CINXE.COM
Methods of detecting exoplanets - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Methods of detecting exoplanets - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ba6c157f-cc4d-4b19-a129-b8a0708851e2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Methods_of_detecting_exoplanets","wgTitle":"Methods of detecting exoplanets","wgCurRevisionId":1259063070,"wgRevisionId":1259063070,"wgArticleId":7290120,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: unfit URL","Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","Use dmy dates from April 2019","Articles containing potentially dated statements from January 2024","All articles containing potentially dated statements","All articles with unsourced statements","Articles with unsourced statements from July 2015","Wikipedia articles needing clarification from July 2015", "Articles containing potentially dated statements from 2022","Wikipedia articles in need of updating from July 2024","All Wikipedia articles in need of updating","Articles containing video clips","Scientific techniques","Exoplanetology"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Methods_of_detecting_exoplanets","wgRelevantArticleId":7290120,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000, "wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q591022","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.tmh.player.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles" :"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.tmh.player","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.tmh.player.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Confirmed_exoplanets_by_methods_EPE.svg/1200px-Confirmed_exoplanets_by_methods_EPE.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Confirmed_exoplanets_by_methods_EPE.svg/800px-Confirmed_exoplanets_by_methods_EPE.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="533"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Confirmed_exoplanets_by_methods_EPE.svg/640px-Confirmed_exoplanets_by_methods_EPE.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="427"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Methods of detecting exoplanets - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Methods_of_detecting_exoplanets"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Methods_of_detecting_exoplanets"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Methods_of_detecting_exoplanets rootpage-Methods_of_detecting_exoplanets skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Methods+of+detecting+exoplanets" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Methods+of+detecting+exoplanets" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Methods+of+detecting+exoplanets" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Methods+of+detecting+exoplanets" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Established_detection_methods" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Established_detection_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Established detection methods</span> </div> </a> <button aria-controls="toc-Established_detection_methods-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Established detection methods subsection</span> </button> <ul id="toc-Established_detection_methods-sublist" class="vector-toc-list"> <li id="toc-Radial_velocity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Radial_velocity"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Radial velocity</span> </div> </a> <ul id="toc-Radial_velocity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transit_photometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transit_photometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Transit photometry</span> </div> </a> <ul id="toc-Transit_photometry-sublist" class="vector-toc-list"> <li id="toc-Technique,_advantages,_and_disadvantages" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Technique,_advantages,_and_disadvantages"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.1</span> <span>Technique, advantages, and disadvantages</span> </div> </a> <ul id="toc-Technique,_advantages,_and_disadvantages-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.2</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Reflection_and_emission_modulations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reflection_and_emission_modulations"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Reflection and emission modulations</span> </div> </a> <ul id="toc-Reflection_and_emission_modulations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativistic_beaming" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativistic_beaming"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Relativistic beaming</span> </div> </a> <ul id="toc-Relativistic_beaming-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ellipsoidal_variations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ellipsoidal_variations"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Ellipsoidal variations</span> </div> </a> <ul id="toc-Ellipsoidal_variations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pulsar_timing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pulsar_timing"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6</span> <span>Pulsar timing</span> </div> </a> <ul id="toc-Pulsar_timing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Variable_star_timing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Variable_star_timing"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.7</span> <span>Variable star timing</span> </div> </a> <ul id="toc-Variable_star_timing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transit_timing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transit_timing"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.8</span> <span>Transit timing</span> </div> </a> <ul id="toc-Transit_timing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transit_duration_variation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transit_duration_variation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.9</span> <span>Transit duration variation</span> </div> </a> <ul id="toc-Transit_duration_variation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eclipsing_binary_minima_timing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eclipsing_binary_minima_timing"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.10</span> <span>Eclipsing binary minima timing</span> </div> </a> <ul id="toc-Eclipsing_binary_minima_timing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gravitational_microlensing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gravitational_microlensing"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.11</span> <span>Gravitational microlensing</span> </div> </a> <ul id="toc-Gravitational_microlensing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Direct_imaging" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Direct_imaging"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.12</span> <span>Direct imaging</span> </div> </a> <ul id="toc-Direct_imaging-sublist" class="vector-toc-list"> <li id="toc-Early_discoveries" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Early_discoveries"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.12.1</span> <span>Early discoveries</span> </div> </a> <ul id="toc-Early_discoveries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Imaging_instruments" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Imaging_instruments"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.12.2</span> <span>Imaging instruments</span> </div> </a> <ul id="toc-Imaging_instruments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Data_Reduction_Techniques" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Data_Reduction_Techniques"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.12.3</span> <span>Data Reduction Techniques</span> </div> </a> <ul id="toc-Data_Reduction_Techniques-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Polarimetry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Polarimetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.13</span> <span>Polarimetry</span> </div> </a> <ul id="toc-Polarimetry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Astrometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Astrometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.14</span> <span>Astrometry</span> </div> </a> <ul id="toc-Astrometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-X-ray_eclipse" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#X-ray_eclipse"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.15</span> <span>X-ray eclipse</span> </div> </a> <ul id="toc-X-ray_eclipse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Disc_kinematics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Disc_kinematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.16</span> <span>Disc kinematics</span> </div> </a> <ul id="toc-Disc_kinematics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_possible_methods" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_possible_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Other possible methods</span> </div> </a> <button aria-controls="toc-Other_possible_methods-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other possible methods subsection</span> </button> <ul id="toc-Other_possible_methods-sublist" class="vector-toc-list"> <li id="toc-Flare_and_variability_echo_detection" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Flare_and_variability_echo_detection"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Flare and variability echo detection</span> </div> </a> <ul id="toc-Flare_and_variability_echo_detection-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transit_imaging" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transit_imaging"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Transit imaging</span> </div> </a> <ul id="toc-Transit_imaging-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Magnetospheric_(auroral)_radio_emissions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Magnetospheric_(auroral)_radio_emissions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Magnetospheric (auroral) radio emissions</span> </div> </a> <ul id="toc-Magnetospheric_(auroral)_radio_emissions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Optical_interferometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Optical_interferometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Optical interferometry</span> </div> </a> <ul id="toc-Optical_interferometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modified_interferometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modified_interferometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Modified interferometry</span> </div> </a> <ul id="toc-Modified_interferometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Detection_of_dust_trapping_around_Lagrangian_points" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Detection_of_dust_trapping_around_Lagrangian_points"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Detection of dust trapping around Lagrangian points</span> </div> </a> <ul id="toc-Detection_of_dust_trapping_around_Lagrangian_points-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gravitational_waves" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gravitational_waves"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7</span> <span>Gravitational waves</span> </div> </a> <ul id="toc-Gravitational_waves-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Detection_of_extrasolar_asteroids_and_debris_disks" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Detection_of_extrasolar_asteroids_and_debris_disks"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Detection of extrasolar asteroids and debris disks</span> </div> </a> <button aria-controls="toc-Detection_of_extrasolar_asteroids_and_debris_disks-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Detection of extrasolar asteroids and debris disks subsection</span> </button> <ul id="toc-Detection_of_extrasolar_asteroids_and_debris_disks-sublist" class="vector-toc-list"> <li id="toc-Circumstellar_disks" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Circumstellar_disks"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Circumstellar disks</span> </div> </a> <ul id="toc-Circumstellar_disks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Contamination_of_stellar_atmospheres" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Contamination_of_stellar_atmospheres"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Contamination of stellar atmospheres</span> </div> </a> <ul id="toc-Contamination_of_stellar_atmospheres-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Space_telescopes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Space_telescopes"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Space telescopes</span> </div> </a> <ul id="toc-Space_telescopes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Primary_and_secondary_detection" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Primary_and_secondary_detection"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Primary and secondary detection</span> </div> </a> <ul id="toc-Primary_and_secondary_detection-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Verification_and_falsification_methods" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Verification_and_falsification_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Verification and falsification methods</span> </div> </a> <ul id="toc-Verification_and_falsification_methods-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Characterization_methods" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Characterization_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Characterization methods</span> </div> </a> <ul id="toc-Characterization_methods-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Methods of detecting exoplanets</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 23 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-23" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">23 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://af.wikipedia.org/wiki/Opsporing_van_eksoplanete" title="Opsporing van eksoplanete – Afrikaans" lang="af" hreflang="af" data-title="Opsporing van eksoplanete" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B7%D8%B1%D9%82_%D8%A7%D9%83%D8%AA%D8%B4%D8%A7%D9%81_%D8%A7%D9%84%D9%83%D9%88%D8%A7%D9%83%D8%A8_%D8%BA%D9%8A%D8%B1_%D8%A7%D9%84%D8%B4%D9%85%D8%B3%D9%8A%D8%A9" title="طرق اكتشاف الكواكب غير الشمسية – Arabic" lang="ar" hreflang="ar" data-title="طرق اكتشاف الكواكب غير الشمسية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/M%C3%A9todos_de_detecci%C3%B3n_de_planetas_extrasolares" title="Métodos de detección de planetas extrasolares – Spanish" lang="es" hreflang="es" data-title="Métodos de detección de planetas extrasolares" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B1%D9%88%D8%B4%E2%80%8C%D9%87%D8%A7%DB%8C_%DB%8C%D8%A7%D9%81%D8%AA%D9%86_%D8%B3%DB%8C%D8%A7%D8%B1%D9%87%E2%80%8C%D9%87%D8%A7%DB%8C_%D9%81%D8%B1%D8%A7%D8%AE%D9%88%D8%B1%D8%B4%DB%8C%D8%AF%DB%8C" title="روشهای یافتن سیارههای فراخورشیدی – Persian" lang="fa" hreflang="fa" data-title="روشهای یافتن سیارههای فراخورشیدی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/M%C3%A9thodes_de_d%C3%A9tection_des_exoplan%C3%A8tes" title="Méthodes de détection des exoplanètes – French" lang="fr" hreflang="fr" data-title="Méthodes de détection des exoplanètes" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%99%B8%EA%B3%84_%ED%96%89%EC%84%B1_%ED%83%90%EC%82%AC%EB%B0%A9%EB%B2%95" title="외계 행성 탐사방법 – Korean" lang="ko" hreflang="ko" data-title="외계 행성 탐사방법" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AC%E0%A4%B9%E0%A4%BF%E0%A4%B0%E0%A5%8D%E0%A4%97%E0%A5%8D%E0%A4%B0%E0%A4%B9_%E0%A4%96%E0%A5%8B%E0%A4%9C_%E0%A4%95%E0%A5%80_%E0%A4%B5%E0%A4%BF%E0%A4%A7%E0%A4%BF%E0%A4%AF%E0%A4%BE%E0%A4%81" title="बहिर्ग्रह खोज की विधियाँ – Hindi" lang="hi" hreflang="hi" data-title="बहिर्ग्रह खोज की विधियाँ" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Metode_pendeteksian_eksoplanet" title="Metode pendeteksian eksoplanet – Indonesian" lang="id" hreflang="id" data-title="Metode pendeteksian eksoplanet" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Metodi_di_individuazione_di_pianeti_extrasolari" title="Metodi di individuazione di pianeti extrasolari – Italian" lang="it" hreflang="it" data-title="Metodi di individuazione di pianeti extrasolari" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Az_exobolyg%C3%B3k_keres%C3%A9s%C3%A9nek_m%C3%B3dszerei" title="Az exobolygók keresésének módszerei – Hungarian" lang="hu" hreflang="hu" data-title="Az exobolygók keresésének módszerei" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9D%D0%B0%D1%87%D0%B8%D0%BD%D0%B8_%D0%BD%D0%B0_%D0%BE%D1%82%D0%BA%D1%80%D0%B8%D0%B2%D0%B0%D1%9A%D0%B5_%D0%BD%D0%B0_%D0%B2%D0%BE%D0%BD%D1%81%D0%BE%D0%BD%D1%87%D0%B5%D0%B2%D0%B8_%D0%BF%D0%BB%D0%B0%D0%BD%D0%B5%D1%82%D0%B8" title="Начини на откривање на вонсончеви планети – Macedonian" lang="mk" hreflang="mk" data-title="Начини на откривање на вонсончеви планети" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Kaedah_pengesanan_planet_luar_sistem_suria" title="Kaedah pengesanan planet luar sistem suria – Malay" lang="ms" hreflang="ms" data-title="Kaedah pengesanan planet luar sistem suria" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Methoden_om_exoplaneten_te_vinden" title="Methoden om exoplaneten te vinden – Dutch" lang="nl" hreflang="nl" data-title="Methoden om exoplaneten te vinden" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%A4%AA%E9%99%BD%E7%B3%BB%E5%A4%96%E6%83%91%E6%98%9F%E3%81%AE%E7%99%BA%E8%A6%8B%E6%96%B9%E6%B3%95" title="太陽系外惑星の発見方法 – Japanese" lang="ja" hreflang="ja" data-title="太陽系外惑星の発見方法" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Metody_poszukiwania_planet_pozas%C5%82onecznych" title="Metody poszukiwania planet pozasłonecznych – Polish" lang="pl" hreflang="pl" data-title="Metody poszukiwania planet pozasłonecznych" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/M%C3%A9todos_de_detec%C3%A7%C3%A3o_de_exoplanetas" title="Métodos de detecção de exoplanetas – Portuguese" lang="pt" hreflang="pt" data-title="Métodos de detecção de exoplanetas" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4%D1%8B_%D0%BE%D0%B1%D0%BD%D0%B0%D1%80%D1%83%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F_%D1%8D%D0%BA%D0%B7%D0%BE%D0%BF%D0%BB%D0%B0%D0%BD%D0%B5%D1%82" title="Методы обнаружения экзопланет – Russian" lang="ru" hreflang="ru" data-title="Методы обнаружения экзопланет" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Uppt%C3%A4cktsmetoder_f%C3%B6r_exoplaneter" title="Upptäcktsmetoder för exoplaneter – Swedish" lang="sv" hreflang="sv" data-title="Upptäcktsmetoder för exoplaneter" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A7%E0%B8%B4%E0%B8%98%E0%B8%B5%E0%B8%95%E0%B8%A3%E0%B8%A7%E0%B8%88%E0%B8%88%E0%B8%B1%E0%B8%9A%E0%B8%94%E0%B8%B2%E0%B8%A7%E0%B9%80%E0%B8%84%E0%B8%A3%E0%B8%B2%E0%B8%B0%E0%B8%AB%E0%B9%8C%E0%B8%99%E0%B8%AD%E0%B8%81%E0%B8%A3%E0%B8%B0%E0%B8%9A%E0%B8%9A" title="วิธีตรวจจับดาวเคราะห์นอกระบบ – Thai" lang="th" hreflang="th" data-title="วิธีตรวจจับดาวเคราะห์นอกระบบ" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C3%96tegezegenleri_tespit_etme_y%C3%B6ntemleri" title="Ötegezegenleri tespit etme yöntemleri – Turkish" lang="tr" hreflang="tr" data-title="Ötegezegenleri tespit etme yöntemleri" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4%D0%B8_%D0%B2%D0%B8%D1%8F%D0%B2%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_%D0%B5%D0%BA%D0%B7%D0%BE%D0%BF%D0%BB%D0%B0%D0%BD%D0%B5%D1%82" title="Методи виявлення екзопланет – Ukrainian" lang="uk" hreflang="uk" data-title="Методи виявлення екзопланет" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C6%B0%C6%A1ng_ph%C3%A1p_ph%C3%A1t_hi%E1%BB%87n_ngo%E1%BA%A1i_h%C3%A0nh_tinh" title="Phương pháp phát hiện ngoại hành tinh – Vietnamese" lang="vi" hreflang="vi" data-title="Phương pháp phát hiện ngoại hành tinh" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%B3%BB%E5%A4%96%E8%A1%8C%E6%98%9F%E5%81%B5%E6%B8%AC%E6%B3%95" title="系外行星偵測法 – Chinese" lang="zh" hreflang="zh" data-title="系外行星偵測法" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q591022#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Methods_of_detecting_exoplanets" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Methods_of_detecting_exoplanets" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Methods_of_detecting_exoplanets"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Methods_of_detecting_exoplanets"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Methods_of_detecting_exoplanets" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Methods_of_detecting_exoplanets" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Methods_of_detecting_exoplanets&oldid=1259063070" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Methods_of_detecting_exoplanets&id=1259063070&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMethods_of_detecting_exoplanets"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMethods_of_detecting_exoplanets"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Methods_of_detecting_exoplanets&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Methods_of_detecting_exoplanets&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q591022" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Confirmed_exoplanets_by_methods_EPE.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Confirmed_exoplanets_by_methods_EPE.svg/400px-Confirmed_exoplanets_by_methods_EPE.svg.png" decoding="async" width="400" height="267" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Confirmed_exoplanets_by_methods_EPE.svg/600px-Confirmed_exoplanets_by_methods_EPE.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Confirmed_exoplanets_by_methods_EPE.svg/800px-Confirmed_exoplanets_by_methods_EPE.svg.png 2x" data-file-width="1350" data-file-height="900" /></a><figcaption>Number of extrasolar planet discoveries per year through 2022, with colors indicating method of detection: <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 22em;"> <style data-mw-deduplicate="TemplateStyles:r981673959">.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}</style><div class="legend"><span class="legend-color mw-no-invert" style="background-color:#1f77b4; color:white;"> </span> <a href="#Direct_imaging">Direct imaging</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-color mw-no-invert" style="background-color:#ff7f0e; color:black;"> </span> <a href="/wiki/Gravitational_microlensing" title="Gravitational microlensing">Microlensing</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-color mw-no-invert" style="background-color:#2ca02c; color:black;"> </span> <a href="#Transit_photometry">Transit</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-color mw-no-invert" style="background-color:#d62728; color:white;"> </span> <a href="/wiki/Doppler_spectroscopy" title="Doppler spectroscopy">Radial velocity</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-color mw-no-invert" style="background-color:#9467bd; color:black;"> </span> <a href="/wiki/Transit-timing_variation" title="Transit-timing variation">Timing</a></div> </div></figcaption></figure> <p>Any <a href="/wiki/Planet" title="Planet">planet</a> is an extremely faint light source compared to its parent <a href="/wiki/Star" title="Star">star</a>. For example, a <a href="/wiki/Star" title="Star">star</a> like the <a href="/wiki/Sun" title="Sun">Sun</a> is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the <a href="/wiki/Exoplanet" title="Exoplanet">exoplanets</a> reported as of January 2024<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Methods_of_detecting_exoplanets&action=edit">[update]</a></sup> have been observed directly, with even fewer being resolved from their host star. </p><p>Instead, <a href="/wiki/Astronomer" title="Astronomer">astronomers</a> have generally had to resort to indirect methods to detect extrasolar planets. As of 2016, several different indirect methods have yielded success. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Established_detection_methods">Established detection methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=1" title="Edit section: Established detection methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following methods have at least once proved successful for discovering a new planet or detecting an already discovered planet: </p> <div class="mw-heading mw-heading3"><h3 id="Radial_velocity">Radial velocity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=2" title="Edit section: Radial velocity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Doppler_spectroscopy" title="Doppler spectroscopy">Doppler spectroscopy</a> and <a href="/wiki/List_of_exoplanets_detected_by_radial_velocity" title="List of exoplanets detected by radial velocity">List of exoplanets detected by radial velocity</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:18_Del_b_rv.pdf" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/18_Del_b_rv.pdf/page1-220px-18_Del_b_rv.pdf.jpg" decoding="async" width="220" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/18_Del_b_rv.pdf/page1-330px-18_Del_b_rv.pdf.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/18_Del_b_rv.pdf/page1-440px-18_Del_b_rv.pdf.jpg 2x" data-file-width="1583" data-file-height="1125" /></a><figcaption>Radial velocity graph of <a href="/wiki/18_Delphini_b" title="18 Delphini b">18 Delphini b</a>.</figcaption></figure> <p>A star with a planet will move in its own small orbit in response to the planet's gravity. This leads to variations in the speed with which the star moves toward or away from Earth, i.e. the variations are in the <a href="/wiki/Radial_velocity" title="Radial velocity">radial velocity</a> of the star with respect to Earth. The radial velocity can be deduced from the displacement in the parent star's <a href="/wiki/Spectral_line" title="Spectral line">spectral lines</a> due to the <a href="/wiki/Doppler_effect" title="Doppler effect">Doppler effect</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The radial-velocity method measures these variations in order to confirm the presence of the planet using the <a href="/wiki/Binary_mass_function" title="Binary mass function">binary mass function</a>. </p><p>The speed of the star around the system's <a href="/wiki/Center_of_mass" title="Center of mass">center of mass</a> is much smaller than that of the planet, because the radius of its orbit around the center of mass is so small. (For example, the Sun moves by about 13 m/s due to Jupiter, but only about 9 cm/s due to Earth). However, velocity variations down to 3 m/s or even somewhat less can be detected with modern <a href="/wiki/Spectrometer" title="Spectrometer">spectrometers</a>, such as the HARPS (<a href="/wiki/High_Accuracy_Radial_Velocity_Planet_Searcher" title="High Accuracy Radial Velocity Planet Searcher">High Accuracy Radial Velocity Planet Searcher</a>) spectrometer at the <a href="/wiki/ESO" class="mw-redirect" title="ESO">ESO</a> 3.6 meter telescope in <a href="/wiki/La_Silla_Observatory" title="La Silla Observatory">La Silla Observatory</a>, Chile, the <a href="/wiki/W._M._Keck_Observatory#Instruments" title="W. M. Keck Observatory">HIRES</a> spectrometer at the <a href="/wiki/Keck_telescopes" class="mw-redirect" title="Keck telescopes">Keck telescopes</a> or <a href="/wiki/EXPRES" title="EXPRES">EXPRES</a> at the <a href="/wiki/Lowell_Discovery_Telescope" title="Lowell Discovery Telescope">Lowell Discovery Telescope</a>. An especially simple and inexpensive method for measuring radial velocity is "externally dispersed interferometry".<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Until around 2012, the radial-velocity method (also known as <a href="/wiki/Doppler_spectroscopy" title="Doppler spectroscopy">Doppler spectroscopy</a>) was by far the most productive technique used by planet hunters. (After 2012, the transit method from the <a href="/wiki/Kepler_space_telescope" title="Kepler space telescope">Kepler space telescope</a> overtook it in number.) The radial velocity signal is distance independent, but requires high <a href="/wiki/Signal-to-noise_ratio" title="Signal-to-noise ratio">signal-to-noise ratio</a> spectra to achieve high precision, and so is generally used only for relatively nearby stars, out to about 160 light-years from Earth, to find lower-mass planets. It is also not possible to simultaneously observe many target stars at a time with a single telescope. Planets of Jovian mass can be detectable around stars up to a few thousand <a href="/wiki/Light-year" title="Light-year">light years</a> away. This method easily finds massive planets that are close to stars. Modern <a href="/wiki/Spectrograph" class="mw-redirect" title="Spectrograph">spectrographs</a> can also easily detect Jupiter-mass planets orbiting 10 <a href="/wiki/Astronomical_unit" title="Astronomical unit">astronomical units</a> away from the parent star, but detection of those planets requires many years of observation. Earth-mass planets are currently detectable only in very small orbits around low-mass stars, e.g. <a href="/wiki/Proxima_b" class="mw-redirect" title="Proxima b">Proxima b</a>. </p><p>It is easier to detect planets around low-mass stars, for two reasons: First, these stars are more affected by gravitational tug from planets. The second reason is that low-mass main-sequence stars generally rotate relatively slowly. Fast rotation makes spectral-line data less clear because half of the star quickly rotates away from observer's viewpoint while the other half approaches. Detecting planets around more massive stars is easier if the star has left the main sequence, because leaving the main sequence slows down the star's rotation. </p><p>Sometimes Doppler spectrography produces false signals, especially in multi-planet and multi-star systems. Magnetic fields and certain types of stellar activity can also give false signals. When the host star has multiple planets, false signals can also arise from having insufficient data, so that multiple solutions can fit the data, as stars are not generally observed continuously.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Some of the false signals can be eliminated by analyzing the stability of the planetary system, conducting <a href="/wiki/Photometry_(astronomy)" title="Photometry (astronomy)">photometry</a> analysis on the host star and knowing its rotation period and stellar activity cycle periods. </p><p>Planets with orbits highly inclined to the line of sight from Earth produce smaller visible wobbles, and are thus more difficult to detect. One of the advantages of the radial velocity method is that eccentricity of the planet's orbit can be measured directly. One of the main disadvantages of the radial-velocity method is that it can only estimate a planet's <a href="/wiki/Minimum_mass" title="Minimum mass">minimum mass</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{\text{true}}*{\sin i}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>true</mtext> </mrow> </msub> <mo>∗<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>i</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{\text{true}}*{\sin i}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa0577d57f76ff4f1627f7266f1807db4c07bf14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.042ex; height:2.509ex;" alt="{\displaystyle M_{\text{true}}*{\sin i}\,}"></span>). The posterior distribution of the inclination angle <i>i</i> depends on the true mass distribution of the planets.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> However, when there are multiple planets in the system that orbit relatively close to each other and have sufficient mass, orbital stability analysis allows one to constrain the maximum mass of these planets. The radial-velocity method can be used to confirm findings made by the <a href="#Transit_photometry">transit method</a>. When both methods are used in combination, then the planet's true mass can be estimated. </p><p>Although radial velocity of the star only gives a planet's minimum mass, if the planet's <a href="/wiki/Spectral_line" title="Spectral line">spectral lines</a> can be distinguished from the star's spectral lines then the radial velocity of the planet itself can be found, and this gives the inclination of the planet's orbit. This enables measurement of the planet's actual mass. This also rules out false positives, and also provides data about the composition of the planet. The main issue is that such detection is possible only if the planet orbits around a relatively bright star and if the planet reflects or emits a lot of light.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Transit_photometry">Transit photometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=3" title="Edit section: Transit photometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/List_of_transiting_exoplanets" title="List of transiting exoplanets">List of transiting exoplanets</a> and <a href="/wiki/Astronomical_transit" title="Astronomical transit">Astronomical transit</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><span><video id="mwe_player_0" poster="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Transit_method_variable-size_planet_4K.webm/310px--Transit_method_variable-size_planet_4K.webm.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="310" height="174" data-durationhint="24" data-mwtitle="Transit_method_variable-size_planet_4K.webm" data-mwprovider="wikimediacommons" resource="/wiki/File:Transit_method_variable-size_planet_4K.webm"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/3/3f/Transit_method_variable-size_planet_4K.webm/Transit_method_variable-size_planet_4K.webm.480p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="480p.vp9.webm" data-width="854" data-height="480" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/3/3f/Transit_method_variable-size_planet_4K.webm/Transit_method_variable-size_planet_4K.webm.720p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="720" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/3/3f/Transit_method_variable-size_planet_4K.webm/Transit_method_variable-size_planet_4K.webm.1080p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="1080p.vp9.webm" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/3/3f/Transit_method_variable-size_planet_4K.webm" type="video/webm; codecs="vp9"" data-width="3840" data-height="2160" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/3/3f/Transit_method_variable-size_planet_4K.webm/Transit_method_variable-size_planet_4K.webm.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="256" data-height="144" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/3/3f/Transit_method_variable-size_planet_4K.webm/Transit_method_variable-size_planet_4K.webm.240p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="240p.vp9.webm" data-width="426" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/3/3f/Transit_method_variable-size_planet_4K.webm/Transit_method_variable-size_planet_4K.webm.360p.webm" type="video/webm; codecs="vp8, vorbis"" data-transcodekey="360p.webm" data-width="640" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/3/3f/Transit_method_variable-size_planet_4K.webm/Transit_method_variable-size_planet_4K.webm.360p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="360p.vp9.webm" data-width="640" data-height="360" /></video></span><figcaption>Visualization of transit method for planets of different sizes, showing different light-curves.</figcaption></figure> <div class="mw-heading mw-heading4"><h4 id="Technique,_advantages,_and_disadvantages"><span id="Technique.2C_advantages.2C_and_disadvantages"></span>Technique, advantages, and disadvantages</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=4" title="Edit section: Technique, advantages, and disadvantages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While the <a href="/wiki/Doppler_spectroscopy" title="Doppler spectroscopy">radial velocity method</a> provides information about a planet's mass, the <a href="/wiki/Photometry_(astronomy)" title="Photometry (astronomy)">photometric</a> method can determine the planet's radius. If a planet crosses (<a href="/wiki/Astronomical_transit" title="Astronomical transit">transits</a>) in front of its parent star's disk, then the observed visual brightness of the star drops by a small amount, depending on the relative sizes of the star and the planet.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> For example, in the case of <a href="/wiki/HD_209458" title="HD 209458">HD 209458</a>, the star dims by 1.7%. However, most transit signals are considerably smaller; for example, an Earth-size planet transiting a Sun-like star produces a dimming of only 80 parts per million (0.008 percent). </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Curvas_de_luz_de_los_siete_planetas_de_TRAPPIST-1_durante_su_tr%C3%A1nsito.png" class="mw-file-description"><img alt="Lengthening brightness dips from 1b to 1h. Shallowest to deepest dips: 1h, 1d, 1e, 1f, 1g, 1c, 1b." src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Curvas_de_luz_de_los_siete_planetas_de_TRAPPIST-1_durante_su_tr%C3%A1nsito.png/220px-Curvas_de_luz_de_los_siete_planetas_de_TRAPPIST-1_durante_su_tr%C3%A1nsito.png" decoding="async" width="220" height="208" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Curvas_de_luz_de_los_siete_planetas_de_TRAPPIST-1_durante_su_tr%C3%A1nsito.png/330px-Curvas_de_luz_de_los_siete_planetas_de_TRAPPIST-1_durante_su_tr%C3%A1nsito.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Curvas_de_luz_de_los_siete_planetas_de_TRAPPIST-1_durante_su_tr%C3%A1nsito.png/440px-Curvas_de_luz_de_los_siete_planetas_de_TRAPPIST-1_durante_su_tr%C3%A1nsito.png 2x" data-file-width="3049" data-file-height="2880" /></a><figcaption>Graph showing dips in brightness in TRAPPIST-1 star by the planet's <a href="/wiki/Astronomical_transit" title="Astronomical transit">transits</a> or obstruction of starlight. Larger planets create deeper dips and further planets create longer dips.</figcaption></figure> <p>A theoretical transiting exoplanet light curve model predicts the following characteristics of an observed planetary system: transit depth (δ), transit duration (T), the ingress/egress duration (τ), and period of the exoplanet (P). However, these observed quantities are based on several assumptions. For convenience in the calculations, we assume that the planet and star are spherical, the stellar disk is uniform, and the orbit is circular. Depending on the relative position that an observed transiting exoplanet is while transiting a star, the observed physical parameters of the light curve will change. The transit depth (δ) of a transiting light curve describes the decrease in the normalized flux of the star during a transit. This details the radius of an exoplanet compared to the radius of the star. For example, if an exoplanet transits a solar radius size star, a planet with a larger radius would increase the transit depth and a planet with a smaller radius would decrease the transit depth. The transit duration (T) of an exoplanet is the length of time that a planet spends transiting a star. This observed parameter changes relative to how fast or slow a planet is moving in its orbit as it transits the star. The ingress/egress duration (τ) of a transiting light curve describes the length of time the planet takes to fully cover the star (ingress) and fully uncover the star (egress). If a planet transits from the one end of the diameter of the star to the other end, the ingress/egress duration is shorter because it takes less time for a planet to fully cover the star. If a planet transits a star relative to any other point other than the diameter, the ingress/egress duration lengthens as you move further away from the diameter because the planet spends a longer time partially covering the star during its transit.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> From these observable parameters, a number of different physical parameters (semi-major axis, star mass, star radius, planet radius, eccentricity, and inclination) are determined through calculations. With the combination of radial velocity measurements of the star, the mass of the planet is also determined. </p><p>This method has two major disadvantages. First, planetary transits are observable only when the planet's orbit happens to be perfectly aligned from the astronomers' vantage point. The probability of a planetary <a href="/wiki/Orbital_plane_(astronomy)" class="mw-redirect" title="Orbital plane (astronomy)">orbital plane</a> being directly on the line-of-sight to a star is the ratio of the diameter of the star to the diameter of the orbit (in small stars, the radius of the planet is also an important factor). About 10% of planets with small orbits have such an alignment, and the fraction decreases for planets with larger orbits. For a planet orbiting a Sun-sized star at 1 <a href="/wiki/Astronomical_unit" title="Astronomical unit">AU</a>, the probability of a random alignment producing a transit is 0.47%. Therefore, the method cannot guarantee that any particular star is not a host to planets. However, by scanning large areas of the sky containing thousands or even hundreds of thousands of stars at once, transit surveys can find more extrasolar planets than the radial-velocity method.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Several surveys have taken that approach, such as the ground-based <a href="/wiki/MEarth_Project" title="MEarth Project">MEarth Project</a>, <a href="/wiki/Wide_Angle_Search_for_Planets" title="Wide Angle Search for Planets">SuperWASP</a>, <a href="/wiki/Kilodegree_Extremely_Little_Telescope" title="Kilodegree Extremely Little Telescope">KELT</a>, and <a href="/wiki/HATNet" class="mw-redirect" title="HATNet">HATNet</a>, as well as the space-based <a href="/wiki/COROT" class="mw-redirect" title="COROT">COROT</a>, <a href="/wiki/Kepler_(spacecraft)" class="mw-redirect" title="Kepler (spacecraft)">Kepler</a> and <a href="/wiki/Transiting_Exoplanet_Survey_Satellite" title="Transiting Exoplanet Survey Satellite">TESS</a> missions. The transit method has also the advantage of detecting planets around stars that are located a few thousand light years away. The most distant planets detected by <a href="/wiki/Sagittarius_Window_Eclipsing_Extrasolar_Planet_Search" title="Sagittarius Window Eclipsing Extrasolar Planet Search">Sagittarius Window Eclipsing Extrasolar Planet Search</a> are located near the galactic center. However, reliable follow-up observations of these stars are nearly impossible with current technology. </p><p>The second disadvantage of this method is a high rate of false detections. A 2012 study found that the rate of false positives for transits observed by the <a href="/wiki/Kepler_mission" class="mw-redirect" title="Kepler mission">Kepler mission</a> could be as high as 40% in single-planet systems.<sup id="cite_ref-Santerne2012_9-0" class="reference"><a href="#cite_note-Santerne2012-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> For this reason, a star with a single transit detection requires additional confirmation, typically from the radial-velocity method or orbital brightness modulation method. The radial velocity method is especially necessary for Jupiter-sized or larger planets, as objects of that size encompass not only planets, but also brown dwarfs and even small stars. As the false positive rate is very low in stars with two or more planet candidates, such detections often can be validated without extensive follow-up observations. Some can also be confirmed through the transit timing variation method.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>Many points of light in the sky have brightness variations that may appear as transiting planets by flux measurements. False-positives in the transit photometry method arise in three common forms: blended eclipsing binary systems, grazing eclipsing binary systems, and transits by planet sized stars. Eclipsing binary systems usually produce deep eclipses that distinguish them from exoplanet transits, since planets are usually smaller than about 2R<sub>J,</sub><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> but eclipses are shallower for blended or grazing eclipsing binary systems. </p><p>Blended eclipsing binary systems consist of a normal eclipsing binary blended with a third (usually brighter) star along the same line of sight, usually at a different distance. The constant light of the third star dilutes the measured eclipse depth, so the light-curve may resemble that for a transiting exoplanet. In these cases, the target most often contains a large main sequence primary with a small main sequence secondary or a giant star with a main sequence secondary.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>Grazing eclipsing binary systems are systems in which one object will just barely graze the limb of the other. In these cases, the maximum transit depth of the light curve will not be proportional to the ratio of the squares of the radii of the two stars, but will instead depend solely on the small fraction of the primary that is blocked by the secondary. The small measured dip in flux can mimic that of an exoplanet transit. Some of the false positive cases of this category can be easily found if the eclipsing binary system has a circular orbit, with the two companions having different masses. Due to the cyclic nature of the orbit, there would be two eclipsing events, one of the primary occulting the secondary and vice versa. If the two stars have significantly different masses, and this different radii and luminosities, then these two eclipses would have different depths. This repetition of a shallow and deep transit event can easily be detected and thus allow the system to be recognized as a grazing eclipsing binary system. However, if the two stellar companions are approximately the same mass, then these two eclipses would be indistinguishable, thus making it impossible to demonstrate that a grazing eclipsing binary system is being observed using only the transit photometry measurements. