating emerging AI/ML techniques and their practical implications within SCRA. Furthermore, it highlights the contributions through a comprehensive bibliometric analysis, revealing publication trends, influential authors, and highly cited articles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10895v2-abstract-full').style.display = 'none'; document.getElementById('2401.10895v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00308">arXiv:2311.00308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.00308">pdf</a>, <a href="https://arxiv.org/format/2311.00308">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.inffus.2024.102270">10.1016/j.inffus.2024.102270 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From Image to Language: A Critical Analysis of Visual Question Answering (VQA) Approaches, Challenges, and Opportunities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ishmam%2C+M+F">Md Farhan Ishmam</a>, <a href="/search/cs?searchtype=author&amp;query=Shovon%2C+M+S+H">Md Sakib Hossain Shovon</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Dey%2C+N">Nilanjan Dey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00308v2-abstract-short" style="display: inline;"> The multimodal task of Visual Question Answering (VQA) encompassing elements of Computer Vision (CV) and Natural Language Processing (NLP), aims to generate answers to questions on any visual input. Over time, the scope of VQA has expanded from datasets focusing on an extensive collection of natural images to datasets featuring synthetic images, video, 3D environments, and various other visual inp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00308v2-abstract-full').style.display = 'inline'; document.getElementById('2311.00308v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00308v2-abstract-full" style="display: none;"> The multimodal task of Visual Question Answering (VQA) encompassing elements of Computer Vision (CV) and Natural Language Processing (NLP), aims to generate answers to questions on any visual input. Over time, the scope of VQA has expanded from datasets focusing on an extensive collection of natural images to datasets featuring synthetic images, video, 3D environments, and various other visual inputs. The emergence of large pre-trained networks has shifted the early VQA approaches relying on feature extraction and fusion schemes to vision language pre-training (VLP) techniques. However, there is a lack of comprehensive surveys that encompass both traditional VQA architectures and contemporary VLP-based methods. Furthermore, the VLP challenges in the lens of VQA haven&#39;t been thoroughly explored, leaving room for potential open problems to emerge. Our work presents a survey in the domain of VQA that delves into the intricacies of VQA datasets and methods over the field&#39;s history, introduces a detailed taxonomy to categorize the facets of VQA, and highlights the recent trends, challenges, and scopes for improvement. We further generalize VQA to multimodal question answering, explore tasks related to VQA, and present a set of open problems for future investigation. The work aims to navigate both beginners and experts by shedding light on the potential avenues of research and expanding the boundaries of the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00308v2-abstract-full').style.display = 'none'; document.getElementById('2311.00308v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16360">arXiv:2310.16360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16360">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> A Comprehensive Review of AI-enabled Unmanned Aerial Vehicle: Trends, Vision , and Challenges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pal%2C+O+K">Osim Kumar Pal</a>, <a href="/search/cs?searchtype=author&amp;query=Shovon%2C+M+S+H">Md Sakib Hossain Shovon</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Shin%2C+J">Jungpil Shin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16360v1-abstract-short" style="display: inline;"> In recent years, the combination of artificial intelligence (AI) and unmanned aerial vehicles (UAVs) has brought about advancements in various areas. This comprehensive analysis explores the changing landscape of AI-powered UAVs and friendly computing in their applications. It covers emerging trends, futuristic visions, and the inherent challenges that come with this relationship. The study examin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16360v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16360v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16360v1-abstract-full" style="display: none;"> In recent years, the combination of artificial intelligence (AI) and unmanned aerial vehicles (UAVs) has brought about advancements in various areas. This comprehensive analysis explores the changing landscape of AI-powered UAVs and friendly computing in their applications. It covers emerging trends, futuristic visions, and the inherent challenges that come with this relationship. The study examines how AI plays a role in enabling navigation, detecting and tracking objects, monitoring wildlife, enhancing precision agriculture, facilitating rescue operations, conducting surveillance activities, and establishing communication among UAVs using environmentally conscious computing techniques. By delving into the interaction between AI and UAVs, this analysis highlights the potential for these technologies to revolutionise industries such as agriculture, surveillance practices, disaster management strategies, and more. While envisioning possibilities, it also takes a look at ethical considerations, safety concerns, regulatory frameworks to be established, and the responsible deployment of AI-enhanced UAV systems. By consolidating insights from research endeavours in this field, this review provides an understanding of the evolving landscape of AI-powered UAVs while setting the stage for further exploration in this transformative domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16360v1-abstract-full').style.display = 'none'; document.getElementById('2310.16360v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11465">arXiv:2310.11465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.11465">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> BaitBuster-Bangla: A Comprehensive Dataset for Clickbait Detection in Bangla with Multi-Feature and Multi-Modal Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Imran%2C+A+A">Abdullah Al Imran</a>, <a href="/search/cs?searchtype=author&amp;query=Shovon%2C+M+S+H">Md Sakib Hossain Shovon</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11465v1-abstract-short" style="display: inline;"> This study presents a large multi-modal Bangla YouTube clickbait dataset consisting of 253,070 data points collected through an automated process using the YouTube API and Python web automation frameworks. The dataset contains 18 diverse features categorized into metadata, primary content, engagement statistics, and labels for individual videos from 58 Bangla YouTube channels. A rigorous preproces&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11465v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11465v1-abstract-full" style="display: none;"> This study presents a large multi-modal Bangla YouTube clickbait dataset consisting of 253,070 data points collected through an automated process using the YouTube API and Python web automation frameworks. The dataset contains 18 diverse features categorized into metadata, primary content, engagement statistics, and labels for individual videos from 58 Bangla YouTube channels. A rigorous preprocessing step has been applied to denoise, deduplicate, and remove bias from the features, ensuring unbiased and reliable analysis. As the largest and most robust clickbait corpus in Bangla to date, this dataset provides significant value for natural language processing and data science researchers seeking to advance modeling of clickbait phenomena in low-resource languages. Its multi-modal nature allows for comprehensive analyses of clickbait across content, user interactions, and linguistic dimensions to develop more sophisticated detection methods with cross-linguistic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11465v1-abstract-full').style.display = 'none'; document.getElementById('2310.11465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.12350">arXiv:2309.12350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.12350">pdf</a>, <a href="https://arxiv.org/format/2309.12350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1371/journal.pone.0311643">10.1371/journal.pone.0311643 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring Internet of Things Adoption Challenges in Manufacturing Firms: A Delphi Fuzzy Analytical Hierarchy Process Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Shahriar%2C+H">Hasan Shahriar</a>, <a href="/search/cs?searchtype=author&amp;query=Islam%2C+M+S">Md. Saiful Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Ridoy%2C+I+A">Istiyaque Ahmed Ridoy</a>, <a href="/search/cs?searchtype=author&amp;query=Prottoy%2C+R+R">Raihan Rafi Prottoy</a>, <a href="/search/cs?searchtype=author&amp;query=Abid%2C+A">Adiba Abid</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.12350v5-abstract-short" style="display: inline;"> Innovation is crucial for sustainable success in today&#39;s fiercely competitive global manufacturing landscape. Bangladesh&#39;s manufacturing sector must embrace transformative technologies like the Internet of Things (IoT) to thrive in this environment. This article addresses the vital task of identifying and evaluating barriers to IoT adoption in Bangladesh&#39;s manufacturing industry. Through synthesiz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12350v5-abstract-full').style.display = 'inline'; document.getElementById('2309.12350v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.12350v5-abstract-full" style="display: none;"> Innovation is crucial for sustainable success in today&#39;s fiercely competitive global manufacturing landscape. Bangladesh&#39;s manufacturing sector must embrace transformative technologies like the Internet of Things (IoT) to thrive in this environment. This article addresses the vital task of identifying and evaluating barriers to IoT adoption in Bangladesh&#39;s manufacturing industry. Through synthesizing expert insights and carefully reviewing contemporary literature, we explore the intricate landscape of IoT adoption challenges. Our methodology combines the Delphi and Fuzzy Analytical Hierarchy Process, systematically analyzing and prioritizing these challenges. This approach harnesses expert knowledge and uses fuzzy logic to handle uncertainties. Our findings highlight key obstacles, with &#34;Lack of top management commitment to new technology&#34; (B10), &#34;High initial implementation costs&#34; (B9), and &#34;Risks in adopting a new business model&#34; (B7) standing out as significant challenges that demand immediate attention. These insights extend beyond academia, offering practical guidance to industry leaders. With the knowledge gained from this study, managers can develop tailored strategies, set informed priorities, and embark on a transformative journey toward leveraging IoT&#39;s potential in Bangladesh&#39;s industrial sector. This article provides a comprehensive understanding of IoT adoption challenges and equips industry leaders to navigate them effectively. This strategic navigation, in turn, enhances the competitiveness and sustainability of Bangladesh&#39;s manufacturing sector in the IoT era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12350v5-abstract-full').style.display = 'none'; document.getElementById('2309.12350v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00806">arXiv:2308.00806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00806">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Addressing Uncertainty in Imbalanced Histopathology Image Classification of HER2 Breast Cancer: An interpretable Ensemble Approach with Threshold Filtered Single Instance Evaluation (SIE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Shovon%2C+M+S+H">Md Sakib Hossain Shovon</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Hasib%2C+K+M">Khan Md Hasib</a>, <a href="/search/cs?searchtype=author&amp;query=Alfarhood%2C+S">Sultan Alfarhood</a>, <a href="/search/cs?searchtype=author&amp;query=Safran%2C+M">Mejdl Safran</a>, <a href="/search/cs?searchtype=author&amp;query=Che%2C+D">Dunren Che</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00806v2-abstract-short" style="display: inline;"> Breast Cancer (BC) is among women&#39;s most lethal health concerns. Early diagnosis can alleviate the mortality rate by helping patients make efficient treatment decisions. Human Epidermal Growth Factor Receptor (HER2) has become one the most lethal subtype of BC. According to the College of American Pathologists American Society of Clinical Oncology (CAP/ASCO), the severity level of HER2 expression&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00806v2-abstract-full').style.display = 'inline'; document.getElementById('2308.00806v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00806v2-abstract-full" style="display: none;"> Breast Cancer (BC) is among