CINXE.COM
Search results for: cinnamon
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cinnamon</title> <meta name="description" content="Search results for: cinnamon"> <meta name="keywords" content="cinnamon"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cinnamon" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cinnamon"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 30</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cinnamon</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Assessing Digestive Enzymes Inhibitory Properties of Anthocyanins and Procyanidins from Apple, Red Grape, Cinnamon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinar%20Ercan">Pinar Ercan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedef%20N.%20El"> Sedef N. El</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goals of this study were to determine the total anthocyanin and procyanidin contents and their in vitro bioaccessibilities of apple, red grape and cinnamon by a static in vitro digestion method reported by the COST FA1005 Action INFOGEST, as well as in vitro inhibitory effects of these food samples on starch and lipid digestive enzymes. While the highest total anthocyanin content was found in red grape (164.76 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432.54±177.31 mg/100 g) among the selected food samples (p<0.05). The anthocyanin bioaccessibilities were found as 10.23±1 %, 8.23±0.64 %, and 8.73±0.70 % in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57±0.71 %, 14.08±0.74 % and 18.75±1.49 %, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544.27±21.94, 445.63±15.67, 1592±17.58 μg/mL, respectively), α-amylase (IC50 38.41±7.26, 56.12±3.60, 3.54±0.86 μg/mL, respectively), and lipase (IC50 52.65±2.05, 581.70±54.14, 49.63±2.72 μg/mL, respectively). Red grape sample showed the highest inhibitory activity against α-glucosidase, cinnamon showed the highest inhibitory activity against α-amylase and lipase according to IC50 (concentration of inhibitor required to produce a 50% inhibition of the initial rate of reaction) and Catechin equivalent inhibition capacity (CEIC50) values. This study reported that apple, grape and cinnamon samples can inhibit the activity of digestive enzymes in vitro. The consumption of these samples would be used in conjunction with a low-calorie diet for body weight management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-amylase" title=" α-amylase"> α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-glucosidase" title=" α-glucosidase"> α-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=procyanidin" title=" procyanidin"> procyanidin</a> </p> <a href="https://publications.waset.org/abstracts/81744/assessing-digestive-enzymes-inhibitory-properties-of-anthocyanins-and-procyanidins-from-apple-red-grape-cinnamon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Production of Premium Quality Cinnamon Bark Powder Using Cryogenic Grinding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20R.%20Bhoi">Monika R. Bhoi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Sutar"> R. F. Sutar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaumik%20B.%20Patel"> Bhaumik B. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research paper is to obtain the premium quality of cinnamon bark powder through cryogenic grinding technology. The effect of grinding temperature (0, -20, -40, -60, -80 and -100˚C), feed rate (8, 9 and 10 kg/h), and sieve size (0.8, 1.0 and 1.5 mm) were evaluated with respect to grinding time, volatile oil content, particle size, energy consumption, and liquid nitrogen consumption. Cryogenic grinding process parameters were optimized to obtain premium quality cinnamon bark powder was carried out using three factorial completely randomized design. The optimization revealed that grinding of cinnamon bark at -80⁰C temperature using 0.8 mm sieve size and 10 kg/h feed rate resulted in premium quality cinnamon bark powder containing volatile oil 3.01%. In addition, volatile oil retention in cryogenically ground powder was 88.23%, whereas control (ambient grinding) had 33.11%. Storage study of premium quality cryogenically ground powder was carried out under accelerated storage conditions (38˚C & 90% R.H). Accelerated storage of cryoground powder was found to be advantageous over the conventional ground for extended storage of the ground cinnamon powder with retention of its nutritional quality. Hence, grinding of spices at optimally low cryogenic temperature is a promising technology for the production of its premium quality powder economically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cinnamon%20bark" title="cinnamon bark">cinnamon bark</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20grinding" title=" cryogenic grinding"> cryogenic grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20rate" title=" feed rate"> feed rate</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20oil" title=" volatile oil"> volatile oil</a> </p> <a href="https://publications.waset.org/abstracts/136064/production-of-premium-quality-cinnamon-bark-powder-using-cryogenic-grinding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Effect of Addition Cinnamon Extract (Cinnamomum burmannii) to Water Content, pH Value, Total Lactid Acid Bacteria Colonies, Antioxidant Activity and Cholesterol Levels of Goat Milk Yoghurt Isolates Dadih (Pediococcus pentosaceus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endang%20Purwati">Endang Purwati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ely%20Vebriyanti"> Ely Vebriyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Puji%20Hartini"> R. Puji Hartini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendri%20Purwanto"> Hendri Purwanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to determine the effect of addition cinnamon extract (Cinnamomum burmannii) in making goat milk yogurt product isolates dadih (Pediococcus pentosaceus) to antioxidant activity and cholesterol levels. The method of research was the experimental method by using a Randomized Block Design (RBD), which consists of 5 treatments with 4 groups as replication. Treatment in this study was used of cinnamon extract as A (0%), B (1%), C (2%), D (3%), E (4%) in a goat’s milk yoghurt. This study was used 4200 ml of Peranakan Etawa goat’s milk and 80 ml of cinnamon extract. The variable analyzed were water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. The average water content ranged from 81.2-85.56%. Mean pH values rang between 4.74–4.30. Mean total lactic acid bacteria colonies ranged from 3.87 x 10⁸ - 7.95 x 10⁸ CFU/ml. The average of the antioxidant activity ranged between 10.98%-27.88%. Average of cholesterol levels ranged from 14.0 mg/ml–17.5 mg/ml. The results showed that the addition of cinnamon extract in making goat milk yoghurt product isolates dadih (Pediococcus pentosaceus) significantly different (P < 0.05) to water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. In conclusion, the study shows that using of cinnamon extract 4% is the best in making goat milk yoghurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=cinnamon" title=" cinnamon"> cinnamon</a>, <a href="https://publications.waset.org/abstracts/search?q=Pediococcus%20pentosaceus" title=" Pediococcus pentosaceus"> Pediococcus pentosaceus</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a> </p> <a href="https://publications.waset.org/abstracts/68244/effect-of-addition-cinnamon-extract-cinnamomum-burmannii-to-water-content-ph-value-total-lactid-acid-bacteria-colonies-antioxidant-activity-and-cholesterol-levels-of-goat-milk-yoghurt-isolates-dadih-pediococcus-pentosaceus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Organic Oils Fumigation and Ozonated Cold Storage Influence Storage Life and Fruit Quality in Granny Smith Apples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahil%20Malekipoor">Rahil Malekipoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Zora%20Singh"> Zora Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Payne"> Alan Payne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethylene management during storage life of organically grown apples is a challenging issue due to limited available options. The objective of this investigation was to examine the effects of lemon and cinnamon oils fumigation on storage life, the incidence of superficial scald and quality of Granny Smith apple which were kept in cold storage with and without ozone. The fruit was fumigated with 3µl L⁻¹ lemon or cinnamon oil for 24 h and untreated fruit was kept as a control. Following the treatments, the fruit was stored at (0.5 to -1°C) with and without ozone for 100 and 150 days. After each storage period, ethylene production and respiration rate, superficial scald and various fruit quality parameters were estimated. Lemon oil fumigated fruit showed significantly reduced the mean climacteric peak ethylene production rate in both 100 and 150 days stored fruit. Mean climacteric peak ethylene production rate was significantly reduced in the apples which were kept in an ozonated as compared to cold stored without ozone for 100 days only. The climacteric ethylene peak was delayed only in 100 days cold stored fruit with ozone (8.78 d) as compared to without ozone (3.89 d). Firmness was significantly higher in the fruit fumigated with lemon or cinnamon oil compared to control for both storage time. The fruit stored for 150 days in cold storage without ozone exhibited higher mean firmness than those stored in ozonated. Lemon or cinnamon oil fumigation significantly reduced superficial scald in both cold stored fruit with or without ozone. Levels of total phenols were significantly higher in cinnamon oil treated fruit and stored for 100 days as compared to all other treatments. In 150 days stored fruit fumigated with lemon oil showed the significantly higher level of total phenols compared to cinnamon oil fumigation and control. The fruit fumigated with lemon oil or cinnamon oil following 150 days cold storage resulted in significantly higher levels of ascorbic acid and antioxidant capacity as compared to the control fruit. In conclusion, lemon oil fumigation was more effective in suppressing