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:BrownDwarfComparison-pia12462.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/BrownDwarfComparison-pia12462.jpg/220px-BrownDwarfComparison-pia12462.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/BrownDwarfComparison-pia12462.jpg/330px-BrownDwarfComparison-pia12462.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/BrownDwarfComparison-pia12462.jpg/440px-BrownDwarfComparison-pia12462.jpg 2x" data-file-width="720" data-file-height="540" /></a><figcaption>This image shows the relative sizes of brown dwarfs and large planets.</figcaption></figure> <p>Finally, there are two types of stars that are approximately the same size as gas giant planets, white dwarfs and brown dwarfs. This is due to the fact that gas giant planets, white dwarfs, and brown dwarfs, are all supported by degenerate electron pressure. The light curve does not discriminate between masses as it only depends on the size of the transiting object. When possible, radial velocity measurements are used to verify that the transiting or eclipsing body is of planetary mass, meaning less than 13M<sub>J</sub>. Transit Time Variations can also determine M<sub>P</sub>. Doppler Tomography with a known radial velocity orbit can obtain minimum M<sub>P</sub> and projected sing-orbit alignment. </p><p><a href="/wiki/Red_giant" title="Red giant">Red giant</a> branch stars have another issue for detecting planets around them: while planets around these stars are much more likely to transit due to the larger star size, these transit signals are hard to separate from the main star's brightness light curve as red giants have frequent pulsations in brightness with a period of a few hours to days. This is especially notable with <a href="/wiki/Subgiant" title="Subgiant">subgiants</a>. In addition, these stars are much more luminous, and transiting planets block a much smaller percentage of light coming from these stars. In contrast, planets can completely occult a very small star such as a neutron star or white dwarf, an event which would be easily detectable from Earth. However, due to the small star sizes, the chance of a planet aligning with such a stellar remnant is extremely small. </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Exoplanet_Mass-Radius_Scatter_Super-Earth.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Exoplanet_Mass-Radius_Scatter_Super-Earth.png/400px-Exoplanet_Mass-Radius_Scatter_Super-Earth.png" decoding="async" width="400" height="474" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Exoplanet_Mass-Radius_Scatter_Super-Earth.png/600px-Exoplanet_Mass-Radius_Scatter_Super-Earth.png 1.5x, //upload.wikimedia.org/wikipedia/commons/2/2c/Exoplanet_Mass-Radius_Scatter_Super-Earth.png 2x" data-file-width="800" data-file-height="947" /></a><figcaption>Properties (mass and radius) of planets discovered using the transit method, compared with the distribution, n (light gray bar chart), of minimum masses of transiting and non-transiting exoplanets. <a href="/wiki/Super-Earth" title="Super-Earth">Super-Earths</a> are black.</figcaption></figure> <p>The main advantage of the transit method is that the size of the planet can be determined from the light curve. When combined with the radial-velocity method (which determines the planet's mass), one can determine the density of the planet, and hence learn something about the planet's physical structure. The planets that have been studied by both methods are by far the best-characterized of all known exoplanets.<sup id="cite_ref-charbonneautransitreview_15-0" class="reference"><a href="#cite_note-charbonneautransitreview-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>The transit method also makes it possible to study the atmosphere of the transiting planet. When the planet transits the star, light from the star passes through the upper atmosphere of the planet. By studying the high-resolution <a href="/wiki/Stellar_spectrum" class="mw-redirect" title="Stellar spectrum">stellar spectrum</a> carefully, one can detect elements present in the planet's atmosphere. A planetary atmosphere, and planet for that matter, could also be detected by measuring the polarization of the starlight as it passed through or is reflected off the planet's atmosphere.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>Additionally, the secondary eclipse (when the planet is blocked by its star) allows direct measurement of the planet's radiation and helps to constrain the planet's orbital eccentricity without needing the presence of other planets. If the star's <a href="/wiki/Photometry_(astronomy)" title="Photometry (astronomy)">photometric</a> intensity during the secondary eclipse is subtracted from its intensity before or after, only the signal caused by the planet remains. It is then possible to measure the planet's temperature and even to detect possible signs of cloud formations on it. In March 2005, two groups of scientists carried out measurements using this technique with the <a href="/wiki/Spitzer_Space_Telescope" title="Spitzer Space Telescope">Spitzer Space Telescope</a>. The two teams, from the <a href="/wiki/Harvard-Smithsonian_Center_for_Astrophysics" class="mw-redirect" title="Harvard-Smithsonian Center for Astrophysics">Harvard-Smithsonian Center for Astrophysics</a>, led by <a href="/wiki/David_Charbonneau" title="David Charbonneau">David Charbonneau</a>, and the <a href="/wiki/Goddard_Space_Flight_Center" title="Goddard Space Flight Center">Goddard Space Flight Center</a>, led by L. D. Deming, studied the planets <a href="/wiki/TrES-1" class="mw-redirect" title="TrES-1">TrES-1</a> and <a href="/wiki/HD_209458b" class="mw-redirect" title="HD 209458b">HD 209458b</a> respectively. The measurements revealed the planets' temperatures: 1,060 <a href="/wiki/Kelvin" title="Kelvin">K</a> (790°<a href="/wiki/Celsius" title="Celsius">C</a>) for TrES-1 and about 1,130 K (860 °C) for HD 209458b.<sup id="cite_ref-:0_17-0" class="reference"><a href="#cite_note-:0-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Deming_18-0" class="reference"><a href="#cite_note-Deming-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> In addition, the <a href="/wiki/Hot_Neptune" title="Hot Neptune">hot Neptune</a> <a href="/wiki/Gliese_436_b" title="Gliese 436 b">Gliese 436 b</a> is known to enter secondary eclipse. However, some transiting planets orbit such that they do not enter secondary eclipse relative to Earth; <a href="/wiki/HD_17156_b" title="HD 17156 b">HD 17156 b</a> is over 90% likely to be one of the latter. </p> <div class="mw-heading mw-heading4"><h4 id="History">History</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=5" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The first exoplanet for which transits were observed for <a href="/wiki/HD_209458_b" title="HD 209458 b">HD 209458 b</a>, which was discovered using radial velocity technique. These transits were observed in 1999 by two teams led <a href="/wiki/David_Charbonneau" title="David Charbonneau">David Charbonneau</a> and <a href="/wiki/Gregory_W._Henry" title="Gregory W. Henry">Gregory W. Henry</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> The first exoplanet to be discovered with the transit method was <a href="/wiki/OGLE-TR-56b" title="OGLE-TR-56b">OGLE-TR-56b</a> in 2002 by the <a href="/wiki/Optical_Gravitational_Lensing_Experiment" title="Optical Gravitational Lensing Experiment">OGLE</a> project.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-harvardgazette2_24-0" class="reference"><a href="#cite_note-harvardgazette2-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p><p>A <a href="/wiki/CNES" title="CNES">French Space Agency</a> mission, <a href="/wiki/COROT" class="mw-redirect" title="COROT">CoRoT</a>, began in 2006 to search for planetary transits from orbit, where the absence of atmospheric <a href="/wiki/Scintillation_(astronomy)" class="mw-redirect" title="Scintillation (astronomy)">scintillation</a> allows improved accuracy. This mission was designed to be able to detect planets "a few times to several times larger than Earth" and performed "better than expected", with two exoplanet discoveries<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> (both of the "hot Jupiter" type) as of early 2008. In June 2013, CoRoT's exoplanet count was 32 with several still to be confirmed. The satellite unexpectedly stopped transmitting data in November 2012 (after its mission had twice been extended), and was retired in June 2013.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p><p>In March 2009, <a href="/wiki/NASA" title="NASA">NASA</a> mission <a href="/wiki/Kepler_Mission" class="mw-redirect" title="Kepler Mission">Kepler</a> was launched to scan a large number of stars in the constellation <a href="/wiki/Cygnus_(constellation)" title="Cygnus (constellation)">Cygnus</a> with a measurement precision expected to detect and characterize Earth-sized planets. The NASA <a href="/wiki/Kepler_Mission" class="mw-redirect" title="Kepler Mission">Kepler Mission</a> uses the transit method to scan a hundred thousand stars for planets. It was hoped that by the end of its mission of 3.5 years, the satellite would have collected enough data to reveal planets even smaller than Earth. By scanning a hundred thousand stars simultaneously, it was not only able to detect Earth-sized planets, it was able to collect statistics on the numbers of such planets around Sun-like stars.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p><p>On 2 February 2011, the Kepler team released a list of 1,235 extrasolar planet candidates, including 54 that may be in the <a href="/wiki/Habitable_zone" title="Habitable zone">habitable zone</a>. On 5 December 2011, the Kepler team announced that they had discovered 2,326 planetary candidates, of which 207 are similar in size to Earth, 680 are super-Earth-size, 1,181 are Neptune-size, 203 are Jupiter-size and 55 are larger than Jupiter. Compared to the February 2011 figures, the number of Earth-size and super-Earth-size planets increased by 200% and 140% respectively. Moreover, 48 planet candidates were found in the habitable zones of surveyed stars, marking a decrease from the February figure; this was due to the more stringent criteria in use in the December data. By June 2013, the number of planet candidates was increased to 3,278 and some confirmed planets were smaller than Earth, some even Mars-sized (such as <a href="/wiki/Kepler-62c" title="Kepler-62c">Kepler-62c</a>) and one even smaller than Mercury (<a href="/wiki/Kepler-37b" title="Kepler-37b">Kepler-37b</a>).<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Transiting_Exoplanet_Survey_Satellite" title="Transiting Exoplanet Survey Satellite">Transiting Exoplanet Survey Satellite</a> launched in April 2018. </p> <div class="mw-heading mw-heading3"><h3 id="Reflection_and_emission_modulations">Reflection and emission modulations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=6" title="Edit section: Reflection and emission modulations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Short-period planets in close orbits around their stars will undergo reflected light variations because, like the <a href="/wiki/Moon" title="Moon">Moon</a>, they will go through <a href="/wiki/Planetary_phase" title="Planetary phase">phases</a> from full to new and back again. In addition, as these planets receive a lot of starlight, it heats them, making thermal emissions potentially detectable. Since telescopes cannot resolve the planet from the star, they see only the combined light, and the brightness of the host star seems to change over each orbit in a periodic manner. Although the effect is small — the photometric precision required is about the same as to detect an Earth-sized planet in transit across a solar-type star – such Jupiter-sized planets with an orbital period of a few days are detectable by space telescopes such as the <a href="/wiki/Kepler_Space_Observatory" class="mw-redirect" title="Kepler Space Observatory">Kepler Space Observatory</a>. Like with the transit method, it is easier to detect large planets orbiting close to their parent star than other planets as these planets catch more light from their parent star. When a planet has a high albedo and is situated around a relatively luminous star, its light variations are easier to detect in visible light while darker planets or planets around low-temperature stars are more easily detectable with infrared light with this method. In the long run, this method may find the most planets that will be discovered by that mission because the reflected light variation with orbital phase is largely independent of orbital inclination and does not require the planet to pass in front of the disk of the star. It still cannot detect planets with circular face-on orbits from Earth's viewpoint as the amount of reflected light does not change during its orbit. </p><p>The phase function of the giant planet is also a function of its thermal properties and atmosphere, if any. Therefore, the phase curve may constrain other planet properties, such as the size distribution of atmospheric particles. When a planet is found transiting and its size is known, the phase variations curve helps calculate or constrain the planet's <a href="/wiki/Albedo" title="Albedo">albedo</a>. It is more difficult with very hot planets as the glow of the planet can interfere when trying to calculate albedo. In theory, albedo can also be found in non-transiting planets when observing the light variations with multiple wavelengths. This allows scientists to find the size of the planet even if the planet is not transiting the star.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p><p>The first-ever direct detection of the spectrum of visible light reflected from an exoplanet was made in 2015 by an international team of astronomers. The astronomers studied light from <a href="/wiki/51_Pegasi_b" title="51 Pegasi b">51 Pegasi b</a> – the first exoplanet discovered orbiting a <a href="/wiki/Main-sequence" class="mw-redirect" title="Main-sequence">main-sequence</a> star (a <a href="/wiki/Sunlike_star" class="mw-redirect" title="Sunlike star">Sunlike star</a>), using the High Accuracy Radial velocity Planet Searcher (HARPS) instrument at the European Southern Observatory's La Silla Observatory in Chile.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p><p>Both CoRoT<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> and Kepler<sup id="cite_ref-kepler_phases_33-0" class="reference"><a href="#cite_note-kepler_phases-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> have measured the reflected light from planets. However, these planets were already known since they transit their host star. The first planets discovered by this method are <a href="/wiki/Kepler-70b" class="mw-redirect" title="Kepler-70b">Kepler-70b</a> and <a href="/wiki/Kepler-70c" class="mw-redirect" title="Kepler-70c">Kepler-70c</a>, found by Kepler.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Relativistic_beaming">Relativistic beaming</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=7" title="Edit section: Relativistic beaming"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Relativistic_beaming" title="Relativistic beaming">Relativistic beaming</a></div> <p>A separate novel method to detect exoplanets from light variations uses relativistic beaming of the observed flux from the star due to its motion. It is also known as Doppler beaming or Doppler boosting. The method was first proposed by <a href="/wiki/Abraham_Loeb" class="mw-redirect" title="Abraham Loeb">Abraham Loeb</a> and Scott Gaudi in 2003.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> As the planet tugs the star with its gravitation, the density of photons and therefore the apparent brightness of the star changes from observer's viewpoint. Like the radial velocity method, it can be used to determine the orbital eccentricity and the minimum mass of the planet. With this method, it is easier to detect massive planets close to their stars as these factors increase the star's motion. Unlike the radial velocity method, it does not require an accurate spectrum of a star, and therefore can be used more easily to find planets around fast-rotating stars and more distant stars. </p><p>One of the biggest disadvantages of this method is that the light variation effect is very small. A Jovian-mass planet orbiting 0.025 AU away from a Sun-like star is barely detectable even when the orbit is edge-on. This is not an ideal method for discovering new planets, as the amount of emitted and reflected starlight from the planet is usually much larger than light variations due to relativistic beaming. This method is still useful, however, as it allows for measurement of the planet's mass without the need for follow-up data collection from radial velocity observations. </p><p>The first discovery of a planet using this method (<a href="/wiki/Kepler-76b" title="Kepler-76b">Kepler-76b</a>) was announced in 2013.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ellipsoidal_variations">Ellipsoidal variations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=8" title="Edit section: Ellipsoidal variations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Massive planets can cause slight tidal distortions to their host stars. When a star has a slightly ellipsoidal shape, its apparent brightness varies, depending if the oblate part of the star is facing the observer's viewpoint. Like with the relativistic beaming method, it helps to determine the minimum mass of the planet, and its sensitivity depends on the planet's orbital inclination. The extent of the effect on a star's apparent brightness can be much larger than with the relativistic beaming method, but the brightness changing cycle is twice as fast. In addition, the planet distorts the shape of the star more if it has a low semi-major axis to stellar radius ratio and the density of the star is low. This makes this method suitable for finding planets around stars that have left the main sequence.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Pulsar_timing">Pulsar timing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=9" title="Edit section: Pulsar timing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">This section is about the exoplanet detection method. For the timing device, see <a href="/wiki/Pulsar_clock" title="Pulsar clock">Pulsar clock</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/List_of_exoplanets_detected_by_timing" title="List of exoplanets detected by timing">List of exoplanets detected by timing</a> and <a href="/wiki/Pulsar_planet" title="Pulsar planet">Pulsar planet</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Artist%27s_concept_of_PSR_B1257%2B12_system.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Artist%27s_concept_of_PSR_B1257%2B12_system.jpg/220px-Artist%27s_concept_of_PSR_B1257%2B12_system.jpg" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Artist%27s_concept_of_PSR_B1257%2B12_system.jpg/330px-Artist%27s_concept_of_PSR_B1257%2B12_system.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Artist%27s_concept_of_PSR_B1257%2B12_system.jpg/440px-Artist%27s_concept_of_PSR_B1257%2B12_system.jpg 2x" data-file-width="3000" data-file-height="2400" /></a><figcaption>Artist's impression of the pulsar <a href="/wiki/PSR_B1257%2B12" title="PSR B1257+12">PSR 1257+12</a>'s planetary system.</figcaption></figure> <p>A <a href="/wiki/Pulsar" title="Pulsar">pulsar</a> is a neutron star: the small, ultradense remnant of a star that has exploded as a <a href="/wiki/Supernova" title="Supernova">supernova</a>. Pulsars emit radio waves extremely regularly as they rotate. Because the intrinsic rotation of a pulsar is so regular, slight anomalies in the timing of its observed radio pulses can be used to track the pulsar's motion. Like an ordinary star, a pulsar will move in its own small orbit if it has a planet. Calculations based on pulse-timing observations can then reveal the parameters of that orbit.<sup id="cite_ref-EXP3_39-0" class="reference"><a href="#cite_note-EXP3-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p><p>This method was not originally designed for the detection of planets, but is so sensitive that it is capable of detecting planets far smaller than any other method can, down to less than a tenth the mass of Earth. It is also capable of detecting mutual gravitational perturbations between the various members of a planetary system, thereby revealing further information about those planets and their orbital parameters. In addition, it can easily detect planets which are relatively far away from the pulsar. </p><p>There are two main drawbacks to the pulsar timing method: pulsars are relatively rare, and special circumstances are required for a planet to form around a pulsar. Therefore, it is unlikely that a large number of planets will be found this way.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> Additionally, life would likely not survive on planets orbiting pulsars due to the high intensity of ambient radiation. </p><p>In 1992, <a href="/wiki/Aleksander_Wolszczan" title="Aleksander Wolszczan">Aleksander Wolszczan</a> and <a href="/wiki/Dale_Frail" title="Dale Frail">Dale Frail</a> used this method to discover planets around the pulsar <a href="/wiki/PSR_1257%2B12" class="mw-redirect" title="PSR 1257+12">PSR 1257+12</a>.<sup id="cite_ref-wolszczan_41-0" class="reference"><a href="#cite_note-wolszczan-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> Their discovery was confirmed by 1994, making it the first confirmation of planets outside the <a href="/wiki/Solar_System" title="Solar System">Solar System</a>.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Variable_star_timing">Variable star timing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=10" title="Edit section: Variable star timing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Like pulsars, some other types of <a href="/wiki/Variable_star#Pulsating_variable_stars" title="Variable star">pulsating variable stars</a> are regular enough that <a href="/wiki/Radial_velocity" title="Radial velocity">radial velocity</a> could be determined purely <a href="/wiki/Photometry_(astronomy)" title="Photometry (astronomy)">photometrically</a> from the <a href="/wiki/Doppler_shift" class="mw-redirect" title="Doppler shift">Doppler shift</a> of the pulsation frequency, without needing <a href="/wiki/Spectroscopy" title="Spectroscopy">spectroscopy</a>.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> This method is not as sensitive as the pulsar timing variation method, due to the periodic activity being longer and less regular. The ease of detecting planets around a variable star depends on the pulsation period of the star, the regularity of pulsations, the mass of the planet, and its distance from the host star. </p><p>The first success with this method came in 2007, when <a href="/wiki/V391_Pegasi_b" title="V391 Pegasi b">V391 Pegasi b</a> was discovered around a pulsating subdwarf star.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Transit_timing">Transit timing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=11" title="Edit section: Transit timing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Transit-timing_variation" title="Transit-timing variation">Transit-timing variation</a></div> <figure typeof="mw:File/Thumb"><span><video id="mwe_player_1" poster="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv/250px--201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="250" height="141" data-durationhint="81" data-mwtitle="201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv" data-mwprovider="wikimediacommons" resource="/wiki/File:201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/96/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv.480p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="480p.vp9.webm" data-width="854" data-height="480" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/96/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv.720p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="720" /><source src="//upload.wikimedia.org/wikipedia/commons/9/96/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv" type="video/ogg; codecs="theora"" data-width="1280" data-height="720" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/96/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="256" data-height="144" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/96/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv.240p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="240p.vp9.webm" data-width="426" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/96/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv.360p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="360p.vp9.webm" data-width="640" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/96/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv/201008-2a_PlanetOrbits_16x9-_Transit_timing_of_1-planet_vs_2-planet_systems.ogv.360p.webm" type="video/webm; codecs="vp8, vorbis"" data-transcodekey="360p.webm" data-width="640" data-height="360" /></video></span><figcaption>Animation showing difference between planet transit timing of 1-planet and 2-planet systems. Credit: NASA/Kepler Mission.</figcaption></figure> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Keplerspacecraft-20110215.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Keplerspacecraft-20110215.jpg/250px-Keplerspacecraft-20110215.jpg" decoding="async" width="250" height="164" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Keplerspacecraft-20110215.jpg/375px-Keplerspacecraft-20110215.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/18/Keplerspacecraft-20110215.jpg/500px-Keplerspacecraft-20110215.jpg 2x" data-file-width="788" data-file-height="518" /></a><figcaption>The <a href="/wiki/Kepler_Mission" class="mw-redirect" title="Kepler Mission">Kepler Mission</a>, A NASA mission which is able to detect extrasolar planets</figcaption></figure> <p>The transit timing variation method considers whether transits occur with strict periodicity, or if there is a variation. When multiple transiting planets are detected, they can often be confirmed with the transit timing variation method. This is useful in planetary systems far from the Sun, where radial velocity methods cannot detect them due to the low signal-to-noise ratio. If a planet has been detected by the transit method, then variations in the timing of the transit provide an extremely sensitive method of detecting additional non-transiting planets in the system with masses comparable to Earth's. It is easier to detect transit-timing variations if planets have relatively close orbits, and when at least one of the planets is more massive, causing the orbital period of a less massive planet to be more perturbed.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p><p>The main drawback of the transit timing method is that usually not much can be learnt about the planet itself. Transit timing variation can help to determine the maximum mass of a planet. In most cases, it can confirm if an object has a planetary mass, but it does not put narrow constraints on its mass. There are exceptions though, as planets in the <a href="/wiki/Kepler-36" title="Kepler-36">Kepler-36</a> and <a href="/wiki/Kepler-88" title="Kepler-88">Kepler-88</a> systems orbit close enough to accurately determine their masses. </p><p>The first significant detection of a non-transiting planet using TTV was carried out with NASA's <a href="/wiki/Kepler_space_telescope" title="Kepler space telescope">Kepler space telescope</a>. The transiting planet <a href="/wiki/Kepler-19b" title="Kepler-19b">Kepler-19b</a> shows TTV with an amplitude of five minutes and a period of about 300 days, indicating the presence of a second planet, <a href="/wiki/Kepler-19c" title="Kepler-19c">Kepler-19c</a>, which has a period which is a near-rational multiple of the period of the transiting planet.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> </p><p>In <a href="/wiki/Circumbinary_planet" title="Circumbinary planet">circumbinary planets</a>, variations of transit timing are mainly caused by the orbital motion of the stars, instead of gravitational perturbations by other planets. These variations make it harder to detect these planets through automated methods. However, it makes these planets easy to confirm once they are detected.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2015)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Transit_duration_variation">Transit duration variation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=12" title="Edit section: Transit duration variation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>"Duration variation" refers to changes in how long the transit takes. Duration variations may be caused by an <a href="/wiki/Exomoon" title="Exomoon">exomoon</a>, <a href="/wiki/Apsidal_precession" title="Apsidal precession">apsidal precession</a> for eccentric planets due to another planet in the same system, or <a href="/wiki/Tests_of_general_relativity#Perihelion_precession_of_Mercury" title="Tests of general relativity">general relativity</a>.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p><p>When a circumbinary planet is found through the transit method, it can be easily confirmed with the transit duration variation method.<sup id="cite_ref-ReferenceA_53-0" class="reference"><a href="#cite_note-ReferenceA-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> In close binary systems, the stars significantly alter the motion of the companion, meaning that any transiting planet has significant variation in transit duration. The first such confirmation came from <a href="/wiki/Kepler-16b" title="Kepler-16b">Kepler-16b</a>.<sup id="cite_ref-ReferenceA_53-1" class="reference"><a href="#cite_note-ReferenceA-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Eclipsing_binary_minima_timing">Eclipsing binary minima timing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=13" title="Edit section: Eclipsing binary minima timing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When a <a href="/wiki/Binary_star" title="Binary star">binary star</a> system is aligned such that – from the Earth's point of view – the stars pass in front of each other in their orbits, the system is called an "eclipsing binary" star system. The time of minimum light, when the star with the brighter surface is at least partially obscured by the disc of the other star, is called the primary <a href="/wiki/Eclipse" title="Eclipse">eclipse</a>, and approximately half an orbit later, the secondary eclipse occurs when the brighter surface area star obscures some portion of the other star. These times of minimum light, or central eclipses, constitute a time stamp on the system, much like the pulses from a <a href="/wiki/Pulsar" title="Pulsar">pulsar</a> (except that rather than a flash, they are a dip in brightness). If there is a planet in circumbinary orbit around the binary stars, the stars will be offset around a binary-planet <a href="/wiki/Center_of_mass" title="Center of mass">center of mass</a>. As the stars in the binary are displaced back and forth by the planet, the times of the eclipse minima will vary. The periodicity of this offset may be the most reliable way to detect extrasolar planets around close binary systems.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> With this method, planets are more easily detectable if they are more massive, orbit relatively closely around the system, and if the stars have low masses. </p><p>The eclipsing timing method allows the detection of planets further away from the host star than the transit method. However, signals around <a href="/wiki/Cataclysmic_variable" class="mw-redirect" title="Cataclysmic variable">cataclysmic variable</a> stars hinting for planets tend to match with unstable orbits.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (July 2015)">clarification needed</span></a></i>]</sup><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> In 2011, Kepler-16b became the first planet to be definitely characterized via eclipsing binary timing variations.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Gravitational_microlensing">Gravitational microlensing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=14" title="Edit section: Gravitational microlensing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Gravitational_microlensing" title="Gravitational microlensing">Gravitational microlensing</a> and <a href="/wiki/List_of_exoplanets_detected_by_microlensing" title="List of exoplanets detected by microlensing">List of exoplanets detected by microlensing</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Gravitational_micro_rev.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Gravitational_micro_rev.svg/255px-Gravitational_micro_rev.svg.png" decoding="async" width="255" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Gravitational_micro_rev.svg/383px-Gravitational_micro_rev.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Gravitational_micro_rev.svg/510px-Gravitational_micro_rev.svg.png 2x" data-file-width="400" data-file-height="189" /></a><figcaption>Gravitational microlensing.</figcaption></figure> <p>Gravitational microlensing occurs when the gravitational field of a star acts like a lens, magnifying the light of a distant background star. This effect occurs only when the two stars are almost exactly aligned. Lensing events are brief, lasting for weeks or days, as the two stars and Earth are all moving relative to each other. More than a thousand such events have been observed over the past ten years. </p><p>If the foreground lensing star has a planet, then that planet's own gravitational field can make a detectable contribution to the lensing effect. Since that requires a highly improbable alignment, a very large number of distant stars must be continuously monitored in order to detect planetary microlensing contributions at a reasonable rate. This method is most fruitful for planets between Earth and the center of the galaxy, as the galactic center provides a large number of background stars. </p><p>In 1991, astronomers Shude Mao and <a href="/wiki/Bohdan_Paczy%C5%84ski" title="Bohdan Paczyński">Bohdan Paczyński</a> proposed using gravitational microlensing to look for binary companions to stars, and their proposal was refined by Andy Gould and <a href="/wiki/Abraham_Loeb" class="mw-redirect" title="Abraham Loeb">Abraham Loeb</a> in 1992 as a method to detect exoplanets. Successes with the method date back to 2002, when a group of Polish astronomers (<a href="/wiki/Andrzej_Udalski" title="Andrzej Udalski">Andrzej Udalski</a>, <a href="/wiki/Marcin_Kubiak" title="Marcin Kubiak">Marcin Kubiak</a> and Michał Szymański from <a href="/wiki/Warsaw" title="Warsaw">Warsaw</a>, and <a href="/wiki/Bohdan_Paczy%C5%84ski" title="Bohdan Paczyński">Bohdan Paczyński</a>) during project OGLE (the <a href="/wiki/Optical_Gravitational_Lensing_Experiment" title="Optical Gravitational Lensing Experiment">Optical Gravitational Lensing Experiment</a>) developed a workable technique. During one month, they found several possible planets, though limitations in the observations prevented clear confirmation. Since then, several confirmed extrasolar planets have been detected using microlensing. This was the first method capable of detecting planets of Earth-like mass around ordinary <a href="/wiki/Main-sequence" class="mw-redirect" title="Main-sequence">main-sequence</a> stars.<sup id="cite_ref-Beaulieulensplanet_59-0" class="reference"><a href="#cite_note-Beaulieulensplanet-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> </p><p>Unlike most other methods, which have detection bias towards planets with small (or for resolved imaging, large) orbits, the microlensing method is most sensitive to detecting planets around 1-10 astronomical units away from Sun-like stars. </p><p>A notable disadvantage of the method is that the lensing cannot be repeated, because the chance alignment never occurs again. Also, the detected planets will tend to be several kiloparsecs away, so follow-up observations with other methods are usually impossible. In addition, the only physical characteristic that can be determined by microlensing is the mass of the planet, within loose constraints. Orbital properties also tend to be unclear, as the only orbital characteristic that can be directly determined is its current semi-major axis from the parent star, which can be misleading if the planet follows an eccentric orbit. When the planet is far away from its star, it spends only a tiny portion of its orbit in a state where it is detectable with this method, so the orbital period of the planet cannot be easily determined. It is also easier to detect planets around low-mass stars, as the gravitational microlensing effect increases with the planet-to-star mass ratio. </p><p>The main advantages of the gravitational microlensing method are that it can detect low-mass planets (in principle down to Mars mass with future space projects such as <a href="/wiki/Roman_Space_Telescope" class="mw-redirect" title="Roman Space Telescope">Roman Space Telescope</a>); it can detect planets in wide orbits comparable to Saturn and Uranus, which have orbital periods too long for the radial velocity or transit methods; and it can detect planets around very distant stars. When enough background stars can be observed with enough accuracy, then the method should eventually reveal how common Earth-like planets are in the galaxy.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2015)">citation needed</span></a></i>]</sup> </p><p>Observations are usually performed using networks of <a href="/wiki/Robotic_telescope" title="Robotic telescope">robotic telescopes</a>. In addition to the <a href="/wiki/European_Research_Council" title="European Research Council">European Research Council</a>-funded OGLE, the <a href="/wiki/Microlensing_Observations_in_Astrophysics" title="Microlensing Observations in Astrophysics">Microlensing Observations in Astrophysics</a> (MOA) group is working to perfect this approach. </p><p>The PLANET (<a href="/wiki/Probing_Lensing_Anomalies_NETwork" class="mw-redirect" title="Probing Lensing Anomalies NETwork">Probing Lensing Anomalies NETwork</a>)/RoboNet project is even more ambitious. It allows nearly continuous round-the-clock coverage by a world-spanning telescope network, providing the opportunity to pick up microlensing contributions from planets with masses as low as Earth's. This strategy was successful in detecting the first low-mass planet on a wide orbit, designated <a href="/wiki/OGLE-2005-BLG-390Lb" title="OGLE-2005-BLG-390Lb">OGLE-2005-BLG-390Lb</a>.<sup id="cite_ref-Beaulieulensplanet_59-1" class="reference"><a href="#cite_note-Beaulieulensplanet-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> </p><p>The NASA <a href="/wiki/Roman_Space_Telescope" class="mw-redirect" title="Roman Space Telescope">Roman Space Telescope</a> scheduled for launch in 2027 includes a microlensing planet survey as one of its three core projects. </p> <div class="mw-heading mw-heading3"><h3 id="Direct_imaging">Direct imaging</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=15" title="Edit section: Direct imaging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/List_of_directly_imaged_exoplanets" title="List of directly imaged exoplanets">List of directly imaged exoplanets</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:444226main_exoplanet20100414-a-full.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/444226main_exoplanet20100414-a-full.jpg/250px-444226main_exoplanet20100414-a-full.jpg" decoding="async" width="250" height="188" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/444226main_exoplanet20100414-a-full.jpg/375px-444226main_exoplanet20100414-a-full.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/97/444226main_exoplanet20100414-a-full.jpg/500px-444226main_exoplanet20100414-a-full.jpg 2x" data-file-width="1024" data-file-height="768" /></a><figcaption>Direct image of <a href="/wiki/Exoplanet" title="Exoplanet">exoplanets</a> around the star <a href="/wiki/HR_8799" title="HR 8799">HR 8799</a> using a <a href="/wiki/Vortex_coronagraph" title="Vortex coronagraph">Vortex coronagraph</a> on a 1.5m portion of the <a href="/wiki/Hale_Telescope" title="Hale Telescope">Hale Telescope</a></figcaption></figure> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Beta_Pictoris_system_annotated.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Beta_Pictoris_system_annotated.jpg/250px-Beta_Pictoris_system_annotated.jpg" decoding="async" width="250" height="249" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Beta_Pictoris_system_annotated.jpg/375px-Beta_Pictoris_system_annotated.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Beta_Pictoris_system_annotated.jpg/500px-Beta_Pictoris_system_annotated.jpg 2x" data-file-width="990" data-file-height="985" /></a><figcaption><a href="/wiki/European_Southern_Observatory" title="European Southern Observatory">ESO</a> image of a planet near Beta Pictoris</figcaption></figure> <p>Planets are extremely faint light sources compared to stars, and what little light comes from them tends to be lost in the glare from their parent star. So in general, it is very difficult to detect and resolve them directly from their host star. Planets orbiting far enough from stars to be resolved reflect very little starlight, so planets are detected through their <a href="/wiki/Thermal_emission" class="mw-redirect" title="Thermal emission">thermal emission</a> instead. It is easier to obtain images when the planetary system is relatively near to the Sun, and when the planet is especially large (considerably larger than <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a>), widely separated from its parent star, and hot so that it emits intense <a href="/wiki/Infrared_radiation" class="mw-redirect" title="Infrared radiation">infrared radiation</a>; images have then been made in the infrared, where the planet is brighter than it is at visible wavelengths. <a href="/wiki/Coronagraph" title="Coronagraph">Coronagraphs</a> are used to block light from the star, while leaving the planet visible. Direct imaging of an Earth-like exoplanet requires extreme <a href="/wiki/Optothermal_stability" title="Optothermal stability">optothermal stability</a>.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> During the accretion phase of planetary formation, the star-planet contrast may be even better in <a href="/wiki/H_alpha" class="mw-redirect" title="H alpha">H alpha</a> than it is in infrared – an H alpha survey is currently underway.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:The_ExTrA_telescopes_at_La_Silla.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7b/The_ExTrA_telescopes_at_La_Silla.jpg/220px-The_ExTrA_telescopes_at_La_Silla.jpg" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7b/The_ExTrA_telescopes_at_La_Silla.jpg/330px-The_ExTrA_telescopes_at_La_Silla.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7b/The_ExTrA_telescopes_at_La_Silla.jpg/440px-The_ExTrA_telescopes_at_La_Silla.jpg 2x" data-file-width="5472" data-file-height="3648" /></a><figcaption>The ExTrA telescopes at <a href="/wiki/La_Silla_Observatory" title="La Silla Observatory">La Silla</a> observes at infrared wavelengths and adds spectral information to the usual photometric measurements.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>Direct imaging can give only loose constraints of the planet's mass, which is derived from the age of the star and the temperature of the planet. Mass can vary considerably, as planets can form several million years after the star has formed. The cooler the planet is, the less the planet's mass needs to be. In some cases it is possible to give reasonable constraints to the radius of a planet based on planet's temperature, its apparent brightness, and its distance from Earth. The spectra emitted from planets do not have to be separated from the star, which eases determining the chemical composition of planets. </p><p>Sometimes observations at multiple wavelengths are needed to rule out the planet being a <a href="/wiki/Brown_dwarf" title="Brown dwarf">brown dwarf</a>. Direct imaging can be used to accurately measure the planet's orbit around the star. Unlike the majority of other methods, direct imaging works better with planets with <a href="/wiki/Orbital_inclination#Exoplanets_and_multiple_star_systems" title="Orbital inclination">face-on orbits</a> rather than edge-on orbits, as a planet in a face-on orbit is observable during the entirety of the planet's orbit, while planets with edge-on orbits are most easily observable during their period of largest apparent separation from the parent star. </p><p>The planets detected through direct imaging currently fall into two categories. First, planets are found around stars more massive than the Sun which are young enough to have protoplanetary disks. The second category consists of possible sub-brown dwarfs found around very dim stars, or brown dwarfs which are at least 100 AU away from their parent stars. </p><p>Planetary-mass objects <a href="/wiki/Rogue_planet" title="Rogue planet">not gravitationally bound to a star</a> are found through direct imaging as well. </p> <div class="mw-heading mw-heading4"><h4 id="Early_discoveries">Early discoveries</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=16" title="Edit section: Early discoveries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:VLT_Snaps_An_Exotic_Exoplanet_First.