CINXE.COM

Search results for: doxorubicin

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: doxorubicin</title> <meta name="description" content="Search results for: doxorubicin"> <meta name="keywords" content="doxorubicin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="doxorubicin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="doxorubicin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 71</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: doxorubicin</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Cardioprotective Effect of Oleanolic Acid and Urosolic Acid against Doxorubicin-Induced Cardiotoxicity in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameer%20N.%20Goyal">Sameer N. Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandragauda%20R.%20Patil"> Chandragauda R. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oleanolic acid (3/3-hydroxy-olea-12-en-28-oic acid) and its isomer, Ursolic acid (38-hydroxy-urs-12-en-28-oic acid) are triterpenoids compounds which exist widely in plant kingdom in the free acid form or as glycosidic triterpenoids saponins. The aim of the study is to evaluate intravenously administered oleanolic acid and ursolic acid in doxorubicin induced cardiotoxicity. Cardiotoxicity was induced in albino wistar rat with single intravenous injection of doxorubicin at dose of 67.75mg/kg i.v for 48 hrs at 12 hrs interval following doxorubicin administration in the same model cardioprotective effect of amifostine (90 mg/kg i.v, single dose prior 30 min before doxorubicin administration) was evaluated as standard treatment. Induction of cardiotoxicity was confirmed by rise in cardiac markers in serum such as CK–MB, LDH and also by electrocardiographically. The doxorubicin treated group significantly increased in QT interval, serum CK-MB, serum LDH, SGOT, SGPT and antioxidant parameter. Both the treatment group showed significant protective effect on Hemodynamic, electrocardiographic, biochemical, and antioxidant parameters. The oleanolic acid showed slight protective effect in histological lesions in doxorubicin induced cardiotoxicity. Hence, the results indicate that Oleanolic acid has more cardioprotective potential than ursolic acid against doxorubicin induced cardiotoxicity in rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardioprotection" title="cardioprotection">cardioprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=oleanolic%20acid" title=" oleanolic acid"> oleanolic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ursolic%20acid" title=" ursolic acid"> ursolic acid</a> </p> <a href="https://publications.waset.org/abstracts/23229/cardioprotective-effect-of-oleanolic-acid-and-urosolic-acid-against-doxorubicin-induced-cardiotoxicity-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Genistein Suppresses Doxorubicin Associated Genotoxicity in Human Lymphocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Beg">Tanveer Beg</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20H.%20Siddique"> Yasir H. Siddique</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulshan%20Ara"> Gulshan Ara</a>, <a href="https://publications.waset.org/abstracts/search?q=Asfar%20S.%20Azmi"> Asfar S. Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Afzal"> Mohammad Afzal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doxorubicin is a well-known DNA intercalating chemotherapy drug that is widely used for treatment of different cancers. Its clinical utility is limited due to the observed genotoxic side effects on healthy cells suggesting that newer combination and genoprotective regimens are urgently needed for the management of doxorubicin chemotherapy. Some dietary phytochemicals are well known for their protective mechanism of action and genistein from soy is recognized as an anti-oxidant with similar properties. Therefore, the present study investigates the effect of genistein against the genotoxic doses of doxorubicin by assessing chromosomal aberrations, sister chromatid exchanges, cell cycle kinetics, cell viability, apoptosis, and DNA damage markers in cultured human lymphocytes. Our results reveal that genistein treatment significantly suppresses genotoxic damage induced by doxorubicin. It is concluded that genistein has the potential to reduce the genotoxicity induced by anti-cancer drugs, thereby reducing the chances of developing secondary tumors during the therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage%20markers" title=" DNA damage markers"> DNA damage markers</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=genistein" title=" genistein"> genistein</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20lymphocyte%20culture" title=" human lymphocyte culture"> human lymphocyte culture</a> </p> <a href="https://publications.waset.org/abstracts/3421/genistein-suppresses-doxorubicin-associated-genotoxicity-in-human-lymphocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> The Effect of Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Maiuolo">Jessica Maiuolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Irene%20Bava"> Irene Bava</a>, <a href="https://publications.waset.org/abstracts/search?q=Micaela%20Gliozzi"> Micaela Gliozzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincenzo%20Mollace"> Vincenzo Mollace</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doxorubicin is an anthracycline that is commonly used as a chemotherapy drug due to its cytotoxic effects. The clinical use of doxorubicin is limited due to its known cardiotoxic effects. Polyphenols have a wide range of beneficial properties, and particular importance is given to Oleuropein, one of the main polyphenolic compounds of olive oil. The biological mechanisms involved and the role of the endoplasmic reticulum were examined. Olive oil extract and Oleuropein were able to decrease the damage induced by exposure to doxorubicin. In particular, this natural compound was found to reduce cell mortality and oxidative damage, increase lipid content, and decrease the concentration of calcium ions that escaped from the endoplasmic reticulum. In addition, the direct involvement of this cellular organelle was demonstrated by silencing the ATF6 arm of the Unfolded Protein Response, which was activated after treatment with doxorubicin. The protection afforded by pre-treatment with the natural compound of interest, following the early damage induced by DOXO, provided valuable information regarding the potential use of these substances along with chemotherapy treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olea%20europea%20L." title="Olea europea L.">Olea europea L.</a>, <a href="https://publications.waset.org/abstracts/search?q=oleuropein" title=" oleuropein"> oleuropein</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=endoplasmic%20reticulum" title=" endoplasmic reticulum"> endoplasmic reticulum</a>, <a href="https://publications.waset.org/abstracts/search?q=nutraceutical%20support" title=" nutraceutical support"> nutraceutical support</a> </p> <a href="https://publications.waset.org/abstracts/156866/the-effect-of-olea-europea-l-extract-on-doxorubicin-induced-cardiotoxicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> The Influence of Polysaccharide Isolated from Morinda citrifolia Fruit to the Growth of Vero, He-La and T47D Cell Lines against Doxorubicin in vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ediati%20Budi%20Cahyono">Ediati Budi Cahyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Triana%20Hertiani"> Triana Hertiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nauval%20%20Arrazy%20Asawimanda"> Nauval Arrazy Asawimanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahyu%20Puji%20Pratomo"> Wahyu Puji Pratomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Doxorubicin is widely used as a chemotherapeutic drug despite having many side effects. It may cause macrophage dysfunction and decreasing proliferation of lymphocyte. Noni (Morinda citrifolia) fruit which has rich of polysaccharide content has potential as antitumor and immunostimulant effect. The isolation of polysaccharide from Noni fruit has been optimized according to four different methods based on macrophage and lymphocyte activities. We found the highest polysaccharide content from one of the four methods isolation. A method of polysaccharide isolation which has the highest immunostimulant effect was used for further observation as co-chemotherapy. The aim of the study: was to evaluate the isolated polysaccharide from the method of choice as co-chemotherapy of doxorubicin for the growth of Vero, He-La, and T47D cell lines in vitro. The method: in vitro growth assay of Vero, He-La, and T47D cell lines was done using MTT-reduction method, and apoptosis test was done by double staining method to evaluate the induction apoptotic effect of the combination. Every group was treated with doxorubicin and isolated polysaccharide from method of choice with 4 variances of concentrations (25 µg/ml, 50 µg/ml, 100 µg/ml and 200 µg/ml) a long with negative control (doxorubicin only) and normal control (without doxorubicin or polysaccharide administration). Results: The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin against He-La and T47D cell lines influenced the highest cytotoxic effect by suppressing cell viability comparing with doxorubicin only. The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin-induced apoptotic effect the He-La cell line comparing with doxorubicin only. The result of the study: it can be concluded that the combination of polysaccharide fraction and doxorubicin effect more selective toward He-La and T47D cell lines than to Vero cell line. It can be suggested isolated polysaccharide from the method of choice has co-chemotherapy activity against doxorubicin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polysaccharide" title="polysaccharide">polysaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=noni%20fruit" title=" noni fruit"> noni fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cell%20lines" title=" cancer cell lines"> cancer cell lines</a>, <a href="https://publications.waset.org/abstracts/search?q=vero%20cell%20line" title=" vero cell line"> vero cell line</a> </p> <a href="https://publications.waset.org/abstracts/67329/the-influence-of-polysaccharide-isolated-from-morinda-citrifolia-fruit-to-the-growth-of-vero-he-la-and-t47d-cell-lines-against-doxorubicin-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Meticulous Doxorubicin Release from pH-Responsive Nanoparticles Entrapped within an Injectable Thermoresponsive Depot </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huayang%20Yu">Huayang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicola%20Ingram"> Nicola Ingram</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20C.