ethylene production in 100-150 days cold stored fruit than cinnamon oil. Whilst, fumigation of both lemon or cinnamon oil were effective in reducing superficial scald and maintaining quality in 100-150 days cold stored fruit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apple" title="apple">apple</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20storage" title=" cold storage"> cold storage</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20oil" title=" organic oil"> organic oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a> </p> <a href="https://publications.waset.org/abstracts/95610/organic-oils-fumigation-and-ozonated-cold-storage-influence-storage-life-and-fruit-quality-in-granny-smith-apples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoomeh%20Alsadat%20Mirshafaei">Masoomeh Alsadat Mirshafaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20training" title="aerobic training">aerobic training</a>, <a href="https://publications.waset.org/abstracts/search?q=cinnamon%20extract" title=" cinnamon extract"> cinnamon extract</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=irisin" title=" irisin"> irisin</a>, <a href="https://publications.waset.org/abstracts/search?q=leptin" title=" leptin"> leptin</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise%20physiology" title=" exercise physiology"> exercise physiology</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a> </p> <a href="https://publications.waset.org/abstracts/188569/exploring-the-synergistic-effects-of-aerobic-exercise-and-cinnamon-extract-on-metabolic-markers-in-insulin-resistant-rats-through-advanced-machine-learning-and-deep-learning-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Interaction of Phytochemicals Present in Green Tea, Honey and Cinnamon to Human Melanocortin 4 Receptor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinmayee%20Choudhury">Chinmayee Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human Melanocortin 4 Receptor (HMC4R) is one of the most potential drug targets for the treatment of obesity which controls the appetite. A deletion of the residues 88-92 in HMC4R is sometimes the cause of severe obesity in the humans. In this study, two homology models are constructed for the normal as well as mutated HMC4Rs and some phytochemicals present in Green Tea, Honey and Cinnamon have been docked to them to study their differential binding to the normal and mutated HMC4R as compared to the natural agonist α- MSH. Two homology models have been constructed for the normal as well as mutated HMC4Rs using the Modeller9v7. Some of the phytochemicals present in Green Tea, Honey, and Cinnamon, which have appetite suppressant activities are constructed, minimized and docked to these normal and mutated HMC4R models using ArgusLab 4.0.1. The mode of binding of the phytochemicals with the Normal and Mutated HMC4Rs have been compared. Further, the mode of binding of these phytochemicals with that of the natural agonist α- Melanocyte Stimulating Hormone(α-MSH) to both normal and mutated HMC4Rs have also been studied. It is observed that the phytochemicals Kaempherol, Epigallocatechin-3-gallate (EGCG) present in Green Tea and Honey, Isorhamnetin, Chlorogenic acid, Chrysin, Galangin, Pinocambrin present in Honey, Cinnamaldehyde, Cinnamyl acetate and Cinnamyl alcohol present in Cinnamon have capacity to form more stable complexes with the Mutated HMC4R as compared to α- MSH. So they may be potential agonists of HMC4R to suppress the appetite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HMC4R" title="HMC4R">HMC4R</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-MSH" title=" α-MSH"> α-MSH</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=photochemical" title=" photochemical"> photochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=appetite%20suppressant" title=" appetite suppressant"> appetite suppressant</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modelling" title=" homology modelling"> homology modelling</a> </p> <a href="https://publications.waset.org/abstracts/78541/interaction-of-phytochemicals-present-in-green-tea-honey-and-cinnamon-to-human-melanocortin-4-receptor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Chemical and Sensorial Evaluation of a Newly Developed Bean Jam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raquel%20P.%20F.%20Guin%C3%A9">Raquel P. F. Guiné</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20R.%20B.%20Figueiredo"> Ana R. B. Figueiredo</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20M.%20R.%20Correia"> Paula M. R. Correia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20J.%20Gon%C3%A7alves"> Fernando J. Gonçalves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present work was to develop an innovative food product with nutritional properties as well as appealing organoleptic qualities. The product, a jam, was prepared with the beans’ cooking water combined with fresh apple or carrot, without the addition of any conservatives. Three different jams were produced: bean and carrot, bean and apple and bean, apple and cinnamon. The developed products underwent a sensorial analysis that revealed that the bean, apple and cinnamon jam was globally better accepted. However, with this study, the consumers determined that the bean and carrot jam had the most attractive color and the bean and apple jam the better consistency. Additionally, it was possible to analyze the jams for their chemical components, namely fat, fiber, protein, sugars and antioxidant activity. The obtained results showed that the bean and carrot jam had the highest lipid content, while the bean, apple and cinnamon jam had the highest fiber content, when compared to the other two jams. Regarding the sugar content, both jams with apple revealed similar sugar values, which were higher than the sugar content of the bean and carrot jam. The antioxidant activity was on average 10 mg TE/g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bean%20jam" title="Bean jam">Bean jam</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorial%20analysis" title=" sensorial analysis"> sensorial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20acceptability" title=" product acceptability"> product acceptability</a> </p> <a href="https://publications.waset.org/abstracts/21969/chemical-and-sensorial-evaluation-of-a-newly-developed-bean-jam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Micro/Nano-Sized Emulsions Exhibit Antifungal Activity against Cucumber Downy Mildew</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Fen%20Tu">Kai-Fen Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenn-Wen%20Huang"> Jenn-Wen Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao-Tung%20%20Lin"> Yao-Tung Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cucumber is a major economic crop in the world. The global production of cucumber in 2017 was more than 71 million tonnes. Nonetheless, downy mildew, caused by Pseudoperonospora cubensis, is a devastating and common disease on cucumber in around 80 countries and causes severe economic losses. The long-term usage of fungicide also leads to the occurrence of fungicide resistance and decreases host resistance. In this study, six types of oil (neem oil, moringa oil, soybean oil, cinnamon oil, clove oil, and camellia oil) were selected to synthesize micro/nano-sized emulsions, and the disease control efficacy of micro/nano-sized emulsions were evaluated. Moreover, oil concentrations (0.125% - 1%) and droplet size of emulsion were studied. Results showed cinnamon-type emulsion had the best efficacy among these oils. The disease control efficacy of these emulsions increased as the oil concentration increased. Both disease incidence and disease severity were measured by detached leaf and pot experiment, respectively. For the droplet size effect, results showed that the 114 nm of droplet size synthesized by 0.25% cinnamon oil emulsion had the lowest disease incidence (6.67%) and lowest disease severity (33.33%). The release of zoospore was inhibited (5.33%), and the sporangia germination was damaged. These results suggest that cinnamon oil emulsion will be a valuable and environmentally friendly alternative to control cucumber downy mildew. The economic loss caused by plant disease could also be reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=downy%20mildew" title="downy mildew">downy mildew</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion" title=" emulsion"> emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20droplet%20size" title=" oil droplet size"> oil droplet size</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20protectant" title=" plant protectant"> plant protectant</a> </p> <a href="https://publications.waset.org/abstracts/121602/micronano-sized-emulsions-exhibit-antifungal-activity-against-cucumber-downy-mildew" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Evaluation of Chromium Fortified-Parboiled Rice Coated with Herbal Extracts: Resistant Starch, and Glycemic Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisnu%20Adi%20Yulianto">Wisnu Adi Yulianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Chatarina%20%20Lilis%20Suryani"> Chatarina Lilis Suryani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamilisti%20Susiati"> Mamilisti Susiati</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendy%20Indra%20Permana"> Hendy Indra Permana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parboiled rice was developed to produce rice that has low glycemic index, especially for diabetics. Yet, parboiled rice is not enough because diabetics also lack of chromium. The sign of chromium (Cr) deficiency in diabetics is impaired glucose tolerance. Cr fortification was done for increasing Cr content in rice. Naturally-occurring compounds that have been proven to improve insulin sensitivity include Cr and polyphenol found in cinnamon, pandan and bay leaf. This research aimed to evaluate content of resistant starch and glycemic index of Cr - fortified - parboiled rice (Cr-PR) coated with herbal extracts. Variety of unhulled rice and forticant used in the experiment were Ciherang and CrCl3, respectively. Three herbal extracts used were cinnamon, pandan and bay leaf. Each concentration of herbal extracts in the amount of 3%, 6%, and 9% were added in the coating substance to coat Cr-PR. Resistant starch (RS) content was determined by enzymatic process through glucooxydase method. Testing of the GI was conducted on 18 non-diabetic volunteers. RS content of Cr-PR coated with herbal extracts ranged between 8.27 – 8.84 % (dry weight). Cr-PR coated with all herbal extracts of 3% concentration had higher RS content than the ones with herbal extracts of 6% and 9% concentration (P <0.05). Value of the rice GI ranged 29 - 40. The lowest GI (29-30) was attained by the rice coated with enrichment of 6-9% cinnamon extract. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr-fortified-parboiled%20rice" title=" Cr-fortified-parboiled rice"> Cr-fortified-parboiled rice</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20index" title=" glycemic index"> glycemic index</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20extracts" title=" herbal extracts"> herbal extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=resistant%20starch" title=" resistant starch"> resistant starch</a> </p> <a href="https://publications.waset.org/abstracts/37604/evaluation-of-chromium-fortified-parboiled-rice-coated-with-herbal-extracts-resistant-starch-and-glycemic-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Evaluation of Chromium Fortified - Parboiled Rice Coated with Herbal Extracts: Cooking Quality and Sensory Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisnu%20Adi%20Yulianto">Wisnu Adi Yulianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Agus%20Slamet"> Agus Slamet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Luwihana"> Sri Luwihana</a>, <a href="https://publications.waset.org/abstracts/search?q=Septian%20Albar%20Dwi%20Suprayogi"> Septian Albar Dwi Suprayogi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parboiled rice was developed to produce rice, which has a low glycemic index for diabetics. However, diabetics also have a chromium (Cr) deficiency. Thus, it is important to fortify rice with Cr to increase the Cr content. Moreover, parboiled rice becomes rancid easily and has a musty odor, rendering the rice unfavorable. Natural herbs such as pandan leaves (Pandanus amaryllifolius Roxb.), bay leaves (Syzygium polyanthum [Wigh] Walp) and cinnamon bark powder (Cinnamomon cassia) are commonly added to food as aroma enhancers. Previous research has shown that these herbs could improve insulin sensitivity. The purpose of this study was to evaluate the effect of herbal extract coatings on the cooking quality and the preference level of chromium fortified - parboiled rice (CFPR). The rice grain variety used for this experiment was Ciherang and the fortificant was CrCl3. The three herbal extracts used for coating the CFPR were cinnamon, pandan and bay leaf, with concentration variations of 3%, 6%, and 9% (w/w) for each of the extracts. The samples were analyzed for their alkali spreading value, cooking time, elongation, water uptake ratio, solid loss, colour and lightness; and their sensory properties were determined by means of an organoleptic test. The research showed that coating the CFPR with pandan and cinnamon extracts at a concentration of 3% each produced a preferred CFPR. When coated with those herbal extracts the CFPR had the following cooking quality properties: alkali spreading value 5 (intermediate gelatinization temperature), cooking time, 26-27 min, color value, 14.95-15.00, lightness, 42.30 – 44.06, elongation, 1.53 – 1.54, water uptake ratio , 4.05-4.06, and solid loss, 0.09/100 g – 0.13 g/100 g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bay%20leaves" title="bay leaves">bay leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=cinnamon" title=" cinnamon"> cinnamon</a>, <a href="https://publications.waset.org/abstracts/search?q=pandan%20leaves" title=" pandan leaves"> pandan leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=parboiled%20rice" title=" parboiled rice"> parboiled rice</a> </p> <a href="https://publications.waset.org/abstracts/35633/evaluation-of-chromium-fortified-parboiled-rice-coated-with-herbal-extracts-cooking-quality-and-sensory-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Effects of Fatty Acid Salts and Spices on Dermatophagoides farinae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yumeho%20Obata">Yumeho Obata</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dermatophagoides farinae is major mite allergens in indoors. D. farinae is often swarm over powder products (e.g. wheat flour), because it feeds on starch or protein that are included in them. Eating powder products which are mixed D.farinae causes various allergic symptoms. Therefore, the creation of food additive agents with high safety and control of mite effect is required. Fatty acid salts and spices are known that have pesticidal activities. This study describes the effects of fatty acid salts and spices against Dermatophagoides farinae. Materials and Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. C12Cu and C12Zn were selected as other fatty acid salts. Cayenne pepper, habanero, Japanese pepper, mustard, jalapeno pepper, curry aroma and cinnamon were selected as spices. D. farina, have been cultured in laboratory. To rear the mites, double-soled dishes containing of sterilized food were put on the big plastic container (30.0 × 20.0 × 20.0cm) which had 100% ammonium nitrate solution in the bottom. Plastic container was placed on incubator at 25 °C and 64 % relative humidity (RH) under dark condition. Sterilized food composed of dried bonito flakes and dried yeast (Ebios), 1:1 by weight. The antiproliferative method, sample and medium culture were mixed in double-soled dish and kept at 25 °C and 64 % RH. Decrease rates were determined 1 week and 4 week after treatment under microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that the fatty acids potassium showed no antiproliferative effects against D. farinae. On the other hand, Japanese pepper, mustard, curry aroma and cinnamon were effective to decrease propagative rate (over 80 %) after treatment for 1 week against D. farina. Japanese pepper, curry aroma and cinnamon were effective to decrease propagative rate (approximately 100 %) after treatment for 4 weeks against D. farina. Especially, Japanese pepper and cinnamon showed the fasted and the most consecutive antiproliferative effects. These results indicate that Japanese pepper and cinnamon have high antiproliferative effects against D. farina and suggest spices will be used as a food additive agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20salts" title="fatty acid salts">fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=spices" title=" spices"> spices</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20effects" title=" antiproliferative effects"> antiproliferative effects</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatophagoides%20farinae" title=" dermatophagoides farinae"> dermatophagoides farinae</a> </p> <a href="https://publications.waset.org/abstracts/49384/effects-of-fatty-acid-salts-and-spices-on-dermatophagoides-farinae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Statistical Design of Central Point for Evaluate the Combination of PH and Cinnamon Essential Oil on the Antioxidant Activity Using the ABTS Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Minor-P%C3%A9rez">H. Minor-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Mota-Silva"> A. M. Mota-Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ortiz-Barrios"> S. Ortiz-Barrios</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Substances of vegetable origin with antioxidant capacity have a high potential for application on the conservation of some foods, can prevent or reduce for example oxidation of lipids. However a food is a complex system whose wide variety of components wich can reduce or eliminate this antioxidant capacity. The antioxidant activity can be determined with the ABTS technique. The radical ABTS+ is generated from the acid 2, 2´ - Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). This radical is a composite color bluish-green, stable and with a spectrum of absorption into the UV-visible. The addition of antioxidants causes discoloration, value that can be reported as a percentage of inhibition of the cation radical ABTS+. The objective of this study was evaluated the effect of the combination of the pH and the essential oil of cinnamon (EOC) on inhibition of the radical ABTS+, using statistical design of central point (Design Expert) to obtain mathematical models that describe this phenomenon. Were evaluated 17 treatments with combinations of pH 5, 6 and 7 (citrate-phosphate buffer) and the concentration of essential oil of cinnamon (C): 0 µg/mL, 100 µg/mL and 200 µg/mL. The samples were analyzed using the ABTS technique. The reagent was dissolved in methanol 80% to standardized the absorbance to 0.7 +/- 0.1 at 754 nm. Then samples were mixed with reagent standardized ABTS and after 1 min and 7 min absorbance was read for each treatment at 754 nm. Was used a curve pattern with vitamin C and reported the values as inhibition (%) of radical ABTS+. The statistical analysis shows the experimental results were adjusted to a quadratic model, to the times of 1 min and 7 min. This model describes the influence of the factors investigated independently: pH and cinnamon essential oil (µg/mL) and the effect of the interaction between pH*C, as well as the square of the pH2 and C2. The model obtained was Y = 10.33684 - 3.98118*pH + 1.17031*C + 0.62745*pH2 - 3.26675*10-3*C2 - 0.013112*pH*C, where Y is the response variable. The coefficient of determination was 0.9949 for 1 min. The equation was obtained at 7 min and = - 10.89710 + 1.52341*pH + 1.32892*C + 0.47953*pH2 - 3.56605*10- *C2 - 0.034687*pH*C. The coefficient of determination was 0.9970. This means that only 1% of the total variation is not explained by the developed models. At 100 µg/mL of EOC was obtained an inhibition percentage of 80%, 84% and 97% for the pH values of 5,6 and 7 respectively, while a value of 200 µg/mL the inhibition (%) was very similar for the treatments. In these values of pH was obtained an inhibition close 97%. In conclusion the pH does not have a significant effect on the antioxidant capacity, while the concentration of EOC was decisive for the antioxidant capacity. The authors acknowledge the funding provided by the CONACYT for the project 131998. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=ABTS%20technique" title=" ABTS technique"> ABTS technique</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil%20of%20cinnamon" title=" essential oil of cinnamon"> essential oil of cinnamon</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20models" title=" mathematical models"> mathematical models</a> </p> <a href="https://publications.waset.org/abstracts/29195/statistical-design-of-central-point-for-evaluate-the-combination-of-ph-and-cinnamon-essential-oil-on-the-antioxidant-activity-using-the-abts-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Synergistic Studies of Liposomes of Clove and Cinnamon Oil in Oral Health Care</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandhya%20Parameswaran">Sandhya Parameswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Prajakta%20Dhuri"> Prajakta Dhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite great improvements in health care, the world oral health report states that dental problems still persist, particularly among underprivileged groups in both developing and developed countries. Dental caries and periodontal diseases are identified as the most important oral health problems globally. Acidic foods and beverages can affect natural teeth, and chronic exposure often leads to the development of dental erosion, abrasion, and decay. In recent years, there has been an increased interest toward essential oils. These are secondary metabolites and possess antibacterial, antifungal and antioxidant properties. Essential oils are volatile and chemically unstable in the presence of air, light, moisture and high temperature. Hence many novel methods like a liposomal encapsulation of oils have been introduced to enhance the stability and bioavailability. This research paper focuses on two essential oils, clove and cinnamon oil. Clove oil was obtained from Syzygium aromaticum Linn using clavengers apparatus. It contains eugenol and β caryophyllene. Cinnamon oil, from the barks of Cinnamomum cassia, contains cinnamaldehyde, The objective of the current research was to develop a liposomal carrier system containing clove and cinnamon oil and study their synergistic activity against dental pathogens when formulated as a gel. Methodology: The essential oil were first tested for their antimicrobial activity against dental pathogens, Lactobacillus acidophillus (MTCC No. 10307, MRS broth) and Streptococcus Mutans (MTCC No .890, Brain Heart Infusion agar). The oils were analysed by UV spectroscopy for eugenol and cinnamaldehyde content. Standard eugenol was linear between 5ppm to 25ppm at 282nm and standard cinnamaldehde from 1ppm to 5pmm at 284nm. The concentration of eugenol in clove oil was found to be 62.65 % w/w, and that of cinnamaldehyde was found to be 5.15%s w/w. The oils were then formulated into liposomes. Liposomes were prepared by thin film hydration method using Phospholipid, Cholesterol, and other oils dissolved in a chloroform methanol (3:1) mixture. The organic solvent was evaporated in a rotary evaporator above lipid transition temperature. The film was hydrated with phosphate buffer (pH 5.5).The various batches of liposomes were characterized and compared for their size, loading rate, encapsulation efficiency and morphology. The prepared liposomes when evaluated for entrapment efficiency showed 65% entrapment for clove and 85% for cinnamon oil. They were also tested for their antimicrobial activity against dental pathogens and their synergistic activity studied. Based on the activity and the entrapment efficiency the amount of liposomes required to prepare 1gm of the gel was calculated. The gel was prepared using a simple ointment base and contained 0.56% of cinnamon and clove liposomes. A simultaneous method of analysis for eugenol and cinnamaldehyde.was then developed using HPLC. The prepared gels were then studied for their stability as per ICH guidelines. Conclusion: It was found that liposomes exhibited spherical shaped vesicles and protected the essential oil from degradation. Liposomes, therefore, constitute a suitable system for encapsulation of volatile, unstable essential oil constituents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cinnamon%20oil" title="cinnamon oil">cinnamon oil</a>, <a href="https://publications.waset.org/abstracts/search?q=clove%20oil" title=" clove oil"> clove oil</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20caries" title=" dental caries"> dental caries</a>, <a href="https://publications.waset.org/abstracts/search?q=liposomes" title=" liposomes"> liposomes</a> </p> <a href="https://publications.waset.org/abstracts/72986/synergistic-studies-of-liposomes-of-clove-and-cinnamon-oil-in-oral-health-care" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Effects of Cinnamon, Garlic, and Yucca Extracts on Growth Performance and Serum Biochemical Parameters in Broilers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anguo%20Chen">Anguo Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Huajie%20Chen"> Huajie Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Caimei%20Yang"> Caimei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qihua%20Hong"> Qihua Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Feng"> Jun Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment was conducted with 360 one-day-old Avian commercial broilers to study the effects of dietary cinnamon extract (CE), garlic extract (GE) and yucca extract (YE) on growth performance and serum biochemical parameters in broilers. The chickens were randomly divided equally into 4 treatment groups, each group with 3 replications, and received the same basal corn-bean diets included a starter from 1 d to 21 d and then a grower until 42 d, added with recommended dose 250 mg/kg CE, 25 mg/kg GE and 10 mg/kg YE to relevant group, respectively. The birds were kept in a stainless steel net coop each replication with 24 h light and were fed and drunk ad libitum. At 21 d and 42 d of age, 6 chicks were respectively picked out from every group and were bled to collect serum samples and intestinal samples for laboratory analysis. The results showed that the average daily gain (ADG) of CE, GE and YE group were increased by 7.20% (P<0.05), 3.43% (P>0.05) and 4.89% (P>0.05), feed gain ratio (F/G) was improved by 9.71% (P<0.05), 3.40% (P>0.05) and 3.40% (P>0.05) compared with the control, respectively. At 21 d of age, the content of serum urea nitrogen (SUN) and serum uric acid (SUA) and the activity of serum xanthine oxidase (SXO) in CE group were reduced by 35.17% (P<0.01), 13.73% (P<0.01) and 16.33% (P<0.05) compared with the control, respectively. At 42 d of age, SUN and SUA level and SXO activity were lowered by 24.35% (P<0.01), 15.49% (P<0.05) and 23.09% (P<0.01), respectively. The SXO activity in CE group was decreased by 14.86% (P<0.01) and 15.34%(P<0.01) compare with GE and YE group, respectively. Also, adding CE, GE and YE into broiler diets resulted in lower UN and UA level of intestinal contents. It is clear that CE was more significantly decreased the SXO activity and SUA levels than GE and YE, especially at the latter period, thereby it may play a more important role in improving the growth performance of broilers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cinnamon%20extract" title="cinnamon extract">cinnamon extract</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20uric%20acid" title=" serum uric acid"> serum uric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20xanthine%20oxidase" title=" serum xanthine oxidase"> serum xanthine oxidase</a> </p> <a href="https://publications.waset.org/abstracts/3707/effects-of-cinnamon-garlic-and-yucca-extracts-on-growth-performance-and-serum-biochemical-parameters-in-broilers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Inhibition of the Activity of Polyphenol Oxidase Enzyme Present in Annona muricata and Musa acuminata by the Experimentally Identified Natural Anti-Browning Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Belinda%20S.%20Weerawardana">Michelle Belinda S. Weerawardana</a>, <a href="https://publications.waset.org/abstracts/search?q=Gobika%20Thiripuranathar"> Gobika Thiripuranathar</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyani%20A.%20Paranagama"> Priyani A. Paranagama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of fresh vegetables and fruits available in the retail markets undergo a physiological disorder in its appearance and coloration, which indeed discourages consumer purchase. A loss of millions of dollars yearly to the food industry had been due to this pronounced color reaction called Enzymatic Browning which is driven due to the catalytic activity by an oxidoreductase enzyme, polyphenol oxidase (PPO). The enzyme oxidizes the phenolic compounds which are abundantly available in fruits and vegetables as substrates into quinones, which could react with proteins in its surrounding to generate black pigments, called melanins, which are highly UV-active compounds. Annona muricata (Katu anoda) and Musa acuminata (Ash plantains) is a fruit and a vegetable consumed by Sri Lankans widely due to their high nutritional values, medicinal properties and economical importance. The objective of the present study was to evaluate and determine the effective natural anti-browning inhibitors that could prevent PPO activity in the selected fruit and vegetable. Enzyme extracts from Annona muricata (Katu anoda) and Musa acuminata (Ash plantains), were prepared by homogenizing with analytical grade acetone, and pH of each enzyme extract was maintained at 7.0 using a phosphate buffer. The extracts of inhibitors were prepared using powdered ginger rhizomes and essential oil from the bark of Cinnamomum zeylanicum. Water extracts of ginger were prepared and the essential oil from Ceylon cinnamon bark was extracted using steam distillation method. Since the essential oil is not soluble in water, 