CINXE.COM
Search results for: nata de coco
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nata de coco</title> <meta name="description" content="Search results for: nata de coco"> <meta name="keywords" content="nata de coco"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nata de coco" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nata de coco"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nata de coco</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Preparation of Bacterial Cellulose Membranes from Nata de Coco for CO2/CH4 Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanin%20Hosakun">Yanin Hosakun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujitra%20Wongkasemjit"> Sujitra Wongkasemjit</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanyalak%20Chaisuwan"> Thanyalak Chaisuwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide removal from natural gas is an important process because the existence of carbon dioxide in natural gas contributes to pipeline corrosion, reduces the heating value, and takes up volume in the pipeline. In this study, bacterial cellulose was chosen for the CO2/CH4 gas separation membrane due to its unique structure and prominent properties. Additionally, it can simply be obtained by culturing the bacteria so called “Acetobacter xylinum” through fermentation of coconut juice. Bacterial cellulose membranes with and without silver ions were prepared and studied for the separation performance of CO2 and CH4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20cellulose" title="bacterial cellulose">bacterial cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=CH4%20separation" title=" CH4 separation"> CH4 separation</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nata%20de%20coco" title=" nata de coco"> nata de coco</a> </p> <a href="https://publications.waset.org/abstracts/4084/preparation-of-bacterial-cellulose-membranes-from-nata-de-coco-for-co2ch4-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Monte Carlo Pathwise Sensitivities for Barrier Options with Application to Coco-Bond Calibration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Gerstner">Thomas Gerstner</a>, <a href="https://publications.waset.org/abstracts/search?q=Bastian%20von%20Harrach"> Bastian von Harrach</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Roth"> Daniel Roth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Monte Carlo pathwise sensitivities approach is well established for smooth payoff functions. In this work, we present a new Monte Carlo algorithm that is able to calculate the pathwise sensitivities for discontinuous payoff functions. Our main tool is the one-step survival idea of Glasserman and Staum. Although this technique yields to new terms per observation, while differentiating, the algorithm is still efficient. As an application, we use the results for a two-dimensional calibration of a Coco-Bond, which we model with different types of discretely monitored barrier options. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title="Monte Carlo">Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=discretely%20monitored%20barrier%20options" title=" discretely monitored barrier options"> discretely monitored barrier options</a>, <a href="https://publications.waset.org/abstracts/search?q=pathwise%20sensitivities" title=" pathwise sensitivities"> pathwise sensitivities</a>, <a href="https://publications.waset.org/abstracts/search?q=Coco-Bond" title=" Coco-Bond"> Coco-Bond</a> </p> <a href="https://publications.waset.org/abstracts/77164/monte-carlo-pathwise-sensitivities-for-barrier-options-with-application-to-coco-bond-calibration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Utilization of Extracted Spirogyra sp. Media Fermented by Gluconacetobacter Xylinum for Cellulose Production as Raw Material for Paper Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Desak%20Ketut">T. S. Desak Ketut</a>, <a href="https://publications.waset.org/abstracts/search?q=A.n.%20Isna"> A.n. Isna</a>, <a href="https://publications.waset.org/abstracts/search?q=A.a.%20Ayu"> A.a. Ayu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Ririn"> D. P. Ririn</a>, <a href="https://publications.waset.org/abstracts/search?q=Suharjono%20Hadiatullah"> Suharjono Hadiatullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The requirement of paper from year to year rise rapidly. The raising of cellulose requirement in paper production caused increasing of wood requirement with the effect that limited forest areal because of deforestation. Alternative cellulose that can be used for making paper is microbial cellulose. The objective of this research are to know the effectivity fermentation media Spirogyra sp. by Gluconacetobacter xylinum for cellulose production as material for the making of paper and to know effect composition bacterial cellulose composite product of Gluconacetobacter xylinum in Spirogyra sp. The method, was used, is as follow, 1) the effect assay from variation composition of fermentation media to bacterial cellulose production by Gluconacetobacter xylinum. 