%20Green"> David C. Green</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20D.%20Thornton"> Paul D. Thornton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dual stimuli-controlled release of doxorubicin from gel-embedded nanoparticles is reported. Non-cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)-b-poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH-responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin-loaded nanoparticles could be incorporated within a thermoresponsive poly(2-hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2-hydroxypropyl methacrylate) into aqueous solution. The combination of the poly(2-hydroxypropyl methacrylate) gel and poly(ethylene glycol)-b-poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near-complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in a non-acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site-specific release of chemotherapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoresponsive" title=" thermoresponsive"> thermoresponsive</a> </p> <a href="https://publications.waset.org/abstracts/123917/meticulous-doxorubicin-release-from-ph-responsive-nanoparticles-entrapped-within-an-injectable-thermoresponsive-depot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> The Toxicity of Doxorubicin Connected with Nanotransporters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iva%20Blazkova">Iva Blazkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitava%20Moulick"> Amitava Moulick</a>, <a href="https://publications.waset.org/abstracts/search?q=Vedran%20Milosavljevic"> Vedran Milosavljevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Kopel"> Pavel Kopel</a>, <a href="https://publications.waset.org/abstracts/search?q=Marketa%20Vaculovicova"> Marketa Vaculovicova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vojtech%20Adam"> Vojtech Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rene%20Kizek"> Rene Kizek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doxorubicin is one of the most commonly used and the most effective chemotherapeutic drugs. This antracycline drug isolated from the bacteria Streptomyces peuceticus var. caesius is sold under the trade name Adriamycin (hydroxydaunomycin, hydroxydaunorubicin). Doxorubicin is used in single therapy to treat hematological malignancies (blood cancers, leukaemia, lymphoma), many types of carcinoma (solid tumors) and soft tissue sarcomas. It has many serious side effects like nausea and vomiting, hair lost, myelosupression, oral mucositis, skin reactions and redness, but the most serious one is the cardiotoxicity. Because of the risk of heart attack and congestive heart failure, the total dose administered to patients has to be accurately monitored. With the aim to lower the side effects and to targeted delivery of doxorubicin into the tumor tissue, the different nanoparticles are studied. The drug can be bound on a surface of nanoparticle, encapsulated in the inner cavity, or incorporated into the structure of nanoparticle. Among others, carbon nanoparticles (graphene, carbon nanotubes, fullerenes) are highly studied. Besides the number of inorganic nanoparticles, a great potential exhibit also organic ones mainly lipid-based and polymeric nanoparticle. The aim of this work was to perform a toxicity study of free doxorubicin compared to doxorubicin conjugated with various nanotransporters. The effect of liposomes, fullerenes, graphene, and carbon nanotubes on the toxicity was analyzed. As a first step, the binding efficacy of between doxorubicin and the nanotransporter was determined. The highest efficacy was detected in case of liposomes (85% of applied drug was encapsulated) followed by graphene, carbon nanotubes and fullerenes. For the toxicological studies, the chicken embryos incubated under controlled conditions (37.5 °C, 45% rH, rotation every 2 hours) were used. In 7th developmental day of chicken embryos doxorubicin or doxorubicin-nanotransporter complex was applied on the chorioallantoic membrane of the eggs and the viability was analyzed every day till the 17th developmental day. Then the embryos were extracted from the shell and the distribution of doxorubicin in the body was analyzed by measurement of organs extracts using laser induce fluorescence detection. The chicken embryo mortality caused by free doxorubicin (30%) was significantly lowered by using the conjugation with nanomaterials. The highest accumulation of doxorubicin and doxorubicin nanotransporter complexes was observed in the liver tissue <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title="doxorubicin">doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken%20embryos" title=" chicken embryos"> chicken embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotransporters" title=" nanotransporters"> nanotransporters</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity "> toxicity </a> </p> <a href="https://publications.waset.org/abstracts/24930/the-toxicity-of-doxorubicin-connected-with-nanotransporters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Protective Effects of Ethanolic Purslane Extracts on Doxorubicin-Induced Hepatotoxicity in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Ahmed">Osama M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Walaa%20G.%20Hozayen"> Walaa G. Hozayen</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidy%20Tamer%20Abo%20Sree"> Haidy Tamer Abo Sree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of doxorubicin (4 mg/kg b.w.week) without or with oral administration of ethanolic purslane (Portulaca oleracea) shoot (leaves and stems) extract (50 mg/kg b.w.day) or ethanolic purslane seeds extract (50 mg/kg b.w.day) co-treatments for 6 weeks was evaluated in adult male rats. There was an increase in serum levels of ALT, AST, ALP, GGT and total bilirubin. In addition, hepatic glutathine, glutathione transferase, peroxidase, SOD, CAT activities were decreased while lipid peroxidation in the liver was increased. Co-administration of ethanolic purslane and seed extracts successfully improved the adverse changes in the liver functions with an increase in antioxidants activities and reduction of lipid peroxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatotoxicity" title=" hepatotoxicity"> hepatotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=purslane" title=" purslane"> purslane</a> </p> <a href="https://publications.waset.org/abstracts/30941/protective-effects-of-ethanolic-purslane-extracts-on-doxorubicin-induced-hepatotoxicity-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Effects of Purslane Shoot and Seed Ethanolic Extracts on Doxorubicin-Induced Testicular Toxicity in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walaa%20G.%20Hozayen">Walaa G. Hozayen</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Ahmed"> Osama M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidy%20T.