0.1µl of cinnamon bark oil was mixed with 0.1µl of Triton X-100 emulsifier and 5.00 ml of water. The effect of each inhibitor on the PPO activity was investigated using catechol (0.1 mol dm-3) as the substrate and two samples of enzyme extracts prepared. The dosages of the prepared Cinnamon bark oil, and ginger (2 samples) which were used to measure the activity were 0.0035 g/ml, 0.091 g/ml and 0.087 g/ml respectively. The measurements of the inhibitory activity were obtained at a wavelength of 525 nm using the UV-visible spectrophotometer. The results evaluated thus revealed that % inhibition observed with cinnamon bark oil, and ginger for Annona muricata was 51.97%, and 60.90% respectively. The effects of cinnamon bark oil, and ginger extract on PPO activity of Musa acuminata were 49.51%, and 48.10%. The experimental findings thus revealed that Cinnamomum zeylanicum bark oil was a more effective inhibitor for PPO enzyme present in Musa acuminata and ginger was effective for PPO enzyme present in Annona muricata. Overall both the inhibitors were proven to be more effective towards the activities of PPO enzyme present in both samples. These inhibitors can thus be corroborated as effective, natural, non-toxic, anti-browning extracts, which when added to the above fruit and vegetable will increase the shelf life and also the acceptance of the product by the consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-browning%20agent" title="anti-browning agent">anti-browning agent</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20browning" title=" enzymatic browning"> enzymatic browning</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitory%20activity" title=" inhibitory activity"> inhibitory activity</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol%20oxidase" title=" polyphenol oxidase"> polyphenol oxidase</a> </p> <a href="https://publications.waset.org/abstracts/41434/inhibition-of-the-activity-of-polyphenol-oxidase-enzyme-present-in-annona-muricata-and-musa-acuminata-by-the-experimentally-identified-natural-anti-browning-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Antimicrobial Activity of Different Essential Oils in Synergy with Amoxicillin against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naheed%20Niaz">Naheed Niaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimra%20Naeem"> Nimra Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Uzair"> Bushra Uzair</a>, <a href="https://publications.waset.org/abstracts/search?q=Riffat%20Tahira"> Riffat Tahira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibacterial activity of different traditional plants essential oils against clinical isolates of Methicillin-resistant Staphylococcus aureus (MRSA) through disk diffusion method was evaluated. All the tested essential oils, in different concentrations, inhibited growth of S. aureus to varying degrees. Cinnamon and Thyme essential oils were observed to be the “best” against test pathogen. Even at lowest concentration of these essential oils i.e. 25 µl/ml, clear zone of inhibition was recorded 9+0.085mm and 8+0.051mm respectively, and at higher concentrations there was a total reduction in growth of MRSA. The study also focused on analyzing the synergistic effects of essential oils in combination with amoxicillin. Results showed that oregano and pennyroyal mint essential oils which were not very effective alone turned out to be strong synergistic enhancers. The activity increased with increase in concentration of the essential oils. It may be concluded from present results that cinnamon and thyme essential oils could be used as potential antimicrobial source for the treatment of infections caused by Methicillin-resistant Staphylococcus aureus (MRSA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title="Staphylococcus aureus">Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=combination%20therapy" title=" combination therapy"> combination therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20inhibitory%20concentration" title=" minimum inhibitory concentration"> minimum inhibitory concentration</a> </p> <a href="https://publications.waset.org/abstracts/22310/antimicrobial-activity-of-different-essential-oils-in-synergy-with-amoxicillin-against-clinical-isolates-of-methicillin-resistant-staphylococcus-aureus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Functional Snacks Bars: A Healthy Alternative to a Poor Diet Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Istrati">Daniela Istrati</a>, <a href="https://publications.waset.org/abstracts/search?q=Camelia%20%20Vizireanu"> Camelia Vizireanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Camelia%20Grozavu"> Camelia Grozavu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodica%20Mihaela%20Dinica"> Rodica Mihaela Dinica</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In last years, eating habits have changed, and snacking has become more common. Snacking habits, including eating whole fruit, vegetables and crackers, were found to contribute to better overall diet quality, while consuming snacks such as cookies, pastries, sweets, milk desserts and soft drinks was associated with poorer diet quality. The nutritional quality of the snack is very important and choosing nutritious foods as snacks can be beneficial for our health. For this reason, the development of functional snacks bars represents a necessity for this niche market. The aim of this work was to develop some formulations of energizing snack bars with high dietary fibers and antioxidant activity. Snack bars contain both fruits with antioxidant activity and components (cereals and seeds) rich in carbohydrates and polyunsaturated fats that provide energy during sports activities, physical and mental stress. Three types of samples were prepared and stored in refrigerated conditions at 40°C for 30 days. The first sample (S1) contains wheat germs, raw pumpkin seeds, toasted oat flakes, flaxseeds flour, cinnamon honey, raw sunflower seeds, sea buckthorn, amaranth flour, cinnamon and olive oil. The second sample (S2) has the same composition as the first, less flour and cinnamon flour and the honey used was ginger, honey. The third sample (S3) is like the first less amaranth flour and the honey used was buckthorn sea honey. The physicochemical, antioxidant activity, polyphenolic and flavonoid content and sensorial characteristics of the samples were investigated. Results showed that snacks bars had important level of extracted phenolics, flavonoids, fibers, proteins, carbohydrates and fats. Therefore, snack bars may be a convenient functional food, offering an important source of flavonoids and polyphenols, a healthy alternative to a poor diet quality, with balanced nutritional and sensory characteristics that recommend it in the diet of all consumers concerned with maintaining health. Acknowledgment: This study has been founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), No. at Dunarea de Jos University of Galati 21899/ 06.09.2017 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20food" title=" functional food"> functional food</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20buckthorn" title=" sea buckthorn"> sea buckthorn</a>, <a href="https://publications.waset.org/abstracts/search?q=snack%20bars" title=" snack bars"> snack bars</a> </p> <a href="https://publications.waset.org/abstracts/84990/functional-snacks-bars-a-healthy-alternative-to-a-poor-diet-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Elimination of Mixed-Culture Biofilms Using Biological Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Vidacs">Anita Vidacs</a>, <a href="https://publications.waset.org/abstracts/search?q=Csaba%20Vagvolgyi"> Csaba Vagvolgyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Judit%20Krisch"> Judit Krisch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The attachment of microorganisms to different surfaces and the development of biofilms can lead to outbreaks of food-borne diseases and economic losses due to perished food. In food processing environments, bacterial communities are generally formed by mixed cultures of different species. Plants are sources of several antimicrobial substances that may be potential candidates for the development of new disinfectants. We aimed to investigate cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris). Essential oils and their major components (cinnamaldehyde, terpinene-4-ol, and thymol) on four-species biofilms of E. coli, L. monocytogenes, P. putida, and S. aureus. Experiments had three parts: (i) determination of minimum bactericide concentration and the killing time with microdilution methods; (ii) elimination of the four-species 24– and 168-hours old biofilm from stainless steel, polypropylene, tile and wood surfaces; and (iii) comparing the disinfectant effect with industrial used per-acetic based sanitizer (HC-DPE). E. coli and P. putida were more resistant to investigated essential oils and their main components in biofilm, than L. monocytogenes and S. aureus. These Gram-negative bacteria were detected on the surfaces, where the natural based disinfectant had not total biofilm elimination effect. Most promoted solutions were the cinnamon essential oil and the terpinene-4-ol that could eradicate the biofilm from stainless steel, polypropylene and even from tile, too. They have a better disinfectant effect than HC-DPE. These natural agents can be used as alternative solutions in the battle against bacterial biofilms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=surfaces" title=" surfaces"> surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=terpinene-4-ol" title=" terpinene-4-ol"> terpinene-4-ol</a> </p> <a href="https://publications.waset.org/abstracts/116994/elimination-of-mixed-culture-biofilms-using-biological-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Use of Antioxidant and Antimicrobial Properties of Plant Extracts for Increased Safety and Sustainability of Dairy Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loreta%20Serniene">Loreta Serniene</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Sekmokiene"> Dalia Sekmokiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Justina%20Tomkeviciute"> Justina