women&#39;s most lethal health concerns. Early diagnosis can alleviate the mortality rate by helping patients make efficient treatment decisions. Human Epidermal Growth Factor Receptor (HER2) has become one the most lethal subtype of BC. According to the College of American Pathologists American Society of Clinical Oncology (CAP/ASCO), the severity level of HER2 expression can be classified between 0 and 3+ range. HER2 can be detected effectively from immunohistochemical (IHC) and, hematoxylin &amp; eosin (HE) images of different classes such as 0, 1+, 2+, and 3+. An ensemble approach integrated with threshold filtered single instance evaluation (SIE) technique has been proposed in this study to diagnose BC from the multi-categorical expression of HER2 subtypes. Initially, DenseNet201 and Xception have been ensembled into a single classifier as feature extractors with an effective combination of global average pooling, dropout layer, dense layer with a swish activation function, and l2 regularizer, batch normalization, etc. After that, extracted features has been processed through single instance evaluation (SIE) to determine different confidence levels and adjust decision boundary among the imbalanced classes. This study has been conducted on the BC immunohistochemical (BCI) dataset, which is classified by pathologists into four stages of HER2 BC. This proposed approach known as DenseNet201-Xception-SIE with a threshold value of 0.7 surpassed all other existing state-of-art models with an accuracy of 97.12%, precision of 97.15%, and recall of 97.68% on H&amp;E data and, accuracy of 97.56%, precision of 97.57%, and recall of 98.00% on IHC data respectively, maintaining momentous improvement. Finally, Grad-CAM and Guided Grad-CAM have been employed in this study to interpret, how TL-based model works on the histopathology dataset and make decisions from the data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00806v2-abstract-full').style.display = 'none'; document.getElementById('2308.00806v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12971">arXiv:2307.12971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12971">pdf</a>, <a href="https://arxiv.org/format/2307.12971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Big Data - Supply Chain Management Framework for Forecasting: Data Preprocessing and Machine Learning Techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Shovon%2C+M+S+H">Md Sakib Hossain Shovon</a>, <a href="/search/cs?searchtype=author&amp;query=Shin%2C+J">Jungpil Shin</a>, <a href="/search/cs?searchtype=author&amp;query=Ridoy%2C+I+A">Istiyaque Ahmed Ridoy</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12971v5-abstract-short" style="display: inline;"> This article intends to systematically identify and comparatively analyze state-of-the-art supply chain (SC) forecasting strategies and technologies. A novel framework has been proposed incorporating Big Data Analytics in SC Management (problem identification, data sources, exploratory data analysis, machine-learning model training, hyperparameter tuning, performance evaluation, and optimization),&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12971v5-abstract-full').style.display = 'inline'; document.getElementById('2307.12971v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12971v5-abstract-full" style="display: none;"> This article intends to systematically identify and comparatively analyze state-of-the-art supply chain (SC) forecasting strategies and technologies. A novel framework has been proposed incorporating Big Data Analytics in SC Management (problem identification, data sources, exploratory data analysis, machine-learning model training, hyperparameter tuning, performance evaluation, and optimization), forecasting effects on human-workforce, inventory, and overall SC. Initially, the need to collect data according to SC strategy and how to collect them has been discussed. The article discusses the need for different types of forecasting according to the period or SC objective. The SC KPIs and the error-measurement systems have been recommended to optimize the top-performing model. The adverse effects of phantom inventory on forecasting and the dependence of managerial decisions on the SC KPIs for determining model performance parameters and improving operations management, transparency, and planning efficiency have been illustrated. The cyclic connection within the framework introduces preprocessing optimization based on the post-process KPIs, optimizing the overall control process (inventory management, workforce determination, cost, production and capacity planning). The contribution of this research lies in the standard SC process framework proposal, recommended forecasting data analysis, forecasting effects on SC performance, machine learning algorithms optimization followed, and in shedding light on future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12971v5-abstract-full').style.display = 'none'; document.getElementById('2307.12971v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12906">arXiv:2307.12906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12906">pdf</a>, <a href="https://arxiv.org/format/2307.12906">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> QAmplifyNet: Pushing the Boundaries of Supply Chain Backorder Prediction Using Interpretable Hybrid Quantum-Classical Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jahin%2C+M+A">Md Abrar Jahin</a>, <a href="/search/cs?searchtype=author&amp;query=Shovon%2C+M+S+H">Md Sakib Hossain Shovon</a>, <a href="/search/cs?searchtype=author&amp;query=Islam%2C+M+S">Md. Saiful Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Shin%2C+J">Jungpil Shin</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Okuyama%2C+Y">Yuichi Okuyama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12906v2-abstract-short" style="display: inline;"> Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. However, traditional machine-learning models struggle with large-scale datasets and complex relationships, hindering real-world data collection. This research introduces a novel methodological framework for supply chain backorder prediction, address&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12906v2-abstract-full').style.display = 'inline'; document.getElementById('2307.12906v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12906v2-abstract-full" style="display: none;"> Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. However, traditional machine-learning models struggle with large-scale datasets and complex relationships, hindering real-world data collection. This research introduces a novel