%20Abo%20Sree"> Haidy T. Abo Sree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The clinical usefulness of anthracycline antineoplastic antibiotic, doxorubicin (DOX) is restricted since it has several acute and chronic side effects. The effect of doxorubicin (4 mg/kg b.w/week) without or with oral administration of purslane (Portulaca oleracea) shoot ethanolic extract (50mg/kg b.w./day) and purslane seed ethanolic extract (50mg/kg b.w./day) co-treatments for 6 weeks was evaluated in adult male rats. Serum testosterone luteinizing hormone (LH), follicle stimulating hormone (FSH) level were assayed. Testis lipid peroxidation (indexed by MDA) and antioxidants like glutathione (GSH), glutathione-S-transferase (GST), peroxidase (POX), superoxide dismutase (SOD), catalase (CAT) levels in testis were assessed. The data revealed a significant decrease in serum levels concentration of testosterone, LH and FSH levels in doxorubicin-injected rats. In addition, testis glutathione, glutathione transferase, peroxidase, SOD and CAT levels were decreased while lipid peroxidation concentration in the testis was increased as a result of doxorubicin injection. Co-administration of ethanolic purslane and seed extracts potentially improved the adverse changes in serum testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) levels with an increase in testis antioxidants levels and reduction in lipid peroxidation. In conclusion, it can be suggested that dietary purslane extract supplementation may provide a cushion for a prolonged therapeutic option against DOX testicular toxicity without harmful side effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title="doxorubicin">doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=purslane" title=" purslane"> purslane</a>, <a href="https://publications.waset.org/abstracts/search?q=testis%20function" title=" testis function"> testis function</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title=" antioxidants"> antioxidants</a> </p> <a href="https://publications.waset.org/abstracts/10480/effects-of-purslane-shoot-and-seed-ethanolic-extracts-on-doxorubicin-induced-testicular-toxicity-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Comparative in silico and in vitro Study of N-(1-Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pamita%20Awasthi">Pamita Awasthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirna"> Kirna</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Dogra"> Shilpa Dogra</a>, <a href="https://publications.waset.org/abstracts/search?q=Manu%20Vatsal"> Manu Vatsal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Barthwal"> Ritu Barthwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doxorubicin, also known as adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemias, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhoea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, anti-inflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilino-ethyl)benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 µM where as for doxorubicin is 7.2 µ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doxorubicin" title="Doxorubicin">Doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=auto%20dock" title=" auto dock"> auto dock</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silco" title=" in silco"> in silco</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a> </p> <a href="https://publications.waset.org/abstracts/20279/comparative-in-silico-and-in-vitro-study-of-n-1-methyl-2-oxo-2-n-methyl-anilino-ethyl-benzene-sulfonamide-and-its-analogues-as-an-anticancer-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Doxorubicin and Cyclosporine Loaded PLGA Nanoparticles to Combat Multidrug Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Senthil%20Rajan%20Dharmalingam">Senthil Rajan Dharmalingam</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamala%20Nadaraju"> Shamala Nadaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasan%20Ramamurthy"> Srinivasan Ramamurthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doxorubicin is the most widely used anticancer drugs in chemotherapy treatment. However, problems related to the development of multidrug resistance (MDR) and acute cardiotoxicity have led researchers to investigate alternative forms of administering doxorubicin for cancer therapy. Several methods have been attempted to overcome MDR, including the co-administration of a chemosensitizer inhibiting the efflux caused by ATP binding cassette transporters with anticancer drugs, and the bypass of the efflux mechanism. Co encapsulation of doxorubicin (Dox) and cyclosporine A (CSA) into poly (DL-lactide-co-glycolide) nanoparticles was emulsification-solvent evaporation method using polyvinyl alcohol as emulsion stabilizers. The Dox-CSA loaded nanoparticles were evaluated for particle size, zeta potential and PDI by light scattering analysis and thermal characterizations by differential scanning calorimetry (DSC). Loading efficiency (LE %) and in-vitro dissolution samples were evaluated by developed and validated HPLC method. The optimum particle size obtained is 298.6.8±39.4 nm and polydispersity index (PDI) is 0.098±0.092. Zeta potential is found to be -29.9±4.23. Optimum pH to increase Dox LE% was found 7.1 which gave 42.5% and 58.9% increase of LE% for pH 6.6 and pH 8.6 compared respectively. LE% achieved for Dox is 0.07±0.01 % and CSA is 0.09±0.03%. Increased volume of PVA and weight of PLGA shows increase in size of nanoparticles. DSC thermograms showed shift in the melting peak for the nanoparticles compared to Dox and CSA indicating encapsulation of drugs. In conclusion, these preliminary studies showed the feasibility of PLGA nanoparticles to entrap Dox and CSA and require future in-vivo studies to be performed to establish its potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title="doxorubicin">doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclosporine" title=" cyclosporine"> cyclosporine</a>, <a href="https://publications.waset.org/abstracts/search?q=PLGA" title=" PLGA"> PLGA</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/2542/doxorubicin-and-cyclosporine-loaded-plga-nanoparticles-to-combat-multidrug-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Functionalized SPIO Conjugated with Doxorubicin for Tumor Diagnosis and Chemotherapy Enhanced by Applying Magnetic Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Chin%20Liang">Po-Chin Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Chu%20Chen"> Yung-Chu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Feng%20Chiang"> Chi-Feng Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Ping%20Lin"> Yun-Ping Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Yuan%20Hsieh"> Wen-Yuan Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Win-Li%20Lin"> Win-Li Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to develop super paramagnetic iron oxide (SPIO) nano-particles comprised of a magnetic Fe3O4 core and a shell of aqueous stable self-doped polyethylene glycol (PEG) with a high loading of doxorubicin (SPIO-PEG-D) for tumor theranostics. The in-vivo MRI study showed that there was a stronger T2-weighted signal enhancement for the group under a magnetic field, and hence it indicated that this group had a better accumulation of SPIO-PEG than the group without a magnetic field. In the anticancer evaluation of SPIO-PEG-D, the group with a magnetic field displayed a significantly smaller tumor size than the group without. The overall results show that SPIO-PEG-D nanoparticles have the potential for the application of MRI/monitoring chemotherapy and the therapy can be locally enhanced by applying an external magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20paramagnetic%20iron%20oxide%20nano%20particles" title="super paramagnetic iron oxide nano particles">super paramagnetic iron oxide nano particles</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=chemotherapy" title=" chemotherapy"> chemotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fields" title=" magnetic fields"> magnetic fields</a> </p> <a href="https://publications.waset.org/abstracts/22716/functionalized-spio-conjugated-with-doxorubicin-for-tumor-diagnosis-and-chemotherapy-enhanced-by-applying-magnetic-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> The Effect of Combined Doxorubicin and Dioscorea esculenta on Apoptosis Induction in Human Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dina%20Fatmawati">Dina Fatmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Mubarika"> Sofia Mubarika</a>, <a href="https://publications.waset.org/abstracts/search?q=Mae%20Sri%20Wahyuningsih"> Mae Sri Wahyuningsih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemotherapy for breast cancer is largely ineffective, but innovative combinations of chemotherapeutic agents and natural compounds represent a promising strategy. In our previous study, the combination of Doxorubicin (Dox) and ethanolic extract of Dioscorea esculenta tuber ((EED) was found to have a synergistic effect on T47D human breast cancer cell line. In this study, we investigated the apoptotic effect of the combination on T47D human breast cancer cells and normal fibroblasts cell line and its effects on the expression of Caspase-3 and cleaved poly (ADP-Ribose) Polymerase-1 (cPARP-1) protein. T47D cell lines and fibroblasts cells were treated with the combination of Dox and EED. Apoptotic effect of the combination was determined using flow cytrometry assay. Protein expressions were determined by immunocytochemistry staining. The percentage of apoptotic cells were significantly higher in T47D cell lines (75%) than that of in fibroblast cells (23%). The expression of Caspase 3 (84.53%) and cPARP-1 (83.36%) were significantly higher in the cancer cell lines than those of normal cells. These results indicate that the combination of doxorubicin and Dioscorea esculenta is a promising candidate for the treatment of breast cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dioscorea%20esculenta" title="Dioscorea esculenta">Dioscorea esculenta</a>, <a href="https://publications.waset.org/abstracts/search?q=Doxorubicin" title=" Doxorubicin"> Doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=immunocytochemistry" title=" immunocytochemistry"> immunocytochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cells" title=" cancer cells"> cancer cells</a> </p> <a href="https://publications.waset.org/abstracts/25520/the-effect-of-combined-doxorubicin-and-dioscorea-esculenta-on-apoptosis-induction-in-human-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> In vitro and in vivo Anticancer Activity of Nanosize Zinc Oxide Composites of Doxorubicin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emma%20R.