2) The effect assay of composition bacterial cellulose fermentation producted by Gluconacetobacter xylinum in extracted Spirogyra media to paper quality. The result of this research is variation fermentation media Spirogyra sp. affect to production of cellulose by Gluconacetobacter xylinum. Thus, result showed by the highest value and significantly different in thickness parameter, dry weight and wet weight of nata in sucrose concentration 7,5 % and urea 0,75 %. Composition composite of bacterial cellulose from fermentation product by Gluconacetobacter xylinum in media Spirogyra sp. affect to paper quality from wet nata and dry nata. Parameters thickness, weight, water absorpsion, density and gramatur showed highest result in sucrose concentration 7,5 % and urea concentration 0,75 %, except paper density from dry nata had highest result in sucrose and urea concentration 0%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation%20media" title=" fermentation media"> fermentation media</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=Gluconacetobacter%20xylinum" title=" Gluconacetobacter xylinum"> Gluconacetobacter xylinum</a>, <a href="https://publications.waset.org/abstracts/search?q=paper" title=" paper"> paper</a>, <a href="https://publications.waset.org/abstracts/search?q=Spirogyra%20sp." title=" Spirogyra sp."> Spirogyra sp.</a> </p> <a href="https://publications.waset.org/abstracts/35917/utilization-of-extracted-spirogyra-sp-media-fermented-by-gluconacetobacter-xylinum-for-cellulose-production-as-raw-material-for-paper-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Optimizing Fermented Paper Production Using Spyrogira sp. Interpolating with Banana Pulp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadiatullah">Hadiatullah</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20D.%20Desak%20Ketut"> T. S. D. Desak Ketut</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Ayu"> A. A. Ayu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Isna"> A. N. Isna</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Ririn"> D. P. Ririn </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spirogyra sp. is genus of microalgae which has a high carbohydrate content that used as a best medium for bacterial fermentation to produce cellulose. This study objective to determine the effect of pulp banana in the fermented paper production process using Spirogyra sp. and characterizing of the paper product. The method includes the production of bacterial cellulose, assay of the effect fermented paper interpolating with banana pulp using Spirogyra sp., and the assay of paper characteristics include gram-mage paper, water assay absorption, thickness, power assay of tensile resistance, assay of tear resistance, density, and organoleptic assay. Experiments were carried out with completely randomized design with a variation of the concentration of sewage treatment in the fermented paper production interpolating banana pulp using Spirogyra sp. Each parameter data to be analyzed by Anova variance that continued by real difference test with an error rate of 5% using the SPSS. Nata production results indicate that different carbon sources (glucose and sugar) did not show any significant differences from cellulose parameters assay. Significantly different results only indicated for the control treatment. Although not significantly different from the addition of a carbon source, sugar showed higher potency to produce high cellulose. Based on characteristic assay of the fermented paper showed that the paper gram-mage indicated that the control treatment without interpolation of a carbon source and a banana pulp have better result than banana pulp interpolation. Results of control gram-mage is 260 gsm that show optimized by cardboard. While on paper gram-mage produced with the banana pulp interpolation is about 120-200 gsm that show optimized by magazine paper and art paper. Based on the density, weight, water absorption assays, and organoleptic assay of paper showing the highest results in the treatment of pulp banana interpolation with sugar source as carbon is 14.28 g/m2, 0.02 g and 0.041 g/cm2.minutes. The conclusion found that paper with nata material interpolating with sugar and banana pulp has the potential formulation to produce super-quality paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=grammage" title=" grammage"> grammage</a>, <a href="https://publications.waset.org/abstracts/search?q=paper" title=" paper"> paper</a>, <a href="https://publications.waset.org/abstracts/search?q=Spirogyra%20sp." title=" Spirogyra sp."> Spirogyra sp.