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/VLT_Snaps_An_Exotic_Exoplanet_First.jpg/220px-VLT_Snaps_An_Exotic_Exoplanet_First.jpg" decoding="async" width="220" height="224" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/VLT_Snaps_An_Exotic_Exoplanet_First.jpg/330px-VLT_Snaps_An_Exotic_Exoplanet_First.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bf/VLT_Snaps_An_Exotic_Exoplanet_First.jpg/440px-VLT_Snaps_An_Exotic_Exoplanet_First.jpg 2x" data-file-width="1280" data-file-height="1306" /></a><figcaption>The large central object is the star <a href="/wiki/CVSO_30" title="CVSO 30">CVSO 30</a>; the small dot up and to the left is exoplanet CVSO 30c. This image was made using astrometry data from <a href="/wiki/Very_Large_Telescope" title="Very Large Telescope">VLT</a>'s NACO and SINFONI instruments.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>In 2004, a group of astronomers used the <a href="/wiki/European_Southern_Observatory" title="European Southern Observatory">European Southern Observatory</a>'s <a href="/wiki/Very_Large_Telescope" title="Very Large Telescope">Very Large Telescope</a> array in Chile to produce an image of <a href="/wiki/2M1207b" title="2M1207b">2M1207b</a>, a companion to the <a href="/wiki/Brown_dwarf" title="Brown dwarf">brown dwarf</a> 2M1207.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> In the following year, the planetary status of the companion was confirmed.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> The planet is estimated to be several times more massive than <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a>, and to have an orbital radius greater than 40 AU. </p><p>On 6 November 2008<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> an object was published that was imaged first in April 2008 at a separation of 330 AU from the star <a href="/wiki/1RXS_J160929.1%E2%88%92210524" title="1RXS J160929.1−210524">1RXS J160929.1−210524</a>, already announced on 8 September 2008.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> But it was not until 2010, that it was confirmed to be a companion planet to the star and not just a chance alignment.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> It is not confirmed, yet, whether the mass of the companion is above or below the deuterium-burning limit. </p><p>The first multiplanet system, announced on 13 November 2008, first seen in images of October 2007, using telescopes at both the <a href="/wiki/Keck_Observatory" class="mw-redirect" title="Keck Observatory">Keck Observatory</a> and <a href="/wiki/Gemini_Observatory" title="Gemini Observatory">Gemini Observatory</a>. Three planets were directly observed orbiting <a href="/wiki/HR_8799" title="HR 8799">HR 8799</a>, whose masses are approximately ten, ten, and seven <a href="/wiki/Jupiter_mass" title="Jupiter mass">times that of Jupiter</a>.<sup id="cite_ref-Marois2008_69-0" class="reference"><a href="#cite_note-Marois2008-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> On the same day, 13 November 2008, it was announced that the Hubble Space Telescope directly observed <a href="/wiki/Fomalhaut_b" title="Fomalhaut b">an exoplanet</a> orbiting <a href="/wiki/Fomalhaut" title="Fomalhaut">Fomalhaut</a>, with a mass no more than <span class="nowrap">3</span> <var>M</var><sub>J</sub>.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> Both systems are surrounded by disks not unlike the <a href="/wiki/Kuiper_belt" title="Kuiper belt">Kuiper belt</a>. </p><p>On 21 November 2008, three days after acceptance of a letter to the editor published online on 11 December 2008,<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> it was announced that analysis of images dating back to 2003, revealed a planet orbiting <a href="/wiki/Beta_Pictoris" title="Beta Pictoris">Beta Pictoris</a>.<sup id="cite_ref-ESO2008_73-0" class="reference"><a href="#cite_note-ESO2008-73"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> </p><p>In 2012, it was announced that a "<a href="/wiki/Super-Jupiter" title="Super-Jupiter">Super-Jupiter</a>" planet with a mass about <span class="nowrap">12.8</span> <var>M</var><sub>J</sub> orbiting <a href="/wiki/Kappa_Andromedae" title="Kappa Andromedae">Kappa Andromedae</a> was directly imaged using the <a href="/wiki/Subaru_Telescope" title="Subaru Telescope">Subaru Telescope</a> in Hawaii.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> It orbits its parent star at a distance of about 55 AU, or nearly twice the distance of <a href="/wiki/Neptune" title="Neptune">Neptune</a> from the sun. </p><p>An additional system, <a href="/wiki/GJ_758" class="mw-redirect" title="GJ 758">GJ 758</a>, was imaged in November 2009, by a team using the <a href="/wiki/Subaru_(telescope)#Instruments" class="mw-redirect" title="Subaru (telescope)">HiCIAO</a> instrument of the <a href="/wiki/Subaru_(telescope)" class="mw-redirect" title="Subaru (telescope)">Subaru Telescope</a>, but it was a brown dwarf.<sup id="cite_ref-subaru-image_76-0" class="reference"><a href="#cite_note-subaru-image-76"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p><p>Other possible exoplanets to have been directly imaged include <a href="/wiki/GQ_Lupi_b" title="GQ Lupi b">GQ Lupi b</a>, <a href="/wiki/AB_Pictoris_b" class="mw-redirect" title="AB Pictoris b">AB Pictoris b</a>, and <a href="/wiki/SCR_1845_b" class="mw-redirect" title="SCR 1845 b">SCR 1845 b</a>.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> As of March 2006, none have been confirmed as planets; instead, they might themselves be small <a href="/wiki/Brown_dwarfs" class="mw-redirect" title="Brown dwarfs">brown dwarfs</a>.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Imaging_instruments">Imaging instruments</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=17" title="Edit section: Imaging instruments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Exoplanet-Missions-graphic-final-Dec2022.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Exoplanet-Missions-graphic-final-Dec2022.png/290px-Exoplanet-Missions-graphic-final-Dec2022.png" decoding="async" width="290" height="188" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Exoplanet-Missions-graphic-final-Dec2022.png/435px-Exoplanet-Missions-graphic-final-Dec2022.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Exoplanet-Missions-graphic-final-Dec2022.png/580px-Exoplanet-Missions-graphic-final-Dec2022.png 2x" data-file-width="5100" data-file-height="3300" /></a><figcaption>NASA graphic of present and future exoplanet missions as of 2022.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:VLT_image_of_exoplanet_HD_95086_b.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/VLT_image_of_exoplanet_HD_95086_b.jpg/220px-VLT_image_of_exoplanet_HD_95086_b.jpg" decoding="async" width="220" height="173" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/VLT_image_of_exoplanet_HD_95086_b.jpg/330px-VLT_image_of_exoplanet_HD_95086_b.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/VLT_image_of_exoplanet_HD_95086_b.jpg/440px-VLT_image_of_exoplanet_HD_95086_b.jpg 2x" data-file-width="1632" data-file-height="1280" /></a><figcaption><a href="/wiki/ESO" class="mw-redirect" title="ESO">ESO</a> VLT image of exoplanet <a href="/wiki/HD_95086_b" title="HD 95086 b">HD 95086 b</a><sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>Several planet-imaging-capable instruments are installed on large ground-based telescope, such as <a href="/wiki/Gemini_Planet_Imager" title="Gemini Planet Imager">Gemini Planet Imager</a>, <a href="/wiki/VLT-SPHERE" class="mw-redirect" title="VLT-SPHERE">VLT-SPHERE</a>, the <a href="/wiki/Subaru_(telescope)#Instruments" class="mw-redirect" title="Subaru (telescope)">Subaru Coronagraphic Extreme Adaptive Optics (SCExAO)</a> instrument, or <a href="/wiki/Palomar_Observatory" title="Palomar Observatory">Palomar Project 1640</a>. In space, there are currently no dedicated exoplanet imaging instrument. Although the <a href="/wiki/James_Webb_Space_Telescope" title="James Webb Space Telescope">JWST</a> does have some exoplanet imaging capabilities, it has not specifically been designed and optimised for that purpose. The <a href="/wiki/Roman_Space_Telescope" class="mw-redirect" title="Roman Space Telescope">RST</a> will be the first space observatory to include a dedicated exoplanet imaging instrument. This instrument is designed <a href="/wiki/JPL" class="mw-redirect" title="JPL">JPL</a> as a demonstrator for a future large observatory in space that will have the imaging of Earth-like exoplanets as one of its primary science goals. Concepts such as the <a href="/wiki/Large_Ultraviolet_Optical_Infrared_Surveyor" title="Large Ultraviolet Optical Infrared Surveyor">LUVOIR</a> or the <a href="/wiki/Habitable_Exoplanets_Observatory" title="Habitable Exoplanets Observatory">HabEx</a> have been proposed in preparation of the 2020 <a href="/wiki/Astronomy_and_Astrophysics_Decadal_Survey" title="Astronomy and Astrophysics Decadal Survey">Astronomy and Astrophysics Decadal Survey</a>. </p><p>In 2010, a team from <a href="/wiki/NASA" title="NASA">NASA's</a> <a href="/wiki/Jet_Propulsion_Laboratory" title="Jet Propulsion Laboratory">Jet Propulsion Laboratory</a> demonstrated that a <a href="/wiki/Vortex_coronagraph" title="Vortex coronagraph">vortex coronagraph</a> could enable small scopes to directly image planets.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> They did this by imaging the previously imaged <a href="/wiki/HR_8799" title="HR 8799">HR 8799</a> planets, using just a 1.5 meter-wide portion of the <a href="/wiki/Hale_Telescope" title="Hale Telescope">Hale Telescope</a>. </p><p>Another promising approach is <a href="/wiki/Nulling_interferometry" class="mw-redirect" title="Nulling interferometry">nulling interferometry</a>.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> </p><p>It has also been proposed that space-telescopes that focus light using <a href="/wiki/Fresnel_imager" title="Fresnel imager">zone plates</a> instead of mirrors would provide higher-contrast imaging, and be cheaper to launch into space due to being able to fold up the lightweight foil zone plate.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> Another possibility would be to use a large occulter in space designed to block the light of nearby stars in order to observe their orbiting planets, such as the <a href="/wiki/New_Worlds_Mission" title="New Worlds Mission">New Worlds Mission</a>. </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading4"><h4 id="Data_Reduction_Techniques">Data Reduction Techniques</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=18" title="Edit section: Data Reduction Techniques"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Post-processing of observational data to enhance signal strength of off-axial bodies (i.e. exoplanets) can be accomplished in a variety of ways. All methods are based on the presence of diversity in the data between the central star and the exoplanet companions: this diversity can originate from differences in the spectrum, the angular position, the orbital motion, the polarisation, or the coherence of the light. The most popular technique is Angular <a href="https://fr.wikipedia.org/wiki/Imagerie_diff%C3%A9rentielle" class="extiw" title="fr:Imagerie différentielle">Differential Imaging</a> (ADI), where exposures are acquired at different <a href="/wiki/Parallactic_angle" title="Parallactic angle">parallactic angle</a> positions and the sky is left to rotate around the observed central star. The exposures are averaged, each exposure undergoes subtraction by the average, and then they are (de-)rotated to stack the faint planetary signal all in one place. </p><p>Specral Differential Imaging (SDI) performs an analogous procedure, but for radial changes in brightness (as a function of spectra or wavelength) instead of angular changes. </p><p>Combinations of the two are possible (ASDI, SADI, or Combined Differential Imaging "CODI").<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Polarimetry">Polarimetry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=19" title="Edit section: Polarimetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Polarimetry" title="Polarimetry">Polarimetry</a></div> <p>Light given off by a star is un-polarized, i.e. the direction of oscillation of the light wave is random. However, when the light is reflected off the atmosphere of a planet, the light waves interact with the molecules in the atmosphere and become polarized.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> </p><p>By analyzing the polarization in the combined light of the planet and star (about one part in a million), these measurements can in principle be made with very high sensitivity, as polarimetry is not limited by the stability of the Earth's atmosphere. Another main advantage is that polarimetry allows for determination of the composition of the planet's atmosphere. The main disadvantage is that it will not be able to detect planets without atmospheres. Larger planets and planets with higher albedo are easier to detect through polarimetry, as they reflect more light. </p><p>Astronomical devices used for polarimetry, called polarimeters, are capable of detecting polarized light and rejecting unpolarized beams. Groups such as <a href="/wiki/ZIMPOL/CHEOPS" title="ZIMPOL/CHEOPS">ZIMPOL/CHEOPS</a><sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/PlanetPol" title="PlanetPol">PlanetPol</a><sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> are currently using polarimeters to search for extrasolar planets. The first successful detection of an extrasolar planet using this method came in 2008, when <a href="/wiki/HD_189733_b" title="HD 189733 b">HD 189733 b</a>, a planet discovered three years earlier, was detected using polarimetry.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> However, no new planets have yet been discovered using this method. </p> <div class="mw-heading mw-heading3"><h3 id="Astrometry">Astrometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=20" title="Edit section: Astrometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Astrometry" title="Astrometry">Astrometry</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Orbit3.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/5/59/Orbit3.gif" decoding="async" width="200" height="200" class="mw-file-element" data-file-width="200" data-file-height="200" /></a><figcaption>In this diagram a planet (smaller object) orbits a star, which itself moves in a small orbit. The system's center of mass is shown with a red plus sign. (In this case, it always lies within the star.)</figcaption></figure> <p>This method consists of precisely measuring a star's position in the sky, and observing how that position changes over time. Originally, this was done visually, with hand-written records. By the end of the 19th century, this method used photographic plates, greatly improving the accuracy of the measurements as well as creating a data archive. If a star has a planet, then the gravitational influence of the planet will cause the star itself to move in a tiny circular or elliptical orbit. Effectively, star and planet each orbit around their mutual centre of mass (<a href="/wiki/Barycentric_coordinates_(astronomy)" class="mw-redirect" title="Barycentric coordinates (astronomy)">barycenter</a>), as explained by solutions to the <a href="/wiki/Two-body_problem" title="Two-body problem">two-body problem</a>. Since the star is much more massive, its orbit will be much smaller.<sup id="cite_ref-EXP2_89-0" class="reference"><a href="#cite_note-EXP2-89"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> Frequently, the mutual centre of mass will lie within the radius of the larger body. Consequently, it is easier to find planets around low-mass stars, especially brown dwarfs. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Solar_system_barycenter.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Solar_system_barycenter.svg/200px-Solar_system_barycenter.svg.png" decoding="async" width="200" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Solar_system_barycenter.svg/300px-Solar_system_barycenter.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Solar_system_barycenter.svg/400px-Solar_system_barycenter.svg.png 2x" data-file-width="463" data-file-height="459" /></a><figcaption>Motion of the center of mass (barycenter) of the Solar System relative to the Sun</figcaption></figure> <p>Astrometry is the oldest search method for <a href="/wiki/Extrasolar_planets" class="mw-redirect" title="Extrasolar planets">extrasolar planets</a>, and was originally popular because of its success in characterizing <a href="/wiki/Binary_star#Astrometric_binaries" title="Binary star">astrometric binary star</a> systems. It dates back at least to statements made by <a href="/wiki/William_Herschel" title="William Herschel">William Herschel</a> in the late 18th century. He claimed that an <i>unseen companion</i> was affecting the position of the star he cataloged as <i><a href="/wiki/70_Ophiuchi" title="70 Ophiuchi">70 Ophiuchi</a></i>. The first known formal astrometric calculation for an extrasolar planet was made by <a href="/wiki/William_Stephen_Jacob" title="William Stephen Jacob">William Stephen Jacob</a> in 1855 for this star.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup> Similar calculations were repeated by others for another half-century<sup id="cite_ref-See_91-0" class="reference"><a href="#cite_note-See-91"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> until finally refuted in the early 20th century.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> For two centuries claims circulated of the discovery of <i>unseen companions</i> in orbit around nearby star systems that all were reportedly found using this method,<sup id="cite_ref-See_91-1" class="reference"><a href="#cite_note-See-91"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> culminating in the prominent 1996 announcement, of multiple planets orbiting the nearby star <a href="/wiki/Lalande_21185" title="Lalande 21185">Lalande 21185</a> by <a href="/wiki/George_G._Gatewood" class="mw-redirect" title="George G. Gatewood">George Gatewood</a>.<sup id="cite_ref-AAS_94-0" class="reference"><a href="#cite_note-AAS-94"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> None of these claims survived scrutiny by other astronomers, and the technique fell into disrepute.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> Unfortunately, changes in stellar position are so small—and atmospheric and systematic distortions so large—that even the best ground-based telescopes cannot produce precise enough measurements. All claims of a <i>planetary companion</i> of less than 0.1 solar mass, as the mass of the planet, made before 1996 using this method are likely spurious. In 2002, the <a href="/wiki/Hubble_Space_Telescope" title="Hubble Space Telescope">Hubble Space Telescope</a> did succeed in using astrometry to characterize a previously discovered planet around the star <a href="/wiki/Gliese_876" title="Gliese 876">Gliese 876</a>.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> </p><p>The space-based observatory <a href="/wiki/Gaia_(spacecraft)" title="Gaia (spacecraft)"><i>Gaia</i></a>, launched in 2013, is expected to find thousands of planets via astrometry, but prior to the launch of <i>Gaia</i>, no planet detected by astrometry had been confirmed. <a href="/wiki/SIM_PlanetQuest" class="mw-redirect" title="SIM PlanetQuest">SIM PlanetQuest</a> was a US project (cancelled in 2010) that would have had similar exoplanet finding capabilities to <a href="/wiki/Gaia_(spacecraft)" title="Gaia (spacecraft)">Gaia</a>. </p><p>One potential advantage of the astrometric method is that it is most sensitive to planets with large orbits. This makes it complementary to other methods that are most sensitive to planets with small orbits. However, very long observation times will be required — years, and possibly decades, as planets far enough from their star to allow detection via astrometry also take a long time to complete an orbit. Planets orbiting around one of the stars in binary systems are more easily detectable, as they cause perturbations in the orbits of stars themselves. However, with this method, follow-up observations are needed to determine which star the planet orbits around. </p><p>In 2009, the discovery of <a href="/wiki/VB_10b" class="mw-redirect" title="VB 10b">VB 10b</a> by astrometry was announced. This planetary object, orbiting the low mass <a href="/wiki/Red_dwarf" title="Red dwarf">red dwarf</a> star <a href="/wiki/VB_10" title="VB 10">VB 10</a>, was reported to have a mass seven times that of <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a>. If confirmed, this would be the first exoplanet discovered by astrometry, of the many that have been claimed through the years.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup> However recent <a href="/wiki/Radial_velocity" title="Radial velocity">radial velocity</a> independent studies rule out the existence of the claimed planet.<sup id="cite_ref-crires-no_100-0" class="reference"><a href="#cite_note-crires-no-100"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> <sup id="cite_ref-vb10orvs_101-0" class="reference"><a href="#cite_note-vb10orvs-101"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> </p><p>In 2010, six binary stars were astrometrically measured. One of the star systems, called <a href="/wiki/HD_176051" title="HD 176051">HD 176051</a>, was found with "high confidence" to have a planet.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup> </p><p>In 2018, a study comparing observations from the <a href="/wiki/Gaia_(spacecraft)" title="Gaia (spacecraft)"><i>Gaia</i> spacecraft</a> to <a href="/wiki/Hipparcos" title="Hipparcos">Hipparcos</a> data for the <a href="/wiki/Beta_Pictoris" title="Beta Pictoris">Beta Pictoris</a> system was able to measure the mass of Beta Pictoris b, constraining it to <span class="nowrap"><span data-sort-value="7001110000000000000♠"></span>11<span style="margin-left:0.3em;margin-right:0.15em;">±</span>2</span> Jupiter masses.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> This is in good agreement with previous mass estimations of roughly 13 Jupiter masses. </p><p>In 2019, data from the Gaia spacecraft and its predecessor Hipparcos was complemented with <a href="/wiki/High_Accuracy_Radial_Velocity_Planet_Searcher" title="High Accuracy Radial Velocity Planet Searcher">HARPS</a> data enabling a better description of <a href="/wiki/Epsilon_Indi_Ab" title="Epsilon Indi Ab">ε Indi Ab</a> as the second-closest Jupiter-like exoplanet with a mass of 3 Jupiters on a slightly eccentric orbit with an orbital period of 45 years.<sup id="cite_ref-Feng2019_104-0" class="reference"><a href="#cite_note-Feng2019-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> </p><p>As of 2022<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Methods_of_detecting_exoplanets&action=edit">[update]</a></sup>, especially thanks to Gaia, the combination of radial velocity and astrometry has been used to detect and characterize numerous <a href="/wiki/Jovian_planet" class="mw-redirect" title="Jovian planet">Jovian planets</a>,<sup id="cite_ref-Feng2021_105-0" class="reference"><a href="#cite_note-Feng2021-105"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Li2021_106-0" class="reference"><a href="#cite_note-Li2021-106"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Feng2022_107-0" class="reference"><a href="#cite_note-Feng2022-107"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Winn2022_108-0" class="reference"><a href="#cite_note-Winn2022-108"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup> including the nearest Jupiter analogues <a href="/wiki/Epsilon_Eridani_b" title="Epsilon Eridani b">ε Eridani b</a> and ε Indi Ab.<sup id="cite_ref-Llop-Sayson2021_109-0" class="reference"><a href="#cite_note-Llop-Sayson2021-109"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Feng2019_104-1" class="reference"><a href="#cite_note-Feng2019-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> In addition, <a href="/wiki/Radio_astronomy" title="Radio astronomy">radio</a> astrometry using the <a href="/wiki/Very_Long_Baseline_Array" title="Very Long Baseline Array">VLBA</a> has been used to discover planets in orbit around <a href="/wiki/TVLM_513-46546" title="TVLM 513-46546">TVLM 513-46546</a> and <a href="/wiki/EQ_Pegasi" title="EQ Pegasi">EQ Pegasi</a> A.<sup id="cite_ref-Curiel2020_110-0" class="reference"><a href="#cite_note-Curiel2020-110"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Curiel2022_111-0" class="reference"><a href="#cite_note-Curiel2022-111"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="X-ray_eclipse">X-ray eclipse</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=21" title="Edit section: X-ray eclipse"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In September 2020, the detection of a candidate planet orbiting the <a href="/wiki/High-mass_X-ray_binary" class="mw-redirect" title="High-mass X-ray binary">high-mass X-ray binary</a> M51-ULS-1 in the <a href="/wiki/Whirlpool_Galaxy" title="Whirlpool Galaxy">Whirlpool Galaxy</a> was announced. The planet was detected by <a href="/wiki/Transit_(astronomy)" class="mw-redirect" title="Transit (astronomy)">eclipses</a> of the X-ray source, which consists of a stellar remnant (either a <a href="/wiki/Neutron_star" title="Neutron star">neutron star</a> or a <a href="/wiki/Black_hole" title="Black hole">black hole</a>) and a massive star, likely a <a href="/wiki/B-type_star" class="mw-redirect" title="B-type star">B-type</a> <a href="/wiki/Blue_supergiant_star" class="mw-redirect" title="Blue supergiant star">supergiant</a>. This is the only method capable of detecting a planet in another galaxy.<sup id="cite_ref-DiStefano2020_112-0" class="reference"><a href="#cite_note-DiStefano2020-112"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Disc_kinematics">Disc kinematics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=22" title="Edit section: Disc kinematics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Planets in formation can be detected by the signatures they produce in their natal <a href="/wiki/Protoplanetary_disk" title="Protoplanetary disk">protoplanetary disks</a>. The velocities of the gas in a protoplanetary disk can be observed, and their morphology can reveal the presence of planets. Planets perturb the gas velocities by imprinting strong variations from Keplerian motion <sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup>. This method is now referred to as "disk kinematics." Notable examples of protoplanetary disks around young stars with signatures of embedded planets include HD 163296<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup>, HD 100546<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup>, and HD 97048<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup>. </p> <div class="mw-heading mw-heading2"><h2 id="Other_possible_methods">Other possible methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=23" title="Edit section: Other possible methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Flare_and_variability_echo_detection">Flare and variability echo detection</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=24" title="Edit section: Flare and variability echo detection"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Non-periodic variability events, such as flares, can produce extremely faint echoes in the light curve if they reflect off an exoplanet or other scattering medium in the star system.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bromley_1992_119-0" class="reference"><a href="#cite_note-Bromley_1992-119"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Gaidos_1994_120-0" class="reference"><a href="#cite_note-Gaidos_1994-120"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Sugerman_2003_121-0" class="reference"><a href="#cite_note-Sugerman_2003-121"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup> More recently, motivated by advances in instrumentation and signal processing technologies, echoes from exoplanets are predicted to be recoverable from high-cadence photometric and spectroscopic measurements of active star systems, such as M dwarfs.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Sparks_White_Lupu_Ford_123-0" class="reference"><a href="#cite_note-Sparks_White_Lupu_Ford-123"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Mann_Tellesbo_Bromley_Kenyon_124-0" class="reference"><a href="#cite_note-Mann_Tellesbo_Bromley_Kenyon-124"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup> These echoes are theoretically observable in all orbital inclinations. </p> <div class="mw-heading mw-heading3"><h3 id="Transit_imaging">Transit imaging</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=25" title="Edit section: Transit imaging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An optical/infrared <a href="/wiki/Interferometer" class="mw-redirect" title="Interferometer">interferometer</a> array (e.g, a 16 interferometer-array of the Big Fringe Telescope<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup>) doesn't collect as much light as a single telescope of equivalent size, but has the resolution of a single telescope the size of the array. For bright stars, this resolving power could be used to image a star's surface during a transit event and observe the shadow of the planet transiting. This could provide a direct measurement of the planet's angular radius and, via <a href="/wiki/Parallax" title="Parallax">parallax</a>, its actual radius. This is more accurate than radius estimates based on <a href="/wiki/Transit_photometry" class="mw-redirect" title="Transit photometry">transit photometry</a>, which are dependent on stellar radius estimates which in turn depend on models of star characteristics. Imaging also provides more accurate determination of the inclination than photometry does.<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Magnetospheric_(auroral)_radio_emissions"><span id="Magnetospheric_.28auroral.29_radio_emissions"></span>Magnetospheric (auroral) radio emissions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=26" title="Edit section: Magnetospheric (auroral) radio emissions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Aurora_(astronomy)" class="mw-redirect" title="Aurora (astronomy)">Auroral</a> <a href="/wiki/Radio" title="Radio">radio</a> emissions from exoplanet <a href="/wiki/Magnetosphere" title="Magnetosphere">magnetospheres</a> could be detected with radio telescopes. The emission may be caused by the exoplanet's magnetic field interacting with a stellar wind, adjacent <a href="/wiki/Plasma_(physics)" title="Plasma (physics)">plasma</a> sources (such as <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a>'s volcanic moon <a href="/wiki/Io_(moon)" title="Io (moon)">Io</a> travelling through its magnetosphere) or the interaction of the magnetic field with the <a href="/wiki/Interstellar_medium" title="Interstellar medium">interstellar medium</a>. Although several discoveries have been claimed, thus far, none have been verified. The most sensitive searches for direct radio emissions from exoplanet magnetic fields, or from exoplanet magnetic fields interacting with those from their host stars, have been conducted with the <a href="/wiki/Arecibo_Telescope" title="Arecibo Telescope">Arecibo radio telescope</a>.<sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">[</span>127<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup> </p><p>In addition to allowing for a study of exoplanet magnetic fields, radio emissions may be used to measure the interior rotation rate of an exoplanet.<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">[</span>129<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Optical_interferometry">Optical interferometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=27" title="Edit section: Optical interferometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In March 2019, <a href="/wiki/European_Southern_Observatory" title="European Southern Observatory">ESO</a> astronomers, employing the <a href="/wiki/Very_Large_Telescope#Instruments" title="Very Large Telescope">GRAVITY instrument</a> on their <a href="/wiki/Very_Large_Telescope" title="Very Large Telescope">Very Large Telescope Interferometer</a> (VLTI), announced the first direct detection of an <a href="/wiki/Exoplanet" title="Exoplanet">exoplanet</a>, <a href="/wiki/HR_8799_e" title="HR 8799 e">HR 8799 e</a>, using <a href="/wiki/Interferometry" title="Interferometry">optical interferometry</a>.<sup id="cite_ref-EA-20190327_130-0" class="reference"><a href="#cite_note-EA-20190327-130"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Modified_interferometry">Modified interferometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=28" title="Edit section: Modified interferometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By looking at the wiggles of an interferogram using a Fourier-Transform-Spectrometer, enhanced sensitivity could be obtained in order to detect faint signals from Earth-like planets.<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Detection_of_dust_trapping_around_Lagrangian_points">Detection of dust trapping around Lagrangian points</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=29" title="Edit section: Detection of dust trapping around Lagrangian points"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Identification of dust clumps along a protoplanetary disk demonstrate trace accumulation around <a href="/wiki/Lagrangian_points" class="mw-redirect" title="Lagrangian points">Lagrangian points</a>. From the detection of this dust, it can be inferred that a planet exists such that it has created those accumulations.<sup id="cite_ref-ab8c10_132-0" class="reference"><a href="#cite_note-ab8c10-132"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Gravitational_waves">Gravitational waves</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=30" title="Edit section: Gravitational waves"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Laser_Interferometer_Space_Antenna" title="Laser Interferometer Space Antenna">Laser Interferometer Space Antenna</a> (LISA) for observing gravitational waves is expected to detect the presence of large planets and <a href="/wiki/Brown_dwarf" title="Brown dwarf">brown dwarfs</a> orbiting white dwarf binaries. The number of such detections in the <a href="/wiki/Milky_Way" title="Milky Way">Milky Way</a> is estimated to range from 17 in a pessimistic scenario to more than 2000 in an optimistic scenario, and even extragalactic detections in the <a href="/wiki/Magellanic_Clouds" title="Magellanic Clouds">Magellanic Clouds</a> might be possible, far beyond the current capabilities of other detection methods.<sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-134" class="reference"><a href="#cite_note-134"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Detection_of_extrasolar_asteroids_and_debris_disks">Detection of extrasolar asteroids and debris disks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=31" title="Edit section: Detection of extrasolar asteroids and debris disks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Circumstellar_disks">Circumstellar disks</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=32" title="Edit section: Circumstellar disks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Massive_Smash-Up_at_Vega.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Massive_Smash-Up_at_Vega.jpg/250px-Massive_Smash-Up_at_Vega.jpg" decoding="async" width="250" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Massive_Smash-Up_at_Vega.jpg/375px-Massive_Smash-Up_at_Vega.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Massive_Smash-Up_at_Vega.jpg/500px-Massive_Smash-Up_at_Vega.jpg 2x" data-file-width="3000" data-file-height="2400" /></a><figcaption>An artist's conception of two <a href="/wiki/Pluto" title="Pluto">Pluto</a>-sized dwarf planets in a collision around <a href="/wiki/Vega" title="Vega">Vega</a> </figcaption></figure> <p>Disks of space dust (<a href="/wiki/Debris_disk" title="Debris disk">debris disks</a>) surround many stars. The dust can be detected because it absorbs ordinary starlight and re-emits it as <a href="/wiki/Infrared" title="Infrared">infrared</a> radiation. Even if the dust particles have a total mass well less than that of Earth, they can still have a large enough total surface area that they outshine their parent star in infrared wavelengths.<sup id="cite_ref-greaveswyatt04_136-0" class="reference"><a href="#cite_note-greaveswyatt04-136"><span class="cite-bracket">[</span>136<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Hubble_Space_Telescope" title="Hubble Space Telescope">Hubble Space Telescope</a> is capable of observing dust disks with its NICMOS (Near Infrared Camera and Multi-Object Spectrometer) instrument. Even better images have now been taken by its sister instrument, the <a href="/wiki/Spitzer_Space_Telescope" title="Spitzer Space Telescope">Spitzer Space Telescope</a>, and by the <a href="/wiki/European_Space_Agency" title="European Space Agency">European Space Agency</a>'s <a href="/wiki/Herschel_Space_Observatory" title="Herschel Space Observatory">Herschel Space Observatory</a>, which can see far deeper into <a href="/wiki/Infrared" title="Infrared">infrared</a> wavelengths than the Hubble can. Dust disks have now been found around more than 15% of nearby sunlike stars.<sup id="cite_ref-greaveswyatt03_137-0" class="reference"><a href="#cite_note-greaveswyatt03-137"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup> </p><p>The dust is thought to be generated by collisions among comets and asteroids. <a href="/wiki/Radiation_pressure" title="Radiation pressure">Radiation pressure</a> from the star will push the dust particles away into interstellar space over a relatively short timescale. Therefore, the detection of dust indicates continual replenishment by new collisions, and provides strong indirect evidence of the presence of small bodies like comets and <a href="/wiki/Asteroid" title="Asteroid">asteroids</a> that orbit the parent star.<sup id="cite_ref-greaveswyatt03_137-1" class="reference"><a href="#cite_note-greaveswyatt03-137"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup> For example, the dust disk around the star <a href="/wiki/Tau_Ceti" title="Tau Ceti">Tau Ceti</a> indicates that that star has a population of objects analogous to our own Solar System's <a href="/wiki/Kuiper_Belt" class="mw-redirect" title="Kuiper Belt">Kuiper Belt</a>, but at least ten times thicker.<sup id="cite_ref-greaveswyatt04_136-1" class="reference"><a href="#cite_note-greaveswyatt04-136"><span class="cite-bracket">[</span>136<span class="cite-bracket">]</span></a></sup> </p><p>More speculatively, features in dust disks sometimes suggest the presence of full-sized planets. Some disks have a central cavity, meaning that they are really ring-shaped. The central cavity may be caused by a planet "clearing out" the dust inside its orbit. Other disks contain clumps that may be caused by the gravitational influence of a planet. Both these kinds of features are present in the dust disk around <a href="/wiki/Epsilon_Eridani" title="Epsilon Eridani">Epsilon Eridani</a>, hinting at the presence of a planet with an orbital radius of around 40 <a href="/wiki/Astronomical_unit" title="Astronomical unit">AU</a> (in addition to the inner planet detected through the radial-velocity method).<sup id="cite_ref-greavesepseri05_138-0" class="reference"><a href="#cite_note-greavesepseri05-138"><span class="cite-bracket">[</span>138<span class="cite-bracket">]</span></a></sup> These kinds of planet-disk interactions can be modeled numerically using <a href="/w/index.php?title=Collisional_grooming&action=edit&redlink=1" class="new" title="Collisional grooming (page does not exist)">collisional grooming</a> techniques.<sup id="cite_ref-139" class="reference"><a href="#cite_note-139"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Contamination_of_stellar_atmospheres">Contamination of stellar atmospheres</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=33" title="Edit section: Contamination of stellar atmospheres"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Spectral analysis of <a href="/wiki/White_dwarf" title="White dwarf">white dwarfs</a>' <a href="/wiki/Stellar_atmosphere" title="Stellar atmosphere">atmospheres</a> often finds contamination of heavier elements like <a href="/wiki/Magnesium" title="Magnesium">magnesium</a> and <a href="/wiki/Calcium" title="Calcium">calcium</a>. These elements cannot originate from the stars' core, and it is probable that the contamination comes from <a href="/wiki/Asteroid" title="Asteroid">asteroids</a> that got too close (within the <a href="/wiki/Roche_limit" title="Roche limit">Roche limit</a>) to these stars by gravitational interaction with larger planets and were torn apart by star's tidal forces. Up to 50% of young white dwarfs may be contaminated in this manner.<sup id="cite_ref-140" class="reference"><a href="#cite_note-140"><span class="cite-bracket">[</span>140<span class="cite-bracket">]</span></a></sup> </p><p>Additionally, the dust responsible for the atmospheric pollution may be detected by infrared radiation if it exists in sufficient quantity, similar to the detection of debris discs around main sequence stars. Data from the <a href="/wiki/Spitzer_Space_Telescope" title="Spitzer Space Telescope">Spitzer Space Telescope</a> suggests that 1-3% of white dwarfs possess detectable circumstellar dust.<sup id="cite_ref-141" class="reference"><a href="#cite_note-141"><span class="cite-bracket">[</span>141<span class="cite-bracket">]</span></a></sup> </p><p>In 2015, minor planets were discovered transiting the white dwarf <a href="/wiki/WD_1145%2B017" title="WD 1145+017">WD 1145+017</a>.<sup id="cite_ref-142" class="reference"><a href="#cite_note-142"><span class="cite-bracket">[</span>142<span class="cite-bracket">]</span></a></sup> This material orbits with a period of around 4.5 hours, and the shapes of the transit light curves suggest that the larger bodies are disintegrating, contributing to the contamination in the white dwarf's atmosphere. </p> <div class="mw-heading mw-heading2"><h2 id="Space_telescopes">Space telescopes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=34" title="Edit section: Space telescopes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Most confirmed extrasolar planets have been found using space-based telescopes (as of 01/2015).<sup id="cite_ref-143" class="reference"><a href="#cite_note-143"><span class="cite-bracket">[</span>143<span class="cite-bracket">]</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Manual_of_Style/Dates_and_numbers#Chronological_items" title="Wikipedia:Manual of Style/Dates and numbers"><span title="The date of the event predicted near this tag has passed. (July 2024)">needs update</span></a></i>]</sup> Many of the detection methods can work more effectively with space-based telescopes that avoid atmospheric haze and turbulence. <a href="/wiki/COROT" class="mw-redirect" title="COROT">COROT</a> (2007-2012) and <a href="/wiki/Kepler_Mission" class="mw-redirect" title="Kepler Mission">Kepler</a> were space missions dedicated to searching for extrasolar planets using transits. COROT discovered about 30 new exoplanets. <a href="/wiki/Kepler_space_telescope" title="Kepler space telescope">Kepler</a> (2009-2013) and K2 (2013- ) have discovered over 2000 verified exoplanets.<sup id="cite_ref-NASA-20160510a_144-0" class="reference"><a href="#cite_note-NASA-20160510a-144"><span class="cite-bracket">[</span>144<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Hubble_Space_Telescope" title="Hubble Space Telescope">Hubble Space Telescope</a> and <a href="/wiki/Microvariability_and_Oscillations_of_STars_telescope" class="mw-redirect" title="Microvariability and Oscillations of STars telescope">MOST</a> have also found or confirmed a few planets. The infrared <a href="/wiki/Spitzer_Space_Telescope" title="Spitzer Space Telescope">Spitzer Space Telescope</a> has been used to detect transits of extrasolar planets, as well as <a href="/wiki/Occultation" title="Occultation">occultations</a> of the planets by their host star and <a href="/wiki/Phase_curve_(astronomy)" title="Phase curve (astronomy)">phase curves</a>.<sup id="cite_ref-:0_17-1" class="reference"><a href="#cite_note-:0-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Deming_18-1" class="reference"><a href="#cite_note-Deming-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">[</span>145<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Gaia_mission" class="mw-redirect" title="Gaia mission"><i>Gaia</i> mission</a>, launched in December 2013,<sup id="cite_ref-rssd.esa.int_146-0" class="reference"><a href="#cite_note-rssd.esa.int-146"><span class="cite-bracket">[</span>146<span class="cite-bracket">]</span></a></sup> will use astrometry to determine the true masses of 1000 nearby exoplanets.