%20Arakelova">Emma R. Arakelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stepan%20G.%20Grigoryan"> Stepan G. Grigoryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Flora%20G.%20Arsenyan"> Flora G. Arsenyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelli%20S.%20Babayan"> Nelli S. Babayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruzanna%20M.%20Grigoryan"> Ruzanna M. Grigoryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20K.%20Sarkisyan"> Natalia K. Sarkisyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel nanosize zinc oxide composites of doxorubicin obtained by deposition of 180 nm thick zinc oxide film on the drug surface using DC-magnetron sputtering of a zinc target in the form of gels (PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO) were studied for drug delivery applications. The cancer specificity was revealed both in in vitro and in vivo models. The cytotoxicity of the test compounds was analyzed against human cancer (HeLa) and normal (MRC5) cell lines using MTT colorimetric cell viability assay. IC50 values were determined and compared to reveal the cancer specificity of the test samples. The mechanistic study of the most active compound was investigated using Flow cytometry analyzing of the DNA content after PI (propidium iodide) staining. Data were analyzed with Tree Star FlowJo software using cell cycle analysis Dean-Jett-Fox module. The in vivo anticancer activity estimation experiments were carried out on mice with inoculated ascitic Ehrlich’s carcinoma at intraperitoneal introduction of doxorubicin and its zinc oxide compositions. It was shown that the nanosize zinc oxide film deposition on the drug surface leads to the selective anticancer activity of composites at the cellular level with the range of selectivity index (SI) from 4 (Starch+NaCMC+Dox+ZnO) to 200 (PEO(gel)+Dox+ZnO) which is higher than that of free Dox (SI = 56). The significant increase in vivo antitumor activity (by a factor of 2-2.5) and decrease of general toxicity of zinc oxide compositions of doxorubicin in the form of the above mentioned gels compared to free doxorubicin were shown on the model of inoculated Ehrlich's ascitic carcinoma. Mechanistic studies of anticancer activity revealed the cytostatic effect based on the high level of DNA biosynthesis inhibition at considerable low concentrations of zinc oxide compositions of doxorubicin. The results of studies in vitro and in vivo behavior of PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO composites confirm the high potential of the nanosize zinc oxide composites as a vector delivery system for future application in cancer chemotherapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticancer%20activity" title="anticancer activity">anticancer activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20specificity" title=" cancer specificity"> cancer specificity</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/1359/in-vitro-and-in-vivo-anticancer-activity-of-nanosize-zinc-oxide-composites-of-doxorubicin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Co-Precipitation Method for the Fabrication of Charge-Transfer Molecular Crystal Nanocapsules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabih%20Al-Kaysi">Rabih Al-Kaysi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When quasi-stable solutions of 9-methylanthracene (pi-electron donor, 0.0005 M) and 1,2,4,5-Tetracyanobenzene (pi-electron acceptor, 0.0005 M) in aqueous sodium dodecyl sulfate (SDS, 0.025 M) were gently mixed, uniform-shaped rectangular charge-transfer nanocrystals precipitated out. These red colored charge-transfer (CT) crystals were composed of a 1:1-mole ratio of acceptor/ donor and are highly insoluble in water/SDS solution. The rectangular crystals morphology is semi hollow with symmetrical twin pockets reminiscent of nanocapsules. For a typical crop of nanocapsules, the dimensions are 21 x 6 x 0.5 microns with an approximate hollow volume of 1.5 x 105 nm3. By varying the concentration of aqueous SDS, mixing duration and incubation temperature, we can control the size and volume of the nanocapsules. The initial number of CT seed nanoparticles, formed by mixing the D and A solutions, determined the number and dimensions of the obtained nanocapsules formed after several hours of incubation under still conditions. Prolonged mixing of the donor and acceptor solutions resulted in plenty of initial seeds hence smaller nanocapsules. Short mixing times yields less seed formation and larger micron-sized capsules. The addition of Doxorubicin in situ with the quasi-stable solutions while mixing leads to the formation of CT nanocapsules with Doxorubicin sealed inside. The Doxorubicin can be liberated from the nanocapsules by cracking them using ultrasonication. This method can be extended to other binary CT complex crystals as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge-transfer" title="charge-transfer">charge-transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocapsules" title=" nanocapsules"> nanocapsules</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystals" title=" nanocrystals"> nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a> </p> <a href="https://publications.waset.org/abstracts/70802/co-precipitation-method-for-the-fabrication-of-charge-transfer-molecular-crystal-nanocapsules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Effects of Ethanolic Purslane Shoot and Seed Extracts on Doxorubicin-Induced Hepatotoxicity in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Ahmed">Osama M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Walaa%20G.%20Hozayen"> Walaa G. Hozayen</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidy%20Tamer%20Abo%20Sree"> Haidy Tamer Abo Sree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doxorubicin (DOX), an anthracycline antibiotic is a broad-spectrum antineoplastic agent, which is commonly used in the treatment of uterine, ovarian, breast and lung cancers, Hodgkin's disease and soft tissue sarcomas as well as in several other cancer types. The effect of doxorubicin (4 mg/kg b.w.week) without or with oral administration of ethanolic purslane (Portulaca oleracea) shoot (leaves and stems) extract (50 mg/kg b.w. day) or ethanolic purslane seeds extract (50 mg/kg b.w.day) co-treatments for 6 weeks was evaluated in adult male rats. Serum ALT, AST, ALP, GGT, total bilirubin, total protein, and albumin levels were assayed. Lipid peroxidation (indexed by MDA) and antioxidants like hepatic glutathine, glutathione transferase, peroxidase, SOD, and CAT were assessed. There was an increase in serum levels of ALT, AST, ALP, GGT and total bilirubin. In addition, hepatic glutathine, glutathione transferase, peroxidase, SOD, and CAT activities were decreased while lipid peroxidation in the liver was increased. Co-administration of ethanolic purslane and seed extracts successfully improved the adverse changes in the liver functions with an increase in antioxidants activities and reduction of lipid peroxidation. In conclusion, it can be supposed that dietary purslane extract supplementation may provide a cushion for a prolonged therapeutic option against DOX hepatopathy without harmful side effects. However, further clinical studies are required to assess the safety and efficacy of these extract in human beings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title="doxorubicin">doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=purslane" title=" purslane"> purslane</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatotoxicity" title=" hepatotoxicity"> hepatotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title=" antioxidants"> antioxidants</a> </p> <a href="https://publications.waset.org/abstracts/30878/effects-of-ethanolic-purslane-shoot-and-seed-extracts-on-doxorubicin-induced-hepatotoxicity-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Delivery of Doxorubicin to Glioblastoma Multiforme Using Solid Lipid Nanoparticles with Surface Aprotinin and Melanotransferrin Antibody for Enhanced Chemotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yung-Chih%20Kuo">Yung-Chih Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Hsuan%20Lee"> I-Hsuan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid lipid nanoparticles (SLNs) conjugated with aprotinin (Apr) and melanotransferrin antibody (Anti-MTf) were used to carry doxorubicin (Dox) across the blood–brain barrier (BBB) for glioblastoma multiforme (GBM) chemotherapy. Dox-entrapped SLNs with grafted Apr and Anti-MTf (Apr-Anti-MTf-Dox-SLNs) were applied to a cultured monolayer comprising human brain-microvascular endothelial cells (HBMECs) with regulation of human astrocyte (HAs) and to a proliferated colony of U87MG cells. Based on the average particle diameter, zeta potential, entrapping efficiency of Dox, and grafting efficiency of Apr and Anti-MTf, we found that 40% (w/w) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine in lipids were appropriate for fabricating Apr-Anti-MTf-Dox-SLNs. In addition, Apr-Anti-MTf-Dox-SLNs could prevent Dox from fast dissolution and did not induce a serious cytotoxicity to HBMECs and HAs when compared with free Dox. Moreover, the treatments with Apr-Anti-MTf-Dox-SLNs enhanced the ability of Dox to infuse the BBB and to inhibit the