Tomkeviciute</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Lauciene"> Lina Lauciene</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaida%20Andruleviciute"> Vaida Andruleviciute</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrida%20Sinkeviciene"> Ingrida Sinkeviciene</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Kondrotiene"> Kristina Kondrotiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Neringa%20Kasetiene"> Neringa Kasetiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Mindaugas%20Malakauskas"> Mindaugas Malakauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important areas of product development and research in the dairy industry is the product enrichment with active ingredients as well as leading to increased product safety and sustainability. The most expanding field of the active ingredients is the various plants' CO₂ extracts with aromatic, antioxidant and antimicrobial properties. In this study, 15 plant extracts were evaluated based on their antioxidant, antimicrobial properties as well as sensory acceptance indicators for the development of new dairy products. In order to increase the total antioxidant capacity of the milk products, it was important to determine the content of phenolic compounds and antioxidant activity of CO₂ extract. The total phenolic content of fifteen different commercial CO₂ extracts was determined by the Folin-Ciocalteu reagent and expressed as milligrams of the Gallic acid equivalents (GAE) in gram of extract. The antioxidant activities were determined by 2.2′-azinobis-(3-ethylbenzthiazoline)-6-sulfonate (ABTS) methods. The study revealed that the antioxidant activities of investigated CO₂ extract vary from 4.478-62.035 µmole Trolox/g, while the total phenolic content was in the range of 2.021-38.906 mg GAE/g of extract. For the example, the estimated antioxidant activity of Chinese cinnamon (Cinammonum aromaticum) CO₂ extract was 62.023 ± 0.15 µmole Trolox/g and the total flavonoid content reached 17.962 ± 0.35 mg GAE/g. These two parameters suggest that cinnamon could be a promising supplement for the development of new cheese. The inhibitory effects of these essential oils were tested by using agar disc diffusion method against pathogenic bacteria, most commonly found in dairy products. The obtained results showed that essential oil of lemon myrtle (Backhousia citriodora) and cinnamon (Cinnamomum cassia) has antimicrobial activity against E. coli, S. aureus, B. cereus, P. florescens, L. monocytogenes, Br. thermosphacta, P. aeruginosa and S. typhimurium with the diameter of inhibition zones variation from 10 to 52 mm. The sensory taste acceptability of plant extracts in combination with a dairy product was evaluated by a group of sensory evaluation experts (31 individuals) by the criteria of overall taste acceptability in the scale of 0 (not acceptable) to 10 (very acceptable). Each of the tested samples included 200g grams of natural unsweetened greek yogurt without additives and 1 drop of single plant extract (essential oil). The highest average of overall taste acceptability was defined for the samples with essential oils of orange (Citrus sinensis) - average score 6.67, lemon myrtle (Backhousia citriodora) – 6.62, elderberry flower (Sambucus nigra flos.) – 6.61, lemon (Citrus limon) – 5.75 and cinnamon (Cinnamomum cassia) – 5.41, respectively. The results of this study indicate plant extracts of Cinnamomum cassia and Backhousia citriodora as a promising additive not only to increase the total antioxidant capacity of the milk products and as alternative antibacterial agent to combat pathogenic bacteria commonly found in dairy products but also as a desirable flavour for the taste pallet of the consumers with expressed need for safe, sustainable and innovative dairy products. Acknowledgment: This research was funded by the European Regional Development Fund according to the supported activity 'Research Projects Implemented by World-class Researcher Groups' under Measure No. 01.2.2-LMT-K-718. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20properties" title="antioxidant properties">antioxidant properties</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20properties" title=" antimicrobial properties"> antimicrobial properties</a>, <a href="https://publications.waset.org/abstracts/search?q=cinnamon" title=" cinnamon"> cinnamon</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20plant%20extracts" title=" CO₂ plant extracts"> CO₂ plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20products" title=" dairy products"> dairy products</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=lemon%20myrtle" title=" lemon myrtle"> lemon myrtle</a> </p> <a href="https://publications.waset.org/abstracts/100956/the-use-of-antioxidant-and-antimicrobial-properties-of-plant-extracts-for-increased-safety-and-sustainability-of-dairy-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Isolation and Characterization of Actinophages Infecting Streptomyces scabies in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Zahran">D. Zahran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20AlKhazindar"> M. AlKhazindar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalil"> M. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20T.%20A.%20Sayed"> E. T. A. Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Streptomyces scabies is a pathogenic actinomycete that infects potato crop causing severe production losses. Actinophages affect the composition and diversity of the bacterial population, thereby, can be used as a biological control. Samples of actinomycetes and phages were collected from different cultivated soils including farms of Faculty of Science, Faculty of Agriculture and different locations in Giza, Egypt. Actinomycetes were identified by using biochemical, morphological tests and molecular studies using 16S rRNA sequencing. Two specific phages (E1 and E2) against Streptomyces scabies and other hosts were isolated. Phages were identified using dilution end point (DEP), longevity in vitro (LIV), thermal inactivation point (TIP), host range and electron microscopy. PhageE1 was characterized by 10-8 (DEP),180 days(LIV), 95°C(TIP), narrow host range and electron microscopy showed ahead (59.9 nm) and neck (10.4nm). On the other hand phageE2 had 10-20 (DEP),180 days(LIV), 90°C(TIP), and the size of head was (67.2 nm) and tail (114nm). Antiviral activity was also studied using different chemicals (NaCL, KCL, CaCL2, BaCL2, CoCL2, AgNO3, ALCL3and HgCL2) with different concentrations and different plant extracts with different concentrations (star anise, tea, tillia, peppermint, ginger, cumin, chamomile, turmeric cinnamon, marjoram and black cumin). Both Phage E1and phage E2 were vulnerable to (cumin, ginger, chamomile, guavas leaves and star anise) but resistant to (Tillie, marjoram, fennelflower seeds, peppermint, and cinnamon). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potato%20scab" title="potato scab">potato scab</a>, <a href="https://publications.waset.org/abstracts/search?q=actinophages" title=" actinophages"> actinophages</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=TIP" title=" TIP"> TIP</a>, <a href="https://publications.waset.org/abstracts/search?q=DEP" title=" DEP"> DEP</a>, <a href="https://publications.waset.org/abstracts/search?q=LIV" title=" LIV"> LIV</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral%20activity" title=" antiviral activity"> antiviral activity</a> </p> <a href="https://publications.waset.org/abstracts/34520/isolation-and-characterization-of-actinophages-infecting-streptomyces-scabies-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Antiglycemic Activity of Raw Plant Materials as Potential Components of Functional Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Flaczyk">Ewa Flaczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Przeor"> Monika Przeor</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Kobus-Cisowska"> Joanna Kobus-Cisowska</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B3zef%20Korczak"> Józef Korczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper was to collect the information concerning the most popular raw plant materials of antidiabetic activity, in a context of functional food developing production. The elaboration discusses morphological elements possible for an application in functional food production of the plants such as: common bean, ginger, Ceylon cinnamon, white mulberry, fenugreek, French lilac, ginseng, jambolão, and bitter melon. An activity of bioactive substances contained in these raw plant materials was presented, pointing their antiglycemic and also hypocholesterolemic, antiarthritic, antirheumatic, antibacterial, and antiviral activity in the studies on humans and animals. Also the genesis of functional food definition was presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiglycemic%20activity" title="antiglycemic activity">antiglycemic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20plant%20materials" title=" raw plant materials"> raw plant materials</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20food" title=" functional food"> functional food</a>, <a href="https://publications.waset.org/abstracts/search?q=food" title=" food"> food</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20sciences" title=" nutritional sciences"> nutritional sciences</a> </p> <a href="https://publications.waset.org/abstracts/4153/antiglycemic-activity-of-raw-plant-materials-as-potential-components-of-functional-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Detection and Identification of Chlamydophila psittaci in Asymptomatic and Symptomatic Parrots in Isfahan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Moradi%20Sarmeidani">Mehdi Moradi Sarmeidani</a>, <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Keyhani"> Peyman Keyhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Momtaz"> Hasan Momtaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chlamydophila psittaci is a avian pathogen that may cause respiratory disorders in humans. Conjunctival and cloacal swabs from 54 captive psittacine birds presented at veterinary clinics were collected to determine the prevalence of C. psittaci in domestic birds in Isfahan. Samples were collected during 2014 from a total of 10 different species of parrots, with African gray(33), Cockatiel lutino(3), Cockatiel gray(2), Cockatiel cinnamon(1), Pearl cockatiel(6), Timneh African grey(1), Ringneck parakeet(2), Melopsittacus undulatus(1), Alexander parakeet(2), Green Parakeet(3) being the most representative species sampled. C. psittaci was detected in 27 (50%) birds using molecular detection (PCR) method. The detection of this bacterium in captive psittacine birds shows that there is a potential risk for human whom has a direct contact and there is a possibility of infecting other birds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlamydophila%20psittaci" title="chlamydophila psittaci">chlamydophila psittaci</a>, <a href="https://publications.waset.org/abstracts/search?q=psittacine%20birds" title=" psittacine birds"> psittacine birds</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Isfahan" title=" Isfahan"> Isfahan</a> </p> <a href="https://publications.waset.org/abstracts/39281/detection-and-identification-of-chlamydophila-psittaci-in-asymptomatic-and-symptomatic-parrots-in-isfahan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Protective Effect of Cinnamomum zeylanicum Bark Extract against Doxorubicin Induced Cardiotoxicity: A Preliminary Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20N.