</a> </p> <a href="https://publications.waset.org/abstracts/32790/optimizing-fermented-paper-production-using-spyrogira-sp-interpolating-with-banana-pulp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Convolutional Neural Networks Architecture Analysis for Image Captioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Seung%20Woo">Jun Seung Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%20Dong%20Ho"> Shin Dong Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20captioning" title=" image captioning"> image captioning</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN%20architectures" title=" CNN architectures"> CNN architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=densenet" title=" densenet"> densenet</a>, <a href="https://publications.waset.org/abstracts/search?q=inceptionV3" title=" inceptionV3"> inceptionV3</a> </p> <a href="https://publications.waset.org/abstracts/148886/convolutional-neural-networks-architecture-analysis-for-image-captioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Examining Cyber Crime and Its Impacts on E-Banking in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auwal%20Nata%27ala">Auwal Nata'ala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Information and Communication Technology (ICT) has had impacts in almost every area human endeavor. From business, industries, banks to none profit organizations. ICT has simplified business process such as sorting, summarizing, coding, updating and generating a report in a real-time processing mode. However, the use of these ICT facilities such as computer and internet has also brought unintended consequences of criminal activities such as spamming, credit card frauds, ATM frauds, phishing, identity theft, denial of services and other related cyber crimes. This study sought to examined cyber-crime and its impact on the banking institution in Nigeria. It also examined the existing policy framework and assessed the success of the institutional countermeasures in combating cyber crime in the banking industry. This paper X-ray’s cyber crimes, policies issues and provides insight from a Nigeria perspective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyber%20crimes" title="cyber crimes">cyber crimes</a>, <a href="https://publications.waset.org/abstracts/search?q=e-banking" title=" e-banking"> e-banking</a>, <a href="https://publications.waset.org/abstracts/search?q=policies" title=" policies"> policies</a>, <a href="https://publications.waset.org/abstracts/search?q=ICT" title=" ICT"> ICT</a> </p> <a href="https://publications.waset.org/abstracts/18051/examining-cyber-crime-and-its-impacts-on-e-banking-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Thermal Analysis of a Composite of Coco Fiber and Látex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the unquestionable need of environmental preservation, the natural fibers have been seen as a salutary alternative for production of composites in substitution to the synthetic fibers, vitreous and metallic. In this work, the behavior of a composite was analyzed done with fiber of the peel of the coconut as reinforcement and latex as head office, when submitted the source of heat. The temperature profiles were verified in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. It was also analyzed the behavior of this composite when submitted to a cold source. As consequence, in function of the answers of the system, conclusions were reached. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title="natural fiber">natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=latex" title=" latex"> latex</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient" title=" gradient"> gradient</a> </p> <a href="https://publications.waset.org/abstracts/18373/thermal-analysis-of-a-composite-of-coco-fiber-and-latex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">817</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Image Instance Segmentation Using Modified Mask R-CNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avatharam%20Ganivada">Avatharam Ganivada</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Shah"> Krishna Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instance%20segmentation" title="instance segmentation">instance segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/147310/image-instance-segmentation-using-modified-mask-r-cnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> COVID-19 Vaccine Hesitancy: The Role of Existential Concerns in Individual’s Decisions Regarding the Vaccine Uptake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vittoria%20Franchina">Vittoria Franchina</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Salerno"> Laura Salerno</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubinia%20Celeste%20Bonfanti"> Rubinia Celeste Bonfanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gianluca%20Lo%20Coco"> Gianluca Lo Coco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the relationships between existential concerns (ECs), basic psychological needs (BPNs), vaccine hesitancy (VH), and the mediating role of negative attitudes toward COVID-19 vaccines. A cross-sectional survey was carried out on a sample of two-hundred eighty-seven adults (Mage = 36.04 (12.07); 59.9% females). Participants were recruited online through clickworker and filled in measures on existential concerns, basic psychological needs, attitudes toward COVID-19 vaccines, and vaccine hesitancy for Pfizer-BioNTech and Astrazeneca vaccines separately. Structural equation modelling showed that existential concerns were related to Pfizer-BioNTech and Astrazeneca vaccine hesitancy both directly and indirectly through negative attitudes toward possible side effects of COVID-19 vaccines. The present study has