growth of GBM. The current Apr-Anti-MTf-Dox-SLNs can be a promising pharmacotherapeutic preparation to penetrate the BBB for malignant brain tumor treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20lipid%20nanoparticle" title="solid lipid nanoparticle">solid lipid nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=glioblastoma%20multiforme" title=" glioblastoma multiforme"> glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%E2%80%93brain%20barrier" title=" blood–brain barrier"> blood–brain barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a> </p> <a href="https://publications.waset.org/abstracts/38612/delivery-of-doxorubicin-to-glioblastoma-multiforme-using-solid-lipid-nanoparticles-with-surface-aprotinin-and-melanotransferrin-antibody-for-enhanced-chemotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Anticancer Study of Copper and Zinc Complexes with Doxorubicin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Swiderski">Grzegorz Swiderski</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Jablonska-Trypuc"> Agata Jablonska-Trypuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Popow"> Natalia Popow</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Swislocka"> Renata Swislocka</a>, <a href="https://publications.waset.org/abstracts/search?q=Wlodzimierz%20Lewandowski"> Wlodzimierz Lewandowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doxorubicin belongs to the group of anthracycline antitumor antibiotics. Because of the wide spectrum of actions, it is one of the most widely used anthracycline antibiotics, including the treatment of breast, ovary, bladder, lung cancers as well as neuroblastoma, lymphoma, leukemia and myeloid leukemia. Antitumor activity of doxorubicin is based on the same mechanisms as for most anthracyclines. Like the metal ions affect the nucleic acids on many biological processes, so the environment of the metal chelates of antibiotics can have a significant effect on the pharmacological properties of drugs. Complexation of anthracyclines with metal ions may contribute to the production of less toxic compounds. In the framework of this study, the composition of complexes obtained in aqueous solutions of doxorubicin with metal ions (Cu2+ and Zn2+). Complexation was analyzed by spectrophotometric titration in aqueous solution at pH 7.0. The pH was adjusted with 0.02M Tris-HCl buffer. The composition of the complexes found was Cu: doxorubicin (1: 2) and a Zn: doxorubicin (1: 1). The effect of Dox, Dox-Cu and Dox-Zn was examined in MCF-7 breast cancer cell line, which were obtained from American Type Culture Collection (ATCC). The compounds were added to the cultured cells for a final concentration in the range of 0,01µM to 0,5µM. The number of MCF-7 cells with division into living and dead, was determined by direct counts of cells with the use of trypan blue dye using LUNA Logos Biosystems cell counter. ApoTox-Glo Triplex Assay (Promega, Madison, Wisconsin, USA) was used according to the manufacturer’s instructions to measure the MCF-7 cells’ viability, cytotoxicity and apoptosis. We observed a decrease in cells proliferation in a dose-dependent manner. An increase in cytotoxicity and decrease in viability in the ApoTox Triplex assay was also showed for all tested compounds. Apoptosis, showed as caspase 3/7 activation, was observed only in Dox treatment. In Dox-Zn and Dox-Cu caspase 3/7 activation was not observed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02 352. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticancer%20properties" title="anticancer properties">anticancer properties</a>, <a href="https://publications.waset.org/abstracts/search?q=anthracycline%20antibiotic" title=" anthracycline antibiotic"> anthracycline antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicine" title=" doxorubicine"> doxorubicine</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20complexes" title=" metal complexes"> metal complexes</a> </p> <a href="https://publications.waset.org/abstracts/63652/anticancer-study-of-copper-and-zinc-complexes-with-doxorubicin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Preparation of Magnetothermally Responsive Polymer Multilayer Films for Controlled Release Applications from Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eda%20Cagli">Eda Cagli</a>, <a href="https://publications.waset.org/abstracts/search?q=Irem%20Erel%20Goktepe"> Irem Erel Goktepe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Externally triggered and effective release of therapeutics from polymer nanoplatforms is one of the key issues in cancer treatment. In this study, we aim to prepare polymer multilayer films which are stable at physiological conditions (little or no drug release) but release drug molecules at acidic pH and via application of AC magnetic field. First, novel stimuli responsive diblock copolymers composed of pH- and temperature-responsive blocks were synthesized. Then, block copolymer micelles with pH-responsive core and temperature responsive coronae will be obtained via pH-induced self-assembly of these block copolymers in aqueous environment. A model anticancer drug, e.g. Doxorubicin will be loaded in the micellar cores. Second, superparamagnetic nanoparticles will be synthesized. Magnetic nanoparticles and drug loaded block copolymer micelles will be used as building blocks to construct the multilayers. To mimic the acidic nature of the tumor tissues, Doxorubicin release from the micellar cores will be induced at acidic conditions. Moreover, Doxorubicin release from the multilayers will be facilitated via magnetothermal trigger. Application of AC magnetic field will induce the heating of magnetic nanoparticles resulting in an increase in the temperature of the polymer platform. This increase in temperature is expected to trigger conformational changes on the temperature-responsive micelle coronae and facilitate the release of Doxorubicin from the surface. Such polymer platform may find use in biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20films" title="layer-by-layer films">layer-by-layer films</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetothermal%20trigger" title=" magnetothermal trigger"> magnetothermal trigger</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20polymers" title=" smart polymers"> smart polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=stimuli%20responsive" title=" stimuli responsive"> stimuli responsive</a> </p> <a href="https://publications.waset.org/abstracts/44684/preparation-of-magnetothermally-responsive-polymer-multilayer-films-for-controlled-release-applications-from-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Protective Effect of Cinnamomum zeylanicum Bark Extract against Doxorubicin Induced Cardiotoxicity: A Preliminary Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20N.%20Sandamali">J. A. N. Sandamali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Hewawasam"> R. P. Hewawasam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20P.%20W.%20Jayatilaka"> K. A. P. W. Jayatilaka</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20K.%20B.%20Mudduwa"> L. K. B. Mudduwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Doxorubicin is widely used in the treatment of solid organ tumors and hematological malignancies, but the dose-dependent cardiotoxicity due to free radical formation compromises its clinical utility. Therapeutic strategies which enhance cellular endogenous defense systems have been identified as promising approaches to combat oxidative stress-associated conditions. Cinnamomum zeylanicum (Ceylon cinnamon) has a number antioxidant compounds, which can effectively scavenge reactive oxygen including superoxide anions, hydroxyl radicals and as well as other free radicals. Therefore, the objective of the study was to elucidate the most effective dose of Cinnamomum bark extract which ameliorates doxorubicin-induced cardiotoxicity. Materials and methods: Wistar rats were divided into seven groups of 10 animals in each. Group 1: normal control (distilled water, orally, for 14 days, 10 mL/kg saline, ip, after 16 hours fast on the 11th day); Group 2: doxorubicin control (distilled water, orally, for 14 days, 18 mg/kg doxorubicin, ip, after 16 hour fast on the 11th day); Groups 3-7: five doses of freeze dried aqueous bark extracts (0.125, 0.25, 0.5, 1.0, 2.0g/kg, orally, daily for 14 days, 18 mg/kg doxorubicin, ip, after 16 hours fast on the 11th day). Animals were sacrificed on the 15th day and blood was collected for the estimation of cardiac troponin I (cTnI), AST and LDH concentrations and myocardial tissues were collected for histopathological assessment of myocardial damage and irreversible changes were graded by developing a score. Results: cTnI concentration of groups 1-7 were 0, 161.9, 128.6, 95.9, 38, 19.41 & 12.36 pg/mL showing significant differences (p<0.05) between group 2 and groups 4-7. In groups 1-7, serum AST concentration were 26.82, 68.1, 37.18, 36.23, 26.8, 26.62 & 22.43U/L and LDH concentrations were 1166.13, 2428.84, 1658.35, 1474.34, 1277.58, 1110.21 & 974.40U/L and a significant difference (p<0.05) was observed between group 2 and groups 3-7. The maximum score for myocardial necrosis was observed in group 2. Parallel to the increase of the dosage of plant extract, a gradual reduction of the score for myocardial necrosis was observed in groups 3-7. Reversible histological changes such as vacuolation, congestion were observed in group 2 and all plant treated groups. Haemorrhages, inflammatory cell infiltrations, and interstitial oedema were observed in group 2, but absent in groups treated with higher doses of the plant extract. Discussion & Conclusion: According to the in vitro antioxidant assays performed, Cinnamomum zeylanicum (Ceylon cinnamon) bark possesses high amounts of polyphenolic substances and high antioxidant activity. The present study showed that Cinnamomum zeylanicum extract at 2.0 g/kg possesses the most significant cardioprotective effect against doxorubicin-induced cardiotoxicity. It can be postulated that pretreatment with Cinnamomum bark extract may replenish the cardiomyocytes with antioxidants that are needed for the defense against oxidative stress induced by doxorubicin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardioprotection" title="cardioprotection">cardioprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20zeylanicum" title=" Cinnamomum zeylanicum"> Cinnamomum zeylanicum</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radicals" title=" free radicals"> free radicals</a> </p> <a href="https://publications.waset.org/abstracts/84919/protective-effect-of-cinnamomum-zeylanicum-bark-extract-against-doxorubicin-induced-cardiotoxicity-a-preliminary-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%C3%AAs%20N.