<sup id="cite_ref-ESA-20121119_147-0" class="reference"><a href="#cite_note-ESA-20121119-147"><span class="cite-bracket">[</span>147<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ESA-20120130_148-0" class="reference"><a href="#cite_note-ESA-20120130-148"><span class="cite-bracket">[</span>148<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Transiting_Exoplanet_Survey_Satellite" title="Transiting Exoplanet Survey Satellite">TESS</a>, launched in 2018, <a href="/wiki/CHEOPS" title="CHEOPS">CHEOPS</a> launched in 2019 and <a href="/wiki/PLATO_(spacecraft)" title="PLATO (spacecraft)">PLATO</a> in 2026 will use the transit method. </p> <div class="mw-heading mw-heading2"><h2 id="Primary_and_secondary_detection">Primary and secondary detection</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=35" title="Edit section: Primary and secondary detection"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th>Method </th> <th>Primary </th> <th>Secondary </th></tr> <tr> <td>Transit </td> <td>Primary eclipse. Planet passes in front of star. </td> <td>Secondary eclipse. Star passes in front of planet. </td></tr> <tr> <td>Radial velocity </td> <td>Radial velocity of star </td> <td>Radial velocity of planet.<sup id="cite_ref-149" class="reference"><a href="#cite_note-149"><span class="cite-bracket">[</span>149<span class="cite-bracket">]</span></a></sup> This has been done for <a href="/wiki/Tau_Bo%C3%B6tis_b" title="Tau Boötis b">Tau Boötis b</a>. </td></tr> <tr> <td>Astrometry </td> <td>Astrometry of star. Position of star moves more for large planets with large orbits. </td> <td>Astrometry of planet. Color-differential astrometry.<sup id="cite_ref-150" class="reference"><a href="#cite_note-150"><span class="cite-bracket">[</span>150<span class="cite-bracket">]</span></a></sup> Position of planet moves quicker for planets with small orbits. Theoretical method—has been proposed for use for the <a href="/wiki/SPICA_(spacecraft)" title="SPICA (spacecraft)">SPICA spacecraft</a>. </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Verification_and_falsification_methods">Verification and falsification methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=36" title="Edit section: Verification and falsification methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Verification by multiplicity<sup id="cite_ref-kepler1700_151-0" class="reference"><a href="#cite_note-kepler1700-151"><span class="cite-bracket">[</span>151<span class="cite-bracket">]</span></a></sup></li> <li>Transit color signature<sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">[</span>152<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Doppler_tomography" class="mw-redirect" title="Doppler tomography">Doppler tomography</a><sup id="cite_ref-153" class="reference"><a href="#cite_note-153"><span class="cite-bracket">[</span>153<span class="cite-bracket">]</span></a></sup></li> <li>Dynamical stability testing<sup id="cite_ref-154" class="reference"><a href="#cite_note-154"><span class="cite-bracket">[</span>154<span class="cite-bracket">]</span></a></sup></li> <li>Distinguishing between planets and stellar activity<sup id="cite_ref-155" class="reference"><a href="#cite_note-155"><span class="cite-bracket">[</span>155<span class="cite-bracket">]</span></a></sup></li> <li>Transit offset<sup id="cite_ref-156" class="reference"><a href="#cite_note-156"><span class="cite-bracket">[</span>156<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Characterization_methods">Characterization methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=37" title="Edit section: Characterization methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Transmission_spectroscopy" class="mw-redirect" title="Transmission spectroscopy">Transmission spectroscopy</a></li> <li>Emission spectroscopy,<sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">[</span>157<span class="cite-bracket">]</span></a></sup> phase-resolved<sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">[</span>158<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Speckle_imaging" title="Speckle imaging">Speckle imaging</a><sup id="cite_ref-159" class="reference"><a href="#cite_note-159"><span class="cite-bracket">[</span>159<span class="cite-bracket">]</span></a></sup> / <a href="/wiki/Lucky_imaging" title="Lucky imaging">Lucky imaging</a><sup id="cite_ref-160" class="reference"><a href="#cite_note-160"><span class="cite-bracket">[</span>160<span class="cite-bracket">]</span></a></sup> to detect companion stars that the planets could be orbiting instead of the primary star, which would alter planet parameters that are derived from stellar parameters.</li> <li>Photoeccentric Effect<sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">[</span>161<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Rossiter%E2%80%93McLaughlin_effect" title="Rossiter–McLaughlin effect">Rossiter–McLaughlin effect</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=38" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/List_of_exoplanets" class="mw-redirect" title="List of exoplanets">List of exoplanets</a></li> <li><a href="/wiki/Exomoon" title="Exomoon">Exomoon</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=39" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLindegrenDravins2003" class="citation journal cs1">Lindegren, Lennart; Dravins, Dainis (31 January 2003). <a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A20030181">"The fundamental definition of "radial velocity"<span class="cs1-kern-right"></span>"</a>. <i>Astronomy & Astrophysics</i>. <b>401</b> (3): 1185–1201. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0302522">astro-ph/0302522</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003A&A...401.1185L">2003A&A...401.1185L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A20030181">10.1051/0004-6361:20030181</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=The+fundamental+definition+of+%22radial+velocity%22&rft.volume=401&rft.issue=3&rft.pages=1185-1201&rft.date=2003-01-31&rft_id=info%3Aarxiv%2Fastro-ph%2F0302522&rft_id=info%3Adoi%2F10.1051%2F0004-6361%3A20030181&rft_id=info%3Abibcode%2F2003A%26A...401.1185L&rft.aulast=Lindegren&rft.aufirst=Lennart&rft.au=Dravins%2C+Dainis&rft_id=https%3A%2F%2Fdoi.org%2F10.1051%252F0004-6361%253A20030181&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.spectralfringe.org/EDI/">"Externally Dispersed Interferometry"</a>. <i>SpectralFringe.org</i>. <a href="/wiki/Lawrence_Livermore_National_Laboratory" title="Lawrence Livermore National Laboratory">LLNL</a>/<a href="/wiki/Space_Sciences_Laboratory" title="Space Sciences Laboratory">SSL</a>. June 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">6 December</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=SpectralFringe.org&rft.atitle=Externally+Dispersed+Interferometry&rft.date=2006-06&rft_id=http%3A%2F%2Fwww.spectralfringe.org%2FEDI%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD.J._ErskineJ._EdelsteinD._HarbeckJ._Lloyd2005" class="citation book cs1">D.J. Erskine; J. Edelstein; D. Harbeck & J. Lloyd (2005). <a rel="nofollow" class="external text" href="https://e-reports-ext.llnl.gov/pdf/322047.pdf">"Externally Dispersed Interferometry for Planetary Studies"</a> <span class="cs1-format">(PDF)</span>. In Daniel R. Coulter (ed.). <a href="/wiki/Proceedings_of_SPIE" title="Proceedings of SPIE"><i>Proceedings of SPIE: Techniques and Instrumentation for Detection of Exoplanets II</i></a>. Vol. 5905. pp. 249–260.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Externally+Dispersed+Interferometry+for+Planetary+Studies&rft.btitle=Proceedings+of+SPIE%3A+Techniques+and+Instrumentation+for+Detection+of+Exoplanets+II&rft.pages=249-260&rft.date=2005&rft.au=D.J.+Erskine&rft.au=J.+Edelstein&rft.au=D.+Harbeck&rft.au=J.+Lloyd&rft_id=https%3A%2F%2Fe-reports-ext.llnl.gov%2Fpdf%2F322047.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></li></ul> </span></li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAuriereKonstantinova-AntovaEspagnetPetit2013" class="citation journal cs1">Auriere, Michel; Konstantinova-Antova, Renada; Espagnet, Olivier; Petit, Pascal; Roudier, Thierry; Charbonnel, Corinne; Donati, Jean-Francois; Wade, Gregg A. (2013). "Pollux: A stable weak dipolar magnetic field but no planet ?". <i>Proceedings of the International Astronomical Union</i>. <b>9</b>: 359–362. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1310.6907">1310.6907</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014IAUS..302..359A">2014IAUS..302..359A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1743921314002476">10.1017/S1743921314002476</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:85549247">85549247</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+International+Astronomical+Union&rft.atitle=Pollux%3A+A+stable+weak+dipolar+magnetic+field+but+no+planet+%3F&rft.volume=9&rft.pages=359-362&rft.date=2013&rft_id=info%3Aarxiv%2F1310.6907&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A85549247%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1017%2FS1743921314002476&rft_id=info%3Abibcode%2F2014IAUS..302..359A&rft.aulast=Auriere&rft.aufirst=Michel&rft.au=Konstantinova-Antova%2C+Renada&rft.au=Espagnet%2C+Olivier&rft.au=Petit%2C+Pascal&rft.au=Roudier%2C+Thierry&rft.au=Charbonnel%2C+Corinne&rft.au=Donati%2C+Jean-Francois&rft.au=Wade%2C+Gregg+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStevens,_Daniel_J.Gaudi,_B._Scott2013" class="citation journal cs1">Stevens, Daniel J.; Gaudi, B. Scott (2013). "A Posteriori Transit Probabilities". <i>Publications of the Astronomical Society of the Pacific</i>. <b>125</b> (930): 933–950. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1305.1298">1305.1298</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PASP..125..933S">2013PASP..125..933S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F672572">10.1086/672572</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118494470">118494470</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Publications+of+the+Astronomical+Society+of+the+Pacific&rft.atitle=A+Posteriori+Transit+Probabilities&rft.volume=125&rft.issue=930&rft.pages=933-950&rft.date=2013&rft_id=info%3Aarxiv%2F1305.1298&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118494470%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F672572&rft_id=info%3Abibcode%2F2013PASP..125..933S&rft.au=Stevens%2C+Daniel+J.&rft.au=Gaudi%2C+B.+Scott&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRodlerLopez-MoralesRibas2012" class="citation journal cs1">Rodler, Florian; Lopez-Morales, Mercedes; Ribas, Ignasi (2012). "Weighing the Non-Transiting Hot Jupiter Tau BOO b". <i>The Astrophysical Journal</i>. <b>753</b> (1): L25. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1206.6197">1206.6197</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012ApJ...753L..25R">2012ApJ...753L..25R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2041-8205%2F753%2F1%2FL25">10.1088/2041-8205/753/1/L25</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119177983">119177983</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Weighing+the+Non-Transiting+Hot+Jupiter+Tau+BOO+b&rft.volume=753&rft.issue=1&rft.pages=L25&rft.date=2012&rft_id=info%3Aarxiv%2F1206.6197&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119177983%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F2041-8205%2F753%2F1%2FL25&rft_id=info%3Abibcode%2F2012ApJ...753L..25R&rft.aulast=Rodler&rft.aufirst=Florian&rft.au=Lopez-Morales%2C+Mercedes&rft.au=Ribas%2C+Ignasi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://exoplanets.nasa.gov/5-ways-to-find-a-planet/#/2">"5 Ways to Find a Planet"</a>. <i>exoplanets.nasa.gov</i><span class="reference-accessdate">. Retrieved <span class="nowrap">20 November</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=exoplanets.nasa.gov&rft.atitle=5+Ways+to+Find+a+Planet&rft_id=https%3A%2F%2Fexoplanets.nasa.gov%2F5-ways-to-find-a-planet%2F%23%2F2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson2015" class="citation book cs1">Johnson, John (2015). <i>How Do You Find an Exoplanet?</i>. Princeton, NJ: Princeton University Press. pp. 60–68. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-15681-1" title="Special:BookSources/978-0-691-15681-1"><bdi>978-0-691-15681-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=How+Do+You+Find+an+Exoplanet%3F&rft.place=Princeton%2C+NJ&rft.pages=60-68&rft.pub=Princeton+University+Press&rft.date=2015&rft.isbn=978-0-691-15681-1&rft.aulast=Johnson&rft.aufirst=John&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHidas,_M._G.AshleyWebbIrwin2005" class="citation journal cs1">Hidas, M. G.; Ashley, M. C. B.; Webb, J. K.; et al. (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2005.09061.x">"The University of New South Wales Extrasolar Planet Search: methods and first results from a field centred on NGC 6633"</a>. <i><a href="/wiki/Monthly_Notices_of_the_Royal_Astronomical_Society" title="Monthly Notices of the Royal Astronomical Society">Monthly Notices of the Royal Astronomical Society</a></i>. <b>360</b> (2): 703–717. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0501269">astro-ph/0501269</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005MNRAS.360..703H">2005MNRAS.360..703H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2005.09061.x">10.1111/j.1365-2966.2005.09061.x</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:197527136">197527136</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&rft.atitle=The+University+of+New+South+Wales+Extrasolar+Planet+Search%3A+methods+and+first+results+from+a+field+centred+on+NGC+6633&rft.volume=360&rft.issue=2&rft.pages=703-717&rft.date=2005&rft_id=info%3Aarxiv%2Fastro-ph%2F0501269&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A197527136%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1111%2Fj.1365-2966.2005.09061.x&rft_id=info%3Abibcode%2F2005MNRAS.360..703H&rft.au=Hidas%2C+M.+G.&rft.au=Ashley%2C+M.+C.+B.&rft.au=Webb%2C+J.+K.&rft.au=Irwin%2C+M.&rft.au=Phillips%2C+A.&rft.au=Toyozumi%2C+H.&rft.au=Derekas%2C+A.&rft.au=Christiansen%2C+J.+L.&rft.au=Nutto%2C+C.&rft.au=Crothers%2C+S.&rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fj.1365-2966.2005.09061.x&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Santerne2012-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Santerne2012_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSanterneDíazMoutouBouchy2012" class="citation journal cs1">Santerne, A.; Díaz, R. F.; Moutou, C.; Bouchy, F.; Hébrard, G.; Almenara, J. -M.; Bonomo, A. S.; Deleuil, M.; Santos, N. C. (2012). "SOPHIE velocimetry of Kepler transit candidates". <i>Astronomy & Astrophysics</i>. <b>545</b>: A76. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1206.0601">1206.0601</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012A&A...545A..76S">2012A&A...545A..76S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%2F201219608">10.1051/0004-6361/201219608</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119117782">119117782</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=SOPHIE+velocimetry+of+Kepler+transit+candidates&rft.volume=545&rft.pages=A76&rft.date=2012&rft_id=info%3Aarxiv%2F1206.0601&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119117782%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1051%2F0004-6361%2F201219608&rft_id=info%3Abibcode%2F2012A%26A...545A..76S&rft.aulast=Santerne&rft.aufirst=A.&rft.au=D%C3%ADaz%2C+R.+F.&rft.au=Moutou%2C+C.&rft.au=Bouchy%2C+F.&rft.au=H%C3%A9brard%2C+G.&rft.au=Almenara%2C+J.+-M.&rft.au=Bonomo%2C+A.+S.&rft.au=Deleuil%2C+M.&rft.au=Santos%2C+N.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'DonovanCharbonneauTorresMandushev2006" class="citation journal cs1">O'Donovan; et al. (2006). "Rejecting Astrophysical False Positives from the TrES Transiting Planet Survey: The Example of GSC 03885-00829". <i>The Astrophysical Journal</i>. <b>644</b> (2): 1237–1245. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0603005">astro-ph/0603005</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006ApJ...644.1237O">2006ApJ...644.1237O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F503740">10.1086/503740</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119428457">119428457</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Rejecting+Astrophysical+False+Positives+from+the+TrES+Transiting+Planet+Survey%3A+The+Example+of+GSC+03885-00829&rft.volume=644&rft.issue=2&rft.pages=1237-1245&rft.date=2006&rft_id=info%3Aarxiv%2Fastro-ph%2F0603005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119428457%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F503740&rft_id=info%3Abibcode%2F2006ApJ...644.1237O&rft.au=O%27Donovan&rft.au=Charbonneau%2C+David&rft.au=Torres%2C+Guillermo&rft.au=Mandushev%2C+Georgi&rft.au=Dunham%2C+Edward+W.&rft.au=Latham%2C+David+W.&rft.au=Alonso%2C+Roi&rft.au=Brown%2C+Timothy+M.&rft.au=Esquerdo%2C+Gilbert+A.&rft.au=Everett%2C+Mark+E.&rft.au=Creevey%2C+Orlagh+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREF[NULL]2015" class="citation web cs1">[NULL] (31 March 2015). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130128110114/http://kepler.nasa.gov/news/nasakeplernews/index.cfm?FuseAction=ShowNews&NewsID=226">"Kepler: The Transit Timing Variation (TTV) Planet-finding Technique Begins to Flower"</a>. Archived from <a rel="nofollow" class="external text" href="https://kepler.nasa.gov/news/nasakeplernews/index.cfm?FuseAction=ShowNews&NewsID=226">the original</a> on 28 January 2013.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Kepler%3A+The+Transit+Timing+Variation+%28TTV%29+Planet-finding+Technique+Begins+to+Flower&rft.date=2015-03-31&rft.au=%5BNULL%5D&rft_id=http%3A%2F%2Fkepler.nasa.gov%2Fnews%2Fnasakeplernews%2Findex.cfm%3FFuseAction%3DShowNews%26NewsID%3D226&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140226202703/http://www.nasa.gov/ames/kepler/nasas-kepler-mission-announces-a-planet-bonanza/">"NASA's Kepler Mission Announces a Planet Bonanza, 715 New Worlds"</a>. <i>NASA</i>. 13 April 2015. Archived from <a rel="nofollow" class="external text" href="https://www.nasa.gov/ames/kepler/nasas-kepler-mission-announces-a-planet-bonanza/">the original</a> on 26 February 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">28 February</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=NASA&rft.atitle=NASA%27s+Kepler+Mission+Announces+a+Planet+Bonanza%2C+715+New+Worlds&rft.date=2015-04-13&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fames%2Fkepler%2Fnasas-kepler-mission-announces-a-planet-bonanza%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaswell2010" class="citation book cs1">Haswell, Carole (2010). <i>Transiting Exoplanets</i>. Cambridge: Cambridge University Press. p. 79. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-13938-0" title="Special:BookSources/978-0-521-13938-0"><bdi>978-0-521-13938-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transiting+Exoplanets&rft.place=Cambridge&rft.pages=79&rft.pub=Cambridge+University+Press&rft.date=2010&rft.isbn=978-0-521-13938-0&rft.aulast=Haswell&rft.aufirst=Carole&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCollins2018" class="citation journal cs1">Collins, Karen (20 September 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Faae582">"The KELT Follow-Up Network and Transit False Positive Catalog: Pre-vetted False Positives for TESS"</a>. <i>Astrophysical Journal</i>. <b>156</b> (5): 234. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1803.01869">1803.01869</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018AJ....156..234C">2018AJ....156..234C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Faae582">10.3847/1538-3881/aae582</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119217050">119217050</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrophysical+Journal&rft.atitle=The+KELT+Follow-Up+Network+and+Transit+False+Positive+Catalog%3A+Pre-vetted+False+Positives+for+TESS&rft.volume=156&rft.issue=5&rft.pages=234&rft.date=2018-09-20&rft_id=info%3Aarxiv%2F1803.01869&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119217050%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3847%2F1538-3881%2Faae582&rft_id=info%3Abibcode%2F2018AJ....156..234C&rft.aulast=Collins&rft.aufirst=Karen&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-3881%252Faae582&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-charbonneautransitreview-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-charbonneautransitreview_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCharbonneauT._BrownA._BurrowsG._Laughlin2006" class="citation conference cs1">Charbonneau, D.; T. Brown; A. Burrows; G. Laughlin (2006). "When Extrasolar Planets Transit Their Parent Stars". <i>Protostars and Planets V</i>. University of Arizona Press. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0603376">astro-ph/0603376</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007prpl.conf..701C">2007prpl.conf..701C</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=When+Extrasolar+Planets+Transit+Their+Parent+Stars&rft.btitle=Protostars+and+Planets+V&rft.pub=University+of+Arizona+Press&rft.date=2006&rft_id=info%3Aarxiv%2Fastro-ph%2F0603376&rft_id=info%3Abibcode%2F2007prpl.conf..701C&rft.aulast=Charbonneau&rft.aufirst=D.&rft.au=T.+Brown&rft.au=A.+Burrows&rft.au=G.+Laughlin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurrows2014" class="citation journal cs1">Burrows, Adam S. (September 2014). "Highlights in the study of exoplanet atmospheres". <i>Nature</i>. <b>513</b> (7518): 345–352. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.7320">1409.7320</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014Natur.513..345B">2014Natur.513..345B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature13782">10.1038/nature13782</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25230656">25230656</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4469063">4469063</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Highlights+in+the+study+of+exoplanet+atmospheres&rft.volume=513&rft.issue=7518&rft.pages=345-352&rft.date=2014-09&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4469063%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2014Natur.513..345B&rft_id=info%3Aarxiv%2F1409.7320&rft.issn=0028-0836&rft_id=info%3Adoi%2F10.1038%2Fnature13782&rft_id=info%3Apmid%2F25230656&rft.aulast=Burrows&rft.aufirst=Adam+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-:0-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_17-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCharbonneauAllenMegeathTorres2005" class="citation journal cs1">Charbonneau; et al. (2005). "Detection of Thermal Emission from an Extrasolar Planet". <i>The Astrophysical Journal</i>. <b>626</b> (1): 523–529. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0503457">astro-ph/0503457</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005ApJ...626..523C">2005ApJ...626..523C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F429991">10.1086/429991</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13296966">13296966</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Detection+of+Thermal+Emission+from+an+Extrasolar+Planet&rft.volume=626&rft.issue=1&rft.pages=523-529&rft.date=2005&rft_id=info%3Aarxiv%2Fastro-ph%2F0503457&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13296966%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F429991&rft_id=info%3Abibcode%2F2005ApJ...626..523C&rft.au=Charbonneau&rft.au=Allen%2C+Lori+E.&rft.au=Megeath%2C+S.+Thomas&rft.au=Torres%2C+Guillermo&rft.au=Alonso%2C+Roi&rft.au=Brown%2C+Timothy+M.&rft.au=Gilliland%2C+Ronald+L.&rft.au=Latham%2C+David+W.&rft.au=Mandushev%2C+Georgi&rft.au=O%27Donovan%2C+Francis+T.&rft.au=Sozzetti%2C+Alessandro&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Deming-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Deming_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Deming_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeming,_D.Seager,_S.Richardson,_J.Harrington,_J.2005" class="citation journal cs1">Deming, D.; Seager, S.; Richardson, J.; Harrington, J. (2005). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060927012051/http://www.obspm.fr/encycl/papers/nature03507.pdf">"Infrared radiation from an extrasolar planet"</a> <span class="cs1-format">(PDF)</span>. <i>Nature</i>. <b>434</b> (7034): 740–743. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0503554">astro-ph/0503554</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005Natur.434..740D">2005Natur.434..740D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature03507">10.1038/nature03507</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15785769">15785769</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4404769">4404769</a>. Archived from <a rel="nofollow" class="external text" href="http://www.obspm.fr/encycl/papers/nature03507.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 27 September 2006.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Infrared+radiation+from+an+extrasolar+planet&rft.volume=434&rft.issue=7034&rft.pages=740-743&rft.date=2005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4404769%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2005Natur.434..740D&rft_id=info%3Aarxiv%2Fastro-ph%2F0503554&rft_id=info%3Apmid%2F15785769&rft_id=info%3Adoi%2F10.1038%2Fnature03507&rft.au=Deming%2C+D.&rft.au=Seager%2C+S.&rft.au=Richardson%2C+J.&rft.au=Harrington%2C+J.&rft_id=http%3A%2F%2Fwww.obspm.fr%2Fencycl%2Fpapers%2Fnature03507.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCharbonneauBrownLathamMayor2000" class="citation journal cs1">Charbonneau, David; et al. (2000). <a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000ApJ...529L..45C/abstract">"Detection of Planetary Transits Across a Sun-like Star"</a>. <i>Astrophysical Journal Letters</i>. <b>529</b> (1): 45–48. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/9911436">astro-ph/9911436</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000ApJ...529L..45C">2000ApJ...529L..45C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F312457">10.1086/312457</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10615033">10615033</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16152423">16152423</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrophysical+Journal+Letters&rft.atitle=Detection+of+Planetary+Transits+Across+a+Sun-like+Star&rft.volume=529&rft.issue=1&rft.pages=45-48&rft.date=2000&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16152423%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2000ApJ...529L..45C&rft_id=info%3Aarxiv%2Fastro-ph%2F9911436&rft_id=info%3Apmid%2F10615033&rft_id=info%3Adoi%2F10.1086%2F312457&rft.aulast=Charbonneau&rft.aufirst=David&rft.au=Brown%2C+Timothy+M.&rft.au=Latham%2C+David+W.&rft.au=Mayor%2C+Michel&rft_id=https%3A%2F%2Fui.adsabs.harvard.edu%2Fabs%2F2000ApJ...529L..45C%2Fabstract&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHenryMarcyButlerVogt2000" class="citation journal cs1">Henry, Gregory W.; et al. (2000). <a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F312458">"A Transiting <i>51 Peg-like</i> Planet"</a>. <i>Astrophysical Journal Letters</i>. <b>529</b> (1): 41–44. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000ApJ...529L..41H">2000ApJ...529L..41H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F312458">10.1086/312458</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10615032">10615032</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18193299">18193299</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrophysical+Journal+Letters&rft.atitle=A+Transiting+51+Peg-like+Planet&rft.volume=529&rft.issue=1&rft.pages=41-44&rft.date=2000&rft_id=info%3Adoi%2F10.1086%2F312458&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18193299%23id-name%3DS2CID&rft_id=info%3Apmid%2F10615032&rft_id=info%3Abibcode%2F2000ApJ...529L..41H&rft.aulast=Henry&rft.aufirst=Gregory+W.&rft.au=Marcy%2C+Geoffrey+W.&rft.au=Butler%2C+R.+Paul&rft.au=Vogt%2C+Steven+S.&rft_id=https%3A%2F%2Fdoi.org%2F10.1086%252F312458&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://exoplanets.nasa.gov/alien-worlds/historic-timeline/#first-transiting-exoplanet-observed">"Historic timeline"</a></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUdalskiŻebruńSzymańskiKubiak2002" class="citation journal cs1">Udalski, A.; et al. (2002). <a rel="nofollow" class="external text" href="http://acta.astrouw.edu.pl/Vol52/n2/a_52_2_1.html">"The Optical Gravitational Lensing Experiment. Search for Planetary and Low-Luminosity Object Transits in the Galactic Disk. Results of 2001 Campaign - Supplement"</a>. <i>Acta Astronomica</i>. <b>52</b> (2): 115–128. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0207133">astro-ph/0207133</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002AcA....52..115U">2002AcA....52..115U</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Astronomica&rft.atitle=The+Optical+Gravitational+Lensing+Experiment.+Search+for+Planetary+and+Low-Luminosity+Object+Transits+in+the+Galactic+Disk.+Results+of+2001+Campaign+-+Supplement&rft.volume=52&rft.issue=2&rft.pages=115-128&rft.date=2002&rft_id=info%3Aarxiv%2Fastro-ph%2F0207133&rft_id=info%3Abibcode%2F2002AcA....52..115U&rft.aulast=Udalski&rft.aufirst=A.&rft.au=%C5%BBebru%C5%84%2C+K.&rft.au=Szyma%C5%84ski%2C+M.&rft.au=Kubiak%2C+M.&rft.au=Soszy%C5%84ski%2C+I.&rft.au=Szewczyk%2C+O.&rft.au=Wyrzykowski%2C+L.&rft.au=Pietrzy%C5%84ski%2C+G.&rft_id=http%3A%2F%2Facta.astrouw.edu.pl%2FVol52%2Fn2%2Fa_52_2_1.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarvard_University_and_Smithsonian_Institution2003" class="citation journal cs1"><a href="/wiki/Harvard_University" title="Harvard University">Harvard University</a> and <a href="/wiki/Smithsonian_Institution" title="Smithsonian Institution">Smithsonian Institution</a> (8 January 2003). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100110135215/http://www.astrobio.net/pressrelease/352/new-world-of-iron-rain">"New World of Iron Rain"</a>. <i>Astrobiology Magazine</i>. Archived from the original on 10 January 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">25 January</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrobiology+Magazine&rft.atitle=New+World+of+Iron+Rain&rft.date=2003-01-08&rft.au=Harvard+University+and+Smithsonian+Institution&rft_id=http%3A%2F%2Fwww.astrobio.net%2Fpressrelease%2F352%2Fnew-world-of-iron-rain&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: unfit URL (<a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">link</a>)</span></span> </li> <li id="cite_note-harvardgazette2-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-harvardgazette2_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCromie2003" class="citation news cs1">Cromie, William J. (16 January 2003). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090827072608/http://www.news.harvard.edu/gazette/2003/01.16/01-ogle.html">"New, far-out planet is discovered"</a>. <i>Harvard Gazette</i>. Harvard University. Archived from <a rel="nofollow" class="external text" href="http://www.news.harvard.edu/gazette/2003/01.16/01-ogle.html">the original</a> on 27 August 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">21 July</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Harvard+Gazette&rft.atitle=New%2C+far-out+planet+is+discovered&rft.date=2003-01-16&rft.aulast=Cromie&rft.aufirst=William+J.&rft_id=http%3A%2F%2Fwww.news.harvard.edu%2Fgazette%2F2003%2F01.16%2F01-ogle.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">"COROT surprises a year after launch", <a rel="nofollow" class="external text" href="http://www.esa.int/SPECIALS/COROT/SEMF0C2MDAF_0.html">ESA press release 20 December 2007</a></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">"01/2014 – CoRoT: collision evading and decommissioning", <a rel="nofollow" class="external text" href="http://smsc.cnes.fr/COROT/GP_actualite.htm#112012">CNES CoRoT News</a></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20051118033324/http://kepler.nasa.gov/about/">Kepler Mission page</a></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://exoplanetarchive.ipac.caltech.edu/">"NASA Exoplanet Archive"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=NASA+Exoplanet+Archive&rft_id=http%3A%2F%2Fexoplanetarchive.ipac.caltech.edu%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJenkinsLaurance_R._Doyle2003" class="citation journal cs1">Jenkins, J.M.; Laurance R. Doyle (20 September 2003). "Detecting reflected light from close-in giant planets using space-based photometers". <i>Astrophysical Journal</i>. <b>1</b> (595): 429–445. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0305473">astro-ph/0305473</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003ApJ...595..429J">2003ApJ...595..429J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F377165">10.1086/377165</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17773111">17773111</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrophysical+Journal&rft.atitle=Detecting+reflected+light+from+close-in+giant+planets+using+space-based+photometers&rft.volume=1&rft.issue=595&rft.pages=429-445&rft.date=2003-09-20&rft_id=info%3Aarxiv%2Fastro-ph%2F0305473&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17773111%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F377165&rft_id=info%3Abibcode%2F2003ApJ...595..429J&rft.aulast=Jenkins&rft.aufirst=J.M.&rft.au=Laurance+R.+Doyle&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://physicsworld.com/cws/article/news/2015/apr/22/first-visible-light-detected-directly-from-an-exoplanet">physicsworld.com 2015-04-22 First visible light detected directly from an exoplanet</a></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartinsSantosFigueiraFaria2015" class="citation journal cs1">Martins, J. H. C.; Santos, N. C.; Figueira, P.; Faria, J. P.; Montalto, M.; et al. (2015). "Evidence for a spectroscopic direct detection of reflected light from 51 Pegasi b". <i>Astronomy & Astrophysics</i>. <b>576</b>: A134. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1504.05962">1504.05962</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015A&A...576A.134M">2015A&A...576A.134M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%2F201425298">10.1051/0004-6361/201425298</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119224213">119224213</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=Evidence+for+a+spectroscopic+direct+detection+of+reflected+light+from+51+Pegasi+b&rft.volume=576&rft.pages=A134&rft.date=2015&rft_id=info%3Aarxiv%2F1504.05962&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119224213%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1051%2F0004-6361%2F201425298&rft_id=info%3Abibcode%2F2015A%26A...576A.134M&rft.aulast=Martins&rft.aufirst=J.+H.+C.&rft.au=Santos%2C+N.+C.&rft.au=Figueira%2C+P.&rft.au=Faria%2C+J.+P.&rft.au=Montalto%2C+M.&rft.au=Boisse%2C+I.&rft.au=Ehrenreich%2C+D.&rft.au=Lovis%2C+C.&rft.au=Mayor%2C+M.&rft.au=Melo%2C+C.&rft.au=Pepe%2C+F.&rft.au=Sousa%2C+S.+G.&rft.au=Udry%2C+S.&rft.au=Cunha%2C+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnellen,_I.A.G.De_Mooij,_E.J.W.Albrecht,_S.2009" class="citation journal cs1">Snellen, I.A.G.; De Mooij, E.J.W. & Albrecht, S. (2009). "The changing phases of extrasolar planet CoRoT-1b". <i>Nature</i>. <b>459</b> (7246): 543–545. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0904.1208">0904.1208</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009Natur.459..543S">2009Natur.459..543S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature08045">10.1038/nature08045</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19478779">19478779</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4347612">4347612</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=The+changing+phases+of+extrasolar+planet+CoRoT-1b&rft.volume=459&rft.issue=7246&rft.pages=543-545&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4347612%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009Natur.459..543S&rft_id=info%3Aarxiv%2F0904.1208&rft_id=info%3Apmid%2F19478779&rft_id=info%3Adoi%2F10.1038%2Fnature08045&rft.au=Snellen%2C+I.A.G.&rft.au=De+Mooij%2C+E.J.W.&rft.au=Albrecht%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-kepler_phases-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-kepler_phases_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoruckiKochJenkinsSasselov2009" class="citation journal cs1">Borucki, W.J.; et al. (2009). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1230908">"Kepler's Optical Phase Curve of the Exoplanet HAT-P-7b"</a>. <i>Science</i> (Submitted manuscript). <b>325</b> (5941): 709. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009Sci...325..709B">2009Sci...325..709B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1178312">10.1126/science.1178312</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19661420">19661420</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206522122">206522122</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Kepler%27s+Optical+Phase+Curve+of+the+Exoplanet+HAT-P-7b&rft.volume=325&rft.issue=5941&rft.pages=709&rft.date=2009&rft_id=info%3Adoi%2F10.1126%2Fscience.1178312&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206522122%23id-name%3DS2CID&rft_id=info%3Apmid%2F19661420&rft_id=info%3Abibcode%2F2009Sci...325..709B&rft.aulast=Borucki&rft.aufirst=W.J.&rft.au=Koch%2C+D.&rft.au=Jenkins%2C+J.&rft.au=Sasselov%2C+D.&rft.au=Gilliland%2C+R.&rft.au=Batalha%2C+N.&rft.au=Latham%2C+D.+W.&rft.au=Caldwell%2C+D.&rft.au=Basri%2C+G.&rft.au=Brown%2C+T.&rft.au=Christensen-Dalsgaard%2C+J.&rft.au=Cochran%2C+W.+D.&rft.au=Devore%2C+E.&rft.au=Dunham%2C+E.&rft.au=Dupree%2C+A.+K.&rft.au=Gautier%2C+T.&rft.au=Geary%2C+J.&rft.au=Gould%2C+A.&rft.au=Howell%2C+S.&rft.au=Kjeldsen%2C+H.&rft.au=Lissauer%2C+J.&rft.au=Marcy%2C+G.&rft.au=Meibom%2C+S.&rft.au=Morrison%2C+D.&rft.au=Tarter%2C+J.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1230908&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCharpinet,_S.Fontaine,_G.Brassard,_P.Green,_E.M.2011" class="citation journal cs1">Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E.M.; et al. (2011). "A compact system of small planets around a former red-giant star". <i>Nature</i>. <b>480</b> (7378): 496–499. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Natur.480..496C">2011Natur.480..496C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature10631">10.1038/nature10631</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22193103">22193103</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2213885">2213885</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+compact+system+of+small+planets+around+a+former+red-giant+star&rft.volume=480&rft.issue=7378&rft.pages=496-499&rft.date=2011&rft_id=info%3Adoi%2F10.1038%2Fnature10631&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2213885%23id-name%3DS2CID&rft_id=info%3Apmid%2F22193103&rft_id=info%3Abibcode%2F2011Natur.480..496C&rft.au=Charpinet%2C+S.&rft.au=Fontaine%2C+G.&rft.au=Brassard%2C+P.&rft.au=Green%2C+E.M.&rft.au=Van+Grootel%2C+V.&rft.au=Randall%2C+S.K.&rft.au=Silvotti%2C+R.&rft.au=Baran%2C+A.S.&rft.au=%C3%98stensen%2C+R.H.&rft.au=Kawaler%2C+S.D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoebGaudi2003" class="citation journal cs1">Loeb, Abraham; Gaudi, B. Scott (2003). "Periodic Flux Variability of Stars due to the Reflex Doppler Effect Induced by Planetary Companions". <i>The Astrophysical Journal</i>. <b>588</b> (2): L117. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0303212">astro-ph/0303212</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003ApJ...588L.117L">2003ApJ...588L.117L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F375551">10.1086/375551</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10066891">10066891</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Periodic+Flux+Variability+of+Stars+due+to+the+Reflex+Doppler+Effect+Induced+by+Planetary+Companions&rft.volume=588&rft.issue=2&rft.pages=L117&rft.date=2003&rft_id=info%3Aarxiv%2Fastro-ph%2F0303212&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10066891%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F375551&rft_id=info%3Abibcode%2F2003ApJ...588L.117L&rft.aulast=Loeb&rft.aufirst=Abraham&rft.au=Gaudi%2C+B.+Scott&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaiglerTal-OrMazehLatham2013" class="citation journal cs1">Faigler, Simchon; Tal-Or, Lev; Mazeh, Tsevi; Latham, Dave W.; Buchhave, Lars A. (2013). "BEER analysis of Kepler and CoRoT light curves: I. Discovery of Kepler-76b: A hot Jupiter with evidence for superrotation". <i>The Astrophysical Journal</i>. <b>771</b> (1): 26. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1304.6841">1304.6841</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013ApJ...771...26F">2013ApJ...771...26F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-637X%2F771%2F1%2F26">10.1088/0004-637X/771/1/26</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119247392">119247392</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=BEER+analysis+of+Kepler+and+CoRoT+light+curves%3A+I.+Discovery+of+Kepler-76b%3A+A+hot+Jupiter+with+evidence+for+superrotation&rft.volume=771&rft.issue=1&rft.pages=26&rft.date=2013&rft_id=info%3Aarxiv%2F1304.6841&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119247392%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-637X%2F771%2F1%2F26&rft_id=info%3Abibcode%2F2013ApJ...771...26F&rft.aulast=Faigler&rft.aufirst=Simchon&rft.au=Tal-Or%2C+Lev&rft.au=Mazeh%2C+Tsevi&rft.au=Latham%2C+Dave+W.&rft.au=Buchhave%2C+Lars+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://phys.org/news/2013-05-method-planets-scores-discovery.html">New method of finding planets scores its first discovery</a>, phys.org, May 2013</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.universetoday.com/102112/using-the-theory-of-relativity-and-beer-to-find-exoplanets/">"Using the Theory of Relativity and BEER to Find Exoplanets - Universe Today"</a>. <i>Universe Today</i>. 13 May 2013.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Universe+Today&rft.atitle=Using+the+Theory+of+Relativity+and+BEER+to+Find+Exoplanets+-+Universe+Today&rft.date=2013-05-13&rft_id=http%3A%2F%2Fwww.universetoday.com%2F102112%2Fusing-the-theory-of-relativity-and-beer-to-find-exoplanets%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-EXP3-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-EXP3_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTownsend,_Rich2003" class="citation web cs1">Townsend, Rich (27 January 2003). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20050915080856/http://www.star.ucl.ac.uk/~rhdt/diploma/lecture_2/">"The Search for Extrasolar Planets"</a>. <i>University College London</i> (Lecture). Archived from <a rel="nofollow" class="external text" href="http://www.star.ucl.ac.uk/~rhdt/diploma/lecture_2/">the original</a> on 15 September 2005<span class="reference-accessdate">. Retrieved <span class="nowrap">10 September</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=University+College+London&rft.atitle=The+Search+for+Extrasolar+Planets&rft.date=2003-01-27&rft.au=Townsend%2C+Rich&rft_id=http%3A%2F%2Fwww.star.ucl.ac.uk%2F~rhdt%2Fdiploma%2Flecture_2%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSinukoffFultonScuderiGaidos2013" class="citation journal cs1">Sinukoff, E.; Fulton, B.; Scuderi, L.; Gaidos, E. (2013). "Below One Earth Mass: The Detection, Formation, and Properties of Subterrestrial Worlds". <i>Space Science Reviews</i>. <b>180</b> (1–4): 71. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1308.6308">1308.6308</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013SSRv..180...71S">2013SSRv..180...71S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11214-013-0019-1">10.1007/s11214-013-0019-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118597064">118597064</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Space+Science+Reviews&rft.atitle=Below+One+Earth+Mass%3A+The+Detection%2C+Formation%2C+and+Properties+of+Subterrestrial+Worlds&rft.volume=180&rft.issue=1%E2%80%934&rft.pages=71&rft.date=2013&rft_id=info%3Aarxiv%2F1308.6308&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118597064%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs11214-013-0019-1&rft_id=info%3Abibcode%2F2013SSRv..180...71S&rft.aulast=Sinukoff&rft.aufirst=E.&rft.au=Fulton%2C+B.&rft.au=Scuderi%2C+L.&rft.au=Gaidos%2C+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-wolszczan-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-wolszczan_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFA._Wolszczan_and_D._A._FrailFrail1992" class="citation journal cs1"><a href="/wiki/Aleksander_Wolszczan" title="Aleksander Wolszczan">A. Wolszczan</a> and <a href="/wiki/Dale_Frail" title="Dale Frail">D. A. Frail</a>; Frail (9 January 1992). <a rel="nofollow" class="external text" href="http://www.nature.com/physics/looking-back/wolszczan/index.html">"A planetary system around the millisecond pulsar PSR1257+12"</a>. <i>Nature</i>. <b>355</b> (6356): 145–147. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992Natur.355..145W">1992Natur.355..145W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F355145a0">10.1038/355145a0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4260368">4260368</a><span class="reference-accessdate">. Retrieved <span class="nowrap">30 April</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+planetary+system+around+the+millisecond+pulsar+PSR1257%2B12&rft.volume=355&rft.issue=6356&rft.pages=145-147&rft.date=1992-01-09&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4260368%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2F355145a0&rft_id=info%3Abibcode%2F1992Natur.355..145W&rft.au=A.+Wolszczan+and+D.+A.+Frail&rft.au=Frail&rft_id=http%3A%2F%2Fwww.nature.com%2Fphysics%2Flooking-back%2Fwolszczan%2Findex.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolszczan1994" class="citation journal cs1">Wolszczan, A. (1994). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110720034147/http://www2.astro.psu.edu/~niel/astro550/week07-wolszczan-pulsar-planets.pdf">"Confirmation of Earth Mass Planets Orbiting the Millisecond Pulsar PSR B1257+12"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i>. <b>264</b> (5158): 538–542. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994Sci...264..538W">1994Sci...264..538W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.264.5158.538">10.1126/science.264.5158.538</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17732735">17732735</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:19621191">19621191</a>. Archived from <a rel="nofollow" class="external text" href="http://www.astro.psu.edu/~niel/astro550/week07-wolszczan-pulsar-planets.