identified several predictive factors relating to the intention to uptake vaccination to protect against COVID-19 in Italy. Specifically, these findings suggest a causal link between existential concerns, attitudes, and vaccine hesitancy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=existential%20concerns" title=" existential concerns"> existential concerns</a>, <a href="https://publications.waset.org/abstracts/search?q=Pfizer-BioNTech%20and%20Astrazeneca%20vaccines" title=" Pfizer-BioNTech and Astrazeneca vaccines"> Pfizer-BioNTech and Astrazeneca vaccines</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine%20hesitancy" title=" vaccine hesitancy"> vaccine hesitancy</a> </p> <a href="https://publications.waset.org/abstracts/149591/covid-19-vaccine-hesitancy-the-role-of-existential-concerns-in-individuals-decisions-regarding-the-vaccine-uptake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoxiao%20Li">Xiaoxiao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuangcheng%20Jia"> Shuangcheng Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Li"> Qian Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=keypoint%20detection" title="keypoint detection">keypoint detection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20fusion" title=" feature fusion"> feature fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=attention" title=" attention"> attention</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20segmentation" title=" semantic segmentation"> semantic segmentation</a> </p> <a href="https://publications.waset.org/abstracts/147796/keypoint-detection-method-based-on-multi-scale-feature-fusion-of-attention-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Fang">Cheng Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingwei%20Quan"> Lingwei Quan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cunyue%20Lu"> Cunyue Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20estimation" title=" pose estimation"> pose estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20tracking" title=" pose tracking"> pose tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamese%20network" title=" Siamese network"> Siamese network</a> </p> <a href="https://publications.waset.org/abstracts/112839/online-pose-estimation-and-tracking-approach-with-siamese-region-proposal-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Mathematical Modeling of the Effect of Pretreatment on the Drying Kinetics, Energy Requirement and Physico-Functional Properties of Yam (Dioscorea Rotundata) and Cocoyam (Colocasia Esculenta)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felix%20U.%20Asoiro">Felix U. Asoiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20O.%20Anyichie"> Kingsley O. Anyichie</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshack%20I.%20Simeon"> Meshack I. Simeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinenye%20E.%20Azuka"> Chinenye E. Azuka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work was aimed at studying the effects of microwave drying (450 W) and hot air oven drying on the drying kinetics and physico-functional properties of yams and cocoyams species. The yams and cocoyams were cut into chips of thicknesses of 3mm, 5mm, 7mm, 9mm, and 11mm. The drying characteristics of yam and cocoyam chips were investigated under microwave drying and hot air oven temperatures (50oC – 90oC). Drying methods, temperature, and thickness had a significant effect on the drying characteristics and physico-functional properties of yam and cocoyam. The result of the experiment showed that an increase in the temperature increased the drying time. The result also showed that the microwave drying method took lesser time to dry the samples than the hot air oven drying method. The iodine affinity of starch for yam was higher than that of cocoyam for the microwaved dried samples over those of hot air oven-dried samples. The results of the analysis would be useful in modeling the drying behavior of yams and cocoyams under different drying methods. It could also be useful in the improvement of shelf life for yams and cocoyams as well as designs of efficient systems for drying, handling, storage, packaging, processing, and transportation of yams and cocoyams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coco%20yam" title="coco yam">coco yam</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine%20affinity" title=" iodine affinity"> iodine affinity</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20ate" title=" drying ate"> drying ate</a> </p> <a href="https://publications.waset.org/abstracts/151548/mathematical-modeling-of-the-effect-of-pretreatment-on-the-drying-kinetics-energy-requirement-and-physico-functional-properties-of-yam-dioscorea-rotundata-and-cocoyam-colocasia-esculenta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Zhao">Jie Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Su"> Meng Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alexNet" title="alexNet">alexNet</a>, <a href="https://publications.waset.org/abstracts/search?q=VGG" title=" VGG"> VGG</a>, <a href="https://publications.waset.org/abstracts/search?q=googleNet" title=" googleNet"> googleNet</a>, <a