methodological framework for supply chain backorder prediction, addressing the challenge of handling large datasets. Our proposed model, QAmplifyNet, employs quantum-inspired techniques within a quantum-classical neural network to predict backorders effectively on short and imbalanced datasets. Experimental evaluations on a benchmark dataset demonstrate QAmplifyNet&#39;s superiority over classical models, quantum ensembles, quantum neural networks, and deep reinforcement learning. Its proficiency in handling short, imbalanced datasets makes it an ideal solution for supply chain management. To enhance model interpretability, we use Explainable Artificial Intelligence techniques. Practical implications include improved inventory control, reduced backorders, and enhanced operational efficiency. QAmplifyNet seamlessly integrates into real-world supply chain management systems, enabling proactive decision-making and efficient resource allocation. Future work involves exploring additional quantum-inspired techniques, expanding the dataset, and investigating other supply chain applications. This research unlocks the potential of quantum computing in supply chain optimization and paves the way for further exploration of quantum-inspired machine learning models in supply chain management. Our framework and QAmplifyNet model offer a breakthrough approach to supply chain backorder prediction, providing superior performance and opening new avenues for leveraging quantum-inspired techniques in supply chain management. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12906v2-abstract-full').style.display = 'none'; document.getElementById('2307.12906v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10690">arXiv:2211.10690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10690">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> convoHER2: A Deep Neural Network for Multi-Stage Classification of HER2 Breast Cancer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Morol%2C+M+K">Md. Kishor Morol</a>, <a href="/search/cs?searchtype=author&amp;query=Ali%2C+M+A">Md. Asraf Ali</a>, <a href="/search/cs?searchtype=author&amp;query=Shovon%2C+M+S+H">Md Sakib Hossain Shovon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10690v1-abstract-short" style="display: inline;"> Generally, human epidermal growth factor 2 (HER2) breast cancer is more aggressive than other kinds of breast cancer. Currently, HER2 breast cancer is detected using expensive medical tests are most expensive. Therefore, the aim of this study was to develop a computational model named convoHER2 for detecting HER2 breast cancer with image data using convolution neural network (CNN). Hematoxylin and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10690v1-abstract-full').style.display = 'inline'; document.getElementById('2211.10690v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10690v1-abstract-full" style="display: none;"> Generally, human epidermal growth factor 2 (HER2) breast cancer is more aggressive than other kinds of breast cancer. Currently, HER2 breast cancer is detected using expensive medical tests are most expensive. Therefore, the aim of this study was to develop a computational model named convoHER2 for detecting HER2 breast cancer with image data using convolution neural network (CNN). Hematoxylin and eosin (H&amp;E) and immunohistochemical (IHC) stained images has been used as raw data from the Bayesian information criterion (BIC) benchmark dataset. This dataset consists of 4873 images of H&amp;E and IHC. Among all images of the dataset, 3896 and 977 images are applied to train and test the convoHER2 model, respectively. As all the images are in high resolution, we resize them so that we can feed them in our convoHER2 model. The cancerous samples images are classified into four classes based on the stage of the cancer (0+, 1+, 2+, 3+). The convoHER2 model is able to detect HER2 cancer and its grade with accuracy 85% and 88% using H&amp;E images and IHC images, respectively. The outcomes of this study determined that the HER2 cancer detecting rates of the convoHER2 model are much enough to provide better diagnosis to the patient for recovering their HER2 breast cancer in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10690v1-abstract-full').style.display = 'none'; document.getElementById('2211.10690v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.13217">arXiv:2109.13217</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.13217">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Challenges and Opportunities of Speech Recognition for Bengali Language </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Ohi%2C+A+Q">Abu Quwsar Ohi</a>, <a href="/search/cs?searchtype=author&amp;query=Hamid%2C+M+A">Md. Abdul Hamid</a>, <a href="/search/cs?searchtype=author&amp;query=Monowar%2C+M+M">Muhammad Mostafa Monowar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.13217v1-abstract-short" style="display: inline;"> Speech recognition is a fascinating process that offers the opportunity to interact and command the machine in the field of human-computer interactions. Speech recognition is a language-dependent system constructed directly based on the linguistic and textual properties of any language. Automatic Speech Recognition (ASR) systems are currently being used to translate speech to text flawlessly. Alth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13217v1-abstract-full').style.display = 'inline'; document.getElementById('2109.13217v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.13217v1-abstract-full" style="display: none;"> Speech recognition is a fascinating process that offers the opportunity to interact and command the machine in the field of human-computer interactions. Speech recognition is a language-dependent system constructed directly based on the linguistic and textual properties of any language. Automatic Speech Recognition (ASR) systems are currently being used to translate speech to text flawlessly. Although ASR systems are being strongly executed in international languages, ASR systems&#39; implementation in the Bengali language has not reached an acceptable state. In this research work, we sedulously disclose the current status of the Bengali ASR system&#39;s research endeavors. In what follows, we acquaint the challenges that are mostly encountered while constructing a Bengali ASR system. We split the challenges into language-dependent and language-independent challenges and guide how the particular complications may be overhauled. Following a rigorous investigation and highlighting the challenges, we conclude that Bengali ASR systems require specific