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 20 July 2011.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Confirmation+of+Earth+Mass+Planets+Orbiting+the+Millisecond+Pulsar+PSR+B1257%2B12&rft.volume=264&rft.issue=5158&rft.pages=538-542&rft.date=1994&rft_id=info%3Adoi%2F10.1126%2Fscience.264.5158.538&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A19621191%23id-name%3DS2CID&rft_id=info%3Apmid%2F17732735&rft_id=info%3Abibcode%2F1994Sci...264..538W&rft.aulast=Wolszczan&rft.aufirst=A.&rft_id=http%3A%2F%2Fwww.astro.psu.edu%2F~niel%2Fastro550%2Fweek07-wolszczan-pulsar-planets.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShibahashiKurtz2012" class="citation journal cs1">Shibahashi, Hiromoto; Kurtz, Donald W. (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2012.20654.x">"FM stars: A Fourier view of pulsating binary stars, a new technique for measuring radial velocities photometrically"</a>. <i>Monthly Notices of the Royal Astronomical Society</i>. <b>422</b> (1): 738. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1202.0105">1202.0105</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012MNRAS.422..738S">2012MNRAS.422..738S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2012.20654.x">10.1111/j.1365-2966.2012.20654.x</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54949889">54949889</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&rft.atitle=FM+stars%3A+A+Fourier+view+of+pulsating+binary+stars%2C+a+new+technique+for+measuring+radial+velocities+photometrically&rft.volume=422&rft.issue=1&rft.pages=738&rft.date=2012&rft_id=info%3Aarxiv%2F1202.0105&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54949889%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1111%2Fj.1365-2966.2012.20654.x&rft_id=info%3Abibcode%2F2012MNRAS.422..738S&rft.aulast=Shibahashi&rft.aufirst=Hiromoto&rft.au=Kurtz%2C+Donald+W.&rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fj.1365-2966.2012.20654.x&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20200808070113/https://www.nasa.gov/mission_pages/kepler/news/keplerm-20120710_prt.htm">"NASA - Mission Manager Update"</a>. Archived from <a rel="nofollow" class="external text" href="https://www.nasa.gov/mission_pages/kepler/news/keplerm-20120710_prt.htm">the original</a> on 8 August 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">25 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=NASA+-+Mission+Manager+Update&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fmission_pages%2Fkepler%2Fnews%2Fkeplerm-20120710_prt.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilvotti2007" class="citation journal cs1">Silvotti, R. (2007). <a rel="nofollow" class="external text" href="https://authors.library.caltech.edu/17168/2/Silvotti2007p5743Nature_supp.pdf">"A giant planet orbiting the /'extreme horizontal branch/' star V 391 Pegasi"</a> <span class="cs1-format">(PDF)</span>. <i>Nature</i>. <b>449</b> (7159): 189–191. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Natur.449..189S">2007Natur.449..189S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature06143">10.1038/nature06143</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17851517">17851517</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4342338">4342338</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+giant+planet+orbiting+the+%2F%27extreme+horizontal+branch%2F%27+star+V%26thinsp%3B391+Pegasi&rft.volume=449&rft.issue=7159&rft.pages=189-191&rft.date=2007&rft_id=info%3Adoi%2F10.1038%2Fnature06143&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4342338%23id-name%3DS2CID&rft_id=info%3Apmid%2F17851517&rft_id=info%3Abibcode%2F2007Natur.449..189S&rft.aulast=Silvotti&rft.aufirst=R.&rft_id=https%3A%2F%2Fauthors.library.caltech.edu%2F17168%2F2%2FSilvotti2007p5743Nature_supp.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiralda-Escude2001" class="citation journal cs1">Miralda-Escude (2001). "Orbital perturbations on transiting planets: A possible method to measure stellar quadrupoles and to detect Earth-mass planets". <i>The Astrophysical Journal</i>. <b>564</b> (2): 1019–1023. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0104034">astro-ph/0104034</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002ApJ...564.1019M">2002ApJ...564.1019M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F324279">10.1086/324279</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7536842">7536842</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Orbital+perturbations+on+transiting+planets%3A+A+possible+method+to+measure+stellar+quadrupoles+and+to+detect+Earth-mass+planets&rft.volume=564&rft.issue=2&rft.pages=1019-1023&rft.date=2001&rft_id=info%3Aarxiv%2Fastro-ph%2F0104034&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7536842%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F324279&rft_id=info%3Abibcode%2F2002ApJ...564.1019M&rft.au=Miralda-Escude&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolmanMurray2005" class="citation journal cs1">Holman; Murray (2005). "The Use of Transit Timing to Detect Extrasolar Planets with Masses as Small as Earth". <i>Science</i>. <b>307</b> (5713): 1288–1291. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0412028">astro-ph/0412028</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005Sci...307.1288H">2005Sci...307.1288H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1107822">10.1126/science.1107822</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15731449">15731449</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:41861725">41861725</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=The+Use+of+Transit+Timing+to+Detect+Extrasolar+Planets+with+Masses+as+Small+as+Earth&rft.volume=307&rft.issue=5713&rft.pages=1288-1291&rft.date=2005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A41861725%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2005Sci...307.1288H&rft_id=info%3Aarxiv%2Fastro-ph%2F0412028&rft_id=info%3Apmid%2F15731449&rft_id=info%3Adoi%2F10.1126%2Fscience.1107822&rft.au=Holman&rft.au=Murray&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAgolSariSteffenClarkson2005" class="citation journal cs1">Agol; Sari; Steffen; Clarkson (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2005.08922.x">"On detecting terrestrial planets with timing of giant planet transits"</a>. <i>Monthly Notices of the Royal Astronomical Society</i>. <b>359</b> (2): 567–579. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0412032">astro-ph/0412032</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005MNRAS.359..567A">2005MNRAS.359..567A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2005.08922.x">10.1111/j.1365-2966.2005.08922.x</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16196696">16196696</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&rft.atitle=On+detecting+terrestrial+planets+with+timing+of+giant+planet+transits&rft.volume=359&rft.issue=2&rft.pages=567-579&rft.date=2005&rft_id=info%3Aarxiv%2Fastro-ph%2F0412032&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16196696%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1111%2Fj.1365-2966.2005.08922.x&rft_id=info%3Abibcode%2F2005MNRAS.359..567A&rft.au=Agol&rft.au=Sari&rft.au=Steffen&rft.au=Clarkson&rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fj.1365-2966.2005.08922.x&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20111019083552/http://kepler.nasa.gov/news/nasakeplernews/index.cfm?FuseAction=ShowNews&NewsID=148">Invisible World Discovered</a>, NASA Kepler News, 8 September 2011</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSarah_BallardDaniel_FabryckyFrancois_FressinDavid_Charbonneau2011" class="citation journal cs1">Sarah Ballard; Daniel Fabrycky; Francois Fressin; David Charbonneau; et al. (2011). "The Kepler-19 System: A Transiting 2.2 R_Earth Planet and a Second Planet Detected via Transit Timing Variations". <i>The Astrophysical Journal</i>. <b>743</b> (2): 200. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1109.1561">1109.1561</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011ApJ...743..200B">2011ApJ...743..200B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-637X%2F743%2F2%2F200">10.1088/0004-637X/743/2/200</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:42698813">42698813</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=The+Kepler-19+System%3A+A+Transiting+2.2+R_Earth+Planet+and+a+Second+Planet+Detected+via+Transit+Timing+Variations&rft.volume=743&rft.issue=2&rft.pages=200&rft.date=2011&rft_id=info%3Aarxiv%2F1109.1561&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A42698813%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-637X%2F743%2F2%2F200&rft_id=info%3Abibcode%2F2011ApJ...743..200B&rft.au=Sarah+Ballard&rft.au=Daniel+Fabrycky&rft.au=Francois+Fressin&rft.au=David+Charbonneau&rft.au=Jean-Michel+Desert&rft.au=Guillermo+Torres&rft.au=Geoffrey+Marcy&rft.au=Burke&rft.au=Howard+Isaacson&rft.au=Henze%2C+Christopher&rft.au=Steffen%2C+Jason+H.&rft.au=Ciardi%2C+David+R.&rft.au=Howell%2C+Steven+B.&rft.au=Cochran%2C+William+D.&rft.au=Endl%2C+Michael&rft.au=Bryson%2C+Stephen+T.&rft.au=Rowe%2C+Jason+F.&rft.au=Holman%2C+Matthew+J.&rft.au=Lissauer%2C+Jack+J.&rft.au=Jenkins%2C+Jon+M.&rft.au=Still%2C+Martin&rft.au=Ford%2C+Eric+B.&rft.au=Christiansen%2C+Jessie+L.&rft.au=Middour%2C+Christopher+K.&rft.au=Haas%2C+Michael+R.&rft.au=Li%2C+Jie&rft.au=Hall%2C+Jennifer+R.&rft.au=McCauliff%2C+Sean&rft.au=Batalha%2C+Natalie+M.&rft.au=Koch%2C+David+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNascimbeniPiottoBedinDamasso2008" class="citation arxiv cs1">Nascimbeni; Piotto; Bedin; Damasso (2008). "TASTE: The Asiago Survey for Timing transit variations of Exoplanets". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1009.5905">1009.5905</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/astro-ph.EP">astro-ph.EP</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=TASTE%3A+The+Asiago+Survey+for+Timing+transit+variations+of+Exoplanets&rft.date=2008&rft_id=info%3Aarxiv%2F1009.5905&rft.au=Nascimbeni&rft.au=Piotto&rft.au=Bedin&rft.au=Damasso&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPalKocsis2008" class="citation journal cs1">Pal; Kocsis (2008). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2008.13512.x">"Periastron Precession Measurements in Transiting Extrasolar Planetary Systems at the Level of General Relativity"</a>. <i>Monthly Notices of the Royal Astronomical Society</i>. <b>389</b> (2008): 191–198. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0806.0629">0806.0629</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008MNRAS.389..191P">2008MNRAS.389..191P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2008.13512.x">10.1111/j.1365-2966.2008.13512.x</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15282437">15282437</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&rft.atitle=Periastron+Precession+Measurements+in+Transiting+Extrasolar+Planetary+Systems+at+the+Level+of+General+Relativity&rft.volume=389&rft.issue=2008&rft.pages=191-198&rft.date=2008&rft_id=info%3Aarxiv%2F0806.0629&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15282437%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1111%2Fj.1365-2966.2008.13512.x&rft_id=info%3Abibcode%2F2008MNRAS.389..191P&rft.au=Pal&rft.au=Kocsis&rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fj.1365-2966.2008.13512.x&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceA-53"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceA_53-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceA_53-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWelshOroszCarterFabrycky2013" class="citation journal cs1">Welsh, William F.; Orosz, Jerome A.; Carter, Joshua A.; Fabrycky, Daniel C. (2013). "Recent Kepler Results on Circumbinary Planets". <i>Proceedings of the International Astronomical Union</i>. <b>8</b>: 125–132. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1308.6328">1308.6328</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014IAUS..293..125W">2014IAUS..293..125W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1743921313012684">10.1017/S1743921313012684</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119230654">119230654</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+International+Astronomical+Union&rft.atitle=Recent+Kepler+Results+on+Circumbinary+Planets&rft.volume=8&rft.pages=125-132&rft.date=2013&rft_id=info%3Aarxiv%2F1308.6328&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119230654%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1017%2FS1743921313012684&rft_id=info%3Abibcode%2F2014IAUS..293..125W&rft.aulast=Welsh&rft.aufirst=William+F.&rft.au=Orosz%2C+Jerome+A.&rft.au=Carter%2C+Joshua+A.&rft.au=Fabrycky%2C+Daniel+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoyleDeeg2002" class="citation journal cs1">Doyle, Laurance R.; Deeg, Hans-Jorg (2002). "Timing detection of eclipsing binary planets and transiting extrasolar moons". <i>Bioastronomy</i>. <b>7</b>: 80. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0306087">astro-ph/0306087</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004IAUS..213...80D">2004IAUS..213...80D</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bioastronomy&rft.atitle=Timing+detection+of+eclipsing+binary+planets+and+transiting+extrasolar+moons&rft.volume=7&rft.pages=80&rft.date=2002&rft_id=info%3Aarxiv%2Fastro-ph%2F0306087&rft_id=info%3Abibcode%2F2004IAUS..213...80D&rft.aulast=Doyle&rft.aufirst=Laurance+R.&rft.au=Deeg%2C+Hans-Jorg&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span> "Bioastronomy 2002: Life Among the Stars" IAU Symposium 213, R.P Norris and F.H. Stootman (eds), A.S.P., San Francisco, California, 80–84.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeegDoyleKozhevnikovBlue2000" class="citation journal cs1">Deeg, Hans-Jorg; Doyle, Laurance R.; Kozhevnikov, V. P.; Blue, J. Ellen; Martín, L.; Schneider, J. (2000). <a rel="nofollow" class="external text" href="http://citeseer.ist.psu.edu/379779.html">"A search for Jovian-mass planets around CM Draconis using eclipse minima timing"</a>. <i>Astronomy & Astrophysics</i>. <b>358</b> (358): L5–L8. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0003391">astro-ph/0003391</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000A&A...358L...5D">2000A&A...358L...5D</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=A+search+for+Jovian-mass+planets+around+CM+Draconis+using+eclipse+minima+timing&rft.volume=358&rft.issue=358&rft.pages=L5-L8&rft.date=2000&rft_id=info%3Aarxiv%2Fastro-ph%2F0003391&rft_id=info%3Abibcode%2F2000A%26A...358L...5D&rft.aulast=Deeg&rft.aufirst=Hans-Jorg&rft.au=Doyle%2C+Laurance+R.&rft.au=Kozhevnikov%2C+V.+P.&rft.au=Blue%2C+J.+Ellen&rft.au=Mart%C3%ADn%2C+L.&rft.au=Schneider%2C+J.&rft_id=http%3A%2F%2Fciteseer.ist.psu.edu%2F379779.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">Doyle, Laurance R., Hans-Jorg Deeg, J.M. Jenkins, J. Schneider, Z. Ninkov, R. P.S. Stone, J.E. Blue, H. Götzger, B, Friedman, and M.F. Doyle (1998). <a rel="nofollow" class="external text" href="http://citeseer.ist.psu.edu/doyle97detectability.html">"Detectability of Jupiter-to-brown-dwarf-mass companions around small eclipsing binary systems"</a>. Brown Dwarfs and Extrasolar Planets, A.S.P. Conference Proceedings, in Brown Dwarfs and Extrasolar Planets, R. Rebolo, E. L. Martin, and M.R.Z. Osorio (eds.), A.S.P. Conference Series 134, San Francisco, California, 224–231.</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHornerWittenmyerTinneyRobertson2013" class="citation arxiv cs1">Horner, Jonathan; Wittenmyer, Robert A.; Tinney, Chris G.; Robertson, Paul; Hinse, Tobias C.; Marshall, Jonathan P. (2013). "Dynamical Constraints on Multi-Planet Exoplanetary Systems". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1302.5247">1302.5247</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/astro-ph.EP">astro-ph.EP</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Dynamical+Constraints+on+Multi-Planet+Exoplanetary+Systems&rft.date=2013&rft_id=info%3Aarxiv%2F1302.5247&rft.aulast=Horner&rft.aufirst=Jonathan&rft.au=Wittenmyer%2C+Robert+A.&rft.au=Tinney%2C+Chris+G.&rft.au=Robertson%2C+Paul&rft.au=Hinse%2C+Tobias+C.&rft.au=Marshall%2C+Jonathan+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoyle,_Laurance_R.Carter,_Joshua_A.Fabrycky,_Daniel_C.Slawson,_Robert_W.2011" class="citation journal cs1">Doyle, Laurance R.; Carter, Joshua A.; Fabrycky, Daniel C.; Slawson, Robert W.; Howell, Steve B.; Winn, Joshua N.; Orosz, Jerome A.; Přsa, Andrej; Welsh, William F.; Quinn, Samuel N.; Latham, David; Torres, Guillermo; Buchhave, Lars A.; Marcy, Geoffrey W.; Fortney, Jonathan J.; Shporer, Avi; Ford, Eric B.; Lissauer, Jack J.; Ragozzine, Darin; Rucker, Michael; Batalha, Natalie; Jenkins, Jon M.; Borucki, William J.; Koch, David; Middour, Christopher K.; Hall, Jennifer R.; McCauliff, Sean; Fanelli, Michael N.; Quintana, Elisa V.; Holman, Matthew J.; Caldwell, Douglas A.; Still, Martin; Stefanik, Robert P.; Brown, Warren R.; Esquerdo, Gilbert A.; Tang, Sumin; Furesz, Gabor; Geary, John C.; Berlind, Perry; Calkins, Michael L.; Short, Donald R.; Steffen, Jason H.; Sasselov, Dimitar; Dunham, Edward W.; Cochran, William D.; Boss, Alan; Haas, Michael R.; Buzasi, Derek; Fischer, Debra (2011). "Kepler-16: A Transiting Circumbinary Planet". <i>Science</i>. <b>333</b> (6049): 1602–1606. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1109.3432">1109.3432</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Sci...333.1602D">2011Sci...333.1602D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1210923">10.1126/science.1210923</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21921192">21921192</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206536332">206536332</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Kepler-16%3A+A+Transiting+Circumbinary+Planet&rft.volume=333&rft.issue=6049&rft.pages=1602-1606&rft.date=2011&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206536332%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2011Sci...333.1602D&rft_id=info%3Aarxiv%2F1109.3432&rft_id=info%3Apmid%2F21921192&rft_id=info%3Adoi%2F10.1126%2Fscience.1210923&rft.au=Doyle%2C+Laurance+R.&rft.au=Carter%2C+Joshua+A.&rft.au=Fabrycky%2C+Daniel+C.&rft.au=Slawson%2C+Robert+W.&rft.au=Howell%2C+Steve+B.&rft.au=Winn%2C+Joshua+N.&rft.au=Orosz%2C+Jerome+A.&rft.au=P%C5%99sa%2C+Andrej&rft.au=Welsh%2C+William+F.&rft.au=Quinn%2C+Samuel+N.&rft.au=Latham%2C+David&rft.au=Torres%2C+Guillermo&rft.au=Buchhave%2C+Lars+A.&rft.au=Marcy%2C+Geoffrey+W.&rft.au=Fortney%2C+Jonathan+J.&rft.au=Shporer%2C+Avi&rft.au=Ford%2C+Eric+B.&rft.au=Lissauer%2C+Jack+J.&rft.au=Ragozzine%2C+Darin&rft.au=Rucker%2C+Michael&rft.au=Batalha%2C+Natalie&rft.au=Jenkins%2C+Jon+M.&rft.au=Borucki%2C+William+J.&rft.au=Koch%2C+David&rft.au=Middour%2C+Christopher+K.&rft.au=Hall%2C+Jennifer+R.&rft.au=McCauliff%2C+Sean&rft.au=Fanelli%2C+Michael+N.&rft.au=Quintana%2C+Elisa+V.&rft.au=Holman%2C+Matthew+J.&rft.au=Caldwell%2C+Douglas+A.&rft.au=Still%2C+Martin&rft.au=Stefanik%2C+Robert+P.&rft.au=Brown%2C+Warren+R.&rft.au=Esquerdo%2C+Gilbert+A.&rft.au=Tang%2C+Sumin&rft.au=Furesz%2C+Gabor&rft.au=Geary%2C+John+C.&rft.au=Berlind%2C+Perry&rft.au=Calkins%2C+Michael+L.&rft.au=Short%2C+Donald+R.&rft.au=Steffen%2C+Jason+H.&rft.au=Sasselov%2C+Dimitar&rft.au=Dunham%2C+Edward+W.&rft.au=Cochran%2C+William+D.&rft.au=Boss%2C+Alan&rft.au=Haas%2C+Michael+R.&rft.au=Buzasi%2C+Derek&rft.au=Fischer%2C+Debra&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Beaulieulensplanet-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-Beaulieulensplanet_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Beaulieulensplanet_59-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.-P._BeaulieuD.P._BennettP._FouqueA._Williams2006" class="citation journal cs1">J.-P. Beaulieu; D.P. Bennett; P. Fouque; A. Williams; et al. (2006). "Discovery of a Cool Planet of 5.5 Earth Masses Through Gravitational Microlensing". <i>Nature</i>. <b>439</b> (7075): 437–440. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0601563">astro-ph/0601563</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Natur.439..437B">2006Natur.439..437B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature04441">10.1038/nature04441</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16437108">16437108</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4414076">4414076</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Discovery+of+a+Cool+Planet+of+5.5+Earth+Masses+Through+Gravitational+Microlensing&rft.volume=439&rft.issue=7075&rft.pages=437-440&rft.date=2006&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4414076%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2006Natur.439..437B&rft_id=info%3Aarxiv%2Fastro-ph%2F0601563&rft_id=info%3Apmid%2F16437108&rft_id=info%3Adoi%2F10.1038%2Fnature04441&rft.au=J.-P.+Beaulieu&rft.au=D.P.+Bennett&rft.au=P.+Fouque&rft.au=A.+Williams&rft.au=M.+Dominik&rft.au=U.G.+Jorgensen&rft.au=D.+Kubas&rft.au=A.+Cassan&rft.au=C.+Coutures&rft.au=J.+Greenhill&rft.au=K.+Hill&rft.au=J.+Menzies&rft.au=P.D.+Sackett&rft.au=M.+Albrow&rft.au=S.+Brillant&rft.au=J.A.R.+Caldwell&rft.au=J.J.+Calitz&rft.au=K.H.+Cook&rft.au=E.+Corrales&rft.au=M.+Desort&rft.au=S.+Dieters&rft.au=D.+Dominis&rft.au=J.+Donatowicz&rft.au=M.+Hoffman&rft.au=S.+Kane&rft.au=J.-B.+Marquette&rft.au=R.+Martin&rft.au=P.+Meintjes&rft.au=K.+Pollard&rft.au=K.+Sahu&rft.au=C.+Vinter&rft.au=J.+Wambsganss&rft.au=K.+Woller&rft.au=K.+Horne&rft.au=I.+Steele&rft.au=D.+Bramich&rft.au=M.+Burgdorf&rft.au=C.+Snodgrass&rft.au=M.+Bode&rft.au=A.+Udalski&rft.au=M.+Szymanski&rft.au=M.+Kubiak&rft.au=T.+Wieckowski&rft.au=G.+Pietrzynski&rft.au=I.+Soszynski&rft.au=O.+Szewczyk&rft.au=L.+Wyrzykowski&rft.au=B.+Paczynski&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrooksStahlArnold2015" class="citation book cs1">Brooks, Thomas; Stahl, H. P.; Arnold, William R. (2015). "Advanced Mirror Technology Development (AMTD) thermal trade studies". In Kahan, Mark A; Levine-West, Marie B (eds.). <i>Optical Modeling and Performance Predictions VII</i>. Vol. 9577. p. 957703. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F12.2188371">10.1117/12.2188371</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/2060%2F20150019495">2060/20150019495</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119544105">119544105</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Advanced+Mirror+Technology+Development+%28AMTD%29+thermal+trade+studies&rft.btitle=Optical+Modeling+and+Performance+Predictions+VII&rft.pages=957703&rft.date=2015&rft_id=info%3Ahdl%2F2060%2F20150019495&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119544105%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1117%2F12.2188371&rft.aulast=Brooks&rft.aufirst=Thomas&rft.au=Stahl%2C+H.+P.&rft.au=Arnold%2C+William+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCloseFolletteMalesPuglisi2014" class="citation journal cs1">Close, L. M.; Follette, K. B.; Males, J. R.; Puglisi, A.; Xompero, M.; Apai, D.; Najita, J.; Weinberger, A. J.; Morzinski, K.; Rodigas, T. J.; Hinz, P.; Bailey, V.; Briguglio, R. (2014). "Discovery of H-alpha Emission from the Close Companion Inside the Gap of Transitional Disk HD142527". <i>The Astrophysical Journal</i>. <b>781</b> (2): L30. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1401.1273">1401.1273</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014ApJ...781L..30C">2014ApJ...781L..30C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2041-8205%2F781%2F2%2FL30">10.1088/2041-8205/781/2/L30</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118654984">118654984</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Discovery+of+H-alpha+Emission+from+the+Close+Companion+Inside+the+Gap+of+Transitional+Disk+HD142527&rft.volume=781&rft.issue=2&rft.pages=L30&rft.date=2014&rft_id=info%3Aarxiv%2F1401.1273&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118654984%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F2041-8205%2F781%2F2%2FL30&rft_id=info%3Abibcode%2F2014ApJ...781L..30C&rft.aulast=Close&rft.aufirst=L.+M.&rft.au=Follette%2C+K.+B.&rft.au=Males%2C+J.+R.&rft.au=Puglisi%2C+A.&rft.au=Xompero%2C+M.&rft.au=Apai%2C+D.&rft.au=Najita%2C+J.&rft.au=Weinberger%2C+A.+J.&rft.au=Morzinski%2C+K.&rft.au=Rodigas%2C+T.+J.&rft.au=Hinz%2C+P.&rft.au=Bailey%2C+V.&rft.au=Briguglio%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.eso.org/public/news/eso1803/">"First Light for Planet Hunter ExTrA at La Silla"</a>. <i>www.eso.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">24 January</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.eso.org&rft.atitle=First+Light+for+Planet+Hunter+ExTrA+at+La+Silla&rft_id=https%3A%2F%2Fwww.eso.org%2Fpublic%2Fnews%2Feso1803%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.eso.org/public/images/potw1624a/">"VLT Snaps An Exotic Exoplanet "First"<span class="cs1-kern-right"></span>"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">15 June</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=VLT+Snaps+An+Exotic+Exoplanet+%22First%22&rft_id=http%3A%2F%2Fwww.eso.org%2Fpublic%2Fimages%2Fpotw1624a%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFG._ChauvinA.M._LagrangeC._DumasB._Zuckerman2004" class="citation journal cs1">G. Chauvin; A.M. Lagrange; C. Dumas; B. Zuckerman; et al. (2004). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060908015928/http://www.edpsciences.org/articles/aa/abs/2004/38/aagg222/aagg222.html">"A giant planet candidate near a young brown dwarf"</a>. <i>Astronomy & Astrophysics</i>. <b>425</b> (2): L29–L32. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0409323">astro-ph/0409323</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004A&A...425L..29C">2004A&A...425L..29C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A200400056">10.1051/0004-6361:200400056</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15948759">15948759</a>. Archived from <a rel="nofollow" class="external text" href="http://www.edpsciences.org/articles/aa/abs/2004/38/aagg222/aagg222.html">the original</a> on 8 September 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">4 October</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=A+giant+planet+candidate+near+a+young+brown+dwarf&rft.volume=425&rft.issue=2&rft.pages=L29-L32&rft.date=2004&rft_id=info%3Aarxiv%2Fastro-ph%2F0409323&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15948759%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1051%2F0004-6361%3A200400056&rft_id=info%3Abibcode%2F2004A%26A...425L..29C&rft.au=G.+Chauvin&rft.au=A.M.+Lagrange&rft.au=C.+Dumas&rft.au=B.+Zuckerman&rft.au=D.+Mouillet&rft.au=I.+Song&rft.au=J.-L.+Beuzit&rft.au=P.+Lowrance&rft_id=http%3A%2F%2Fwww.edpsciences.org%2Farticles%2Faa%2Fabs%2F2004%2F38%2Faagg222%2Faagg222.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.eso.org/public/news/eso0515/">"Yes, it is the Image of an Exoplanet (Press Release)"</a>. <i>ESO website</i>. 30 April 2005<span class="reference-accessdate">. Retrieved <span class="nowrap">9 July</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ESO+website&rft.atitle=Yes%2C+it+is+the+Image+of+an+Exoplanet+%28Press+Release%29&rft.date=2005-04-30&rft_id=http%3A%2F%2Fwww.eso.org%2Fpublic%2Fnews%2Feso0515%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLafrenièreJayawardhanavan_Kerkwijk2008" class="citation journal cs1">Lafrenière, David; Jayawardhana, Ray; van Kerkwijk, Marten H. (20 December 2008). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1086/595870">"Direct Imaging and Spectroscopy of a Planetary-Mass Candidate Companion to a Young Solar Analog"</a>. <i>The Astrophysical Journal</i>. <b>689</b> (2): L153–L156. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0809.1424">0809.1424</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008ApJ...689L.153L">2008ApJ...689L.153L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F595870">10.1086/595870</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0004-637X">0004-637X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Direct+Imaging+and+Spectroscopy+of+a+Planetary-Mass+Candidate+Companion+to+a+Young+Solar+Analog&rft.volume=689&rft.issue=2&rft.pages=L153-L156&rft.date=2008-12-20&rft_id=info%3Aarxiv%2F0809.1424&rft.issn=0004-637X&rft_id=info%3Adoi%2F10.1086%2F595870&rft_id=info%3Abibcode%2F2008ApJ...689L.153L&rft.aulast=Lafreni%C3%A8re&rft.aufirst=David&rft.au=Jayawardhana%2C+Ray&rft.au=van+Kerkwijk%2C+Marten+H.&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1086%2F595870&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://news.bbc.co.uk/1/hi/sci/tech/7617031.stm">"Exoplanet 'circles normal star'<span class="cs1-kern-right"></span>"</a>. <a href="/wiki/BBC_News" title="BBC News">BBC News</a>. 15 September 2008. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080916120154/http://news.bbc.co.uk/1/hi/sci/tech/7617031.stm">Archived</a> from the original on 16 September 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">17 September</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exoplanet+%27circles+normal+star%27&rft.date=2008-09-15&rft_id=http%3A%2F%2Fnews.bbc.co.uk%2F1%2Fhi%2Fsci%2Ftech%2F7617031.stm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://cs.astronomy.com/asycs/blogs/astronomy/2010/06/22/astronomers-verify-directly-imaged-planet.aspx">Astronomers verify directly imaged planet</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100630110925/http://cs.astronomy.com/asycs/blogs/astronomy/2010/06/22/astronomers-verify-directly-imaged-planet.aspx">Archived</a> 30 June 2010 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-Marois2008-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-Marois2008_69-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaroisMacIntoshZuckermanSong2008" class="citation journal cs1">Marois, Christian; MacIntosh, B.; et al. (November 2008). "Direct Imaging of Multiple Planets Orbiting the Star HR 8799". <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i>. <b>322</b> (5906): 1348–52. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0811.2606">0811.2606</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008Sci...322.1348M">2008Sci...322.1348M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1166585">10.1126/science.1166585</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19008415">19008415</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206516630">206516630</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Direct+Imaging+of+Multiple+Planets+Orbiting+the+Star+HR+8799&rft.volume=322&rft.issue=5906&rft.pages=1348-52&rft.date=2008-11&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206516630%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2008Sci...322.1348M&rft_id=info%3Aarxiv%2F0811.2606&rft_id=info%3Apmid%2F19008415&rft_id=info%3Adoi%2F10.1126%2Fscience.1166585&rft.aulast=Marois&rft.aufirst=Christian&rft.au=MacIntosh%2C+B.&rft.au=Zuckerman%2C+B.&rft.au=Song%2C+I.&rft.au=Patience%2C+J.&rft.au=Lafreniere%2C+D.&rft.au=Doyon%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span> (<a rel="nofollow" class="external text" href="http://exoplanet.eu/papers/exo_science.pdf">Preprint at exoplanet.eu</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20081217133217/http://exoplanet.eu/papers/exo_science.pdf">Archived</a> 17 December 2008 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>)</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20131126160805/http://www.keckobservatory.org/article.php?id=231">"Astronomers capture first image of newly-discovered solar system"</a> (Press release). W. M. Keck Observatory. 13 October 2008. Archived from <a rel="nofollow" class="external text" href="http://www.keckobservatory.org/article.php?id=231">the original</a> on 26 November 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">13 October</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Astronomers+capture+first+image+of+newly-discovered+solar+system&rft.pub=W.+M.+Keck+Observatory&rft.date=2008-10-13&rft_id=http%3A%2F%2Fwww.keckobservatory.org%2Farticle.php%3Fid%3D231&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nasa.gov/mission_pages/hubble/science/fomalhaut.html">"Hubble Directly Observes a Planet Orbiting Another Star"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">13 November</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Hubble+Directly+Observes+a+Planet+Orbiting+Another+Star&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fmission_pages%2Fhubble%2Fscience%2Ffomalhaut.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLagrangeGratadourChauvinFusco2009" class="citation journal cs1">Lagrange, A.-M.; Gratadour, D.; Chauvin, G.; Fusco, T.; Ehrenreich, D.; Mouillet, D.; Rousset, G.; Rouan, D.; Allard, F.; Gendron, é.; Charton, J.; Mugnier, L.; Rabou, P.; Montri, J.; Lacombe, F. (2 January 2009). <a rel="nofollow" class="external text" href="http://www.aanda.org/10.1051/0004-6361:200811325">"A probable giant planet imaged in the β Pictoris disk: VLT/NaCo deep L' -band imaging"</a>. <i>Astronomy & Astrophysics</i>. <b>493</b> (2): L21–L25. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0811.3583">0811.3583</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009A&A...493L..21L">2009A&A...493L..21L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A200811325">10.1051/0004-6361:200811325</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0004-6361">0004-6361</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=A+probable+giant+planet+imaged+in+the+%CE%B2+Pictoris+disk%3A+VLT%2FNaCo+deep+L%27+-band+imaging&rft.volume=493&rft.issue=2&rft.pages=L21-L25&rft.date=2009-01-02&rft_id=info%3Aarxiv%2F0811.3583&rft.issn=0004-6361&rft_id=info%3Adoi%2F10.1051%2F0004-6361%3A200811325&rft_id=info%3Abibcode%2F2009A%26A...493L..21L&rft.aulast=Lagrange&rft.aufirst=A.-M.&rft.au=Gratadour%2C+D.&rft.au=Chauvin%2C+G.&rft.au=Fusco%2C+T.&rft.au=Ehrenreich%2C+D.&rft.au=Mouillet%2C+D.&rft.au=Rousset%2C+G.&rft.au=Rouan%2C+D.&rft.au=Allard%2C+F.&rft.au=Gendron%2C+%C3%A9.&rft.au=Charton%2C+J.&rft.au=Mugnier%2C+L.&rft.au=Rabou%2C+P.&rft.au=Montri%2C+J.&rft.au=Lacombe%2C+F.&rft_id=http%3A%2F%2Fwww.aanda.org%2F10.1051%2F0004-6361%3A200811325&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-ESO2008-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-ESO2008_73-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090208234953/http://eso.org/public/outreach/press-rel/pr-2008/pr-42-08.html">"Beta Pictoris planet finally imaged?"</a> (Press release). ESO. 21 November 2008. Archived from <a rel="nofollow" class="external text" href="http://www.eso.org/public/outreach/press-rel/pr-2008/pr-42-08.html">the original</a> on 8 February 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">22 November</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Beta+Pictoris+planet+finally+imaged%3F&rft.pub=ESO&rft.date=2008-11-21&rft_id=http%3A%2F%2Fwww.eso.org%2Fpublic%2Foutreach%2Fpress-rel%2Fpr-2008%2Fpr-42-08.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://subarutelescope.org/Pressrelease/2012/11/19/index.html">"Direct Imaging of a Super-Jupiter Around a Massive Star"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">19 November</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Direct+Imaging+of+a+Super-Jupiter+Around+a+Massive+Star&rft_id=http%3A%2F%2Fsubarutelescope.org%2FPressrelease%2F2012%2F11%2F19%2Findex.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrancis_Reddy2012" class="citation web cs1">Francis Reddy (19 November 2012). <a rel="nofollow" class="external text" href="https://www.nasa.gov/topics/universe/features/super-jupiter_prt.htm">"NASA – Astronomers Directly Image Massive Star's 'Super Jupiter'<span class="cs1-kern-right"></span>"</a>. NASA.com<span class="reference-accessdate">. Retrieved <span class="nowrap">19 November</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=NASA+%E2%80%93+Astronomers+Directly+Image+Massive+Star%27s+%27Super+Jupiter%27&rft.pub=NASA.com&rft.date=2012-11-19&rft.au=Francis+Reddy&rft_id=http%3A%2F%2Fwww.nasa.gov%2Ftopics%2Funiverse%2Ffeatures%2Fsuper-jupiter_prt.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-subaru-image-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-subaru-image_76-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThalmannJoseph_CarsonMarkus_JansonMiwa_Goto2009" class="citation journal cs1">Thalmann, Christian; Joseph Carson; Markus Janson; Miwa Goto; et al. (2009). "Discovery of the Coldest Imaged Companion of a Sun-Like Star". <i>The Astrophysical Journal</i>. <b>707</b> (2): L123–L127. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0911.1127">0911.1127</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009ApJ...707L.123T">2009ApJ...707L.123T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-637X%2F707%2F2%2FL123">10.1088/0004-637X/707/2/L123</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:116823073">116823073</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Discovery+of+the+Coldest+Imaged+Companion+of+a+Sun-Like+Star&rft.volume=707&rft.issue=2&rft.pages=L123-L127&rft.date=2009&rft_id=info%3Aarxiv%2F0911.1127&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A116823073%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-637X%2F707%2F2%2FL123&rft_id=info%3Abibcode%2F2009ApJ...707L.123T&rft.aulast=Thalmann&rft.aufirst=Christian&rft.au=Joseph+Carson&rft.au=Markus+Janson&rft.au=Miwa+Goto&rft.au=Michael+McElwain&rft.au=Sebastian+Egner&rft.au=Markus+Feldt&rft.au=Jun+Hashimoto&rft.au=Yutaka+Hayano&rft.au=Henning%2C+Thomas&rft.au=Hodapp%2C+Klaus+W.&rft.au=Kandori%2C+Ryo&rft.au=Klahr%2C+Hubert&rft.au=Kudo%2C+Tomoyuki&rft.au=Kusakabe%2C+Nobuhiko&rft.au=Mordasini%2C+Christoph&rft.au=Morino%2C+Jun-Ichi&rft.au=Suto%2C+Hiroshi&rft.au=Suzuki%2C+Ryuji&rft.au=Tamura%2C+Motohide&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFR._NeuhauserE._W._GuentherG._WuchterlM._Mugrauer2005" class="citation journal cs1">R. Neuhauser; E. W. Guenther; G. Wuchterl; M. Mugrauer; et al. (2005). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060502132012/http://www.edpsciences.org/articles/aa/abs/2005/19/aagj061/aagj061.html">"Evidence for a co-moving sub-stellar companion of GQ Lup"</a>. <i>Astronomy & Astrophysics</i>. <b>435</b> (1): L13–L16. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0503691">astro-ph/0503691</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005A&A...435L..13N">2005A&A...435L..13N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A200500104">10.1051/0004-6361:200500104</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7444394">7444394</a>. Archived from <a rel="nofollow" class="external text" href="http://www.edpsciences.org/articles/aa/abs/2005/19/aagj061/aagj061.html">the original</a> on 2 May 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">4 October</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=Evidence+for+a+co-moving+sub-stellar+companion+of+GQ+Lup&rft.volume=435&rft.issue=1&rft.pages=L13-L16&rft.date=2005&rft_id=info%3Aarxiv%2Fastro-ph%2F0503691&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7444394%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1051%2F0004-6361%3A200500104&rft_id=info%3Abibcode%2F2005A%26A...435L..13N&rft.au=R.+Neuhauser&rft.au=E.+W.+Guenther&rft.au=G.+Wuchterl&rft.au=M.+Mugrauer&rft.au=A.+Bedalov&rft.au=P.H.+Hauschildt&rft_id=http%3A%2F%2Fwww.edpsciences.org%2Farticles%2Faa%2Fabs%2F2005%2F19%2Faagj061%2Faagj061.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120916061533/http://www.eso.org/public/news/eso0511/">"Is this a Brown Dwarf or an Exoplanet?"</a>. <i>ESO Website</i>. 7 April 2005. Archived from <a rel="nofollow" class="external text" href="http://www.eso.org/outreach/press-rel/pr-2005/pr-09-05.html">the original</a> on 16 September 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">4 July</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ESO+Website&rft.atitle=Is+this+a+Brown+Dwarf+or+an+Exoplanet%3F&rft.date=2005-04-07&rft_id=http%3A%2F%2Fwww.eso.org%2Foutreach%2Fpress-rel%2Fpr-2005%2Fpr-09-05.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFM._JansonW._BrandnerT._HenningH._Zinnecker2005" class="citation journal cs1">M. Janson; W. Brandner; T. Henning; H. Zinnecker (2005). <a rel="nofollow" class="external text" href="https://archive.today/20120525125602/http://www.edpsciences.org/articles/aa/abs/2006/26/aa4475-05/aa4475-05.html">"Early ComeOn+ adaptive optics observation of GQ Lupi and its substellar companion"</a>. <i>Astronomy & Astrophysics</i>. <b>453</b> (2): 609–614. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0603228">astro-ph/0603228</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006A&A...453..609J">2006A&A...453..609J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A20054475">10.1051/0004-6361:20054475</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18024395">18024395</a>. Archived from <a rel="nofollow" class="external text" href="http://www.edpsciences.org/articles/aa/abs/2006/26/aa4475-05/aa4475-05.html">the original</a> on 25 May 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">4 October</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=Early+ComeOn%2B+adaptive+optics+observation+of+GQ+Lupi+and+its+substellar+companion&rft.volume=453&rft.issue=2&rft.pages=609-614&rft.date=2005&rft_id=info%3Aarxiv%2Fastro-ph%2F0603228&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18024395%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1051%2F0004-6361%3A20054475&rft_id=info%3Abibcode%2F2006A%26A...453..609J&rft.au=M.+Janson&rft.au=W.+Brandner&rft.au=T.+Henning&rft.au=H.+Zinnecker&rft_id=http%3A%2F%2Fwww.edpsciences.org%2Farticles%2Faa%2Fabs%2F2006%2F26%2Faa4475-05%2Faa4475-05.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.eso.org/public/news/eso1324/">"Lightest Exoplanet Imaged So Far?"</a>. <i>ESO Press Release</i><span class="reference-accessdate">. Retrieved <span class="nowrap">5 June</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ESO+Press+Release&rft.atitle=Lightest+Exoplanet+Imaged+So+Far%3F&rft_id=http%3A%2F%2Fwww.eso.org%2Fpublic%2Fnews%2Feso1324%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThompson2010" class="citation web cs1">Thompson, Andrea (14 April 2010). <a rel="nofollow" class="external text" href="https://www.space.com/8216-method-photograph-earth-planets.html">"New method could image Earth-like planets"</a>. <i>space.com</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=space.com&rft.atitle=New+method+could+image+Earth-like+planets&rft.date=2010-04-14&rft.aulast=Thompson&rft.aufirst=Andrea&rft_id=https%3A%2F%2Fwww.space.com%2F8216-method-photograph-earth-planets.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20111021034838/http://www.jpl.nasa.gov/news/news.cfm?release=2010-207">"News - Earth-like Planets May Be Ready for Their Close-Up"</a>. <i>NASA/JPL</i>. Archived from <a rel="nofollow" class="external text" href="https://www.jpl.nasa.gov/news/news.cfm?release=2010-207">the original</a> on 21 October 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">23 June</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=NASA%2FJPL&rft.atitle=News+-+Earth-like+Planets+May+Be+Ready+for+Their+Close-Up&rft_id=http%3A%2F%2Fwww.jpl.nasa.gov%2Fnews%2Fnews.cfm%3Frelease%3D2010-207&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.economist.com/node/21556552">Twinkle, twinkle, little planet</a>, The Economist, 9 June 2012</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeifer2021" class="citation journal cs1">Keifer, Sven (August 2021). <a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021A%26A...652A..33K/abstract">"Spectral and angular differential imaging with SPHERE/IFS. Assessing the performance of various PCA-based approaches to PSF subtraction"</a>. <i>Astronomy & Astrophysics</i>. <b>652</b>: 10. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2106.05278">2106.05278</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021A&A...652A..33K">2021A&A...652A..33K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%2F202140285">10.1051/0004-6361/202140285</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:235390892">235390892</a><span class="reference-accessdate">. Retrieved <span class="nowrap">9 January</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=Spectral+and+angular+differential+imaging+with+SPHERE%2FIFS.+Assessing+the+performance+of+various+PCA-based+approaches+to+PSF+subtraction&rft.volume=652&rft.pages=10&rft.date=2021-08&rft_id=info%3Aarxiv%2F2106.05278&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A235390892%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1051%2F0004-6361%2F202140285&rft_id=info%3Abibcode%2F2021A%26A...652A..33K&rft.aulast=Keifer&rft.aufirst=Sven&rft_id=https%3A%2F%2Fui.adsabs.harvard.edu%2Fabs%2F2021A%2526A...652A..33K%2Fabstract&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmid,_H._M.BeuzitFeldtGratton2006" class="citation journal cs1">Schmid, H. M.; Beuzit, J.-L.; Feldt, M.; et al. (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1743921306009252">"Search and investigation of extra-solar planets with polarimetry"</a>. <i>Direct Imaging of Exoplanets: Science & Techniques. Proceedings of the IAU Colloquium #200</i>. <b>1</b> (C200): 165–170. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006dies.conf..165S">2006dies.conf..165S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1743921306009252">10.1017/S1743921306009252</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Direct+Imaging+of+Exoplanets%3A+Science+%26+Techniques.+Proceedings+of+the+IAU+Colloquium+%23200&rft.atitle=Search+and+investigation+of+extra-solar+planets+with+polarimetry&rft.volume=1&rft.issue=C200&rft.pages=165-170&rft.date=2006&rft_id=info%3Adoi%2F10.1017%2FS1743921306009252&rft_id=info%3Abibcode%2F2006dies.conf..165S&rft.au=Schmid%2C+H.+M.&rft.au=Beuzit%2C+J.-L.&rft.au=Feldt%2C+M.&rft.au=Gratton%2C+R.