href="https://publications.waset.org/abstracts/search?q=resNet" title=" resNet"> resNet</a>, <a href="https://publications.waset.org/abstracts/search?q=Jetson%20nano" title=" Jetson nano"> Jetson nano</a>, <a href="https://publications.waset.org/abstracts/search?q=CUDA" title=" CUDA"> CUDA</a>, <a href="https://publications.waset.org/abstracts/search?q=COCO-NET" title=" COCO-NET"> COCO-NET</a>, <a href="https://publications.waset.org/abstracts/search?q=cifar10" title=" cifar10"> cifar10</a>, <a href="https://publications.waset.org/abstracts/search?q=imageNet%20large%20scale%20visual%20recognition%20challenge%20%28ILSVRC%29" title=" imageNet large scale visual recognition challenge (ILSVRC)"> imageNet large scale visual recognition challenge (ILSVRC)</a>, <a href="https://publications.waset.org/abstracts/search?q=google%20colab" title=" google colab"> google colab</a> </p> <a href="https://publications.waset.org/abstracts/176759/an-evaluation-of-neural-network-efficacies-for-image-recognition-on-edge-ai-computer-vision-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Jafari">Saeid Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Khursheed%20Ahmad%20Sheikh"> Khursheed Ahmad Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Randy%20W.%20Worobo"> Randy W. Worobo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kitipong%20Assatarakul"> Kitipong Assatarakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45-65 ◦C), extraction time (30–60 min), and ethanol concentration (60–100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 ◦C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20foods" title="functional foods">functional foods</a>, <a href="https://publications.waset.org/abstracts/search?q=coco%20shell%20powder" title=" coco shell powder"> coco shell powder</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a> </p> <a href="https://publications.waset.org/abstracts/181855/ultrasound-assisted-extraction-of-bioactive-compounds-from-cocoa-shell-and-their-encapsulation-in-gum-arabic-and-maltodextrin-a-technology-to-produce-functional-food-ingredients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Kamboj">Ankit Kamboj</a>, <a href="https://publications.waset.org/abstracts/search?q=Shikha%20Talwar"> Shikha Talwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilesh%20Powar"> Nilesh Powar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNN" title="CNN">CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=faster%20RCNN" title=" faster RCNN"> faster RCNN</a>, <a href="https://publications.waset.org/abstracts/search?q=roLabelImg%20rotated%20bounding%20box" title=" roLabelImg rotated bounding box"> roLabelImg rotated bounding box</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20goggle%20detection" title=" safety goggle detection"> safety goggle detection</a> </p> <a href="https://publications.waset.org/abstracts/125856/detection-of-safety-goggles-on-humans-in-industrial-environment-using-faster-region-based-on-convolutional-neural-network-with-rotated-bounding-box" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Poverty Alleviation and Agricultural Management Policies in Nasarawa State of Nigeria: Lessons from the Roots and Tuber Crops Expansion for Increased Food Production (1996-2011)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yahaya%20Abdullahi%20Adadu">Yahaya Abdullahi Adadu</a>, <a href="https://publications.waset.org/abstracts/search?q=Canice%20Erunke%20Esidene"> Canice Erunke Esidene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problems of socio-economic development have been a major challenge bedeviling the Nigerian post-colonial state since her political independence from Britain in October I,1960. Critics have argued that the dilemma of Nigeria’s economic survival started since the early 1970s when the agricultural sector which supposedly was the economic mainstay has been literally substituted with the gains of the oil petro-dollars coming from the foreign exchange earnings. Agriculture therefore, which used to be a major player in terms of human and national upliftment in Nigeria have been given a back seat while oil and gas has taken over the front burner in virtually every aspect of Nigeria’s national life. This study is therefore an exposition of the efforts of the Nasarawa state government in reversing the dangerous trend in which the over reliance on oil wealth has caused to persons, individuals and groups in terms of the prevailing levels of poverty and other attendant vices therein. The study focuses on the management policies of the various regimes in the state since its inception in 1996, with particular reference to the regime types-military and civilian alike in propelling the needed policy change, which could transform the economy in line with international best practices. Particular emphasis will be paid to the BADA-KOSHI agricultural scheme whose interest was to recover the lost glory of rural agriculture through series of roots and tuber expansion, and particularly such crops as yam minissetts, cassava, sweet potatoes and coco-yam, respectively. The paper covers the period between 1996 -2011, a