%20Sandamali">J. A. N. Sandamali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Hewawasam"> R. P. Hewawasam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20P.%20W.%20Jayatilaka"> K. A. P. W. Jayatilaka</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20K.%20B.%20Mudduwa"> L. K. B. Mudduwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Doxorubicin is widely used in the treatment of solid organ tumors and hematological malignancies, but the dose-dependent cardiotoxicity due to free radical formation compromises its clinical utility. Therapeutic strategies which enhance cellular endogenous defense systems have been identified as promising approaches to combat oxidative stress-associated conditions. Cinnamomum zeylanicum (Ceylon cinnamon) has a number antioxidant compounds, which can effectively scavenge reactive oxygen including superoxide anions, hydroxyl radicals and as well as other free radicals. Therefore, the objective of the study was to elucidate the most effective dose of Cinnamomum bark extract which ameliorates doxorubicin-induced cardiotoxicity. Materials and methods: Wistar rats were divided into seven groups of 10 animals in each. Group 1: normal control (distilled water, orally, for 14 days, 10 mL/kg saline, ip, after 16 hours fast on the 11th day); Group 2: doxorubicin control (distilled water, orally, for 14 days, 18 mg/kg doxorubicin, ip, after 16 hour fast on the 11th day); Groups 3-7: five doses of freeze dried aqueous bark extracts (0.125, 0.25, 0.5, 1.0, 2.0g/kg, orally, daily for 14 days, 18 mg/kg doxorubicin, ip, after 16 hours fast on the 11th day). Animals were sacrificed on the 15th day and blood was collected for the estimation of cardiac troponin I (cTnI), AST and LDH concentrations and myocardial tissues were collected for histopathological assessment of myocardial damage and irreversible changes were graded by developing a score. Results: cTnI concentration of groups 1-7 were 0, 161.9, 128.6, 95.9, 38, 19.41 & 12.36 pg/mL showing significant differences (p<0.05) between group 2 and groups 4-7. In groups 1-7, serum AST concentration were 26.82, 68.1, 37.18, 36.23, 26.8, 26.62 & 22.43U/L and LDH concentrations were 1166.13, 2428.84, 1658.35, 1474.34, 1277.58, 1110.21 & 974.40U/L and a significant difference (p<0.05) was observed between group 2 and groups 3-7. The maximum score for myocardial necrosis was observed in group 2. Parallel to the increase of the dosage of plant extract, a gradual reduction of the score for myocardial necrosis was observed in groups 3-7. Reversible histological changes such as vacuolation, congestion were observed in group 2 and all plant treated groups. Haemorrhages, inflammatory cell infiltrations, and interstitial oedema were observed in group 2, but absent in groups treated with higher doses of the plant extract. Discussion & Conclusion: According to the in vitro antioxidant assays performed, Cinnamomum zeylanicum (Ceylon cinnamon) bark possesses high amounts of polyphenolic substances and high antioxidant activity. The present study showed that Cinnamomum zeylanicum extract at 2.0 g/kg possesses the most significant cardioprotective effect against doxorubicin-induced cardiotoxicity. It can be postulated that pretreatment with Cinnamomum bark extract may replenish the cardiomyocytes with antioxidants that are needed for the defense against oxidative stress induced by doxorubicin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardioprotection" title="cardioprotection">cardioprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20zeylanicum" title=" Cinnamomum zeylanicum"> Cinnamomum zeylanicum</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radicals" title=" free radicals"> free radicals</a> </p> <a href="https://publications.waset.org/abstracts/84919/protective-effect-of-cinnamomum-zeylanicum-bark-extract-against-doxorubicin-induced-cardiotoxicity-a-preliminary-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Unconventional Strategies for Combating Multidrug Resistant Bacterial Biofilms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheir%20Mohamed%20Fathey">Soheir Mohamed Fathey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofilms are complex biological communities which are hard to be eliminated by conventional antibiotic administration and implemented in eighty percent of humans infections. Green remedies have been used for centuries and have shown obvious effects in hindering and combating microbial biofilm infections. Nowadays, there has been a growth in the number of researches on the anti-biofilm performance of natural agents such as plant essential oil (EOs) and propolis. In this study, we investigated the antibiofilm performance of various natural agents, including four essential oils (EOs), cinnamon (Cinnamomum cassia), tea tree (Melaleuca alternifolia), and clove (Syzygium aromaticum), as well as propolis versus the biofilm of both Gram-positive pathogenic bacterium Staphylococcus aureus and Gram-negative pathogenic bacterium Pseudomonas aeruginosa which are major human and animal pathogens rendering a high risk due to their biofilm development ability. The antibiofilm activity of the tested agents was evaluated by crystal violet staining assay and detected by scanning electron and fluorescent microscopy. Antibiofilm performance declared a potent effect of the tested products versus the tested bacterial biofilms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent" title=" fluorescent"> fluorescent</a> </p> <a href="https://publications.waset.org/abstracts/160279/unconventional-strategies-for-combating-multidrug-resistant-bacterial-biofilms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Antibacterial Activity of Trans-Cinnamaldehyde and Geraniol and Their Potential as Ingredients of Biocidal Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daria%20Olkiewicz">Daria Olkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Walczak"> Maciej Walczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the biocidal effects of trans-cinnamaldehyde (a main component of cinnamon oil) and geraniol (a constituent of Pelargonium graveolens essential oil) are presented. The activity of the combination of trans-cinnamaldehyde and geraniol was tested against 3 bacterial strains: Staphylococcus aureus ATCC6538 (Gramm+), Escherichia coli ATCC8739 (Gramm-, Lac+) and Pseudomonas aeruginosa KKP 991(Gramm-, Lac-). The biocidal activity of trans-cinnamaldehyde-geraniol mixture against bacteria mentioned above was evaluated by disk-diffusion method. The model strains were exposed on 1, 2.5, 5 and 10 mg of trans-cinnamaldehyde-geraniol mixture per disk, and all strains were susceptible to this combination of plant compounds. For all microorganisms, also Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) were estimated. For Staphylococcus aureus MIC was 0.0625 mg/ml of the trans-cinnamaldehyde and geraniol mixture, and MBC was 1.25 mg/ml; For Escherichia coli MIC=0.5 mg/ml, MBC=1 mg/ml, and finally Pseudomonas aeruginosa was inhibited in 0.5 mg/ml, and minimal biocidal concentration of tested mixture for it was 1.25 mg/ml. There are also reports about the synergistic working of trans-cinnamaldehyde and geraniol against microorganisms and the antimicrobial activity of polymers enriched with trans-cinnamaldehyde or geraniol, therefore the successful development and introduction to the today life of biocidal polymer enriched with trans-cinnamaldehyde and geraniol are possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=biocidal%20polymers" title=" biocidal polymers"> biocidal polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=geraniol" title=" geraniol"> geraniol</a>, <a href="https://publications.waset.org/abstracts/search?q=trans-cinnamaldehyde" title=" trans-cinnamaldehyde"> trans-cinnamaldehyde</a> </p> <a href="https://publications.waset.org/abstracts/128636/antibacterial-activity-of-trans-cinnamaldehyde-and-geraniol-and-their-potential-as-ingredients-of-biocidal-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Application of Box-Behnken Response Surface Design for Optimization of Essential Oil Based Disinfectant on Mixed Species Biofilm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Vidacs">Anita Vidacs</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rajko"> Robert Rajko</a>, <a href="https://publications.waset.org/abstracts/search?q=Csaba%20Vagvolgyi"> Csaba Vagvolgyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Judit%20Krisch"> Judit Krisch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the optimization of a new disinfectant the number of tests could be decreased and the cost of processing too. Good sanitizers are eco-friendly and allow no resistance evolvement of bacteria. The essential oils (EOs) are natural antimicrobials, and most of them