%20Pe%C3%A7a">Inês N. Peça </a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bicho"> A. Bicho</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Gardner"> Rui Gardner</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Margarida%20Cardoso"> M. Margarida Cardoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title="drug delivery">drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=PLGA%20nanoparticles" title=" PLGA nanoparticles"> PLGA nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20release%20rate" title="controlled release rate ">controlled release rate </a> </p> <a href="https://publications.waset.org/abstracts/26755/control-of-doxorubicin-release-rate-from-magnetic-plga-nanoparticles-using-a-non-permanent-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Cellular Uptake and Endocytosis of Doxorubicin Loaded Methoxy Poly (Ethylene Glycol)-Block-Poly (Glutamic Acid) [DOX/mPEG-b-PLG] Nanoparticles against Human Breast Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaheer%20Ahmad">Zaheer Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Afzal%20Shah"> Afzal Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> pH responsive block copolymers consist of mPEG and glutamic acid units were syntheiszed in different formulations. The synthesized polymers were structurally investigated. Doxorubicin Hydrocholide (DOX-HCl) as a chemotherapy medication for the treatment of cancer was selected. DOX-HCl was loaded and their drug loading content and drug loading efficiency were determined. The nanocarriers were obtained in small size, well shaped and slightly negative surface charge. The release study was carried out both at pH 7.4 and 5.5 and it was revealed that the release was sustained and in controlled manner and there was no initial burst release. The in vitro release study was further carried out for different formulations with different glutamic acid moieties. Time dependent cell proliferation inhibition of the free drug and drug loaded nanoparticles against human breast cancer cell lines MCF-7 and Zr-75-30 was observed. Cellular uptakes and endocytosis were investigated by confocal laser scanning microscopy (CLSM) and flow cytometery. The biocompatibility, optimum size, shape and surface charge of the developed nanoparticles make the nanoparticles an efficient drug delivery carrier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title="doxorubicin">doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=glutamic%20acid" title=" glutamic acid"> glutamic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation%20inhibition" title=" cell proliferation inhibition"> cell proliferation inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cell" title=" breast cancer cell"> breast cancer cell</a> </p> <a href="https://publications.waset.org/abstracts/96633/cellular-uptake-and-endocytosis-of-doxorubicin-loaded-methoxy-poly-ethylene-glycol-block-poly-glutamic-acid-doxmpeg-b-plg-nanoparticles-against-human-breast-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Protective Role of CoQ10 or L-Carnitine on the Integrity of the Myocardium in Doxorubicin Induced Toxicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gehan%20A.%20Hegazy">Gehan A. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20N.%20Mustafa"> Hesham N. Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sally%20A.%20El%20Awdan"> Sally A. El Awdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Marawan%20AbdelBaset"> Marawan AbdelBaset </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doxorubicin (DOX) is a chemotherapeutic agent used for the treatment of different cancers and its clinical usage is hindered by the oxidative injury-related cardiotoxicity. This work aims to declare if the harmful effects of DOX on the heart can be alleviated with the use of Coenzyme Q10 (CoQ10) or L-carnitine. The study was performed on seventy-two female Wistar albino rats divided into six groups, 12 animals each: Control group; DOX group (10 mg/kg); CoQ10 group (200 mg/kg); L-carnitine group (100 mg/kg); DOX + CoQ10 group; DOX + L-carnitine group. CoQ10 and L-carnitine treatment orally started five days before a single dose of 10 mg/kg DOX that injected intraperitoneally (IP) then the treatment continued for ten days. At the end of the study, serum biochemical parameters of cardiac damage, oxidative stress indices, and histopathological changes were investigated. CoQ10 or L-carnitine showed noticeable effects in improving cardiac functions evidenced reducing serum enzymes as serum interleukin-1 beta (IL-1), tumor necrosis factor alpha (TNF-), leptin, lactate dehydrogenase (LDH), Cardiotrophin-1, Troponin-I and Troponin-T. Also, alleviate oxidative stress, decrease of cardiac Malondialdehyde (MDA), Nitric oxide (NO) and restoring cardiac reduced glutathione levels to normal levels. Both corrected the cardiac alterations histologically and ultrastructurally. With visible improvements in -SMA, vimentin and eNOS immunohistochemical markers. CoQ10 or L-carnitine supplementation improves the functional and structural integrity of the myocardium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CoQ10" title="CoQ10">CoQ10</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=L-Carnitine" title=" L-Carnitine"> L-Carnitine</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiotoxicity" title=" cardiotoxicity"> cardiotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/96528/protective-role-of-coq10-or-l-carnitine-on-the-integrity-of-the-myocardium-in-doxorubicin-induced-toxicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Sphingosomes: Potential Anti-Cancer Vectors for the Delivery of Doxorubicin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brajesh%20Tiwari">Brajesh Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuvraj%20Dangi"> Yuvraj Dangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Jain"> Abhishek Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Jain"> Ashok Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the investigation was to evaluate the potential of sphingosomes as nanoscale drug delivery units for site-specific delivery of anti-cancer agents. Doxorubicin Hydrochloride (DOX) was selected as a model anti-cancer agent. Sphingosomes were prepared and loaded with DOX and optimized for size and drug loading. The formulations were characterized by Malvern zeta-seizer and Transmission Electron Microscopy (TEM) studies. Sphingosomal formulations were further evaluated for in-vitro drug release study under various pH profiles. The in-vitro drug release study showed an initial rapid release of the drug followed by a slow controlled release. In vivo studies of optimized formulations and free drug were performed on albino rats for comparison of drug plasma concentration. The in- vivo study revealed that the prepared system enabled DOX to have had enhanced circulation time, longer half-life and lower elimination rate kinetics as compared to free drug. Further, it can be interpreted that the formulation would selectively enter highly porous mass of tumor cells and at the same time spare normal tissues. To summarize, the use of sphingosomes as carriers of anti-cancer drugs may prove to be a fascinating approach that would selectively localize in the tumor mass, increasing the therapeutic margin of safety while reducing the side effects associated with anti-cancer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sphingosomes" title="sphingosomes">sphingosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-cancer" title=" anti-cancer"> anti-cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=formulation" title=" formulation"> formulation</a> </p> <a href="https://publications.waset.org/abstracts/56520/sphingosomes-potential-anti-cancer-vectors-for-the-delivery-of-doxorubicin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Comparative in vitro Anticancer Activity of Two Siddha Formulations: Neeradi Muthu Vallathymezugu and Thamira Kattu Chendooram</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasudha%20Devi">Vasudha Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arul%20Amuthan"> Arul