period considered to be critical in the agricultural revolution of the state. The study adopts a theoretical approach via secondary methods of analysis for the efficient explanations of the burning issues under consideration. The paper sums up with policy recommendations and conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poverty" title="poverty">poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=Badakoshi" title=" Badakoshi"> Badakoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20policy%20management" title=" rural policy management"> rural policy management</a> </p> <a href="https://publications.waset.org/abstracts/12780/poverty-alleviation-and-agricultural-management-policies-in-nasarawa-state-of-nigeria-lessons-from-the-roots-and-tuber-crops-expansion-for-increased-food-production-1996-2011" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Co-Smoldered Digestate Ash as Additive for Anaerobic Digestion of Berry Fruit Waste: Stability and Enhanced Production Rate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arinze%20Ezieke">Arinze Ezieke</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Serrano"> Antonio Serrano</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Clarke"> William Clarke</a>, <a href="https://publications.waset.org/abstracts/search?q=Denys%20Villa-Gomez"> Denys Villa-Gomez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Berry cultivation results in discharge of high organic strength putrescible solid waste which potentially contributes to environmental degradation, making it imperative to assess options for its complete management. Anaerobic digestion (AD) could be an ideal option when the target is energy generation; however, due to berry fruit characteristics high carbohydrate composition, the technology could be limited by its high alkalinity requirement which suggests dosing of additives such as buffers and trace elements supplement. Overcoming this limitation in an economically viable way could entail replacement of synthetic additives with recycled by-product waste. Consequently, ash from co-smouldering of high COD characteristic AD digestate and coco-coir could be a promising material to be used to enhance the AD of berry fruit waste, given its characteristic high pH, alkalinity and metal concentrations which is typical of synthetic additives. Therefore, the aim of the research was to evaluate the stability and process performance from the AD of BFW when ash from co-smoldered digestate and coir are supplemented as alkalinity and trace elements (TEs) source. Series of batch experiments were performed to ascertain the necessity for alkalinity addition and to see whether the alkalinity and metals in the co-smouldered digestate ash can provide the necessary buffer and TEs for AD of berry fruit waste. Triplicate assays were performed in batch systems following I/S of 2 (in VS), using serum bottles (160 mL) sealed and placed in a heated room (35±0.5 °C), after creating anaerobic conditions. Control experiment contained inoculum and substrates only, and inoculum, substrate and NaHCO3 for optimal total alkalinity concentration and TEs assays, respectively. Total alkalinity concentration refers to alkalinity of inoculum and the additives. The alkalinity and TE potential of the ash were evaluated by supplementing ash (22.574 g/kg) of equivalent total alkalinity concentration to that of the pre-determined optimal from NaHCO3, and by dosing ash (0.012 – 7.574 g/kg) of varying concentrations of specific essential TEs (Co, Fe, Ni, Se), respectively. The result showed a stable process at all examined conditions. Supplementation of 745 mg/L CaCO3 NaHCO3 resulted to an optimum TAC of 2000 mg/L CaCO3. Equivalent ash supplementation of 22.574 g/kg allowed the achievement of this pre-determined optimum total alkalinity concentration, resulting to a stable process with a 92% increase in the methane production rate (323 versus 168 mL CH4/ (gVS.d)), but a 36% reduction in the cumulative methane production (103 versus 161 mL CH4/gVS). Addition of ashes at incremental dosage as TEs source resulted to a reduction in the Cumulative methane production, with the highest dosage of 7.574 g/kg having the highest effect of -23.5%; however, the seemingly immediate bioavailability of TE at this high dosage allowed for a +15% increase in the methane production rate. With an increased methane production rate, the results demonstrated that the ash at high dosages could be an effective supplementary material for either a buffered or none buffered berry fruit waste AD system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=alkalinity" title=" alkalinity"> alkalinity</a>, <a href="https://publications.waset.org/abstracts/search?q=co-smoldered%20digestate%20ash" title=" co-smoldered digestate ash"> co-smoldered digestate ash</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elements" title=" trace elements"> trace elements</a> </p> <a href="https://publications.waset.org/abstracts/121603/co-smoldered-digestate-ash-as-additive-for-anaerobic-digestion-of-berry-fruit-waste-stability-and-enhanced-production-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>