have the Generally Recognized As Safe (GRAS) status. In our study, the effect of the EOs cinnamon, marjoram, and thyme was investigated against mixed species bacterial biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. The optimal concentration of EOs, disinfection time and level of pH were evaluated with the aid of Response Surface Box-Behnken Design (RSD) on 1 day and 7 days old biofilms on metal, plastic, and wood surfaces. The variable factors were in the range of 1-3 times of minimum bactericide concentration (MBC); 10-110 minutes acting time and 4.5- 7.5 pH. The optimized EO disinfectant was compared to industrial used chemicals (HC-DPE, Hypo). The natural based disinfectants were applicable; the acting time was below 30 minutes. EOs were able to eliminate the biofilm from the used surfaces except from wood. The disinfection effect of the EO based natural solutions was in most cases equivalent or better compared to chemical sanitizers used in food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=Box-Behnken%20design" title=" Box-Behnken design"> Box-Behnken design</a>, <a href="https://publications.waset.org/abstracts/search?q=disinfectant" title=" disinfectant"> disinfectant</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/83407/application-of-box-behnken-response-surface-design-for-optimization-of-essential-oil-based-disinfectant-on-mixed-species-biofilm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Deniplant Nutraceuticals for Endometriosis Pain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20Giurgiu">Gheorghe Giurgiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Manole%20Cojocaru"> Manole Cojocaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihnea%20Andrei%20Nicodin"> Mihnea Andrei Nicodin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Inflammation has the main role in the progression of endometriosis. The mechanisms by which endometriosis induces a chronic pain state remain poorly understood. Unfortunately, there is no known cure for endometriosis. But you can manage it with medication and at-home treatments. Some findings have highlighted the main role of inflammation in endometriosis by acting on proliferation, apoptosis, and angiogenesis. The introduction of new agents can be effective in improving the condition of patients; for example, plants are promising sources of bioactive natural components. Objectives: These natural compounds could be interesting strategies in therapy. While there is no absolute cure for this condition, some home remedies can relieve the pain and discomfort it brings. The purpose of this study is to summarize the potential action of Deniplant nutraceuticals in endometriosis by acting on inflammation. Materials and Methods: The primary symptoms of endometriosis are pelvic pain and infertility. The use of Deniplant nutraceuticals could be interesting in disease management for women. Results: Treating pain-related aspects of endometriosis would contribute to the improvement of mental health and daytime function. Because the microbiome can influence inflammation, new therapies can develop through its natural modulation. There are other options, including natural remedies, herbs like cinnamon twigs or licorice root, or supplements such as thiamine, magnesium, or omega-3 fatty acids. Conclusion: Deniplant nutraceuticals can downregulate inflammation in endometriosis. Nevertheless, the limited number of studies focusing on the different interactions of Deniplant nutraceuticals in endometriosis restricts its clear and immediate use in a therapeutic strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endometriosis" title="endometriosis">endometriosis</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniplant%20nutraceuticals" title=" Deniplant nutraceuticals"> Deniplant nutraceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a> </p> <a href="https://publications.waset.org/abstracts/145850/deniplant-nutraceuticals-for-endometriosis-pain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Adverse Effects of Natural Pesticides on Human and Animals: An Experimental Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel-Tawab%20H.%20Mossa">Abdel-Tawab H. Mossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic pesticides are widely used in large-scale worldwide for control pests in agriculture and public health sectors in both developed and developing countries. Although the positive role of pesticides, they have many adverse toxic effects on humans, animals, and the ecosystem. Therefore, in the last few years, scientists have been searching for new active compounds from natural resources as an alternative to synthetic pesticides. Currently, many commercial natural pesticides are available commercially worldwide. These products are recommended for uses in organic farmers and considered as safe pesticides. This paper focuses on the adverse effects of natural pesticides on mammals. Available commercial pesticides in the market contain essential oils (e.g. pepper, cinnamon, and garlic), plant extracts, microorganism (e.g. bacteria, fungi or their toxin), mineral oils and some active compounds from natural recourses e.g. spinosad, neem, pyrethrum, rotenone, abamectin and other active compounds from essential oils (EOs). Some EOs components, e.g., thujone, pulegone, and thymol have high acute toxicity (LD50) is 87.5, 150 and 980 mg/kg. B.wt on mice, respectively. Natural pesticides such as spinosad, pyrethrum, neem, abamectin, and others have toxicological effects to mammals and ecosystem. These compounds were found to cause hematotoxicity, hepato-renal toxicity, biochemical alteration, reproductive toxicity, genotoxicity, and mutagenicity. It caused adverse effects on the ecosystem. Therefore, natural pesticides in general not safe and have high acute toxicity and can induce adverse effects at long-term exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20pesticides" title="natural pesticides">natural pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical" title=" biochemical"> biochemical</a> </p> <a href="https://publications.waset.org/abstracts/101852/adverse-effects-of-natural-pesticides-on-human-and-animals-an-experimental-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Antimicrobial Activity of Some Plant Extracts against Clinical Pathogen and Candida Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwan%20Khalil%20Qader">Marwan Khalil Qader</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20Mohammad%20Abdullah"> Arshad Mohammad Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antimicrobial resistance is a major cause of significant morbidity and mortality globally. Seven plant extracts (Plantago mediastepposa, Quercusc infectoria, Punic granatum, Thymus lcotschyana, Ginger officeinals, Rhus angustifolia and Cinnamon) were collected from different regions of Kurdistan region of Iraq. These plants’ extracts were dissolved in absolute ethanol and distillate water, after which they were assayed in vitro as an antimicrobial activity against Candida tropicalis, Candida albicanus, Candida dublinensis, Candida krusei and Candida glabrata also against 2 Gram-positive (Bacillus subtilis and Staphylococcus aureus) and 3 Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Klebsilla pneumonia). The antimicrobial activity was determined in ethanol extracts and distilled water extracts of these plants. The ethanolic extracts of Q. infectoria showed the maximum activity against all species of Candida fungus. The minimum inhibition zone of the Punic granatum ethanol extracts was 0.2 mg/ml for all microorganisms tested. Klebsilla pneumonia was the most sensitive bacterial strain to Quercusc infectoria and Rhus angustifolia ethanol extracts. Among both Gram-positive and Gram-negative bacteria tested with MIC of 0.2 mg/ml, the minimum inhibition zone of Ginger officeinals D. W. extracts was 0.2 mg/mL against Pseudomonas aeruginosa and Klebsilla pneumonia. The most sensitive bacterial strain to Thymus lcotschyana and Plantago mediastepposa D.W. extracts was S. aureus and E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenic%20bacteria" title=" pathogenic bacteria"> pathogenic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20systems%20engineering" title=" chemical systems engineering"> chemical systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/8700/antimicrobial-activity-of-some-plant-extracts-against-clinical-pathogen-and-candida-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In-Vitro and In-Vivo Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrinal%20Gupta">Mrinal Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rumman"> Mohammad Rumman</a>, <a href="https://publications.waset.org/abstracts/search?q=Babita%20Singh%20Abbas%20Ali%20Mahdi"> Babita Singh Abbas Ali Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivani%20Pandey"> Shivani Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities, including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds, including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric, can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have fewer side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. Methods: HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and the effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed to evaluate the development of the diabetic model. An echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis were analyzed. Results: In vitro BBR had no impact on cell viability up to a concentration of 50μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice, as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. Conclusion: BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glucocorticoid" title="glucocorticoid">glucocorticoid</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=berberine" title=" berberine"> berberine</a>, <a href="https://publications.waset.org/abstracts/search?q=HepG2%20cells" title=" HepG2 cells"> HepG2 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a> </p> <a href="https://publications.waset.org/abstracts/172767/berberine-ameliorates-glucocorticoid-induced-hyperglycemia-an-in-vitro-and-in-vivo-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>