construction of ASR architectures based on the Bengali language&#39;s grammatical and phonetic structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13217v1-abstract-full').style.display = 'none'; document.getElementById('2109.13217v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Artificial Intelligence Review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04020">arXiv:2105.04020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.04020">pdf</a>, <a href="https://arxiv.org/format/2105.04020">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> End-to-End Optical Character Recognition for Bengali Handwritten Words </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Safir%2C+F+B">Farisa Benta Safir</a>, <a href="/search/cs?searchtype=author&amp;query=Ohi%2C+A+Q">Abu Quwsar Ohi</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Monowar%2C+M+M">Muhammad Mostafa Monowar</a>, <a href="/search/cs?searchtype=author&amp;query=Hamid%2C+M+A">Md. Abdul Hamid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04020v1-abstract-short" style="display: inline;"> Optical character recognition (OCR) is a process of converting analogue documents into digital using document images. Currently, many commercial and non-commercial OCR systems exist for both handwritten and printed copies for different languages. Despite this, very few works are available in case of recognising Bengali words. Among them, most of the works focused on OCR of printed Bengali characte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04020v1-abstract-full').style.display = 'inline'; document.getElementById('2105.04020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04020v1-abstract-full" style="display: none;"> Optical character recognition (OCR) is a process of converting analogue documents into digital using document images. Currently, many commercial and non-commercial OCR systems exist for both handwritten and printed copies for different languages. Despite this, very few works are available in case of recognising Bengali words. Among them, most of the works focused on OCR of printed Bengali characters. This paper introduces an end-to-end OCR system for Bengali language. The proposed architecture implements an end to end strategy that recognises handwritten Bengali words from handwritten word images. We experiment with popular convolutional neural network (CNN) architectures, including DenseNet, Xception, NASNet, and MobileNet to build the OCR architecture. Further, we experiment with two different recurrent neural networks (RNN) methods, LSTM and GRU. We evaluate the proposed architecture using BanglaWritting dataset, which is a peer-reviewed Bengali handwritten image dataset. The proposed method achieves 0.091 character error rate and 0.273 word error rate performed using DenseNet121 model with GRU recurrent layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04020v1-abstract-full').style.display = 'none'; document.getElementById('2105.04020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in &#34;The 4th National Computing Colleges Conference&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03868">arXiv:2102.03868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.03868">pdf</a>, <a href="https://arxiv.org/format/2102.03868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> U-vectors: Generating clusterable speaker embedding from unlabeled data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Ohi%2C+A+Q">Abu Quwsar Ohi</a>, <a href="/search/cs?searchtype=author&amp;query=Monowar%2C+M+M">Muhammad Mostafa Monowar</a>, <a href="/search/cs?searchtype=author&amp;query=Hamid%2C+M+A">Md. Abdul Hamid</a>, <a href="/search/cs?searchtype=author&amp;query=Islam%2C+M+R">Md. Rashedul Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Watanobe%2C+Y">Yutaka Watanobe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03868v2-abstract-short" style="display: inline;"> Speaker recognition deals with recognizing speakers by their speech. Most speaker recognition systems are built upon two stages, the first stage extracts low dimensional correlation embeddings from speech, and the second performs the classification task. The robustness of a speaker recognition system mainly depends on the extraction process of speech embeddings, which are primarily pre-trained on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03868v2-abstract-full').style.display = 'inline'; document.getElementById('2102.03868v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03868v2-abstract-full" style="display: none;"> Speaker recognition deals with recognizing speakers by their speech. Most speaker recognition systems are built upon two stages, the first stage extracts low dimensional correlation embeddings from speech, and the second performs the classification task. The robustness of a speaker recognition system mainly depends on the extraction process of speech embeddings, which are primarily pre-trained on a large-scale dataset. As the embedding systems are pre-trained, the performance of speaker recognition models greatly depends on domain adaptation policy, which may reduce if trained using inadequate data. This paper introduces a speaker recognition strategy dealing with unlabeled data, which generates clusterable embedding vectors from small fixed-size speech frames. The unsupervised training strategy involves an assumption that a small speech segment should include a single speaker. Depending on such a belief, a pairwise constraint is constructed with noise augmentation policies, used to train AutoEmbedder architecture that generates speaker embeddings. Without relying on domain adaption policy, the process unsupervisely produces clusterable speaker embeddings, termed unsupervised vectors (u-vectors). The evaluation is concluded in two popular speaker recognition datasets for English language, TIMIT, and LibriSpeech. Also, a Bengali dataset is included to illustrate the diversity of the domain shifts for speaker recognition systems. Finally, we conclude that the proposed approach achieves satisfactory performance using pairwise architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03868v2-abstract-full').style.display = 'none'; document.getElementById('2102.03868v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05564">arXiv:2101.05564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.05564">pdf</a>, <a href="https://arxiv.org/format/2101.05564">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ACCESS.2021.3051980">10.1109/ACCESS.2021.3051980 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FabricNet: A Fiber Recognition Architecture Using Ensemble