&rft.au=Henning%2C+Th.&rft.au=Joos%2C+F.&rft.au=Kasper%2C+M.&rft.au=Lenzen%2C+R.&rft.au=Mouillet%2C+D.&rft.au=Moutou%2C+C.&rft.au=Quirrenbach%2C+A.&rft.au=Stam%2C+D.+M.&rft.au=Thalmann%2C+C.&rft.au=Tinbergen%2C+J.&rft.au=Verinaud%2C+C.&rft.au=Waters%2C+R.&rft.au=Wolstencroft%2C+R.&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252FS1743921306009252&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmid,_H._M.GislerJoosPovel2004" class="citation journal cs1">Schmid, H. M.; Gisler; Joos; et al. (2004). "ZIMPOL/CHEOPS: a Polarimetric Imager for the Direct Detection of Extra-solar Planets". <i>Astronomical Polarimetry: Current Status and Future Directions ASP Conference Series</i>. <b>343</b>: 89. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005ASPC..343...89S">2005ASPC..343...89S</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomical+Polarimetry%3A+Current+Status+and+Future+Directions+ASP+Conference+Series&rft.atitle=ZIMPOL%2FCHEOPS%3A+a+Polarimetric+Imager+for+the+Direct+Detection+of+Extra-solar+Planets&rft.volume=343&rft.pages=89&rft.date=2004&rft_id=info%3Abibcode%2F2005ASPC..343...89S&rft.au=Schmid%2C+H.+M.&rft.au=Gisler&rft.au=Joos&rft.au=Povel&rft.au=Stenflo&rft.au=Feldt&rft.au=Lenzen&rft.au=Brandner&rft.au=Tinbergen&rft.au=Quirrenbach%2C+A.&rft.au=Stuik%2C+R.&rft.au=Gratton%2C+R.&rft.au=Turatto%2C+M.&rft.au=Neuh%C3%A4user%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHough,_J._H.Lucas,_P._W.Bailey,_J._A.Tamura,_M.2006" class="citation journal cs1">Hough, J. H.; Lucas, P. W.; Bailey, J. A.; Tamura, M.; et al. (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F507955">"PlanetPol: A Very High Sensitivity Polarimeter"</a>. <i>Publications of the Astronomical Society of the Pacific</i>. <b>118</b> (847): 1302–1318. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006PASP..118.1302H">2006PASP..118.1302H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F507955">10.1086/507955</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Publications+of+the+Astronomical+Society+of+the+Pacific&rft.atitle=PlanetPol%3A+A+Very+High+Sensitivity+Polarimeter&rft.volume=118&rft.issue=847&rft.pages=1302-1318&rft.date=2006&rft_id=info%3Adoi%2F10.1086%2F507955&rft_id=info%3Abibcode%2F2006PASP..118.1302H&rft.au=Hough%2C+J.+H.&rft.au=Lucas%2C+P.+W.&rft.au=Bailey%2C+J.+A.&rft.au=Tamura%2C+M.&rft.au=Hirst%2C+E.&rft.au=Harrison%2C+D.&rft.au=Bartholomew-Biggs%2C+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1086%252F507955&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerdyuginaAndrei_V._BerdyuginDominique_M._FluriVilppu_Piirola2008" class="citation journal cs1">Berdyugina, Svetlana V.; Andrei V. Berdyugin; Dominique M. Fluri; Vilppu Piirola (20 January 2008). "First detection of polarized scattered light from an exoplanetary atmosphere". <i>The Astrophysical Journal</i>. <b>673</b> (1): L83. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0712.0193">0712.0193</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008ApJ...673L..83B">2008ApJ...673L..83B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F527320">10.1086/527320</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14366978">14366978</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=First+detection+of+polarized+scattered+light+from+an+exoplanetary+atmosphere&rft.volume=673&rft.issue=1&rft.pages=L83&rft.date=2008-01-20&rft_id=info%3Aarxiv%2F0712.0193&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14366978%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F527320&rft_id=info%3Abibcode%2F2008ApJ...673L..83B&rft.aulast=Berdyugina&rft.aufirst=Svetlana+V.&rft.au=Andrei+V.+Berdyugin&rft.au=Dominique+M.+Fluri&rft.au=Vilppu+Piirola&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-EXP2-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-EXP2_89-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander" class="citation web cs1">Alexander, Amir. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060308170147/http://www.planetary.org/explore/topics/extrasolar_planets/extrasolar/astrometry.html">"Space Topics: Extrasolar Planets Astrometry: The Past and Future of Planet Hunting"</a>. The Planetary Society. Archived from <a rel="nofollow" class="external text" href="http://www.planetary.org/explore/topics/extrasolar_planets/extrasolar/astrometry.html">the original</a> on 8 March 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">10 September</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Space+Topics%3A+Extrasolar+Planets+Astrometry%3A+The+Past+and+Future+of+Planet+Hunting&rft.pub=The+Planetary+Society&rft.aulast=Alexander&rft.aufirst=Amir&rft_id=http%3A%2F%2Fwww.planetary.org%2Fexplore%2Ftopics%2Fextrasolar_planets%2Fextrasolar%2Fastrometry.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacob,_W._S.1855" class="citation journal cs1">Jacob, W. S. (June 1855). <a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2F15.9.228">"On certain Anomalies presented by the Binary Star 70 Ophiuchi"</a>. <i>Monthly Notices of the Royal Astronomical Society</i>. <b>15</b> (9): 228–230. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1855MNRAS..15..228J">1855MNRAS..15..228J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2F15.9.228">10.1093/mnras/15.9.228</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&rft.atitle=On+certain+Anomalies+presented+by+the+Binary+Star+70+Ophiuchi&rft.volume=15&rft.issue=9&rft.pages=228-230&rft.date=1855-06&rft_id=info%3Adoi%2F10.1093%2Fmnras%2F15.9.228&rft_id=info%3Abibcode%2F1855MNRAS..15..228J&rft.au=Jacob%2C+W.+S.&rft_id=https%3A%2F%2Fdoi.org%2F10.1093%252Fmnras%252F15.9.228&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-See-91"><span class="mw-cite-backlink">^ <a href="#cite_ref-See_91-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-See_91-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSee1896" class="citation journal cs1"><a href="/wiki/Thomas_Jefferson_Jackson_See" title="Thomas Jefferson Jackson See">See, Thomas Jefferson Jackson</a> (1896). "Researches on the Orbit of F.70 Ophiuchi, and on a Periodic Perturbation in the Motion of the System Arising from the Action of an Unseen Body". <i>The Astronomical Journal</i>. <b>16</b>: 17. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1896AJ.....16...17S">1896AJ.....16...17S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F102368">10.1086/102368</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=Researches+on+the+Orbit+of+F.70+Ophiuchi%2C+and+on+a+Periodic+Perturbation+in+the+Motion+of+the+System+Arising+from+the+Action+of+an+Unseen+Body&rft.volume=16&rft.pages=17&rft.date=1896&rft_id=info%3Adoi%2F10.1086%2F102368&rft_id=info%3Abibcode%2F1896AJ.....16...17S&rft.aulast=See&rft.aufirst=Thomas+Jefferson+Jackson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSherrill1999" class="citation journal cs1">Sherrill, Thomas J. (1999). <a rel="nofollow" class="external text" href="http://www.shpltd.co.uk/jha.pdf">"A Career of controversy: the anomaly OF T. J. J. See"</a> <span class="cs1-format">(PDF)</span>. <i>Journal for the History of Astronomy</i>. <b>30</b>: 25–50. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999JHA....30...25S">1999JHA....30...25S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F002182869903000102">10.1177/002182869903000102</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117727302">117727302</a><span class="reference-accessdate">. Retrieved <span class="nowrap">27 August</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+for+the+History+of+Astronomy&rft.atitle=A+Career+of+controversy%3A+the+anomaly+OF+T.+J.+J.+See&rft.volume=30&rft.pages=25-50&rft.date=1999&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117727302%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1177%2F002182869903000102&rft_id=info%3Abibcode%2F1999JHA....30...25S&rft.aulast=Sherrill&rft.aufirst=Thomas+J.&rft_id=http%3A%2F%2Fwww.shpltd.co.uk%2Fjha.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeintz1988" class="citation journal cs1">Heintz, W.D. (June 1988). "The Binary Star 70 Ophiuchi Revisited". <i><a href="/wiki/Journal_of_the_Royal_Astronomical_Society_of_Canada" title="Journal of the Royal Astronomical Society of Canada">Journal of the Royal Astronomical Society of Canada</a></i>. <b>82</b> (3): 140. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1988JRASC..82..140H">1988JRASC..82..140H</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Royal+Astronomical+Society+of+Canada&rft.atitle=The+Binary+Star+70+Ophiuchi+Revisited&rft.volume=82&rft.issue=3&rft.pages=140&rft.date=1988-06&rft_id=info%3Abibcode%2F1988JRASC..82..140H&rft.aulast=Heintz&rft.aufirst=W.D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-AAS-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-AAS_94-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGatewood,_G.1996" class="citation journal cs1">Gatewood, G. (May 1996). "Lalande 21185". <i>Bulletin of the American Astronomical Society</i>. <b>28</b>: 885. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996AAS...188.4011G">1996AAS...188.4011G</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Astronomical+Society&rft.atitle=Lalande+21185&rft.volume=28&rft.pages=885&rft.date=1996-05&rft_id=info%3Abibcode%2F1996AAS...188.4011G&rft.au=Gatewood%2C+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Wilford1996" class="citation news cs1">John Wilford (12 June 1996). <a rel="nofollow" class="external text" href="https://www.nytimes.com/1996/06/12/us/data-seem-to-show-a-solar-system-nearly-in-the-neighborhood.html">"Data Seem to Show a Solar System Nearly in the Neighborhood"</a>. <i>The New York Times</i>. p. 1<span class="reference-accessdate">. Retrieved <span class="nowrap">29 May</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=Data+Seem+to+Show+a+Solar+System+Nearly+in+the+Neighborhood&rft.pages=1&rft.date=1996-06-12&rft.au=John+Wilford&rft_id=https%3A%2F%2Fwww.nytimes.com%2F1996%2F06%2F12%2Fus%2Fdata-seem-to-show-a-solar-system-nearly-in-the-neighborhood.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlan_Boss2009" class="citation book cs1">Alan Boss (2 February 2009). <i>The Crowded Universe</i>. Basic Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-465-00936-7" title="Special:BookSources/978-0-465-00936-7"><bdi>978-0-465-00936-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Crowded+Universe&rft.pub=Basic+Books&rft.date=2009-02-02&rft.isbn=978-0-465-00936-7&rft.au=Alan+Boss&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenedictMcArthurForveilleDelfosse2002" class="citation journal cs1">Benedict; et al. (2002). "A Mass for the Extrasolar Planet Gliese 876b Determined from Hubble Space Telescope Fine Guidance Sensor 3 Astrometry and High-Precision Radial Velocities". <i>The Astrophysical Journal Letters</i>. <b>581</b> (2): L115–L118. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0212101">astro-ph/0212101</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002ApJ...581L.115B">2002ApJ...581L.115B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F346073">10.1086/346073</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18430973">18430973</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal+Letters&rft.atitle=A+Mass+for+the+Extrasolar+Planet+Gliese+876b+Determined+from+Hubble+Space+Telescope+Fine+Guidance+Sensor+3+Astrometry+and+High-Precision+Radial+Velocities&rft.volume=581&rft.issue=2&rft.pages=L115-L118&rft.date=2002&rft_id=info%3Aarxiv%2Fastro-ph%2F0212101&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18430973%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F346073&rft_id=info%3Abibcode%2F2002ApJ...581L.115B&rft.au=Benedict&rft.au=McArthur%2C+B.+E.&rft.au=Forveille%2C+T.&rft.au=Delfosse%2C+X.&rft.au=Nelan%2C+E.&rft.au=Butler%2C+R.+P.&rft.au=Spiesman%2C+W.&rft.au=Marcy%2C+G.&rft.au=Goldman%2C+B.&rft.au=Perrier%2C+C.&rft.au=Jefferys%2C+W.+H.&rft.au=Mayor%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPravdoShaklan2009" class="citation journal cs1">Pravdo, Steven H.; Shaklan, Stuart B. (2009). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090604100620/http://steps.jpl.nasa.gov/links/docs/pravdoshaklan09vb10b.pdf">"An Ultracool Star's Candidate Planet"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/The_Astrophysical_Journal" title="The Astrophysical Journal">The Astrophysical Journal</a></i>. <b>700</b> (1): 623–632. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0906.0544">0906.0544</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009ApJ...700..623P">2009ApJ...700..623P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-637X%2F700%2F1%2F623">10.1088/0004-637X/700/1/623</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119239022">119239022</a>. Archived from <a rel="nofollow" class="external text" href="https://steps.jpl.nasa.gov/links/docs/pravdoshaklan09vb10b.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 June 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">30 May</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=An+Ultracool+Star%27s+Candidate+Planet&rft.volume=700&rft.issue=1&rft.pages=623-632&rft.date=2009&rft_id=info%3Aarxiv%2F0906.0544&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119239022%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-637X%2F700%2F1%2F623&rft_id=info%3Abibcode%2F2009ApJ...700..623P&rft.aulast=Pravdo&rft.aufirst=Steven+H.&rft.au=Shaklan%2C+Stuart+B.&rft_id=http%3A%2F%2Fsteps.jpl.nasa.gov%2Flinks%2Fdocs%2Fpravdoshaklan09vb10b.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090904010715/http://planetquest.jpl.nasa.gov/news/firstFind.cfm">"First find Planet-hunting method succeeds at last"</a>. NASA PlanetQuest. 28 May 2009. Archived from <a rel="nofollow" class="external text" href="https://planetquest.jpl.nasa.gov/news/firstFind.cfm">the original</a> on 4 September 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">29 May</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=First+find+Planet-hunting+method+succeeds+at+last&rft.pub=NASA+PlanetQuest&rft.date=2009-05-28&rft_id=http%3A%2F%2Fplanetquest.jpl.nasa.gov%2Fnews%2FfirstFind.cfm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-crires-no-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-crires-no_100-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeanAndreas_SeifahrtHenrik_HartmanHampus_Nilsson2009" class="citation journal cs1">Bean, J.; Andreas Seifahrt; Henrik Hartman; Hampus Nilsson; et al. (2009). "The Proposed Giant Planet Orbiting VB 10 Does Not Exist". <i>The Astrophysical Journal</i>. <b>711</b> (1): L19. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0912.0003">0912.0003</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010ApJ...711L..19B">2010ApJ...711L..19B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2041-8205%2F711%2F1%2FL19">10.1088/2041-8205/711/1/L19</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122135256">122135256</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=The+Proposed+Giant+Planet+Orbiting+VB+10+Does+Not+Exist&rft.volume=711&rft.issue=1&rft.pages=L19&rft.date=2009&rft_id=info%3Aarxiv%2F0912.0003&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122135256%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F2041-8205%2F711%2F1%2FL19&rft_id=info%3Abibcode%2F2010ApJ...711L..19B&rft.aulast=Bean&rft.aufirst=J.&rft.au=Andreas+Seifahrt&rft.au=Henrik+Hartman&rft.au=Hampus+Nilsson&rft.au=Ansgar+Reiners&rft.au=Stefan+Dreizler&rft.au=Henry&rft.au=Guenter+Wiedemann&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-vb10orvs-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-vb10orvs_101-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnglada-EscudeShkolnikWeinbergerThompson2010" class="citation journal cs1">Anglada-Escude, G.; Shkolnik; Weinberger; Thompson; et al. (2010). "Strong Constraints to the Putative Planet Candidate around VB 10 Using Doppler Spectroscopy". <i>The Astrophysical Journal</i>. <b>711</b> (1): L24. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1001.0043">1001.0043</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010ApJ...711L..24A">2010ApJ...711L..24A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2041-8205%2F711%2F1%2FL24">10.1088/2041-8205/711/1/L24</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119210331">119210331</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Strong+Constraints+to+the+Putative+Planet+Candidate+around+VB+10+Using+Doppler+Spectroscopy&rft.volume=711&rft.issue=1&rft.pages=L24&rft.date=2010&rft_id=info%3Aarxiv%2F1001.0043&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119210331%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F2041-8205%2F711%2F1%2FL24&rft_id=info%3Abibcode%2F2010ApJ...711L..24A&rft.aulast=Anglada-Escude&rft.aufirst=G.&rft.au=Shkolnik&rft.au=Weinberger&rft.au=Thompson&rft.au=Osip&rft.au=Debes&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuterspaughLaneKulkarniKonacki2010" class="citation journal cs1">Muterspaugh, Matthew W.; Lane, Benjamin F.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Hartkopf, William I.; Boss, Alan P.; Williamson, M. (2010). "The PHASES Differential Astrometry Data Archive. V. Candidate Substellar Companions to Binary Systems". <i>The Astronomical Journal</i>. <b>140</b> (6): 1657. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1010.4048">1010.4048</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010AJ....140.1657M">2010AJ....140.1657M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-6256%2F140%2F6%2F1657">10.1088/0004-6256/140/6/1657</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:59585356">59585356</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=The+PHASES+Differential+Astrometry+Data+Archive.+V.+Candidate+Substellar+Companions+to+Binary+Systems&rft.volume=140&rft.issue=6&rft.pages=1657&rft.date=2010&rft_id=info%3Aarxiv%2F1010.4048&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A59585356%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-6256%2F140%2F6%2F1657&rft_id=info%3Abibcode%2F2010AJ....140.1657M&rft.aulast=Muterspaugh&rft.aufirst=Matthew+W.&rft.au=Lane%2C+Benjamin+F.&rft.au=Kulkarni%2C+S.+R.&rft.au=Konacki%2C+Maciej&rft.au=Burke%2C+Bernard+F.&rft.au=Colavita%2C+M.+M.&rft.au=Shao%2C+M.&rft.au=Hartkopf%2C+William+I.&rft.au=Boss%2C+Alan+P.&rft.au=Williamson%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnellenBrown2018" class="citation journal cs1">Snellen, Ignas; Brown, Anthony (20 August 2018). "The mass of the young planet Pictoris b through the astrometric motion of its host star". <i>Nature Astronomy</i>. <b>2</b> (11): 883–886. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1808.06257">1808.06257</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NatAs...2..883S">2018NatAs...2..883S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41550-018-0561-6">10.1038/s41550-018-0561-6</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2397-3366">2397-3366</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118896628">118896628</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Astronomy&rft.atitle=The+mass+of+the+young+planet+Pictoris+b+through+the+astrometric+motion+of+its+host+star&rft.volume=2&rft.issue=11&rft.pages=883-886&rft.date=2018-08-20&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118896628%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2018NatAs...2..883S&rft_id=info%3Aarxiv%2F1808.06257&rft.issn=2397-3366&rft_id=info%3Adoi%2F10.1038%2Fs41550-018-0561-6&rft.aulast=Snellen&rft.aufirst=Ignas&rft.au=Brown%2C+Anthony&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Feng2019-104"><span class="mw-cite-backlink">^ <a href="#cite_ref-Feng2019_104-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Feng2019_104-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFengAnglada-EscudéTuomiJones2019" class="citation cs2">Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019), "Detection of the nearest Jupiter analog in radial velocity and astrometry data", <i>Monthly Notices of the Royal Astronomical Society</i>, <b>490</b> (4): 5002–5016, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1910.06804">1910.06804</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.5002F">2019MNRAS.490.5002F</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2Fstz2912">10.1093/mnras/stz2912</a></span>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:204575783">204575783</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&rft.atitle=Detection+of+the+nearest+Jupiter+analog+in+radial+velocity+and+astrometry+data&rft.volume=490&rft.issue=4&rft.pages=5002-5016&rft.date=2019-10-14&rft_id=info%3Aarxiv%2F1910.06804&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A204575783%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1093%2Fmnras%2Fstz2912&rft_id=info%3Abibcode%2F2019MNRAS.490.5002F&rft.aulast=Feng&rft.aufirst=Fabo&rft.au=Anglada-Escud%C3%A9%2C+Guillem&rft.au=Tuomi%2C+Mikko&rft.au=Jones%2C+Hugh+R.+A.&rft.au=Chanam%C3%A9%2C+Julio&rft.au=Butler%2C+Paul+R.&rft.au=Janson%2C+Markus&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Feng2021-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-Feng2021_105-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFengButlerJonesPhillips2021" class="citation journal cs1">Feng, Fabo; Butler, R Paul; Jones, Hugh R A.; Phillips, Mark W.; et al. (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2Fstab2225">"Optimized modelling of Gaia–Hipparcos astrometry for the detection of the smallest cold Jupiter and confirmation of seven low-mass companions"</a>. <i>Monthly Notices of the Royal Astronomical Society</i>. <b>507</b> (2): 2856–2868. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2107.14056">2107.14056</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.2856F">2021MNRAS.507.2856F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2Fstab2225">10.1093/mnras/stab2225</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&rft.atitle=Optimized+modelling+of+Gaia%E2%80%93Hipparcos+astrometry+for+the+detection+of+the+smallest+cold+Jupiter+and+confirmation+of+seven+low-mass+companions&rft.volume=507&rft.issue=2&rft.pages=2856-2868&rft.date=2021&rft_id=info%3Aarxiv%2F2107.14056&rft_id=info%3Adoi%2F10.1093%2Fmnras%2Fstab2225&rft_id=info%3Abibcode%2F2021MNRAS.507.2856F&rft.aulast=Feng&rft.aufirst=Fabo&rft.au=Butler%2C+R+Paul&rft.au=Jones%2C+Hugh+R+A.&rft.au=Phillips%2C+Mark+W.&rft.au=Vogt%2C+Steven+S.&rft.au=Oppenheimer%2C+Rebecca&rft.au=Holden%2C+Bradford&rft.au=Burt%2C+Jennifer&rft.au=Boss%2C+Alan+P.&rft_id=https%3A%2F%2Fdoi.org%2F10.1093%252Fmnras%252Fstab2225&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Li2021-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-Li2021_106-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiBrandtBrandtDupuy2021" class="citation journal cs1">Li, Yiting; Brandt, Timothy D.; Brandt, G. Mirek; Dupuy, Trent J.; Michalik, Daniel; Jensen-Clem, Rebecca; Zeng, Yunlin; <a href="/wiki/Jackie_Faherty" title="Jackie Faherty">Faherty, Jacqueline</a>; Mitra, Elena L. (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fac27ab">"Precise Masses and Orbits for Nine Radial-velocity Exoplanets"</a>. <i>The Astronomical Journal</i>. <b>162</b> (6): 266. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2109.10422">2109.10422</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021AJ....162..266L">2021AJ....162..266L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fac27ab">10.3847/1538-3881/ac27ab</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:237592581">237592581</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=Precise+Masses+and+Orbits+for+Nine+Radial-velocity+Exoplanets&rft.volume=162&rft.issue=6&rft.pages=266&rft.date=2021&rft_id=info%3Aarxiv%2F2109.10422&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A237592581%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3847%2F1538-3881%2Fac27ab&rft_id=info%3Abibcode%2F2021AJ....162..266L&rft.aulast=Li&rft.aufirst=Yiting&rft.au=Brandt%2C+Timothy+D.&rft.au=Brandt%2C+G.+Mirek&rft.au=Dupuy%2C+Trent+J.&rft.au=Michalik%2C+Daniel&rft.au=Jensen-Clem%2C+Rebecca&rft.au=Zeng%2C+Yunlin&rft.au=Faherty%2C+Jacqueline&rft.au=Mitra%2C+Elena+L.&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-3881%252Fac27ab&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Feng2022-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-Feng2022_107-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFengButler2022" class="citation journal cs1">Feng, Fabo; Butler, R. Paul; et al. (August 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-4365%2Fac7e57">"3D Selection of 167 Substellar Companions to Nearby Stars"</a>. <i><a href="/wiki/The_Astrophysical_Journal_Supplement_Series" class="mw-redirect" title="The Astrophysical Journal Supplement Series">The Astrophysical Journal Supplement Series</a></i>. <b>262</b> (21): 21. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2208.12720">2208.12720</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022ApJS..262...21F">2022ApJS..262...21F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-4365%2Fac7e57">10.3847/1538-4365/ac7e57</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:251864022">251864022</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal+Supplement+Series&rft.atitle=3D+Selection+of+167+Substellar+Companions+to+Nearby+Stars&rft.volume=262&rft.issue=21&rft.pages=21&rft.date=2022-08&rft_id=info%3Aarxiv%2F2208.12720&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A251864022%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3847%2F1538-4365%2Fac7e57&rft_id=info%3Abibcode%2F2022ApJS..262...21F&rft.aulast=Feng&rft.aufirst=Fabo&rft.au=Butler%2C+R.+Paul&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-4365%252Fac7e57&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Winn2022-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-Winn2022_108-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWinn2022" class="citation journal cs1">Winn, Joshua N. (September 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fac9126">"Joint Constraints on Exoplanetary Orbits from Gaia DR3 and Doppler Data"</a>. <i>The Astronomical Journal</i>. <b>164</b> (5): 196. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2209.05516">2209.05516</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022AJ....164..196W">2022AJ....164..196W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fac9126">10.3847/1538-3881/ac9126</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252211643">252211643</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=Joint+Constraints+on+Exoplanetary+Orbits+from+Gaia+DR3+and+Doppler+Data&rft.volume=164&rft.issue=5&rft.pages=196&rft.date=2022-09&rft_id=info%3Aarxiv%2F2209.05516&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252211643%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3847%2F1538-3881%2Fac9126&rft_id=info%3Abibcode%2F2022AJ....164..196W&rft.aulast=Winn&rft.aufirst=Joshua+N.&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-3881%252Fac9126&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Llop-Sayson2021-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-Llop-Sayson2021_109-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLlop-SaysonWangRuffioMawet2021" class="citation journal cs1">Llop-Sayson, Jorge; Wang, Jason J.; Ruffio, Jean-Baptiste; Mawet, Dimitri; et al. (6 October 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fac134a">"Constraining the Orbit and Mass of epsilon Eridani b with Radial Velocities, Hipparcos IAD-Gaia DR2 Astrometry, and Multiepoch Vortex Coronagraphy Upper Limits"</a>. <i>The Astronomical Journal</i>. <b>162</b> (5): 181. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2108.02305">2108.02305</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021AJ....162..181L">2021AJ....162..181L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fac134a">10.3847/1538-3881/ac134a</a></span>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1538-3881">1538-3881</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0004-6256">0004-6256</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:236924533">236924533</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=Constraining+the+Orbit+and+Mass+of+epsilon+Eridani+b+with+Radial+Velocities%2C+Hipparcos+IAD-Gaia+DR2+Astrometry%2C+and+Multiepoch+Vortex+Coronagraphy+Upper+Limits&rft.volume=162&rft.issue=5&rft.pages=181&rft.date=2021-10-06&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A236924533%23id-name%3DS2CID&rft.eissn=1538-3881&rft_id=info%3Abibcode%2F2021AJ....162..181L&rft_id=info%3Aarxiv%2F2108.02305&rft.issn=0004-6256&rft_id=info%3Adoi%2F10.3847%2F1538-3881%2Fac134a&rft.aulast=Llop-Sayson&rft.aufirst=Jorge&rft.au=Wang%2C+Jason+J.&rft.au=Ruffio%2C+Jean-Baptiste&rft.au=Mawet%2C+Dimitri&rft.au=Blunt%2C+Sarah&rft.au=Absil%2C+Olivier&rft.au=Bond%2C+Charlotte&rft.au=Brinkman%2C+Casey&rft.au=Bowler%2C+Brendan+P.&rft.au=Bottom%2C+Michael&rft.au=Chontos%2C+Ashley&rft.au=Dalba%2C+Paul+A.&rft.au=Fulton%2C+B.+J.&rft.au=Giacalone%2C+Steven&rft.au=Hill%2C+Michelle&rft.au=Hirsch%2C+Lea+A.&rft.au=Howard%2C+Andrew+W.&rft.au=Isaacson%2C+Howard&rft.au=Karlsson%2C+Mikael&rft.au=Lubin%2C+Jack&rft.au=Madurowicz%2C+Alex&rft.au=Matthews%2C+Keith&rft.au=Morris%2C+Evan&rft.au=Perrin%2C+Marshall&rft.au=Ren%2C+Bin&rft.au=Rice%2C+Malena&rft.au=Rosenthal%2C+Lee+J.&rft.au=Ruane%2C+Garreth&rft.au=Rubenzahl%2C+Ryan&rft.au=Sun%2C+He&rft.au=Wallack%2C+Nicole&rft.au=Xuan%2C+Jerry+W.&rft.au=Ygouf%2C+Marie&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-3881%252Fac134a&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Curiel2020-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-Curiel2020_110-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCurielOrtiz-LeónMioduszewskiTorres2020" class="citation journal cs1">Curiel, Salvador; Ortiz-León, Gisela N.; Mioduszewski, Amy J.; Torres, Rosa M. (2020). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fab9e6e">"An Astrometric Planetary Companion Candidate to the M9 Dwarf TVLM 513–46546"</a>. <i>The Astronomical Journal</i>. <b>160</b> (3): 97. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2008.01595">2008.01595</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020AJ....160...97C">2020AJ....160...97C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fab9e6e">10.3847/1538-3881/ab9e6e</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220961489">220961489</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=An+Astrometric+Planetary+Companion+Candidate+to+the+M9+Dwarf+TVLM+513%E2%80%9346546&rft.volume=160&rft.issue=3&rft.pages=97&rft.date=2020&rft_id=info%3Aarxiv%2F2008.01595&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220961489%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3847%2F1538-3881%2Fab9e6e&rft_id=info%3Abibcode%2F2020AJ....160...97C&rft.aulast=Curiel&rft.aufirst=Salvador&rft.au=Ortiz-Le%C3%B3n%2C+Gisela+N.&rft.au=Mioduszewski%2C+Amy+J.&rft.au=Torres%2C+Rosa+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-3881%252Fab9e6e&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Curiel2022-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-Curiel2022_111-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCurielOrtiz-LeónMioduszewskiSanchez-Bermudez2022" class="citation journal cs1">Curiel, Salvador; Ortiz-León, Gisela N.; Mioduszewski, Amy J.; Sanchez-Bermudez, Joel (September 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fac7c66">"3D Orbital Architecture of a Dwarf Binary System and Its Planetary Companion"</a>. <i><a href="/wiki/The_Astronomical_Journal" title="The Astronomical Journal">The Astronomical Journal</a></i>. <b>164</b> (3): 93. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2208.14553">2208.14553</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022AJ....164...93C">2022AJ....164...93C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fac7c66">10.3847/1538-3881/ac7c66</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:251953478">251953478</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=3D+Orbital+Architecture+of+a+Dwarf+Binary+System+and+Its+Planetary+Companion&rft.volume=164&rft.issue=3&rft.pages=93&rft.date=2022-09&rft_id=info%3Aarxiv%2F2208.14553&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A251953478%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3847%2F1538-3881%2Fac7c66&rft_id=info%3Abibcode%2F2022AJ....164...93C&rft.aulast=Curiel&rft.aufirst=Salvador&rft.au=Ortiz-Le%C3%B3n%2C+Gisela+N.&rft.au=Mioduszewski%2C+Amy+J.&rft.au=Sanchez-Bermudez%2C+Joel&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-3881%252Fac7c66&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-DiStefano2020-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-DiStefano2020_112-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDi_Stefano2020" class="citation arxiv cs1">Di Stefano, R.; et al. (18 September 2020). "M51-ULS-1b: The First Candidate for a Planet in an External Galaxy". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2009.08987">2009.08987</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/astro-ph.HE">astro-ph.HE</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=M51-ULS-1b%3A+The+First+Candidate+for+a+Planet+in+an+External+Galaxy&rft.date=2020-09-18&rft_id=info%3Aarxiv%2F2009.08987&rft.aulast=Di+Stefano&rft.aufirst=R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerezDunhillCasassusRoman2015" class="citation journal cs1">Perez, Sebastian; Dunhill, A.; Casassus, S.; Roman, P.; Szulágyi, J.; Flores, C.; Marino, S.; Montesinos, M. (14 September 2015). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1088/2041-8205/811/1/L5">"Planet Formation Signposts: Observability of Circumplanetary Disks Via Gas Kinematics"</a>. <i>The Astrophysical Journal</i>. <b>811</b> (1): L5. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1505.06808">1505.06808</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015ApJ...811L...5P">2015ApJ...811L...5P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2041-8205%2F811%2F1%2FL5">10.1088/2041-8205/811/1/L5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2041-8213">2041-8213</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Planet+Formation+Signposts%3A+Observability+of+Circumplanetary+Disks+Via+Gas+Kinematics&rft.volume=811&rft.issue=1&rft.pages=L5&rft.date=2015-09-14&rft_id=info%3Aarxiv%2F1505.06808&rft.issn=2041-8213&rft_id=info%3Adoi%2F10.1088%2F2041-8205%2F811%2F1%2FL5&rft_id=info%3Abibcode%2F2015ApJ...811L...5P&rft.aulast=Perez&rft.aufirst=Sebastian&rft.au=Dunhill%2C+A.&rft.au=Casassus%2C+S.&rft.au=Roman%2C+P.&rft.au=Szul%C3%A1gyi%2C+J.&rft.au=Flores%2C+C.&rft.au=Marino%2C+S.&rft.au=Montesinos%2C+M.&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F2041-8205%2F811%2F1%2FL5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPérezCasassusBenítez-Llambay2018" class="citation journal cs1">Pérez, Sebastián; Casassus, S; Benítez-Llambay, P (11 October 2018). <a rel="nofollow" class="external text" href="https://academic.oup.com/mnrasl/article/480/1/L12/5039650">"Observability of planet–disc interactions in CO kinematics"</a>. <i>Monthly Notices of the Royal Astronomical Society: Letters</i>. <b>480</b> (1): L12–L17. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnrasl%2Fsly109">10.1093/mnrasl/sly109</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1745-3925">1745-3925</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society%3A+Letters&rft.atitle=Observability+of+planet%E2%80%93disc+interactions+in+CO+kinematics&rft.volume=480&rft.issue=1&rft.pages=L12-L17&rft.date=2018-10-11&rft_id=info%3Adoi%2F10.1093%2Fmnrasl%2Fsly109&rft.issn=1745-3925&rft.aulast=P%C3%A9rez&rft.aufirst=Sebasti%C3%A1n&rft.au=Casassus%2C+S&rft.au=Ben%C3%ADtez-Llambay%2C+P&rft_id=https%3A%2F%2Facademic.oup.com%2Fmnrasl%2Farticle%2F480%2F1%2FL12%2F5039650&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeagueBaeBerginBirnstiel2018" class="citation journal cs1">Teague, Richard; Bae, Jaehan; Bergin, Edwin A.; Birnstiel, Tilman; Foreman-Mackey, Daniel (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F2041-8213%2Faac6d7">"A Kinematical Detection of Two Embedded Jupiter-mass Planets in HD 163296"</a>. <i>The Astrophysical Journal</i>. <b>860</b> (1): L12. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1805.10290">1805.10290</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018ApJ...860L..12T">2018ApJ...860L..12T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F2041-8213%2Faac6d7">10.3847/2041-8213/aac6d7</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119505278">119505278</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=A+Kinematical+Detection+of+Two+Embedded+Jupiter-mass+Planets+in+HD+163296&rft.volume=860&rft.issue=1&rft.pages=L12&rft.date=2018&rft_id=info%3Aarxiv%2F1805.10290&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119505278%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3847%2F2041-8213%2Faac6d7&rft_id=info%3Abibcode%2F2018ApJ...860L..12T&rft.aulast=Teague&rft.aufirst=Richard&rft.au=Bae%2C+Jaehan&rft.au=Bergin%2C+Edwin+A.&rft.au=Birnstiel%2C+Tilman&rft.au=Foreman-Mackey%2C+Daniel&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F2041-8213%252Faac6d7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCasassusPérez2019" class="citation journal cs1">Casassus, Simon; Pérez, Sebastián (1 October 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F2041-8213%2Fab4425">"Kinematic Detections of Protoplanets: A Doppler Flip in the Disk of HD 100546"</a>. <i>The Astrophysical Journal Letters</i>. <b>883</b> (2): L41. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1906.06302">1906.06302</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019ApJ...883L..41C">2019ApJ...883L..41C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F2041-8213%2Fab4425">10.3847/2041-8213/ab4425</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2041-8205">2041-8205</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal+Letters&rft.atitle=Kinematic+Detections+of+Protoplanets%3A+A+Doppler+Flip+in+the+Disk+of+HD+100546&rft.volume=883&rft.issue=2&rft.pages=L41&rft.date=2019-10-01&rft_id=info%3Aarxiv%2F1906.06302&rft.issn=2041-8205&rft_id=info%3Adoi%2F10.3847%2F2041-8213%2Fab4425&rft_id=info%3Abibcode%2F2019ApJ...883L..41C&rft.aulast=Casassus&rft.aufirst=Simon&rft.au=P%C3%A9rez%2C+Sebasti%C3%A1n&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F2041-8213%252Fab4425&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://exoplanetarchive.ipac.caltech.edu/overview/HD%2097048">"HD 97048 | NASA Exoplanet Archive"</a>. <i>exoplanetarchive.ipac.caltech.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">11 October</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=exoplanetarchive.ipac.caltech.edu&rft.atitle=HD+97048+%7C+NASA+Exoplanet+Archive&rft_id=https%3A%2F%2Fexoplanetarchive.ipac.caltech.edu%2Foverview%2FHD%252097048&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArgyle1974" class="citation journal cs1">Argyle, Edward (1974). "On the observability of extrasolar planetary systems". <i>Icarus</i>. <b>21</b> (2). Elsevier BV: 199–201. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974Icar...21..199A">1974Icar...21..199A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0019-1035%2874%2990138-9">10.1016/0019-1035(74)90138-9</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0019-1035">0019-1035</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Icarus&rft.atitle=On+the+observability+of+extrasolar+planetary+systems&rft.volume=21&rft.issue=2&rft.pages=199-201&rft.date=1974&rft.issn=0019-1035&rft_id=info%3Adoi%2F10.1016%2F0019-1035%2874%2990138-9&rft_id=info%3Abibcode%2F1974Icar...21..199A&rft.aulast=Argyle&rft.aufirst=Edward&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Bromley_1992-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bromley_1992_119-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBromley1992" class="citation journal cs1">Bromley, Benjamin C. (1992). <a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F133089">"Detecting faint echoes in stellar-flare light curves"</a>. <i>Publications of the Astronomical Society of the Pacific</i>. <b>104</b>. IOP Publishing: 1049. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992PASP..104.1049B">1992PASP..104.1049B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F133089">10.1086/133089</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0004-6280">0004-6280</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121521634">121521634</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Publications+of+the+Astronomical+Society+of+the+Pacific&rft.atitle=Detecting+faint+echoes+in+stellar-flare+light+curves&rft.volume=104&rft.pages=1049&rft.date=1992&rft_id=info%3Adoi%2F10.1086%2F133089&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121521634%23id-name%3DS2CID&rft.issn=0004-6280&rft_id=info%3Abibcode%2F1992PASP..104.1049B&rft.aulast=Bromley&rft.aufirst=Benjamin+C.&rft_id=https%3A%2F%2Fdoi.org%2F10.1086%252F133089&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Gaidos_1994-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gaidos_1994_120-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGaidos1994" class="citation journal cs1">Gaidos, Eric J. (1994). "Light Echo Detection of Circumstellar Disks around Flaring Stars". <i>Icarus</i>. <b>109</b> (2). Elsevier BV: 382–392. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994Icar..109..382G">1994Icar..109..382G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Ficar.1994.1101">10.1006/icar.1994.1101</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0019-1035">0019-1035</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Icarus&rft.atitle=Light+Echo+Detection+of+Circumstellar+Disks+around+Flaring+Stars&rft.volume=109&rft.issue=2&rft.pages=382-392&rft.date=1994&rft.issn=0019-1035&rft_id=info%3Adoi%2F10.1006%2Ficar.1994.1101&rft_id=info%3Abibcode%2F1994Icar..109..382G&rft.aulast=Gaidos&rft.aufirst=Eric+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Sugerman_2003-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sugerman_2003_121-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSugerman2003" class="citation journal cs1">Sugerman, Ben E. K. (2003). "Observability of Scattered-Light Echoes around Variable Stars and Cataclysmic Events". <i>The Astronomical Journal</i>. <b>126</b> (4): 1939–1959. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0307245">astro-ph/0307245</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003AJ....126.1939S">2003AJ....126.1939S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F378358">10.1086/378358</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0004-6256">0004-6256</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9576707">9576707</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=Observability+of+Scattered-Light+Echoes+around+Variable+Stars+and+Cataclysmic+Events&rft.volume=126&rft.issue=4&rft.pages=1939-1959&rft.date=2003&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9576707%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2003AJ....126.1939S&rft_id=info%3Aarxiv%2Fastro-ph%2F0307245&rft.issn=0004-6256&rft_id=info%3Adoi%2F10.1086%2F378358&rft.aulast=Sugerman&rft.aufirst=Ben+E.+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="HQ-E-DAA-TN39155" class="citation report cs1">Mann, Chris; et al. (January 2016). <a rel="nofollow" class="external text" href="https://ntrs.nasa.gov/citations/20170002797">Stellar Echo Imaging of Exoplanets</a>. <i>NASA Technical Report Server</i> (Report). <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2060%2F20170002797">2060/20170002797</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=report&rft.btitle=Stellar+Echo+Imaging+of+Exoplanets&rft.date=2016-01&rft_id=info%3Ahdl%2F2060%2F20170002797&rft.aulast=Mann&rft.aufirst=Chris&rft_id=https%3A%2F%2Fntrs.nasa.gov%2Fcitations%2F20170002797&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Sparks_White_Lupu_Ford-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sparks_White_Lupu_Ford_123-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSparksWhiteLupuFord2018" class="citation journal cs1">Sparks, William B.; White, Richard L.; Lupu, Roxana E.; Ford, Holland C. (20 February 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-4357%2Faaa549">"The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes"</a>. <i>The Astrophysical Journal</i>. <b>854</b> (2). American Astronomical Society: 134. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1801.01144">1801.01144</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018ApJ...854..134S">2018ApJ...854..134S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-4357%2Faaa549">10.3847/1538-4357/aaa549</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1538-4357">1538-4357</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119397912">119397912</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=The+Direct+Detection+and+Characterization+of+M-dwarf+Planets+Using+Light+Echoes&rft.volume=854&rft.issue=2&rft.pages=134&rft.date=2018-02-20&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119397912%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2018ApJ...854..134S&rft_id=info%3Aarxiv%2F1801.01144&rft.issn=1538-4357&rft_id=info%3Adoi%2F10.3847%2F1538-4357%2Faaa549&rft.aulast=Sparks&rft.aufirst=William+B.&rft.au=White%2C+Richard+L.&rft.au=Lupu%2C+Roxana+E.&rft.au=Ford%2C+Holland+C.&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-4357%252Faaa549&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-Mann_Tellesbo_Bromley_Kenyon-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mann_Tellesbo_Bromley_Kenyon_124-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMannTellesboBromleyKenyon2018" class="citation journal cs1">Mann, Chris; Tellesbo, Christopher A.; Bromley, Benjamin C.; Kenyon, Scott J. (12 October 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Faadc5e">"A Framework for Planet Detection with Faint Light-curve Echoes"</a>. <i>The Astronomical Journal</i>. <b>156</b> (5). American Astronomical Society: 200. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1808.07029">1808.07029</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018AJ....156..200M">2018AJ....156..200M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Faadc5e">10.3847/1538-3881/aadc5e</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1538-3881">1538-3881</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119016095">119016095</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=A+Framework+for+Planet+Detection+with+Faint+Light-curve+Echoes&rft.volume=156&rft.issue=5&rft.pages=200&rft.date=2018-10-12&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119016095%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2018AJ....156..200M&rft_id=info%3Aarxiv%2F1808.07029&rft.issn=1538-3881&rft_id=info%3Adoi%2F10.3847%2F1538-3881%2Faadc5e&rft.aulast=Mann&rft.aufirst=Chris&rft.au=Tellesbo%2C+Christopher+A.&rft.au=Bromley%2C+Benjamin+C.&rft.au=Kenyon%2C+Scott+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-3881%252Faadc5e&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTognetti2024" class="citation web cs1">Tognetti, Laurence (25 August 2024). <a rel="nofollow" class="external text" href="https://www.universetoday.com/168209/the-big-fringe-telescope-a-2-2-kilometer-telescope-on-the-cheap-and-it-can-make-exoplanet-movies/#more-168209">"The Big Fringe Telescope. A 2.2 KILOMETER Telescope on the Cheap. And it Can Make Exoplanet "Movies"<span class="cs1-kern-right"></span>"</a>. <i>Universe Today</i><span class="reference-accessdate">. Retrieved <span class="nowrap">26 August</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Universe+Today&rft.atitle=The+Big+Fringe+Telescope.+A+2.2+KILOMETER+Telescope+on+the+Cheap.+And+it+Can+Make+Exoplanet+%22Movies%22.&rft.date=2024-08-25&rft.aulast=Tognetti&rft.aufirst=Laurence&rft_id=https%3A%2F%2Fwww.universetoday.com%2F168209%2Fthe-big-fringe-telescope-a-2-2-kilometer-telescope-on-the-cheap-and-it-can-make-exoplanet-movies%2F%23more-168209&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_BelleKaspar_von_BraunBoyajianSchaefer2014" class="citation journal cs1">van Belle, Gerard T.; Kaspar von Braun; Boyajian, Tabetha; Schaefer, Gail (2014). "Direct Imaging of Planet Transit Events". <i>Proceedings of the International Astronomical Union</i>. <b>8</b>: 378–381. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1405.1983">1405.1983</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014IAUS..293..378V">2014IAUS..293..378V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1743921313013197">10.1017/S1743921313013197</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118316923">118316923</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+International+Astronomical+Union&rft.atitle=Direct+Imaging+of+Planet+Transit+Events&rft.volume=8&rft.pages=378-381&rft.date=2014&rft_id=info%3Aarxiv%2F1405.1983&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118316923%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1017%2FS1743921313013197&rft_id=info%3Abibcode%2F2014IAUS..293..378V&rft.aulast=van+Belle&rft.aufirst=Gerard+T.&rft.au=Kaspar+von+Braun&rft.au=Boyajian%2C+Tabetha&rft.au=Schaefer%2C+Gail&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRouteWolszczan2023" class="citation journal cs1">Route, Matthew; Wolszczan, Alex (1 August 2023). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-4357%2Facd9ad">"ROME. III. The Arecibo Search for Star–Planet Interactions at 5 GHz"</a>. <i>The Astrophysical Journal</i>. <b>952</b> (2): 118. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2202.08899">2202.08899</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023ApJ...952..118R">2023ApJ...952..118R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-4357%2Facd9ad">10.3847/1538-4357/acd9ad</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=ROME.+III.+The+Arecibo+Search+for+Star%E2%80%93Planet+Interactions+at+5+GHz&rft.volume=952&rft.issue=2&rft.pages=118&rft.date=2023-08-01&rft_id=info%3Aarxiv%2F2202.08899&rft_id=info%3Adoi%2F10.3847%2F1538-4357%2Facd9ad&rft_id=info%3Abibcode%2F2023ApJ...952..118R&rft.aulast=Route&rft.aufirst=Matthew&rft.au=Wolszczan%2C+Alex&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-4357%252Facd9ad&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoute2024" class="citation journal cs1">Route, Matthew (1 May 2024). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-4357%2Fad30ff">"ROME. IV. An Arecibo Search for Substellar Magnetospheric Radio Emissions in Purported Exoplanet-hosting Systems at 5 GHz"</a>. <i>The Astrophysical Journal</i>. <b>966</b> (1): 55. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2403.02226">2403.02226</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2024ApJ...966...55R">2024ApJ...966...55R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-4357%2Fad30ff">10.3847/1538-4357/ad30ff</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=ROME.+IV.+An+Arecibo+Search+for+Substellar+Magnetospheric+Radio+Emissions+in+Purported+Exoplanet-hosting+Systems+at+5+GHz&rft.volume=966&rft.issue=1&rft.pages=55&rft.date=2024-05-01&rft_id=info%3Aarxiv%2F2403.02226&rft_id=info%3Adoi%2F10.3847%2F1538-4357%2Fad30ff&rft_id=info%3Abibcode%2F2024ApJ...966...55R&rft.aulast=Route&rft.aufirst=Matthew&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-4357%252Fad30ff&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLazioFarrell2004" class="citation journal cs1">Lazio, T. J. W.; Farrell, W. M. (2004). <a rel="nofollow" class="external text" href="https://www.faculty.ece.vt.edu/swe/lwa/memo/lwa0013.pdf">"Radio Detection of Extrasolar Planets: Present and Future Prospects"</a> <span class="cs1-format">(PDF)</span>. <i>Bulletin of the American Astronomical Society</i>. <b>36</b>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004AAS...20513508L">2004AAS...20513508L</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20231122230408/https://faculty.ece.vt.edu/swe/lwa/memo/lwa0013.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 22 November 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">15 October</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Astronomical+Society&rft.atitle=Radio+Detection+of+Extrasolar+Planets%3A+Present+and+Future+Prospects&rft.volume=36&rft.date=2004&rft_id=info%3Abibcode%2F2004AAS...20513508L&rft.aulast=Lazio&rft.aufirst=T.+J.+W.&rft.au=Farrell%2C+W.+M.&rft_id=https%3A%2F%2Fwww.faculty.ece.vt.edu%2Fswe%2Flwa%2Fmemo%2Flwa0013.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-EA-20190327-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-EA-20190327_130-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEuropean_Southern_Observatory2019" class="citation news cs1"><a href="/wiki/European_Southern_Observatory" title="European Southern Observatory">European Southern Observatory</a> (27 March 2019). <a rel="nofollow" class="external text" href="https://www.eurekalert.org/pub_releases/2019-03/e-gib032619.php">"GRAVITY instrument breaks new ground in exoplanet imaging - Cutting-edge VLTI instrument reveals details of a storm-wracked exoplanet using optical interferometry"</a>. <i><a href="/wiki/EurekAlert!" class="mw-redirect" title="EurekAlert!">EurekAlert!</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">27 March</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EurekAlert%21&rft.atitle=GRAVITY+instrument+breaks+new+ground+in+exoplanet+imaging+-+Cutting-edge+VLTI+instrument+reveals+details+of+a+storm-wracked+exoplanet+using+optical+interferometry&rft.date=2019-03-27&rft.au=European+Southern+Observatory&rft_id=https%3A%2F%2Fwww.eurekalert.org%2Fpub_releases%2F2019-03%2Fe-gib032619.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwartzLipsonRibak2012" class="citation journal cs1">Schwartz, Eyal; Lipson, Stephen G.; Ribak, Erez N. (2012). "Enhanced Interferometric Identification of Spectra in Habitable Extrasolar Planets". <i>The Astronomical Journal</i>. <b>144</b> (3): 71. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012AJ....144...71S">2012AJ....144...71S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-6256%2F144%2F3%2F71">10.1088/0004-6256/144/3/71</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:59493938">59493938</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=Enhanced+Interferometric+Identification+of+Spectra+in+Habitable+Extrasolar+Planets&rft.volume=144&rft.issue=3&rft.pages=71&rft.date=2012&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A59493938%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-6256%2F144%2F3%2F71&rft_id=info%3Abibcode%2F2012AJ....144...71S&rft.aulast=Schwartz&rft.aufirst=Eyal&rft.au=Lipson%2C+Stephen+G.&rft.au=Ribak%2C+Erez+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-ab8c10-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-ab8c10_132-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeng_Long2022" class="citation journal cs1">Feng Long; et al. (14 September 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F2041-8213%2Fac8b10">"ALMA Detection of Dust Trapping around Lagrangian Points in the LkCa 15 Disk"</a>. <i><a href="/wiki/The_Astrophysical_Journal_Letters" class="mw-redirect" title="The Astrophysical Journal Letters">The Astrophysical Journal Letters</a></i>. <b>937</b> (1) L1: L1. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2209.05535">2209.05535</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022ApJ...937L...1L">2022ApJ...937L...1L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F2041-8213%2Fac8b10">10.3847/2041-8213/ac8b10</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252211794">252211794</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal+Letters&rft.atitle=ALMA+Detection+of+Dust+Trapping+around+Lagrangian+Points+in+the+LkCa+15+Disk&rft.volume=937&rft.issue=1&rft.artnum=L1&rft.pages=L1&rft.date=2022-09-14&rft_id=info%3Aarxiv%2F2209.05535&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252211794%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3847%2F2041-8213%2Fac8b10&rft_id=info%3Abibcode%2F2022ApJ...937L...1L&rft.au=Feng+Long&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F2041-8213%252Fac8b10&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDanielskiKorolTamaniniRossi2019" class="citation journal cs1">Danielski, Camilla; Korol, Valeriya; Tamanini, Nicola; Rossi, Elena Maria (2019). <a rel="nofollow" class="external text" href="https://www.aanda.org/articles/aa/full_html/2019/12/aa36729-19/aa36729-19.html">"Circumbinary exoplanets and brown dwarfs with the Laser Interferometer Space Antenna"</a>. <i>Astronomy & Astrophysics</i>. <b>632</b> A113. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1910.05414">1910.05414</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019A&A...632A.113D">2019A&A...632A.113D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%2F201936729">10.1051/0004-6361/201936729</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=Circumbinary+exoplanets+and+brown+dwarfs+with+the+Laser+Interferometer+Space+Antenna&rft.volume=632&rft.artnum=A113&rft.date=2019&rft_id=info%3Aarxiv%2F1910.05414&rft_id=info%3Adoi%2F10.1051%2F0004-6361%2F201936729&rft_id=info%3Abibcode%2F2019A%26A...632A.113D&rft.aulast=Danielski&rft.aufirst=Camilla&rft.au=Korol%2C+Valeriya&rft.au=Tamanini%2C+Nicola&rft.au=Rossi%2C+Elena+Maria&rft_id=https%3A%2F%2Fwww.aanda.org%2Farticles%2Faa%2Ffull_html%2F2019%2F12%2Faa36729-19%2Faa36729-19.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-134">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTamaniniDanielski2019" class="citation journal cs1">Tamanini, Nicola; Danielski, Camilla (2019). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41550-019-0807-y">"The gravitational-wave detection of exoplanets orbiting white dwarf binaries using LISA"</a>. <i>Nature Astronomy</i>. <b>3</b> (9): 858–866. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1812.04330">1812.04330</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NatAs...3..858T">2019NatAs...3..858T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41550-019-0807-y">10.1038/s41550-019-0807-y</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Astronomy&rft.atitle=The+gravitational-wave+detection+of+exoplanets+orbiting+white+dwarf+binaries+using+LISA&rft.volume=3&rft.issue=9&rft.pages=858-866&rft.date=2019&rft_id=info%3Aarxiv%2F1812.04330&rft_id=info%3Adoi%2F10.1038%2Fs41550-019-0807-y&rft_id=info%3Abibcode%2F2019NatAs...3..858T&rft.aulast=Tamanini&rft.aufirst=Nicola&rft.au=Danielski%2C+Camilla&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41550-019-0807-y&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTamaniniDanielski2019" class="citation journal cs1">Tamanini, Nicola; Danielski, Camilla (2019). "The gravitational-wave detection of exoplanets orbiting white dwarf binaries using LISA". <i>Nature Astronomy</i>. <b>3</b> (9): 858–866. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1812.04330">1812.04330</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NatAs...3..858T">2019NatAs...3..858T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41550-019-0807-y">10.1038/s41550-019-0807-y</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Astronomy&rft.atitle=The+gravitational-wave+detection+of+exoplanets+orbiting+white+dwarf+binaries+using+LISA&rft.volume=3&rft.issue=9&rft.pages=858-866&rft.date=2019&rft_id=info%3Aarxiv%2F1812.04330&rft_id=info%3Adoi%2F10.1038%2Fs41550-019-0807-y&rft_id=info%3Abibcode%2F2019NatAs...3..858T&rft.aulast=Tamanini&rft.aufirst=Nicola&rft.au=Danielski%2C+Camilla&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-greaveswyatt04-136"><span class="mw-cite-backlink">^ <a href="#cite_ref-greaveswyatt04_136-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-greaveswyatt04_136-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.S._GreavesM.C._WyattW.S._HollandW.F.R._Dent2004" class="citation journal cs1">J.S. Greaves; M.C. Wyatt; W.S. Holland; W.F.R. Dent (2004). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2004.07957.x">"The debris disk around tau Ceti: a massive analogue to the Kuiper Belt"</a>. <i>Monthly Notices of the Royal Astronomical Society</i>. <b>351</b> (3): L54–L58. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004MNRAS.351L..54G">2004MNRAS.351L..54G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2004.07957.x">10.1111/j.1365-2966.2004.07957.x</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&rft.atitle=The+debris+disk+around+tau+Ceti%3A+a+massive+analogue+to+the+Kuiper+Belt&rft.volume=351&rft.issue=3&rft.pages=L54-L58&rft.date=2004&rft_id=info%3Adoi%2F10.1111%2Fj.1365-2966.2004.07957.x&rft_id=info%3Abibcode%2F2004MNRAS.351L..54G&rft.au=J.S.+Greaves&rft.au=M.C.+Wyatt&rft.au=W.S.+Holland&rft.au=W.F.R.+Dent&rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fj.1365-2966.2004.07957.x&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-greaveswyatt03-137"><span class="mw-cite-backlink">^ <a href="#cite_ref-greaveswyatt03_137-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-greaveswyatt03_137-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreavesM.C._WyattW.S._HollandW.F.R._Dent2003" class="citation conference cs1">Greaves, J.S.; M.C. Wyatt; W.S. Holland; W.F.R. Dent (2003). "Submillimetre Images of the Closest Debris Disks". <i>Scientific Frontiers in Research on Extrasolar Planets</i>. Astronomical Society of the Pacific. pp. 239–244. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003ASPC..294..239G">2003ASPC..294..239G</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=Submillimetre+Images+of+the+Closest+Debris+Disks&rft.btitle=Scientific+Frontiers+in+Research+on+Extrasolar+Planets&rft.pages=239-244&rft.pub=Astronomical+Society+of+the+Pacific&rft.date=2003&rft_id=info%3Abibcode%2F2003ASPC..294..239G&rft.aulast=Greaves&rft.aufirst=J.S.&rft.au=M.C.+Wyatt&rft.au=W.S.+Holland&rft.au=W.F.R.+Dent&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-greavesepseri05-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-greavesepseri05_138-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreaves,_J._S.HollandWyattDent2005" class="citation journal cs1">Greaves, J. S.; et al. (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F428348">"Structure in the Epsilon Eridani Debris Disk"</a>. <i>The Astrophysical Journal Letters</i>. <b>619</b> (2): L187–L190. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005ApJ...619L.187G">2005ApJ...619L.187G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F428348">10.1086/428348</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal+Letters&rft.atitle=Structure+in+the+Epsilon+Eridani+Debris+Disk&rft.volume=619&rft.issue=2&rft.pages=L187-L190&rft.date=2005&rft_id=info%3Adoi%2F10.1086%2F428348&rft_id=info%3Abibcode%2F2005ApJ...619L.187G&rft.au=Greaves%2C+J.+S.&rft.au=Holland%2C+W.+S.&rft.au=Wyatt%2C+M.+C.&rft.au=Dent%2C+W.+R.+F.&rft.au=Robson%2C+E.+I.&rft.au=Coulson%2C+I.+M.&rft.au=Jenness%2C+T.&rft.au=Moriarty-Schieven%2C+G.+H.&rft.au=Davis%2C+G.+R.&rft.au=Butner%2C+H.+M.&rft.au=Gear%2C+W.+K.&rft.au=Dominik%2C+C.&rft.au=Walker%2C+H.+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1086%252F428348&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-139">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStarkKuchner2009" class="citation journal cs1">Stark, C. C; Kuchner, M. J (2009). "A New Algorithm for Self-consistent Three-dimensional Modeling of Collisions in Dusty Debris Disks". <i>The Astrophysical Journal</i>. <b>707</b> (1): 543–553. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0909.2227">0909.2227</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009ApJ...707..543S">2009ApJ...707..543S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-637X%2F707%2F1%2F543">10.1088/0004-637X/707/1/543</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11458583">11458583</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=A+New+Algorithm+for+Self-consistent+Three-dimensional+Modeling+of+Collisions+in+Dusty+Debris+Disks&rft.volume=707&rft.issue=1&rft.pages=543-553&rft.date=2009&rft_id=info%3Aarxiv%2F0909.2227&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11458583%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-637X%2F707%2F1%2F543&rft_id=info%3Abibcode%2F2009ApJ...707..543S&rft.aulast=Stark&rft.aufirst=C.+C&rft.au=Kuchner%2C+M.+J&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-140">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoesterGänsickeFarihi2014" class="citation journal cs1">Koester, D.; Gänsicke, B. T.; Farihi, J. (1 June 2014). "The frequency of planetary debris around young white dwarfs". <i>Astronomy & Astrophysics</i>. <b>566</b>: A34. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1404.2617">1404.2617</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014A&A...566A..34K">2014A&A...566A..34K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%2F201423691">10.1051/0004-6361/201423691</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0004-6361">0004-6361</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119268896">119268896</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=The+frequency+of+planetary+debris+around+young+white+dwarfs&rft.volume=566&rft.pages=A34&rft.date=2014-06-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119268896%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2014A%26A...566A..34K&rft_id=info%3Aarxiv%2F1404.2617&rft.issn=0004-6361&rft_id=info%3Adoi%2F10.1051%2F0004-6361%2F201423691&rft.aulast=Koester&rft.aufirst=D.&rft.au=G%C3%A4nsicke%2C+B.+T.&rft.au=Farihi%2C+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-141">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThompson2009" class="citation web cs1">Thompson, Andrea (20 April 2009). <a rel="nofollow" class="external text" href="http://www.space.com/scienceastronomy/090420-mm-solar-system.html">"Dead Stars Once Hosted Solar Systems"</a>. SPACE.com<span class="reference-accessdate">. Retrieved <span class="nowrap">21 April</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Dead+Stars+Once+Hosted+Solar+Systems&rft.pub=SPACE.com&rft.date=2009-04-20&rft.aulast=Thompson&rft.aufirst=Andrea&rft_id=http%3A%2F%2Fwww.space.com%2Fscienceastronomy%2F090420-mm-solar-system.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-142">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVanderburgJohnsonRappaportBieryla2015" class="citation journal cs1">Vanderburg, Andrew; Johnson, John Asher; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R.; Dufour, Patrick (22 October 2015). "A disintegrating minor planet transiting a white dwarf". <i>Nature</i>. <b>526</b> (7574): 546–549. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1510.06387">1510.06387</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015Natur.526..546V">2015Natur.526..546V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature15527">10.1038/nature15527</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26490620">26490620</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4451207">4451207</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+disintegrating+minor+planet+transiting+a+white+dwarf&rft.volume=526&rft.issue=7574&rft.pages=546-549&rft.date=2015-10-22&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4451207%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2015Natur.526..546V&rft_id=info%3Aarxiv%2F1510.06387&rft.issn=0028-0836&rft_id=info%3Adoi%2F10.1038%2Fnature15527&rft_id=info%3Apmid%2F26490620&rft.aulast=Vanderburg&rft.aufirst=Andrew&rft.au=Johnson%2C+John+Asher&rft.au=Rappaport%2C+Saul&rft.au=Bieryla%2C+Allyson&rft.au=Irwin%2C+Jonathan&rft.au=Lewis%2C+John+Arban&rft.au=Kipping%2C+David&rft.au=Brown%2C+Warren+R.&rft.au=Dufour%2C+Patrick&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-143">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://exoplanetarchive.ipac.caltech.edu/index.html">"NASA Exoplanet Archive"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=NASA+Exoplanet+Archive&rft_id=http%3A%2F%2Fexoplanetarchive.ipac.caltech.edu%2Findex.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-NASA-20160510a-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-NASA-20160510a_144-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nasa.gov/press-release/nasas-kepler-mission-announces-largest-collection-of-planets-ever-discovered">"NASA's Kepler Mission Announces Largest Collection of Planets Ever Discovered"</a>. <i><a href="/wiki/NASA" title="NASA">NASA</a></i>. 10 May 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">10 May</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=NASA&rft.atitle=NASA%27s+Kepler+Mission+Announces+Largest+Collection+of+Planets+Ever+Discovered&rft.date=2016-05-10&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fpress-release%2Fnasas-kepler-mission-announces-largest-collection-of-planets-ever-discovered&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnutsonCharbonneauAllenFortney2007" class="citation journal cs1">Knutson, Heather A.; Charbonneau, David; <a href="/wiki/Lori_Allen_(astronomer)" title="Lori Allen (astronomer)">Allen, Lori E.</a>; Fortney, Jonathan J.; Agol, Eric; Cowan, Nicolas B.; Showman, Adam P.; Cooper, Curtis S.; Megeath, S. Thomas (10 May 2007). "A map of the day–night contrast of the extrasolar planet HD 189733b". <i>Nature</i>. <b>447</b> (7141): 183–186. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0705.0993">0705.0993</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Natur.447..183K">2007Natur.447..183K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature05782">10.1038/nature05782</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17495920">17495920</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4402268">4402268</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+map+of+the+day%E2%80%93night+contrast+of+the+extrasolar+planet+HD+189733b&rft.volume=447&rft.issue=7141&rft.pages=183-186&rft.date=2007-05-10&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4402268%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2007Natur.447..183K&rft_id=info%3Aarxiv%2F0705.0993&rft.issn=0028-0836&rft_id=info%3Adoi%2F10.1038%2Fnature05782&rft_id=info%3Apmid%2F17495920&rft.aulast=Knutson&rft.aufirst=Heather+A.&rft.au=Charbonneau%2C+David&rft.au=Allen%2C+Lori+E.&rft.au=Fortney%2C+Jonathan+J.&rft.au=Agol%2C+Eric&rft.au=Cowan%2C+Nicolas+B.&rft.au=Showman%2C+Adam+P.&rft.au=Cooper%2C+Curtis+S.&rft.au=Megeath%2C+S.+Thomas&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-rssd.esa.int-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-rssd.esa.int_146-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.cosmos.esa.int/web/gaia">Gaia Science Homepage</a></span> </li> <li id="cite_note-ESA-20121119-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-ESA-20121119_147-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStaff2012" class="citation web cs1">Staff (19 November 2012). <a rel="nofollow" class="external text" href="http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=51116">"Announcement of Opportunity for the Gaia Data Processing Archive Access Co-Ordination Unit"</a>. <a href="/wiki/ESA" class="mw-redirect" title="ESA">ESA</a><span class="reference-accessdate">. Retrieved <span class="nowrap">17 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Announcement+of+Opportunity+for+the+Gaia+Data+Processing+Archive+Access+Co-Ordination+Unit&rft.pub=ESA&rft.date=2012-11-19&rft.au=Staff&rft_id=http%3A%2F%2Fsci.esa.int%2Fscience-e%2Fwww%2Fobject%2Findex.cfm%3Ffobjectid%3D51116&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-ESA-20120130-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-ESA-20120130_148-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStaff2012" class="citation web cs1">Staff (30 January 2012). <a rel="nofollow" class="external text" href="http://www.rssd.esa.int/SA/GAIA/docs/DPAC/web/DPAC_NL_015.pdf">"DPAC Newsletter no. 15"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/European_Space_Agency" title="European Space Agency">European Space Agency</a><span class="reference-accessdate">. Retrieved <span class="nowrap">16 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=DPAC+Newsletter+no.+15&rft.pub=European+Space+Agency&rft.date=2012-01-30&rft.au=Staff&rft_id=http%3A%2F%2Fwww.rssd.esa.int%2FSA%2FGAIA%2Fdocs%2FDPAC%2Fweb%2FDPAC_NL_015.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-149">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKawaharaMurakamiMatsuoKotani2014" class="citation journal cs1">Kawahara, Hajime; Murakami, Naoshi; Matsuo, Taro; Kotani, Takayuki (2014). "Spectroscopic Coronagraphy for Planetary Radial Velocimetry of Exoplanets". <i>The Astrophysical Journal Supplement Series</i>. <b>212</b> (2): 27. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1404.5712">1404.5712</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014ApJS..212...27K">2014ApJS..212...27K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0067-0049%2F212%2F2%2F27">10.1088/0067-0049/212/2/27</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118391661">118391661</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal+Supplement+Series&rft.atitle=Spectroscopic+Coronagraphy+for+Planetary+Radial+Velocimetry+of+Exoplanets&rft.volume=212&rft.issue=2&rft.pages=27&rft.date=2014&rft_id=info%3Aarxiv%2F1404.5712&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118391661%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0067-0049%2F212%2F2%2F27&rft_id=info%3Abibcode%2F2014ApJS..212...27K&rft.aulast=Kawahara&rft.aufirst=Hajime&rft.au=Murakami%2C+Naoshi&rft.au=Matsuo%2C+Taro&rft.au=Kotani%2C+Takayuki&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-150">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbeVannierPetrovEnya2009" class="citation journal cs1">Abe, L.; Vannier, M.; Petrov, R.; Enya, K.; Kataza, H. (2009). <a rel="nofollow" class="external text" href="https://spica.edpsciences.org/index.php?option=com_article&access=standard&Itemid=129&url=/articles/spica/pdf/2009/01/spica2009_02005.pdf">"Characterizing Extra-Solar Planets with Color Differential Astrometry on SPICA"</a> <span class="cs1-format">(PDF)</span>. <i>SPICA Workshop</i>: 02005. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009sitc.conf.2005A">2009sitc.conf.2005A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2Fspica%2F200902005">10.1051/spica/200902005</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SPICA+Workshop&rft.atitle=Characterizing+Extra-Solar+Planets+with+Color+Differential+Astrometry+on+SPICA&rft.pages=02005&rft.date=2009&rft_id=info%3Adoi%2F10.1051%2Fspica%2F200902005&rft_id=info%3Abibcode%2F2009sitc.conf.2005A&rft.aulast=Abe&rft.aufirst=L.&rft.au=Vannier%2C+M.&rft.au=Petrov%2C+R.&rft.au=Enya%2C+K.&rft.au=Kataza%2C+H.&rft_id=https%3A%2F%2Fspica.edpsciences.org%2Findex.php%3Foption%3Dcom_article%26access%3Dstandard%26Itemid%3D129%26url%3D%2Farticles%2Fspica%2Fpdf%2F2009%2F01%2Fspica2009_02005.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-kepler1700-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-kepler1700_151-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnsonHarrington2014" class="citation web cs1">Johnson, Michele; Harrington, J.D. (26 February 2014). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140226202703/http://www.nasa.gov/ames/kepler/nasas-kepler-mission-announces-a-planet-bonanza/">"NASA's Kepler Mission Announces a Planet Bonanza, 715 New Worlds"</a>. <i><a href="/wiki/NASA" title="NASA">NASA</a></i>. Archived from <a rel="nofollow" class="external text" href="https://www.nasa.gov/ames/kepler/nasas-kepler-mission-announces-a-planet-bonanza/">the original</a> on 26 February 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">26 February</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=NASA&rft.atitle=NASA%27s+Kepler+Mission+Announces+a+Planet+Bonanza%2C+715+New+Worlds&rft.date=2014-02-26&rft.aulast=Johnson&rft.aufirst=Michele&rft.au=Harrington%2C+J.D.&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fames%2Fkepler%2Fnasas-kepler-mission-announces-a-planet-bonanza%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTingleyParviainenGandolfiDeeg2014" class="citation journal cs1">Tingley, B.; Parviainen, H.; Gandolfi, D.; Deeg, H. J.; Pallé, E.; Montañés Rodriguez, P.; Murgas, F.; Alonso, R.; Bruntt, H.; Fridlund, M. (2014). "Confirmation of an exoplanet using the transit color signature: Kepler-418b, a blended giant planet in a multiplanet system". <i>Astronomy & Astrophysics</i>. <b>567</b>: A14. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1405.5354">1405.5354</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014A&A...567A..14T">2014A&A...567A..14T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%2F201323175">10.1051/0004-6361/201323175</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118668437">118668437</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=Confirmation+of+an+exoplanet+using+the+transit+color+signature%3A+Kepler-418b%2C+a+blended+giant+planet+in+a+multiplanet+system&rft.volume=567&rft.pages=A14&rft.date=2014&rft_id=info%3Aarxiv%2F1405.5354&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118668437%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1051%2F0004-6361%2F201323175&rft_id=info%3Abibcode%2F2014A%26A...567A..14T&rft.aulast=Tingley&rft.aufirst=B.&rft.au=Parviainen%2C+H.&rft.au=Gandolfi%2C+D.&rft.au=Deeg%2C+H.+J.&rft.au=Pall%C3%A9%2C+E.&rft.au=Monta%C3%B1%C3%A9s+Rodriguez%2C+P.&rft.au=Murgas%2C+F.&rft.au=Alonso%2C+R.&rft.au=Bruntt%2C+H.&rft.au=Fridlund%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-153">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson2013" class="citation journal cs1">Johnson, Marshall Caleb (2013). <a rel="nofollow" class="external text" href="https://repositories.lib.utexas.edu/server/api/core/bitstreams/61ec23d3-b6b5-481f-a137-d87c1f1ab9a9/content">"Doppler tomographic observations of exoplanetary transits"</a>. <i>American Astronomical Society Meeting Abstracts #221</i>. <b>221</b>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013AAS...22134307J">2013AAS...22134307J</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20231129063215/https://repositories.lib.utexas.edu/server/api/core/bitstreams/61ec23d3-b6b5-481f-a137-d87c1f1ab9a9/content">Archived</a> from the original on 29 November 2023.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Astronomical+Society+Meeting+Abstracts+%23221&rft.atitle=Doppler+tomographic+observations+of+exoplanetary+transits&rft.volume=221&rft.date=2013&rft_id=info%3Abibcode%2F2013AAS...22134307J&rft.aulast=Johnson&rft.aufirst=Marshall+Caleb&rft_id=https%3A%2F%2Frepositories.lib.utexas.edu%2Fserver%2Fapi%2Fcore%2Fbitstreams%2F61ec23d3-b6b5-481f-a137-d87c1f1ab9a9%2Fcontent&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-154">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHornerWittenmyerTinneyRobertson2013" class="citation arxiv cs1">Horner, Jonathan; Wittenmyer, Robert A.; Tinney, Chris G.; Robertson, Paul; Hinse, Tobias C.; Marshall, Jonathan P. (2013). "Dynamical Constraints on Multi-Planet Exoplanetary Systems". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1302.5247">1302.5247</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/astro-ph.EP">astro-ph.EP</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Dynamical+Constraints+on+Multi-Planet+Exoplanetary+Systems&rft.date=2013&rft_id=info%3Aarxiv%2F1302.5247&rft.aulast=Horner&rft.aufirst=Jonathan&rft.au=Wittenmyer%2C+Robert+A.&rft.au=Tinney%2C+Chris+G.&rft.au=Robertson%2C+Paul&rft.au=Hinse%2C+Tobias+C.&rft.au=Marshall%2C+Jonathan+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-155">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobertsonMahadevan2014" class="citation journal cs1">Robertson, Paul; <a href="/wiki/Suvrath_Mahadevan" title="Suvrath Mahadevan">Mahadevan, Suvrath</a> (2014). "Disentangling Planets and Stellar Activity for Gliese 667C". <i>The Astrophysical Journal</i>. <b>793</b> (2): L24. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.0021">1409.0021</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014ApJ...793L..24R">2014ApJ...793L..24R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2041-8205%2F793%2F2%2FL24">10.1088/2041-8205/793/2/L24</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118404871">118404871</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Disentangling+Planets+and+Stellar+Activity+for+Gliese+667C&rft.volume=793&rft.issue=2&rft.pages=L24&rft.date=2014&rft_id=info%3Aarxiv%2F1409.0021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118404871%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F2041-8205%2F793%2F2%2FL24&rft_id=info%3Abibcode%2F2014ApJ...793L..24R&rft.aulast=Robertson&rft.aufirst=Paul&rft.au=Mahadevan%2C+Suvrath&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-156">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrysonJenkinsGillilandTwicken2013" class="citation journal cs1">Bryson, Stephen T.; Jenkins, Jon M.; Gilliland, Ronald L.; Twicken, Joseph D.; Clarke, Bruce; Rowe, Jason; Caldwell, Douglas; Batalha, Natalie; Mullally, Fergal; Haas, Michael R.; Tenenbaum, Peter (2013). "Identification of Background False Positives from Kepler Data". <i>Publications of the Astronomical Society of the Pacific</i>. <b>125</b> (930): 889. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1303.0052">1303.0052</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PASP..125..889B">2013PASP..125..889B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F671767">10.1086/671767</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119199796">119199796</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Publications+of+the+Astronomical+Society+of+the+Pacific&rft.atitle=Identification+of+Background+False+Positives+from+Kepler+Data&rft.volume=125&rft.issue=930&rft.pages=889&rft.date=2013&rft_id=info%3Aarxiv%2F1303.0052&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119199796%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F671767&rft_id=info%3Abibcode%2F2013PASP..125..889B&rft.aulast=Bryson&rft.aufirst=Stephen+T.&rft.au=Jenkins%2C+Jon+M.&rft.au=Gilliland%2C+Ronald+L.&rft.au=Twicken%2C+Joseph+D.&rft.au=Clarke%2C+Bruce&rft.au=Rowe%2C+Jason&rft.au=Caldwell%2C+Douglas&rft.au=Batalha%2C+Natalie&rft.au=Mullally%2C+Fergal&rft.au=Haas%2C+Michael+R.&rft.au=Tenenbaum%2C+Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTodorovDemingBurrowsGrillmair2014" class="citation journal cs1">Todorov, Kamen O.; Deming, Drake; Burrows, Adam S.; Grillmair, Carl J. (2014). "Updated Spitzer Emission Spectroscopy of Bright Transiting Hot Jupiter HD189733b". <i>The Astrophysical Journal</i>. <b>796</b> (2): 100. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1410.1400">1410.1400</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014ApJ...796..100T">2014ApJ...796..100T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-637X%2F796%2F2%2F100">10.1088/0004-637X/796/2/100</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118858441">118858441</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Updated+Spitzer+Emission+Spectroscopy+of+Bright+Transiting+Hot+Jupiter+HD189733b&rft.volume=796&rft.issue=2&rft.pages=100&rft.date=2014&rft_id=info%3Aarxiv%2F1410.1400&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118858441%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-637X%2F796%2F2%2F100&rft_id=info%3Abibcode%2F2014ApJ...796..100T&rft.aulast=Todorov&rft.aufirst=Kamen+O.&rft.au=Deming%2C+Drake&rft.au=Burrows%2C+Adam+S.&rft.au=Grillmair%2C+Carl+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStevensonDesertLineBean2014" class="citation journal cs1">Stevenson, Kevin B.; Desert, Jean-Michel; Line, Michael R.; Bean, Jacob L.; Fortney, Jonathan J.; Showman, Adam P.; Kataria, Tiffany; Kreidberg, Laura; McCullough, Peter R.; Henry, Gregory W.; Charbonneau, David; Burrows, Adam; Seager, Sara; Madhusudhan, Nikku; Williamson, Michael H.; Homeier, Derek (2014). "Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy". <i>Science</i>. <b>346</b> (6211): 838–41. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1410.2241">1410.2241</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014Sci...346..838S">2014Sci...346..838S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1256758">10.1126/science.1256758</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25301972">25301972</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:511895">511895</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Thermal+structure+of+an+exoplanet+atmosphere+from+phase-resolved+emission+spectroscopy&rft.volume=346&rft.issue=6211&rft.pages=838-41&rft.date=2014&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A511895%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2014Sci...346..838S&rft_id=info%3Aarxiv%2F1410.2241&rft_id=info%3Apmid%2F25301972&rft_id=info%3Adoi%2F10.1126%2Fscience.1256758&rft.aulast=Stevenson&rft.aufirst=Kevin+B.&rft.au=Desert%2C+Jean-Michel&rft.au=Line%2C+Michael+R.&rft.au=Bean%2C+Jacob+L.&rft.au=Fortney%2C+Jonathan+J.&rft.au=Showman%2C+Adam+P.&rft.au=Kataria%2C+Tiffany&rft.au=Kreidberg%2C+Laura&rft.au=McCullough%2C+Peter+R.&rft.au=Henry%2C+Gregory+W.&rft.au=Charbonneau%2C+David&rft.au=Burrows%2C+Adam&rft.au=Seager%2C+Sara&rft.au=Madhusudhan%2C+Nikku&rft.au=Williamson%2C+Michael+H.&rft.au=Homeier%2C+Derek&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-159">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGillilandCartierAdamsCiardi2014" class="citation journal cs1">Gilliland, Ronald L.; Cartier, Kimberly M. S.; Adams, Elisabeth R.; Ciardi, David R.; Kalas, Paul; Wright, Jason T. (2014). "Hubble Space Telescopehigh-Resolution Imaging Ofkeplersmall and Cool Exoplanet Host Stars". <i>The Astronomical Journal</i>. <b>149</b> (1): 24. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1407.1009">1407.1009</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015AJ....149...24G">2015AJ....149...24G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-6256%2F149%2F1%2F24">10.1088/0004-6256/149/1/24</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55691820">55691820</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=Hubble+Space+Telescopehigh-Resolution+Imaging+Ofkeplersmall+and+Cool+Exoplanet+Host+Stars&rft.volume=149&rft.issue=1&rft.pages=24&rft.date=2014&rft_id=info%3Aarxiv%2F1407.1009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55691820%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-6256%2F149%2F1%2F24&rft_id=info%3Abibcode%2F2015AJ....149...24G&rft.aulast=Gilliland&rft.aufirst=Ronald+L.&rft.au=Cartier%2C+Kimberly+M.+S.&rft.au=Adams%2C+Elisabeth+R.&rft.au=Ciardi%2C+David+R.&rft.au=Kalas%2C+Paul&rft.au=Wright%2C+Jason+T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-160">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLillo-BoxBarradoBouy2014" class="citation journal cs1">Lillo-Box, J.; Barrado, D.; Bouy, H. (2014). "High-resolution imaging of $Kepler$ planet host candidates. A comprehensive comparison of different techniques". <i>Astronomy & Astrophysics</i>. <b>566</b>: A103. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1405.3120">1405.3120</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014A&A...566A.103L">2014A&A...566A.103L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%2F201423497">10.1051/0004-6361/201423497</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55011927">55011927</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=High-resolution+imaging+of+%24Kepler%24+planet+host+candidates.+A+comprehensive+comparison+of+different+techniques&rft.volume=566&rft.pages=A103&rft.date=2014&rft_id=info%3Aarxiv%2F1405.3120&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55011927%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1051%2F0004-6361%2F201423497&rft_id=info%3Abibcode%2F2014A%26A...566A.103L&rft.aulast=Lillo-Box&rft.aufirst=J.&rft.au=Barrado%2C+D.&rft.au=Bouy%2C+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPriceRogersJohn_Asher_JohnsonDawson2014" class="citation journal cs1">Price, Ellen M.; Rogers, Leslie A.; John Asher Johnson; Dawson, Rebekah I. (2014). "How Low Can You Go? The Photoeccentric Effect for Planets of Various Sizes". <i>The Astrophysical Journal</i>. <b>799</b> (1): 17. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1412.0014">1412.0014</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015ApJ...799...17P">2015ApJ...799...17P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-637X%2F799%2F1%2F17">10.1088/0004-637X/799/1/17</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:26780388">26780388</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=How+Low+Can+You+Go%3F+The+Photoeccentric+Effect+for+Planets+of+Various+Sizes&rft.volume=799&rft.issue=1&rft.pages=17&rft.date=2014&rft_id=info%3Aarxiv%2F1412.0014&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A26780388%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-637X%2F799%2F1%2F17&rft_id=info%3Abibcode%2F2015ApJ...799...17P&rft.aulast=Price&rft.aufirst=Ellen+M.&rft.au=Rogers%2C+Leslie+A.&rft.au=John+Asher+Johnson&rft.au=Dawson%2C+Rebekah+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Methods_of_detecting_exoplanets&action=edit&section=40" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20020119150729/http://planetquest.jpl.nasa.gov/">NASA's PlanetQuest</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLunineMacIntoshPeale2009" class="citation journal cs1">Lunine, Jonathan I.; MacIntosh, Bruce; Peale, Stanton (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3141941">"The detection and characterization of exoplanets"</a>. <i>Physics Today</i>. <b>62</b> (5): 46. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhT....62e..46L">2009PhT....62e..46L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3141941">10.1063/1.3141941</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12379824">12379824</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Today&rft.atitle=The+detection+and+characterization+of+exoplanets&rft.volume=62&rft.issue=5&rft.pages=46&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12379824%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1063%2F1.3141941&rft_id=info%3Abibcode%2F2009PhT....62e..46L&rft.aulast=Lunine&rft.aufirst=Jonathan+I.&rft.au=MacIntosh%2C+Bruce&rft.au=Peale%2C+Stanton&rft_id=https%3A%2F%2Fdoi.org%2F10.1063%252F1.3141941&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://www.perseus.gr/Astro-Photometry.htm">Transiting exoplanet light curves</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardy" class="citation web cs1">Hardy, Liam. <a rel="nofollow" class="external text" href="http://www.deepskyvideos.com/videos/other/exoplanet_transit.html">"Exoplanet Transit"</a>. <i>Deep Space Videos</i>. <a href="/wiki/Brady_Haran" title="Brady Haran">Brady Haran</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Deep+Space+Videos&rft.atitle=Exoplanet+Transit&rft.aulast=Hardy&rft.aufirst=Liam&rft_id=http%3A%2F%2Fwww.deepskyvideos.com%2Fvideos%2Fother%2Fexoplanet_transit.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://www.relativitycalculator.com/radial_velocity_equation.shtml">The Radial Velocity Equation in the Search for Exoplanets ( The Doppler Spectroscopy or Wobble Method )</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211202160824/https://www.relativitycalculator.com/radial_velocity_equation.shtml">Archived</a> 2 December 2021 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSackett2010" class="citation journal cs1">Sackett, Penny (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.3991">"Microlensing exoplanets"</a>. <i>Scholarpedia</i>. <b>5</b> (1): 3991. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010SchpJ...5.3991S">2010SchpJ...5.3991S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.3991">10.4249/scholarpedia.3991</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scholarpedia&rft.atitle=Microlensing+exoplanets&rft.volume=5&rft.issue=1&rft.pages=3991&rft.date=2010&rft_id=info%3Adoi%2F10.4249%2Fscholarpedia.3991&rft_id=info%3Abibcode%2F2010SchpJ...5.3991S&rft.aulast=Sackett&rft.aufirst=Penny&rft_id=https%3A%2F%2Fdoi.org%2F10.4249%252Fscholarpedia.3991&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlhejress2023" class="citation journal cs1">Alhejress, Omaymah A. (1 December 2023). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1209/0295-5075/ad152d">"Extraplanetary system under modified gravity"</a>. <i>Europhysics Letters</i>. <b>144</b> (5): 59001. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023EL....14459001A">2023EL....14459001A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1209%2F0295-5075%2Fad152d">10.1209/0295-5075/ad152d</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Europhysics+Letters&rft.atitle=Extraplanetary+system+under+modified+gravity&rft.volume=144&rft.issue=5&rft.pages=59001&rft.date=2023-12-01&rft_id=info%3Adoi%2F10.1209%2F0295-5075%2Fad152d&rft_id=info%3Abibcode%2F2023EL....14459001A&rft.aulast=Alhejress&rft.aufirst=Omaymah+A.&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1209%2F0295-5075%2Fad152d&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMethods+of+detecting+exoplanets" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Exoplanets" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Exoplanet" title="Template:Exoplanet"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Exoplanet" title="Template talk:Exoplanet"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Exoplanet" title="Special:EditPage/Template:Exoplanet"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Exoplanets" style="font-size:114%;margin:0 4em">Exoplanets</div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Planet" title="Planet">Planet</a> <ul><li><a href="/wiki/Definition_of_planet" title="Definition of planet">Definition</a> <ul><li><a href="/wiki/IAU_definition_of_planet" title="IAU definition of planet">IAU</a></li></ul></li></ul></li> <li><a href="/wiki/Planetary_science" title="Planetary science">Planetary science</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:right;">Main topics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exoplanet" title="Exoplanet">Exoplanet</a></li> <li><a href="/wiki/Exoplanet_orbital_and_physical_parameters" title="Exoplanet orbital and physical parameters">Exoplanet orbital and physical parameters</a></li> <li><a class="mw-selflink selflink">Methods of detecting exoplanets</a></li> <li><a href="/wiki/Planetary_system" title="Planetary system">Planetary system</a></li> <li><a href="/wiki/Planet-hosting_star" title="Planet-hosting star">Planet-hosting stars</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="10" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/PDS_70" title="PDS 70"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/PDS_70.jpg/100px-PDS_70.jpg" decoding="async" width="100" height="85" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/PDS_70.jpg/150px-PDS_70.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/PDS_70.jpg/200px-PDS_70.jpg 2x" data-file-width="2000" data-file-height="1692" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:right;">Sizes<br />and <br /><a href="/wiki/List_of_planet_types" title="List of planet types">types</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Terrestrial_planet" title="Terrestrial planet">Terrestrial</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carbon_planet" title="Carbon planet">Carbon planet</a></li> <li><a href="/wiki/Coreless_planet" title="Coreless planet">Coreless planet</a></li> <li><a href="/wiki/Desert_planet" title="Desert planet">Desert planet</a></li> <li><a href="/wiki/Dwarf_planet" title="Dwarf planet">Dwarf planet</a></li> <li><a href="/wiki/Hycean_planet" title="Hycean planet">Hycean planet</a></li> <li><a href="/wiki/Ice_planet" title="Ice planet">Ice planet</a></li> <li><a href="/wiki/Iron_planet" title="Iron planet">Iron planet</a> (Super-Mercury)</li> <li><a href="/wiki/Lava_planet" title="Lava planet">Lava planet</a></li> <li><a href="/wiki/Ocean_world" title="Ocean world">Ocean world</a></li> <li><a href="/wiki/Mega-Earth" title="Mega-Earth">Mega-Earth</a></li> <li><a href="/wiki/Sub-Earth" title="Sub-Earth">Sub-Earth</a></li> <li><a href="/wiki/Super-Earth" title="Super-Earth">Super-Earth</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Gas_giant" title="Gas giant">Gaseous</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Eccentric_Jupiter" title="Eccentric Jupiter">Eccentric Jupiter</a></li> <li><a href="/wiki/Mini-Neptune" title="Mini-Neptune">Mini-Neptune</a> (Gas dwarf)</li> <li><a href="/wiki/Helium_planet" title="Helium planet">Helium planet</a></li> <li><a href="/wiki/Hot_Jupiter" title="Hot Jupiter">Hot Jupiter</a></li> <li><a href="/wiki/Hot_Neptune" title="Hot Neptune">Hot Neptune</a></li> <li><a href="/wiki/Gas_giant" title="Gas giant">Gas giant</a></li> <li><a href="/wiki/Ice_giant" title="Ice giant">Ice giant</a></li> <li><a href="/wiki/Super-Jupiter" title="Super-Jupiter">Super-Jupiter</a></li> <li><a href="/wiki/Super-Neptune" title="Super-Neptune">Super-Neptune</a></li> <li><a href="/wiki/Super-puff" title="Super-puff">Super-puff</a></li> <li><a href="/wiki/Ultra-hot_Jupiter" class="mw-redirect" title="Ultra-hot Jupiter">Ultra-hot Jupiter</a></li> <li><a href="/wiki/Ultra-hot_Neptune" class="mw-redirect" title="Ultra-hot Neptune">Ultra-hot Neptune</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Other types</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Blanet" title="Blanet">Blanet</a></li> <li><a href="/wiki/Brown_dwarf" title="Brown dwarf">Brown dwarf</a></li> <li><a href="/wiki/Chthonian_planet" title="Chthonian planet">Chthonian planet</a></li> <li><a href="/wiki/Circumbinary_planet" title="Circumbinary planet">Circumbinary planet</a></li> <li><a href="/wiki/Circumtriple_planet" title="Circumtriple planet">Circumtriple planet</a></li> <li><a href="/wiki/Disrupted_planet" title="Disrupted planet">Disrupted planet</a></li> <li><a href="/wiki/Double_planet" title="Double planet">Double planet</a></li> <li><a href="/wiki/Ecumenopolis" title="Ecumenopolis">Ecumenopolis</a></li> <li><a href="/wiki/Eyeball_planet" title="Eyeball planet">Eyeball planet</a></li> <li><a href="/wiki/Giant_planet" title="Giant planet">Giant planet</a></li> <li><a href="/wiki/Mesoplanet" title="Mesoplanet">Mesoplanet</a></li> <li><a href="/wiki/Planetary-mass_object" title="Planetary-mass object">Planemo</a></li> <li><a href="/wiki/Brown_dwarf#Low-mass_brown_dwarfs_versus_high-mass_planets" title="Brown dwarf">Planet/Brown dwarf boundary</a></li> <li><a href="/wiki/Planetesimal" title="Planetesimal">Planetesimal</a></li> <li><a href="/wiki/Protoplanet" title="Protoplanet">Protoplanet</a></li> <li><a href="/wiki/Pulsar_planet" title="Pulsar planet">Pulsar planet</a></li> <li><a href="/wiki/Sub-brown_dwarf" title="Sub-brown dwarf">Sub-brown dwarf</a></li> <li><a href="/wiki/Sub-Neptune" title="Sub-Neptune">Sub-Neptune</a></li> <li><a href="/wiki/Toroidal_planet" title="Toroidal planet">Toroidal planet</a></li> <li><a href="/wiki/Ultra-cool_dwarf" title="Ultra-cool dwarf">Ultra-cool dwarf</a></li> <li><a href="/wiki/Ultra-short_period_planet" title="Ultra-short period planet">Ultra-short period planet (USP)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:right;"><a href="/wiki/Formation_and_evolution_of_the_Solar_System" title="Formation and evolution of the Solar System">Formation <br />and <br />evolution</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Accretion_(astrophysics)" title="Accretion (astrophysics)">Accretion</a></li> <li><a href="/wiki/Accretion_disk" title="Accretion disk">Accretion disk</a></li> <li><a href="/wiki/Asteroid_belt" title="Asteroid belt">Asteroid belt</a></li> <li><a href="/wiki/Circumplanetary_disk" title="Circumplanetary disk">Circumplanetary disk</a></li> <li><a href="/wiki/Circumstellar_disc" title="Circumstellar disc">Circumstellar disc</a></li> <li><a href="/wiki/Circumstellar_envelope" title="Circumstellar envelope">Circumstellar envelope</a></li> <li><a href="/wiki/Cosmic_dust" title="Cosmic dust">Cosmic dust</a></li> <li><a href="/wiki/Debris_disk" title="Debris disk">Debris disk</a></li> <li><a href="/wiki/Detached_object" title="Detached object">Detached object</a></li> <li><a href="/wiki/Disrupted_planet" title="Disrupted planet">Disrupted planet</a></li> <li><a href="/wiki/Accretion_disk#Excretion_disk" title="Accretion disk">Excretion disk</a></li> <li><a href="/wiki/Exozodiacal_dust" title="Exozodiacal dust">Exozodiacal dust</a></li> <li><a href="/wiki/Extraterrestrial_materials" title="Extraterrestrial materials">Extraterrestrial materials</a></li> <li><a href="/wiki/Extraterrestrial_sample_curation" title="Extraterrestrial sample curation">Extraterrestrial sample curation</a></li> <li><a href="/wiki/Giant-impact_hypothesis" title="Giant-impact hypothesis">Giant-impact hypothesis</a></li> <li><a href="/wiki/Gravitational_collapse" title="Gravitational collapse">Gravitational collapse</a></li> <li><a href="/wiki/Hills_cloud" title="Hills cloud">Hills cloud</a></li> <li><a href="/wiki/Exoplanet_interiors" title="Exoplanet interiors">Internal structure</a></li> <li><a href="/wiki/Interplanetary_dust_cloud" title="Interplanetary dust cloud">Interplanetary dust cloud</a></li> <li><a href="/wiki/Interplanetary_medium" title="Interplanetary medium">Interplanetary medium</a></li> <li><a href="/wiki/Interplanetary_space" class="mw-redirect" title="Interplanetary space">Interplanetary space</a></li> <li><a href="/wiki/Interstellar_cloud" title="Interstellar cloud">Interstellar cloud</a></li> <li><a href="/wiki/Interstellar_dust" class="mw-redirect" title="Interstellar dust">Interstellar dust</a></li> <li><a href="/wiki/Interstellar_medium" title="Interstellar medium">Interstellar medium</a></li> <li><a href="/wiki/Outer_space#Interstellar_space" title="Outer space">Interstellar space</a></li> <li><a href="/wiki/Kuiper_belt" title="Kuiper belt">Kuiper belt</a></li> <li><a href="/wiki/List_of_interstellar_and_circumstellar_molecules" title="List of interstellar and circumstellar molecules">List of interstellar and circumstellar molecules</a></li> <li><a href="/wiki/Stellar_collision#Formation_of_planets" title="Stellar collision">Merging stars</a></li> <li><a href="/wiki/Molecular_cloud" title="Molecular cloud">Molecular cloud</a></li> <li><a href="/wiki/Nebular_hypothesis" title="Nebular hypothesis">Nebular hypothesis</a></li> <li><a href="/wiki/Oort_cloud" title="Oort cloud">Oort cloud</a></li> <li><a href="/wiki/Outer_space" title="Outer space">Outer space</a></li> <li><a href="/wiki/Planetary_migration" title="Planetary migration">Planetary migration</a></li> <li><a href="/wiki/Planetary_system" title="Planetary system">Planetary system</a></li> <li><a href="/wiki/Planetesimal" title="Planetesimal">Planetesimal</a></li> <li><a href="/wiki/Nebular_hypothesis#Formation_of_planets" title="Nebular hypothesis">Planet formation</a></li> <li><a href="/wiki/Protoplanetary_disk" title="Protoplanetary disk">Protoplanetary disk</a></li> <li><a href="/wiki/Ring_system" title="Ring system">Ring system</a></li> <li><a href="/wiki/Rubble_pile" title="Rubble pile">Rubble pile</a></li> <li><a href="/wiki/Sample-return_mission" title="Sample-return mission">Sample-return mission</a></li> <li><a href="/wiki/Scattered_disc" title="Scattered disc">Scattered disc</a></li> <li><a href="/wiki/Star_formation" title="Star formation">Star formation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:right;"><a href="/wiki/Planetary_system" title="Planetary system">Systems</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exocomet" title="Exocomet">Exocomet</a> <ul><li><a href="/wiki/Interstellar_comet" class="mw-redirect" title="Interstellar comet">Interstellar</a></li></ul></li> <li><a href="/wiki/Exomoon" title="Exomoon">Exomoon</a> <ul><li><a href="/wiki/Tidally_detached_exomoon" title="Tidally detached exomoon">Tidally detached</a></li></ul></li> <li><a href="/wiki/Rogue_planet" title="Rogue planet">Rogue planet</a></li> <li>Orbits <ul><li><a href="/wiki/Retrograde_and_prograde_motion#Exoplanets" title="Retrograde and prograde motion">Retrograde</a></li> <li><a href="/wiki/Co-orbital_configuration#Trojans" title="Co-orbital configuration">Trojan</a></li> <li><a href="/wiki/Orbital_resonance#Mean-motion_resonances_among_extrasolar_planets" title="Orbital resonance">Mean-motion resonances</a></li> <li><a href="/wiki/Titius%E2%80%93Bode_law#Lunar_systems_and_other_planetary_systems" title="Titius–Bode law">Titius–Bode law</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:right;"><a href="/wiki/Planetary_system#Planet-hosting_stars" title="Planetary system">Host stars</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/A-type_main-sequence_star#Planets" title="A-type main-sequence star">A</a></li> <li><a href="/wiki/B-type_main-sequence_star#Planets" title="B-type main-sequence star">B</a></li> <li><a href="/wiki/Binary_star#Planets" title="Binary star">Binary star</a></li> <li><a href="/wiki/Brown_dwarf#Planets_around_brown_dwarfs" title="Brown dwarf">Brown dwarfs</a></li> <li><a href="/wiki/F-type_main-sequence_star#Planets" title="F-type main-sequence star">F/Yellow-white dwarfs</a></li> <li><a href="/wiki/G-type_main-sequence_star#Planets" title="G-type main-sequence star">G/Yellow dwarfs</a></li> <li><a href="/wiki/Herbig_Ae/Be_star#Planets" title="Herbig Ae/Be star">Herbig Ae/Be</a></li> <li><a href="/wiki/K-type_main-sequence_star#Planets" title="K-type main-sequence star">K/Orange dwarfs</a></li> <li><a href="/wiki/Red_dwarf#Planets" title="Red dwarf">M/Red dwarfs</a></li> <li><a href="/wiki/Pulsar_planet" title="Pulsar planet">Pulsar</a></li> <li><a href="/wiki/Red_giant#Planets" title="Red giant">Red giant</a></li> <li><a href="/wiki/Subdwarf_B_star#Planetary_systems" title="Subdwarf B star">Subdwarf B</a></li> <li><a href="/wiki/Subgiant#Planets" title="Subgiant">Subgiant</a></li> <li><a href="/wiki/T_Tauri_star#Planets" title="T Tauri star">T Tauri</a></li> <li><a href="/wiki/White_dwarf#Debris_disks_and_planets" title="White dwarf">White dwarfs</a></li> <li><a href="/wiki/Yellow_giant#Planets" class="mw-redirect" title="Yellow giant">Yellow giants</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:right;"><a class="mw-selflink selflink">Detection</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Astrometry" title="Astrometry">Astrometry</a></li> <li><a class="mw-selflink-fragment" href="#Direct_imaging">Direct imaging</a> <ul><li><a href="/wiki/List_of_directly_imaged_exoplanets" title="List of directly imaged exoplanets">list</a></li></ul></li> <li><a href="/wiki/Gravitational_microlensing" title="Gravitational microlensing">Microlensing</a> <ul><li><a href="/wiki/List_of_exoplanets_detected_by_microlensing" title="List of exoplanets detected by microlensing">list</a></li></ul></li> <li><a href="/wiki/Polarimetry" title="Polarimetry">Polarimetry</a></li> <li><a class="mw-selflink-fragment" href="#Pulsar_timing">Timing</a> <ul><li><a href="/wiki/List_of_exoplanets_detected_by_timing" title="List of exoplanets detected by timing">list</a></li></ul></li> <li><a href="/wiki/Doppler_spectroscopy" title="Doppler spectroscopy">Radial velocity</a> <ul><li><a href="/wiki/List_of_exoplanets_detected_by_radial_velocity" title="List of exoplanets detected by radial velocity">list</a></li></ul></li> <li><a class="mw-selflink-fragment" href="#Transit_photometry">Transit method</a> <ul><li><a href="/wiki/List_of_transiting_exoplanets" title="List of transiting exoplanets">list</a></li></ul></li> <li><a href="/wiki/Transit-timing_variation" title="Transit-timing variation">Transit-timing variation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:right;"><a href="/wiki/Planetary_habitability" title="Planetary habitability">Habitability</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Astrobiology" title="Astrobiology">Astrobiology</a></li> <li><a href="/wiki/Astrooceanography" class="mw-redirect" title="Astrooceanography">Astrooceanography</a></li> <li><a href="/wiki/Circumstellar_habitable_zone" class="mw-redirect" title="Circumstellar habitable zone">Circumstellar habitable zone</a></li> <li><a href="/wiki/Earth_analog" title="Earth analog">Earth analog</a></li> <li><a href="/wiki/Extraterrestrial_liquid_water" title="Extraterrestrial liquid water">Extraterrestrial liquid water</a></li> <li><a href="/wiki/Galactic_habitable_zone" title="Galactic habitable zone">Galactic habitable zone</a></li> <li><a href="/wiki/Habitability_of_binary_star_systems" title="Habitability of binary star systems">Habitability of binary star systems</a></li> <li><a href="/wiki/Habitability_of_F-type_main-sequence_star_systems" title="Habitability of F-type main-sequence star systems">Habitability of F-type main-sequence star systems</a></li> <li><a href="/wiki/Habitability_of_K-type_main-sequence_star_systems" title="Habitability of K-type main-sequence star systems">Habitability of K-type main-sequence star systems</a></li> <li><a href="/wiki/Habitability_of_natural_satellites" title="Habitability of natural satellites">Habitability of natural satellites</a></li> <li><a href="/wiki/Habitability_of_neutron_star_systems" title="Habitability of neutron star systems">Habitability of neutron star systems</a></li> <li><a href="/wiki/Habitability_of_red_dwarf_systems" title="Habitability of red dwarf systems">Habitability of red dwarf systems</a></li> <li><a href="/wiki/Habitability_of_yellow_dwarf_systems" title="Habitability of yellow dwarf systems">Habitability of yellow dwarf systems</a></li> <li><a href="/wiki/Habitable_zone_for_complex_life" title="Habitable zone for complex life">Habitable zone for complex life</a></li> <li><a href="/wiki/List_of_potentially_habitable_exoplanets" title="List of potentially habitable exoplanets">List of potentially habitable exoplanets</a></li> <li><a href="/wiki/Tholin" title="Tholin">Tholin</a></li> <li><a href="/wiki/Superhabitable_planet" class="mw-redirect" title="Superhabitable planet">Superhabitable planet</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:right;">Catalogues</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Catalog_of_Nearby_Habitable_Systems" title="Catalog of Nearby Habitable Systems">Nearby Habitable Systems</a></li> <li><a href="/wiki/Exoplanet_Data_Explorer" title="Exoplanet Data Explorer">Exoplanet Data Explorer</a></li> <li><a href="/wiki/Extrasolar_Planets_Encyclopaedia" title="Extrasolar Planets Encyclopaedia">Extrasolar Planets Encyclopaedia</a></li> <li><a href="/wiki/NASA_Exoplanet_Archive" title="NASA Exoplanet Archive">NASA Exoplanet Archive</a></li> <li><a href="/wiki/NASA_Star_and_Exoplanet_Database" title="NASA Star and Exoplanet Database">NASA Star and Exoplanet Database</a></li> <li><a href="/wiki/Open_Exoplanet_Catalogue" title="Open Exoplanet Catalogue">Open Exoplanet Catalogue</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:right;"><a href="/wiki/Lists_of_planets" title="Lists of planets">Lists</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Exoplanetary systems <ul><li><a href="/wiki/List_of_exoplanetary_host_stars" class="mw-redirect" title="List of exoplanetary host stars">Host stars</a></li> <li><a href="/wiki/List_of_multiplanetary_systems" title="List of multiplanetary systems">Multiplanetary systems</a></li> <li><a href="/wiki/List_of_stars_with_proplyds" title="List of stars with proplyds">Stars with proto-planetary discs</a></li></ul></li></ul> <ul><li><a href="/wiki/Lists_of_exoplanets" class="mw-redirect" title="Lists of exoplanets">Exoplanets</a> <ul><li><a href="/wiki/Discoveries_of_exoplanets" title="Discoveries of exoplanets">Discoveries</a></li> <li><a href="/wiki/List_of_exoplanet_extremes" title="List of exoplanet extremes">Extremes</a></li> <li><a href="/wiki/List_of_exoplanet_firsts" title="List of exoplanet firsts">Firsts</a></li> <li><a href="/wiki/List_of_nearest_exoplanets" title="List of nearest exoplanets">Nearest</a></li> <li><a href="/wiki/List_of_largest_exoplanets" title="List of largest exoplanets">Largest</a></li> <li><a href="/wiki/List_of_most_massive_exoplanets" class="mw-redirect" title="List of most massive exoplanets">Heaviest</a></li> <li><a href="/wiki/List_of_nearest_terrestrial_exoplanet_candidates" title="List of nearest terrestrial exoplanet candidates">Terrestrial candidates</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_by_the_Kepler_space_telescope" title="List of exoplanets discovered by the Kepler space telescope">Kepler</a> <ul><li><a href="/wiki/List_of_exoplanets_discovered_by_the_Kepler_space_telescope:_1%E2%80%93500" title="List of exoplanets discovered by the Kepler space telescope: 1–500">1–500</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_by_the_Kepler_space_telescope:_501%E2%80%931000" title="List of exoplanets discovered by the Kepler space telescope: 501–1000">501–1000</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_by_the_Kepler_space_telescope:_1001%E2%80%931500" title="List of exoplanets discovered by the Kepler space telescope: 1001–1500">1001–1500</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_by_the_Kepler_space_telescope:_1501%E2%80%932000" title="List of exoplanets discovered by the Kepler space telescope: 1501–2000">1501–2000</a></li></ul></li> <li><a href="/wiki/List_of_exoplanets_observed_during_Kepler%27s_K2_mission" title="List of exoplanets observed during Kepler's K2 mission">K2</a></li> <li><a href="/wiki/List_of_potentially_habitable_exoplanets" title="List of potentially habitable exoplanets">Potentially habitable</a></li> <li><a href="/wiki/List_of_proper_names_of_exoplanets" title="List of proper names of exoplanets">Proper names</a></li></ul></li></ul> <ul><li>Discovered exoplanets by year <ul><li><a href="/wiki/List_of_exoplanets_discovered_before_2000" title="List of exoplanets discovered before 2000">before 2000</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_between_2000%E2%80%932009" title="List of exoplanets discovered between 2000–2009">2000–2009</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2010" title="List of exoplanets discovered in 2010">2010</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2011" title="List of exoplanets discovered in 2011">2011</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2012" title="List of exoplanets discovered in 2012">2012</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2013" title="List of exoplanets discovered in 2013">2013</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2014" title="List of exoplanets discovered in 2014">2014</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2015" title="List of exoplanets discovered in 2015">2015</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2016" title="List of exoplanets discovered in 2016">2016</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2017" title="List of exoplanets discovered in 2017">2017</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2018" title="List of exoplanets discovered in 2018">2018</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2019" title="List of exoplanets discovered in 2019">2019</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2020" title="List of exoplanets discovered in 2020">2020</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2021" title="List of exoplanets discovered in 2021">2021</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2022" title="List of exoplanets discovered in 2022">2022</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2023" title="List of exoplanets discovered in 2023">2023</a></li> <li><a href="/wiki/List_of_exoplanets_discovered_in_2024" title="List of exoplanets discovered in 2024">2024</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:right;">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carl_Sagan_Institute" title="Carl Sagan Institute">Carl Sagan Institute</a></li> <li><a href="/wiki/Exoplanet_naming_convention" title="Exoplanet naming convention">Exoplanet naming convention</a></li> <li><a href="/wiki/Phase_curve_(astronomy)#Exoplanets" title="Phase curve (astronomy)">Exoplanet phase curves</a></li> <li><a href="/wiki/Exoplanetary_Circumstellar_Environments_and_Disk_Explorer" title="Exoplanetary Circumstellar Environments and Disk Explorer">Exoplanetary Circumstellar Environments and Disk Explorer</a></li> <li><a href="/wiki/Extragalactic_planet" title="Extragalactic planet">Extragalactic planet</a></li> <li><a href="/wiki/Extrasolar_planets_in_fiction" title="Extrasolar planets in fiction">Extrasolar planets in fiction</a></li> <li><a href="/wiki/Geodynamics_of_terrestrial_exoplanets" title="Geodynamics of terrestrial exoplanets">Geodynamics of terrestrial exoplanets</a></li> <li><a href="/wiki/Neptunian_desert" title="Neptunian desert">Neptunian desert</a></li> <li><a href="/wiki/Nexus_for_Exoplanet_System_Science" title="Nexus for Exoplanet System Science">Nexus for Exoplanet System Science</a></li> <li><a href="/wiki/Globular_cluster#Planets" title="Globular cluster">Planets in globular clusters</a></li> <li><a href="/wiki/Small_planet_radius_gap" title="Small planet radius gap">Small planet radius gap</a></li> <li><a href="/wiki/Sudarsky%27s_gas_giant_classification" title="Sudarsky's gas giant classification">Sudarsky's gas giant classification</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Discoveries_of_exoplanets" title="Discoveries of exoplanets">Discoveries of exoplanets</a></li> <li><a href="/wiki/List_of_exoplanet_search_projects" title="List of exoplanet search projects">Search projects</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Exoplanet_search_projects" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Exoplanet_search_projects" title="Template:Exoplanet search projects"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Exoplanet_search_projects" title="Template talk:Exoplanet search projects"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Exoplanet_search_projects" title="Special:EditPage/Template:Exoplanet search projects"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Exoplanet_search_projects" style="font-size:114%;margin:0 4em"><a href="/wiki/List_of_exoplanet_search_projects" title="List of exoplanet search projects">Exoplanet search projects</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Exoplanetology" class="mw-redirect" title="Exoplanetology">Exoplanetology</a></li> <li><a href="/wiki/Exoplanet" title="Exoplanet">Exoplanet</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Ground-based</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anglo-Australian_Planet_Search" title="Anglo-Australian Planet Search">AAPS</a></li> <li><a href="/wiki/Automated_Planet_Finder" title="Automated Planet Finder">APF</a></li> <li><a href="/wiki/Swiss_1.2-metre_Leonhard_Euler_Telescope" title="Swiss 1.2-metre Leonhard Euler Telescope">CORALIE</a></li> <li><a href="/wiki/East-Asian_Planet_Search_Network" title="East-Asian Planet Search Network">EAPSNet</a></li> <li><a href="/wiki/ELODIE_spectrograph" title="ELODIE spectrograph">ELODIE</a></li> <li><a href="/wiki/Extremely_Large_Telescope#Instrumentation" title="Extremely Large Telescope">EPICS</a></li> <li><a href="/wiki/ESPRESSO" title="ESPRESSO">ESPRESSO</a></li> <li><a href="/wiki/Fiber-optic_Improved_Next-generation_Doppler_Search_for_Exo-Earths" title="Fiber-optic Improved Next-generation Doppler Search for Exo-Earths">FINDS Exo-Earths</a></li> <li><a href="/wiki/Geneva_Extrasolar_Planet_Search" title="Geneva Extrasolar Planet Search">Geneva</a> <ul><li><a href="/wiki/High_Accuracy_Radial_Velocity_Planet_Searcher" title="High Accuracy Radial Velocity Planet Searcher">HARPS</a></li> <li><a href="/wiki/HARPS-N" title="HARPS-N">HARPS-N</a></li></ul></li> <li><a href="/wiki/Gemini_Planet_Imager" title="Gemini Planet Imager">GPI</a></li> <li><a href="/wiki/HATNet_Project" title="HATNet Project">HATNet</a></li> <li><a href="/wiki/Hunt_for_Exomoons_with_Kepler" title="Hunt for Exomoons with Kepler">HEK</a></li> <li><a href="/wiki/HiCIAO" class="mw-redirect" title="HiCIAO">HiCIAO</a></li> <li><a href="/wiki/HIRES" class="mw-redirect" title="HIRES">HIRES</a></li> <li><a href="/wiki/Kilodegree_Extremely_Little_Telescope" title="Kilodegree Extremely Little Telescope">KELT</a></li> <li><a href="/wiki/Lick%E2%80%93Carnegie_Exoplanet_Survey" title="Lick–Carnegie Exoplanet Survey">LCES</a></li> <li><a href="/wiki/Magellan_Planet_Search_Program" title="Magellan Planet Search Program">Magellan</a></li> <li><a href="/wiki/MARVELS" class="mw-redirect" title="MARVELS">MARVELS</a></li> <li><a href="/wiki/MASCARA" title="MASCARA">MASCARA</a></li> <li><a href="/wiki/MEarth_Project" title="MEarth Project">MEarth</a></li> <li><a href="/wiki/MicroFUN" title="MicroFUN">MicroFUN</a></li> <li><a href="/wiki/Miniature_Exoplanet_Radial_Velocity_Array" title="Miniature Exoplanet Radial Velocity Array">MINERVA</a> <ul><li><a href="/wiki/MINERVA-Australis" title="MINERVA-Australis">Australis</a></li></ul></li> <li><a href="/wiki/Microlensing_Observations_in_Astrophysics" title="Microlensing Observations in Astrophysics">MOA</a></li> <li><a href="/wiki/N2K_Consortium" title="N2K Consortium">N2K</a></li> <li><a href="/wiki/Next-Generation_Transit_Survey" title="Next-Generation Transit Survey">NGTS</a></li> <li><a href="/wiki/New_Mexico_Exoplanet_Spectroscopic_Survey_Instrument" title="New Mexico Exoplanet Spectroscopic Survey Instrument">NESSI</a></li> <li><a href="/wiki/Optical_Gravitational_Lensing_Experiment" title="Optical Gravitational Lensing Experiment">OGLE</a></li> <li><a href="/wiki/Okayama_Planet_Search_Program" title="Okayama Planet Search Program">OPSP</a></li> <li><a href="/wiki/PlanetPol" title="PlanetPol">PlanetPol</a></li> <li><a href="/wiki/Project_1640" title="Project 1640">Project 1640</a></li> <li><a href="/wiki/PRL_Advanced_Radial-velocity_All-sky_Search" title="PRL Advanced Radial-velocity All-sky Search">PARAS</a></li> <li><a href="/wiki/Strategic_Explorations_of_Exoplanets_and_Disks_with_Subaru" title="Strategic Explorations of Exoplanets and Disks with Subaru">SEEDS</a></li> <li><a href="/wiki/Search_for_extraterrestrial_intelligence" title="Search for extraterrestrial intelligence">SETI</a></li> <li><a href="/wiki/SOPHIE_%C3%A9chelle_spectrograph" title="SOPHIE échelle spectrograph">SOPHIE</a></li> <li><a href="/wiki/SPECULOOS" title="SPECULOOS">SPECULOOS</a></li> <li><a href="/wiki/Spectro-Polarimetric_High-Contrast_Exoplanet_Research" title="Spectro-Polarimetric High-Contrast Exoplanet Research">SPHERE</a></li> <li><a href="/wiki/Wide_Angle_Search_for_Planets" title="Wide Angle Search for Planets">SuperWASP</a></li> <li><a href="/wiki/Systemic_(amateur_extrasolar_planet_search_project)" title="Systemic (amateur extrasolar planet search project)">Systemic</a></li> <li><a href="/wiki/Trans-Atlantic_Exoplanet_Survey" title="Trans-Atlantic Exoplanet Survey">TrES</a></li> <li><a href="/wiki/XO_Telescope" class="mw-redirect" title="XO Telescope">XO Telescope</a></li> <li><a href="/wiki/ZIMPOL/CHEOPS" title="ZIMPOL/CHEOPS">ZIMPOL/CHEOPS</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="3" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:HST_SWEEPS_Detail_2006.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/HST_SWEEPS_Detail_2006.jpg/80px-HST_SWEEPS_Detail_2006.jpg" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/HST_SWEEPS_Detail_2006.jpg/120px-HST_SWEEPS_Detail_2006.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5b/HST_SWEEPS_Detail_2006.jpg/160px-HST_SWEEPS_Detail_2006.jpg 2x" data-file-width="800" data-file-height="800" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:Keplerspacecraft-FocalPlane-cutout.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Keplerspacecraft-FocalPlane-cutout.svg/80px-Keplerspacecraft-FocalPlane-cutout.svg.png" decoding="async" width="80" height="46" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Keplerspacecraft-FocalPlane-cutout.svg/120px-Keplerspacecraft-FocalPlane-cutout.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Keplerspacecraft-FocalPlane-cutout.svg/160px-Keplerspacecraft-FocalPlane-cutout.svg.png 2x" data-file-width="716" data-file-height="416" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:LombergA1024.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/be/LombergA1024.jpg/80px-LombergA1024.jpg" decoding="async" width="80" height="60" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/be/LombergA1024.jpg/120px-LombergA1024.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/be/LombergA1024.jpg/160px-LombergA1024.jpg 2x" data-file-width="1596" data-file-height="1206" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Space missions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Past</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/MOST_(satellite)" class="mw-redirect" title="MOST (satellite)">MOST</a> <span style="font-size:85%;">(2003–2019)</span></li> <li><a href="/wiki/Sagittarius_Window_Eclipsing_Extrasolar_Planet_Search" title="Sagittarius Window Eclipsing Extrasolar Planet Search">SWEEPS</a> <span style="font-size:85%;">using <a href="/wiki/Hubble_Space_Telescope" title="Hubble Space Telescope">HST</a></span> <span style="font-size:85%;">(2006)</span></li> <li><a href="/wiki/CoRoT" title="CoRoT">CoRoT</a> <span style="font-size:85%;">(2006–2013)</span></li> <li><a href="/wiki/EPOXI" title="EPOXI">EPOXI</a> <span style="font-size:85%;">using <i><a href="/wiki/Deep_Impact_(spacecraft)" title="Deep Impact (spacecraft)">Deep Impact</a></i></span> <span style="font-size:85%;">(2008–2013)</span></li> <li><a href="/wiki/Kepler_space_telescope" title="Kepler space telescope">Kepler</a> <span style="font-size:85%;">(2009–2018)</span> <ul><li><span style="font-size:85%;"><a href="/wiki/List_of_exoplanets_discovered_by_the_Kepler_space_telescope" title="List of exoplanets discovered by the Kepler space telescope">detected exoplanets</a></span></li></ul></li> <li><a href="/wiki/ASTERIA_(spacecraft)" title="ASTERIA (spacecraft)">ASTERIA</a> <span style="font-size:85%;">(2017–2020)</span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Current</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Gaia_(spacecraft)" title="Gaia (spacecraft)">Gaia</a></i> <span style="font-size:85%;">(2013–present)</span></li> <li><a href="/wiki/Transiting_Exoplanet_Survey_Satellite" title="Transiting Exoplanet Survey Satellite">TESS</a> <span style="font-size:85%;">(2018–present)</span></li> <li><a href="/wiki/CHEOPS" title="CHEOPS">CHEOPS</a> <span style="font-size:85%;">(2019–present)</span></li> <li><i><a href="/wiki/Hayabusa2" title="Hayabusa2">Hayabusa2</a></i> <span style="font-size:85%;">(2021–present)</span></li> <li><a href="/wiki/James_Webb_Space_Telescope" title="James Webb Space Telescope">James Webb Space Telescope</a> <span style="font-size:85%;">(2021–present)</span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Planned</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/PLATO_(spacecraft)" title="PLATO (spacecraft)">PLATO</a></i> <span style="font-size:85%;">(2026)</span></li> <li><a href="/wiki/ARIEL" title="ARIEL">ARIEL</a> <span style="font-size:85%;">(2029)</span></li> <li><a href="/wiki/Nancy_Grace_Roman_Space_Telescope" title="Nancy Grace Roman Space Telescope">Nancy Grace Roman Space Telescope</a> <span style="font-size:85%;">(mid-2020s)</span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Proposed</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exoplanetary_Circumstellar_Environments_and_Disk_Explorer" title="Exoplanetary Circumstellar Environments and Disk Explorer">EXCEDE</a></li> <li><a href="/wiki/Habitable_Exoplanet_Imaging_Mission" class="mw-redirect" title="Habitable Exoplanet Imaging Mission">HabEx</a></li> <li><a href="/wiki/Large_Interferometer_For_Exoplanets" title="Large Interferometer For Exoplanets">LIFE</a></li> <li><a href="/wiki/Large_Ultraviolet_Optical_Infrared_Surveyor" title="Large Ultraviolet Optical Infrared Surveyor">LUVOIR</a></li> <li><a href="/wiki/Nautilus_Deep_Space_Observatory" title="Nautilus Deep Space Observatory">Nautilus Deep Space Observatory</a></li> <li><a href="/wiki/New_Worlds_Mission" title="New Worlds Mission">New Worlds Mission</a></li> <li><a href="/wiki/Origins_Space_Telescope" title="Origins Space Telescope">OST</a></li> <li><a href="/wiki/PEGASE" title="PEGASE">PEGASE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Cancelled</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Darwin_(spacecraft)" title="Darwin (spacecraft)">Darwin</a></i></li> <li><a href="/wiki/EChO" title="EChO">EChO</a></li> <li><i><a href="/wiki/Eddington_(spacecraft)" title="Eddington (spacecraft)">Eddington</a></i></li> <li><a href="/wiki/Space_Interferometry_Mission" title="Space Interferometry Mission">Space Interferometry Mission</a></li> <li><a href="/wiki/Terrestrial_Planet_Finder" title="Terrestrial Planet Finder">Terrestrial Planet Finder</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Detection methods</a></li> <li><a href="/wiki/Discoveries_of_exoplanets" title="Discoveries of exoplanets">Discoveries of exoplanets</a></li> <li><a href="/wiki/Habitable_zone_for_complex_life" title="Habitable zone for complex life">Habitable zone for complex life</a></li> <li><a href="/wiki/Lists_of_exoplanets" class="mw-redirect" title="Lists of exoplanets">Lists of exoplanets</a> <ul><li><a href="/wiki/List_of_nearest_exoplanets" title="List of nearest exoplanets">nearest</a></li></ul></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Exoplanet_search_projects" title="Category:Exoplanet search projects">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Exoplanet_search_projects" class="extiw" title="commons:Category:Exoplanet search projects"><b>Commons</b></a></li></ul> </div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portals</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/19px-Crab_Nebula.jpg" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/29px-Crab_Nebula.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/38px-Crab_Nebula.jpg 2x" data-file-width="3864" data-file-height="3864" /></span></span> </span><a href="/wiki/Portal:Astronomy" title="Portal:Astronomy">Astronomy</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:He1523a.jpg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/16px-He1523a.jpg" decoding="async" width="16" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/25px-He1523a.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/33px-He1523a.jpg 2x" data-file-width="180" data-file-height="207" /></a></span> </span><a href="/wiki/Portal:Stars" title="Portal:Stars">Stars</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/19px-RocketSunIcon.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/29px-RocketSunIcon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/38px-RocketSunIcon.svg.png 2x" data-file-width="128" data-file-height="128" /></span></span> </span><a href="/wiki/Portal:Spaceflight" title="Portal:Spaceflight">Spaceflight</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/21px-Earth-moon.jpg" decoding="async" width="21" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/32px-Earth-moon.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/42px-Earth-moon.jpg 2x" data-file-width="3000" data-file-height="2400" /></span></span> </span><a href="/wiki/Portal:Outer_space" title="Portal:Outer space">Outer space</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/15px-Solar_system.jpg" decoding="async" width="15" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/23px-Solar_system.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/30px-Solar_system.jpg 2x" data-file-width="4500" data-file-height="5600" /></span></span> </span><a href="/wiki/Portal:Solar_System" title="Portal:Solar System">Solar System</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_kalzium.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/19px-Nuvola_apps_kalzium.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/29px-Nuvola_apps_kalzium.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/38px-Nuvola_apps_kalzium.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Science" title="Portal:Science">Science</a></li></ul></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐qkhmf Cached time: 20241123041504 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.095 seconds Real time usage: 2.318 seconds Preprocessor visited node count: 12557/1000000 Post‐expand include size: 498840/2097152 bytes Template argument size: 4900/2097152 bytes Highest expansion depth: 23/100 Expensive parser function count: 27/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 656861/5000000 bytes Lua time usage: 1.352/10.000 seconds Lua memory usage: 9208536/52428800 bytes Lua Profile: MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 260 ms 18.1% ? 200 ms 13.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 180 ms 12.5% dataWrapper <mw.lua:672> 120 ms 8.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 100 ms 6.9% gsub 100 ms 6.9% recursiveClone <mwInit.lua:45> 60 ms 4.2% type 60 ms 4.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::setTTL 40 ms 2.8% select_one <Module:Citation/CS1/Utilities:426> 40 ms 2.8% [others] 280 ms 19.4% Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1935.905 1 -total 67.35% 1303.897 1 Template:Reflist 48.18% 932.630 107 Template:Cite_journal 5.92% 114.602 28 Template:Cite_web 5.26% 101.805 1 Template:Exoplanet 4.65% 89.946 1 Template:Short_description 2.83% 54.713 2 Template:Pagetype 2.73% 52.909 2 Template:Citation_needed 2.73% 52.789 3 Template:Fix 2.53% 48.987 1 Template:Portal_bar --> <!-- Saved in parser cache with key enwiki:pcache:idhash:7290120-0!canonical and timestamp 20241123041504 and revision id 1259063070. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Methods_of_detecting_exoplanets&oldid=1259063070">https://en.wikipedia.org/w/index.php?title=Methods_of_detecting_exoplanets&oldid=1259063070</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Scientific_techniques" title="Category:Scientific techniques">Scientific techniques</a></li><li><a href="/wiki/Category:Exoplanetology" title="Category:Exoplanetology">Exoplanetology</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">CS1 maint: unfit URL</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_April_2019" title="Category:Use dmy dates from April 2019">Use dmy dates from April 2019</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_January_2024" title="Category:Articles containing potentially dated statements from January 2024">Articles containing potentially dated statements from January 2024</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2015" title="Category:Articles with unsourced statements from July 2015">Articles with unsourced statements from July 2015</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_July_2015" title="Category:Wikipedia articles needing clarification from July 2015">Wikipedia articles needing clarification from July 2015</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2022" title="Category:Articles containing potentially dated statements from 2022">Articles containing potentially dated statements from 2022</a></li><li><a href="/wiki/Category:Wikipedia_articles_in_need_of_updating_from_July_2024" title="Category:Wikipedia articles in need of updating from July 2024">Wikipedia articles in need of updating from July 2024</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_in_need_of_updating" title="Category:All Wikipedia articles in need of updating">All Wikipedia articles in need of updating</a></li><li><a href="/wiki/Category:Articles_containing_video_clips" title="Category:Articles containing video clips">Articles containing video clips</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 23 November 2024, at 04:14<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Methods_of_detecting_exoplanets&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-gzbbg","wgBackendResponseTime":146,"wgPageParseReport":{"limitreport":{"cputime":"2.095","walltime":"2.318","ppvisitednodes":{"value":12557,"limit":1000000},"postexpandincludesize":{"value":498840,"limit":2097152},"templateargumentsize":{"value":4900,"limit":2097152},"expansiondepth":{"value":23,"limit":100},"expensivefunctioncount":{"value":27,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":656861,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1935.905 1 -total"," 67.35% 1303.897 1 Template:Reflist"," 48.18% 932.630 107 Template:Cite_journal"," 5.92% 114.602 28 Template:Cite_web"," 5.26% 101.805 1 Template:Exoplanet"," 4.65% 89.946 1 Template:Short_description"," 2.83% 54.713 2 Template:Pagetype"," 2.73% 52.909 2 Template:Citation_needed"," 2.73% 52.789 3 Template:Fix"," 2.53% 48.987 1 Template:Portal_bar"]},"scribunto":{"limitreport-timeusage":{"value":"1.352","limit":"10.000"},"limitreport-memusage":{"value":9208536,"limit":52428800},"limitreport-profile":[["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","260","18.1"],["?","200","13.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","180","12.5"],["dataWrapper \u003Cmw.lua:672\u003E","120","8.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","100","6.9"],["gsub","100","6.9"],["recursiveClone \u003CmwInit.lua:45\u003E","60","4.2"],["type","60","4.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::setTTL","40","2.8"],["select_one \u003CModule:Citation/CS1/Utilities:426\u003E","40","2.8"],["[others]","280","19.4"]]},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-qkhmf","timestamp":"20241123041504","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Methods of detecting exoplanets","url":"https:\/\/en.wikipedia.org\/wiki\/Methods_of_detecting_exoplanets","sameAs":"http:\/\/www.wikidata.org\/entity\/Q591022","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q591022","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-10-04T19:50:17Z","dateModified":"2024-11-23T04:14:46Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/fd\/Confirmed_exoplanets_by_methods_EPE.svg","headline":"overview about the methods of detecting exoplanets"}</script> </body> </html>