Amuthan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Narayanan"> K. Narayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20KS"> Praveen KS</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Rao%20J"> Venkata Rao J</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Siddha Medicine is one of the Indian traditional medical systems, in which the cancer disease is mentioned as 'putrunoi' which literally means the disease of growth like termite mound. There are number of formulations available for the treatment of cancer disease. Neeradi muthu vallathymezugu (NMV) and thamira kattu chendooram (TKC) are two drugs commonly prescribed by Siddha physicians. These drugs have been clinically reported to be safe and effective when given orally. Though these formulations are in practice for centuries, no efforts have been made to standardize them and explore their anti-cancer potential systematically. Objective: To compare the cytotoxic activity of NMV and TKC with doxorubicin using cancer cell lines. Materials and methods: For this study, ethanol extract of NMV was taken, whereas TKC was used as such. In vitro cytotoxic activity was evaluated by sulphorhodamine (SRB) assay against human hepatic cancer cells (HepG2), human breast cancer cells (MCF-7) and human cervical cancer cells [KeLa]. Doxorubicin was used as the standard. The SRB assay is based on the ability of cellular proteins to bind with sulphorhodamine-B. The number of live cells in drug treated cell lines directly affects the color formation in the assay, which is estimated calorimetrically by measuring the absorbance at 540 nm to calculate the cytotoxicity (inhibitory concentration - IC50 value) of the drug. Results: The IC50values of NMV, TKC and doxorubicin against HepG2 were 3.08 µg/ml, 20.21 µg/ml and 1.21µg/ml respectively. In MCF-7, it was 11.75 µg/ml, 17.67 µg/ml and 2.8µg/ml. In HeLa, the values were 24.76 µg/ml, 73.35 µg/ml and 1.12µg/ml. Conclusions: The study proves the possible anti-cancer potential of these two formulations. Compared to TKC, NMV showed good cytotoxic effect even at low dose. Human hepatic cancer cells responded well even at very low dose, when compared to other cancer cells. Though, cytotoxic potential of these compounds was found to be less compared to doxorubicin, the isolated lead compound may have the potential to be used as an anticancer drug clinically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeradi%20muthu%20vallathymezugu%20%28Hydnocarpus%20laurifolia%29" title="Neeradi muthu vallathymezugu (Hydnocarpus laurifolia)">Neeradi muthu vallathymezugu (Hydnocarpus laurifolia)</a>, <a href="https://publications.waset.org/abstracts/search?q=thamira%20kattu%20chendooram" title=" thamira kattu chendooram"> thamira kattu chendooram</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vitro" title=" in-vitro"> in-vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=Siddha%20Medicine" title=" Siddha Medicine"> Siddha Medicine</a> </p> <a href="https://publications.waset.org/abstracts/1451/comparative-in-vitro-anticancer-activity-of-two-siddha-formulations-neeradi-muthu-vallathymezugu-and-thamira-kattu-chendooram" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Synergistic Effect of Doxorubicin-Loaded Silver Nanoparticles – Polymeric Conjugates on Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nancy%20M.%20El-Baz">Nancy M. El-Baz</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20Ziko"> Laila Ziko</a>, <a href="https://publications.waset.org/abstracts/search?q=Rania%20Siam"> Rania Siam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Mamdouh"> Wael Mamdouh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer is one of the most devastating diseases, and has over than 10 million new cases annually worldwide. Despite the effectiveness of chemotherapeutic agents, their systemic toxicity and non-selective anticancer actions represent the main obstacles facing cancer curability. Due to the effective enhanced permeability and retention (EPR) effect of nanomaterials, nanoparticles (NPs) have been used as drug nanocarriers providing targeted cancer drug delivery systems. In addition, several inorganic nanoparticles such as silver (AgNPs) nanoparticles demonstrated a potent anticancer activity against different cancers. The present study aimed at formulating core-shell inorganic NPs-based combinatorial therapy based on combining the anticancer activity of AgNPs along with doxorubicin (DOX) and evaluating their cytotoxicity on MCF-7 breast cancer cells. These inorganic NPs-based combinatorial therapies were designed to (i) Target and kill cancer cells with high selectivity, (ii) Have an improved efficacy/toxicity balance, and (iii) Have an enhanced therapeutic index when compared to the original non-modified DOX with much lower dosage The in-vitro cytotoxicity studies demonstrated that the NPs-based combinatorial therapy achieved the same efficacy of non-modified DOX on breast cancer cell line, but with 96% reduced dose. Such reduction in DOX dose revealed that the combination between DOX and NPs possess a synergic anticancer activity against breast cancer. We believe that this is the first report on a synergic anticancer effect at very low dose of DOX against MCF-7 cells. Future studies on NPs-based combinatorial therapy may aid in formulating novel and significantly more effective cancer therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles-based%20combinatorial%20therapy" title="nanoparticles-based combinatorial therapy">nanoparticles-based combinatorial therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a> </p> <a href="https://publications.waset.org/abstracts/25247/synergistic-effect-of-doxorubicin-loaded-silver-nanoparticles-polymeric-conjugates-on-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Assessment of Cardioprotective Effect of Deferiprone on Doxorubicin-Induced Cardiac Toxicity in a Rat Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Kalhori">Sadaf Kalhori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Doxorubicin (DOX)-induced cardiotoxicity is widely known as the most severe complication of anthracycline-based chemotherapy in patients with cancer. It is unknown whether Deferiprone (DFP), could reduce the severity of DOX-induced cardiotoxicity by inhibiting free radical reactions. Thus, this study was performed to assess the protective effect of Deferiprone on DOX-induced cardiotoxicity in a rat model. Methods: The rats were divided into five groups. Group one was a control group. Group 2 was DOX (2 mg/kg/day, every other day for 12 days), and Group three to five which receiving DOX as in group 2 and DFP 75,100 and 150 mg/kg/day, for 19 days, respectively. DFP was starting 5 days prior to the first DOX injection and two days after the last DOX injection throughout the study. Electrocardiographic and hemodynamic studies, along with histopathological examination, were conducted. In addition, serum sample was taken and total cholesterol, Malone dialdehyde, triglyceride, albumin, AST, ALT, total protein, lactate dehydrogenase, total anti-oxidant and creatine kinase were assessed. Result: Our results showed the normal structure of endocardial, myocardial and pericardial in the control group. Pathologic data such as edema, hyperemia, bleeding, endocarditis, myocarditis and pericarditis, hyaline degeneration, cardiomyocyte necrosis, myofilament degeneration and nuclear chromatin changes were assessed in all groups. In the DOX group, all pathologic data was seen with mean grade of 2±1.25. In the DFP group with a dose of 75 and 100 mg, the mean grade was 1.41± 0.31 and 1±.23, respectively. In DFP group with a dose of 150, the pathologic data showed a milder change in comparison with other groups with e mean grade of 0.45 ±0.19. Most pathologic data in DFP groups showed significant changes in comparison with the DOX group (p < 0.001). Discussion: The results also showed that DFP treatment significantly improved DOX-induced heart damage, structural changes in the myocardium, and ventricular function. Our data confirm that DFP is protective against cardiovascular-related disorders induced by DOX. Clinical studies are needed to be involved to examine these findings in humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiomyopathy" title="cardiomyopathy">cardiomyopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=deferiprone" title=" deferiprone"> deferiprone</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a> </p> <a href="https://publications.waset.org/abstracts/116838/assessment-of-cardioprotective-effect-of-deferiprone-on-doxorubicin-induced-cardiac-toxicity-in-a-rat-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Functionalized DOX Nanocapsules by Iron Oxide Nanoparticles for Targeted Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afsaneh%20Ghorbanzadeh">Afsaneh Ghorbanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakieh%20Bayat"> Zakieh Bayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drug capsulation was used for release and targeted delivery in determined time, place and temperature or pH. The DOX nanocapsules were used to reduce and to minimize the unwanted side effects of drug. In this paper, the encapsulation methods of doxorubicin (DOX) and the labeling it by the magnetic core of iron (Fe3O4) has been studied. The Fe3O4 was conjugated with DOX via hydrazine bond. The solution was capsuled by the sensitive polymer of heat or pH such as chitosan-g-poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide), dextran-g-poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and mPEG-G2.5 PAMAM by hydrazine bond. The drug release was very slow at temperatures lower than 380°C. There was a rapid and controlled drug release at temperatures higher than 380°C. According to experiments, the use mPEG-G2.5PAMAM is the best method of DOX nanocapsules synthesis, because in this method, the drug delivery time to certain place is lower than other methods and the percentage of released drug is higher. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20carrier" title="drug carrier">drug carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release" title=" drug release"> drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20NPs" title=" iron oxide NPs"> iron oxide NPs</a> </p> <a href="https://publications.waset.org/abstracts/9068/functionalized-dox-nanocapsules-by-iron-oxide-nanoparticles-for-targeted-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> pH and Temperature Triggered Release of Doxorubicin from Hydogen Bonded Multilayer Films of Polyoxazolines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Haktaniyan">Meltem Haktaniyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Eda%20Cagli"> Eda Cagli</a>, <a href="https://publications.waset.org/abstracts/search?q=Irem%20Erel%20Goktepe"> Irem Erel Goktepe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers that change their properties in response to different stimuli (e.g. light, temperature, pH, ionic strength or magnetic field) are called ‘smart’ or ‘stimuli-responsive polymers’. These polymers have been widely used in biomedical applications such as sensors, gene delivery, drug delivery or tissue engineering. Temperature-responsive polymers have been studied extensively for controlled drug delivery applications. As regard of pseudo-peptides, poly (2-alky-2-oxazoline)s are considered as good candidates for delivery systems due to their stealth behavior and nontoxicity. In order to build responsive multilayer films for controlled drug release applications from surface, Layer by layer technique (LBL) is a powerful technique with an advantage of nanometer scale control over spatial architecture and morphology. Multilayers can be constructed on surface where non-covalent interactions including electrostatic interactions, hydrogen bonding, and charge-transfer or hydrophobic-hydrophobic interactions. In the present study, hydrogen bounded multilayer films of poly (2-alky-2-oxazoline) s with tannic acid were prepared in order to use as a platform to release Doxorubicin (DOX) from surface with pH and thermal triggers. For this purpose, poly (2-isopropyl-2-oxazoline) (PIPOX) and poly (2-ethyl-2-oxazoline) (PETOX) were synthesized via cationic ring opening polymerization (CROP) with hydroxyl end groups. Two polymeric multilayer systems ((PETOX)/(DOX)-(TA) complexes and (PIPOX)/(DOX)-(TA) complexes) were designed to investigate of controlled release of Doxorubicin (DOX) from surface with pH and thermal triggers. The drug release profiles from the multilayer thin films with alterations of pH and temperature will been examined with UV-Vis Spectroscopy and Fluorescence Spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature%20responsive%20polymers" title="temperature responsive polymers">temperature responsive polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=h-bonded%20multilayer%20films" title=" h-bonded multilayer films"> h-bonded multilayer films</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release" title=" drug release"> drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=polyoxazoline" title=" polyoxazoline"> polyoxazoline</a> </p> <a href="https://publications.waset.org/abstracts/44688/ph-and-temperature-triggered-release-of-doxorubicin-from-hydogen-bonded-multilayer-films-of-polyoxazolines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Self-Assembled Nano Aggregates Based On Polyaspartamide Graft Copolymers for pH-Controlled Release of Doxorubicin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20Tran%20Thi%20Thuy">Van Tran Thi Thuy</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheol%20Won%20Lim"> Cheol Won Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dukjoon%20Kim"> Dukjoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of biodegradable copolymers based on polyaspartamide (PASPAM) were synthesized by grafting hydrophilic O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) (MPEG), hydrophobic cholic acid (CA), and pH-sensitive hydrazine (Hyd) segments on a PASPAM backbone. The hydrazine group was effectively cleaved to release doxorubicin (DOX) conjugated on PASPAM in an acidic environment. The chemical structure of the polymer and the degree of substitution of each graft segment were analyzed using FT-IR and 1H-NMR spectroscopy. The size of the MPEG/Hyd/CA-g-PASPAM copolymer self-aggregates was examined by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the self - aggregates increased from 125 to 200 nm at pH 7.4, as the degree of substitution of CA increased from 10 to 20 %. The release kinetics of DOX was strongly affected by the pH of the releasing medium. While less than 30% of the DOX-loaded was released in about 30 h at pH 7.4, more than 60% was released at pH 5.0 within the same time. The viability tests of human breast cancer cells (MCF-7) and human embryonic kidney cells (293T) show the potential application of MPEG/Hyd/CA-g-PASPAM copolymer self-aggregates in the controlled intracellular delivery for cancer treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pH-sensitive" title="pH-sensitive">pH-sensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaspartamide" title=" polyaspartamide"> polyaspartamide</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-aggregates" title=" nano-aggregates"> nano-aggregates</a> </p> <a href="https://publications.waset.org/abstracts/19167/self-assembled-nano-aggregates-based-on-polyaspartamide-graft-copolymers-for-ph-controlled-release-of-doxorubicin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Anticancer Effect of Doxorubicin Using Injectable Hydrogel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasamsha%20Panta">Prasamsha Panta</a>, <a href="https://publications.waset.org/abstracts/search?q=Da%20Yeon%20Kim"> Da Yeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ja%20Yong%20Jang"> Ja Yong Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Jae%20Kim"> Min Jae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Ho%20Kim"> Jae Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Suk%20Kim"> Moon Suk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Among the many anticancer drugs used clinically, doxorubicin (Dox), was one of widely used drugs to treat many types of solid tumors such as liver, colon, breast, or lung. Intratumoral injection of chemotherapeutic agents is a potentially more effective alternative to systemic administration because direct delivery of the anticancer drug to the target may improve both the stability and efficacy of anticancer drugs. Injectable in situ-forming gels have attracted considerable attention because they can achieve site specific drug delivery, long term action periods, and improved patient compliance. Objective: Objective of present study is to confirm clinical benefit of intratumoral chemotherapy using injectable in situ-forming poly(ethylene glycol)-b-polycaprolactone diblock copolymer (MP) and Dox with increase in efficacy and reducing the toxicity in patients with cancer diseases. Methods and methodology: We prepared biodegradable MP hydrogel and measured viscosity for the evaluation of thermo-sensitive property. In vivo antitumor activity was performed with normal saline, MP only, single free Dox, repeat free Dox, and Dox-loaded MP gel. The remaining amount of Dox drug was measured using HPLC after the mouse was sacrified. For cytotoxicity studies WST-1 assay was performed. Histological analysis was done with H&E and TUNEL processes respectively. Results: The works in this experiment showed that Dox-loaded MP have biodegradable drug depot property. Dox-loaded MP gels showed remarkable in vitro cytotoxicity activities against cancer cells. Finally, this work indicates that injection of Dox-loaded MP allowed Dox to act effectively in the tumor and induced long-lasting supression of tumor growth. Conclusion: This work has examined the potential clinical utility of intratumorally injected Dox-loaded MP gel, which shows significant effect of higher local Dox retention compared with systemically administered Dox. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injectable%20in-situ%20forming%20hydrogel" title="injectable in-situ forming hydrogel">injectable in-situ forming hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer" title=" anticancer"> anticancer</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=intratumoral%20injection" title=" intratumoral injection"> intratumoral injection</a> </p> <a href="https://publications.waset.org/abstracts/9290/anticancer-effect-of-doxorubicin-using-injectable-hydrogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=doxorubicin&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=doxorubicin&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=doxorubicin&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10