ConvNets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ohi%2C+A+Q">Abu Quwsar Ohi</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Hamid%2C+M+A">Md. Abdul Hamid</a>, <a href="/search/cs?searchtype=author&amp;query=Monowar%2C+M+M">Muhammad Mostafa Monowar</a>, <a href="/search/cs?searchtype=author&amp;query=Kateb%2C+F+A">Faris A Kateb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05564v1-abstract-short" style="display: inline;"> Fabric is a planar material composed of textile fibers. Textile fibers are generated from many natural sources; including plants, animals, minerals, and even, it can be synthetic. A particular fabric may contain different types of fibers that pass through a complex production process. Fiber identification is usually carried out through chemical tests and microscopic tests. However, these testing p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05564v1-abstract-full').style.display = 'inline'; document.getElementById('2101.05564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05564v1-abstract-full" style="display: none;"> Fabric is a planar material composed of textile fibers. Textile fibers are generated from many natural sources; including plants, animals, minerals, and even, it can be synthetic. A particular fabric may contain different types of fibers that pass through a complex production process. Fiber identification is usually carried out through chemical tests and microscopic tests. However, these testing processes are complicated as well as time-consuming. We propose FabricNet, a pioneering approach for the image-based textile fiber recognition system, which may have a revolutionary impact from individual to the industrial fiber recognition process. The FabricNet can recognize a large scale of fibers by only utilizing a surface image of fabric. The recognition system is constructed using a distinct category of class-based ensemble convolutional neural network (CNN) architecture. The experiment is conducted on recognizing 50 different types of textile fibers. This experiment includes a significantly large number of unique textile fibers than previous research endeavors to the best of our knowledge. We experiment with popular CNN architectures that include Inception, ResNet, VGG, MobileNet, DenseNet, and Xception. Finally, the experimental results demonstrate that FabricNet outperforms the state-of-the-art popular CNN architectures by reaching an accuracy of 84% and F1-score of 90%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05564v1-abstract-full').style.display = 'none'; document.getElementById('2101.05564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in IEEE Access</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.00686">arXiv:2101.00686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.00686">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> An Evolution of CNN Object Classifiers on Low-Resolution Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kabir%2C+M+M">Md. Mohsin Kabir</a>, <a href="/search/cs?searchtype=author&amp;query=Ohi%2C+A+Q">Abu Quwsar Ohi</a>, <a href="/search/cs?searchtype=author&amp;query=Rahman%2C+M+S">Md. Saifur Rahman</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.00686v1-abstract-short" style="display: inline;"> Object classification is a significant task in computer vision. It has become an effective research area as an important aspect of image processing and the building block of image localization, detection, and scene parsing. Object classification from low-quality images is difficult for the variance of object colors, aspect ratios, and cluttered backgrounds. The field of object classification has s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00686v1-abstract-full').style.display = 'inline'; document.getElementById('2101.00686v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.00686v1-abstract-full" style="display: none;"> Object classification is a significant task in computer vision. It has become an effective research area as an important aspect of image processing and the building block of image localization, detection, and scene parsing. Object classification from low-quality images is difficult for the variance of object colors, aspect ratios, and cluttered backgrounds. The field of object classification has seen remarkable advancements, with the development of deep convolutional neural networks (DCNNs). Deep neural networks have been demonstrated as very powerful systems for facing the challenge of object classification from high-resolution images, but deploying such object classification networks on the embedded device remains challenging due to the high computational and memory requirements. Using high-quality images often causes high computational and memory complexity, whereas low-quality images can solve this issue. Hence, in this paper, we investigate an optimal architecture that accurately classifies low-quality images using DCNNs architectures. To validate different baselines on lowquality images, we perform experiments using webcam captured image datasets of 10 different objects. In this research work, we evaluate the proposed architecture by implementing popular CNN architectures. The experimental results validate that the MobileNet architecture delivers better than most of the available CNN architectures for low-resolution webcam image datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00686v1-abstract-full').style.display = 'none'; document.getElementById('2101.00686v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in IEEE Honet 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07499">arXiv:2011.07499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.07499">pdf</a>, <a href="https://arxiv.org/format/2011.07499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.dib.2020.106633">10.1016/j.dib.2020.106633 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BanglaWriting: A multi-purpose offline Bangla handwriting dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Ohi%2C+A+Q">Abu Quwsar Ohi</a>, <a href="/search/cs?searchtype=author&amp;query=Ali%2C+M+A">M. Ameer Ali</a>, <a href="/search/cs?searchtype=author&amp;query=Emon%2C+M+I">Mazedul Islam Emon</a>, <a href="/search/cs?searchtype=author&amp;query=Kabir%2C+M+M">Muhammad Mohsin Kabir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07499v3-abstract-short" style="display: inline;"> This article presents a Bangla handwriting dataset named BanglaWriting that contains single-page handwritings of 260 individuals of different personalities and ages. Each page includes bounding-boxes that bounds each word, along with the unicode representation of the writing. This dataset contains 21,234 words and 32,787 characters in total. Moreover, this dataset includes 5,470 unique words of Ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07499v3-abstract-full').style.display = 'inline'; document.getElementById('2011.07499v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07499v3-abstract-full" style="display: none;"> This article presents a Bangla handwriting dataset named BanglaWriting that contains single-page handwritings of 260 individuals of different personalities and ages. Each page includes bounding-boxes that bounds each word, along with the unicode representation of the writing. This dataset contains 21,234 words and 32,787 characters in total. Moreover, this dataset includes 5,470 unique words of Bangla vocabulary. Apart from the usual words, the dataset comprises 261 comprehensible overwriting and 450 handwritten strikes and mistakes. All of the bounding-boxes and word labels are manually-generated. The dataset can be used for complex optical character/word recognition, writer identification, handwritten word segmentation, and word generation. Furthermore, this dataset is suitable for extracting age-based and gender-based variation of handwriting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07499v3-abstract-full').style.display = 'none'; document.getElementById('2011.07499v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in journal Data in Brief. The dataset is available on https://data.mendeley.com/datasets/r43wkvdk4w/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05151">arXiv:2011.05151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05151">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> A Multi-Plant Disease Diagnosis Method using Convolutional Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kabir%2C+M+M">Muhammad Mohsin Kabir</a>, <a href="/search/cs?searchtype=author&amp;query=Ohi%2C+A+Q">Abu Quwsar Ohi</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05151v1-abstract-short" style="display: inline;"> A disease that limits a plant from its maximal capacity is defined as plant disease. From the perspective of agriculture, diagnosing plant disease is crucial, as diseases often limit plants&#39; production capacity. However, manual approaches to recognize plant diseases are often temporal, challenging, and time-consuming. Therefore, computerized recognition of plant diseases is highly desired in the f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05151v1-abstract-full').style.display = 'inline'; document.getElementById('2011.05151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05151v1-abstract-full" style="display: none;"> A disease that limits a plant from its maximal capacity is defined as plant disease. From the perspective of agriculture, diagnosing plant disease is crucial, as diseases often limit plants&#39; production capacity. However, manual approaches to recognize plant diseases are often temporal, challenging, and time-consuming. Therefore, computerized recognition of plant diseases is highly desired in the field of agricultural automation. Due to the recent improvement of computer vision, identifying diseases using leaf images of a particular plant has already been introduced. Nevertheless, the most introduced model can only diagnose diseases of a specific plant. Hence, in this chapter, we investigate an optimal plant disease identification model combining the diagnosis of multiple plants. Despite relying on multi-class classification, the model inherits a multilabel classification method to identify the plant and the type of disease in parallel. For the experiment and evaluation, we collected data from various online sources that included leaf images of six plants, including tomato, potato, rice, corn, grape, and apple. In our investigation, we implement numerous popular convolutional neural network (CNN) architectures. The experimental results validate that the Xception and DenseNet architectures perform better in multi-label plant disease classification tasks. Through architectural investigation, we imply that skip connections, spatial convolutions, and shorter hidden layer connectivity cause better results in plant disease classification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05151v1-abstract-full').style.display = 'none'; document.getElementById('2011.05151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in book chapter &#34;CVML in Agriculture&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.05502">arXiv:2010.05502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.05502">pdf</a>, <a href="https://arxiv.org/format/2010.05502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.9728/jcc.2020.06.2.1.139">10.9728/jcc.2020.06.2.1.139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Lightweight Speaker Recognition System Using Timbre Properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ohi%2C+A+Q">Abu Quwsar Ohi</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Hamid%2C+M+A">Md. Abdul Hamid</a>, <a href="/search/cs?searchtype=author&amp;query=Monowar%2C+M+M">Muhammad Mostafa Monowar</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+D">Dongsu Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Kim%2C+J">Jinsul Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.05502v2-abstract-short" style="display: inline;"> Speaker recognition is an active research area that contains notable usage in biometric security and authentication system. Currently, there exist many well-performing models in the speaker recognition domain. However, most of the advanced models implement deep learning that requires GPU support for real-time speech recognition, and it is not suitable for low-end devices. In this paper, we propose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05502v2-abstract-full').style.display = 'inline'; document.getElementById('2010.05502v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.05502v2-abstract-full" style="display: none;"> Speaker recognition is an active research area that contains notable usage in biometric security and authentication system. Currently, there exist many well-performing models in the speaker recognition domain. However, most of the advanced models implement deep learning that requires GPU support for real-time speech recognition, and it is not suitable for low-end devices. In this paper, we propose a lightweight text-independent speaker recognition model based on random forest classifier. It also introduces new features that are used for both speaker verification and identification tasks. The proposed model uses human speech based timbral properties as features that are classified using random forest. Timbre refers to the very basic properties of sound that allow listeners to discriminate among them. The prototype uses seven most actively searched timbre properties, boominess, brightness, depth, hardness, roughness, sharpness, and warmth as features of our speaker recognition model. The experiment is carried out on speaker verification and speaker identification tasks and shows the achievements and drawbacks of the proposed model. In the speaker identification phase, it achieves a maximum accuracy of 78%. On the contrary, in the speaker verification phase, the model maintains an accuracy of 80% having an equal error rate (ERR) of 0.24. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05502v2-abstract-full').style.display = 'none'; document.getElementById('2010.05502v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Journal of Contents Computing</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Contents Computing 2, no. 1 (2020): 139-151 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.10718">arXiv:2007.10718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.10718">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Human Abnormality Detection Based on Bengali Text </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Rahman%2C+M+S">Md. Saifur Rahman</a>, <a href="/search/cs?searchtype=author&amp;query=Ohi%2C+A+Q">Abu Quwsar Ohi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.10718v1-abstract-short" style="display: inline;"> In the field of natural language processing and human-computer interaction, human attitudes and sentiments have attracted the researchers. However, in the field of human-computer interaction, human abnormality detection has not been investigated extensively and most works depend on image-based information. In natural language processing, effective meaning can potentially convey by all words. Each&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10718v1-abstract-full').style.display = 'inline'; document.getElementById('2007.10718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.10718v1-abstract-full" style="display: none;"> In the field of natural language processing and human-computer interaction, human attitudes and sentiments have attracted the researchers. However, in the field of human-computer interaction, human abnormality detection has not been investigated extensively and most works depend on image-based information. In natural language processing, effective meaning can potentially convey by all words. Each word may bring out difficult encounters because of their semantic connection with ideas or categories. In this paper, an efficient and effective human abnormality detection model is introduced, that only uses Bengali text. This proposed model can recognize whether the person is in a normal or abnormal state by analyzing their typed Bengali text. To the best of our knowledge, this is the first attempt in developing a text based human abnormality detection system. We have created our Bengali dataset (contains 2000 sentences) that is generated by voluntary conversations. We have performed the comparative analysis by using Naive Bayes and Support Vector Machine as classifiers. Two different feature extraction techniques count vector, and TF-IDF is used to experiment on our constructed dataset. We have achieved a maximum 89% accuracy and 92% F1-score with our constructed dataset in our experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10718v1-abstract-full').style.display = 'none'; document.getElementById('2007.10718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The paper is accepted in IEEE Region 10 Symposium (TENSYMP) 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.05830">arXiv:2007.05830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.05830">pdf</a>, <a href="https://arxiv.org/format/2007.05830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.knosys.2020.106190">10.1016/j.knosys.2020.106190 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> AutoEmbedder: A semi-supervised DNN embedding system for clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ohi%2C+A+Q">Abu Quwsar Ohi</a>, <a href="/search/cs?searchtype=author&amp;query=Mridha%2C+M+F">M. F. Mridha</a>, <a href="/search/cs?searchtype=author&amp;query=Safir%2C+F+B">Farisa Benta Safir</a>, <a href="/search/cs?searchtype=author&amp;query=Hamid%2C+M+A">Md. Abdul Hamid</a>, <a href="/search/cs?searchtype=author&amp;query=Monowar%2C+M+M">Muhammad Mostafa Monowar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.05830v1-abstract-short" style="display: inline;"> Clustering is widely used in unsupervised learning method that deals with unlabeled data. Deep clustering has become a popular study area that relates clustering with Deep Neural Network (DNN) architecture. Deep clustering method downsamples high dimensional data, which may also relate clustering loss. Deep clustering is also introduced in semi-supervised learning (SSL). Most SSL methods depend on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.05830v1-abstract-full').style.display = 'inline'; document.getElementById('2007.05830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.05830v1-abstract-full" style="display: none;"> Clustering is widely used in unsupervised learning method that deals with unlabeled data. Deep clustering has become a popular study area that relates clustering with Deep Neural Network (DNN) architecture. Deep clustering method downsamples high dimensional data, which may also relate clustering loss. Deep clustering is also introduced in semi-supervised learning (SSL). Most SSL methods depend on pairwise constraint information, which is a matrix containing knowledge if data pairs can be in the same cluster or not. This paper introduces a novel embedding system named AutoEmbedder, that downsamples higher dimensional data to clusterable embedding points. To the best of our knowledge, this is the first research endeavor that relates to traditional classifier DNN architecture with a pairwise loss reduction technique. The training process is semi-supervised and uses Siamese network architecture to compute pairwise constraint loss in the feature learning phase. The AutoEmbedder outperforms most of the existing DNN based semi-supervised methods tested on famous datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.05830v1-abstract-full').style.display = 'none'; document.getElementById('2007.05830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The manuscript is accepted and published in Knowledge-Based System</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Knowledge-Based Systems, p.106190 (2020) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10