CINXE.COM

Search results for: autonomic nervous

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: autonomic nervous</title> <meta name="description" content="Search results for: autonomic nervous"> <meta name="keywords" content="autonomic nervous"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="autonomic nervous" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="autonomic nervous"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 299</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: autonomic nervous</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">299</span> Comparison of Effects over the Autonomic Nervous System When Using Force Training and Interval Training in Indoor Cycling with University Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Botero">Daniel Botero</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Rubiano"> Oscar Rubiano</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20P.%20Barragan"> Pedro P. Barragan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Baron"> Jaime Baron</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Rodriguez%20Perdomo"> Leonardo Rodriguez Perdomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Rodriguez"> Jaime Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade interval training (IT) has gained importance when is compare with strength training (ST). However, there are few studies analyzing the impact of these training over the autonomic nervous system (ANS). This work has aimed to compare the activity of the autonomic nervous system, when is expose to an IT or ST indoor cycling mode. After approval by the ethics committee, a cross-over clinical trial with 22 healthy participants (age 21 ± 3 years) was implemented. The selection of participants for the groups with sequence force-interval (F-I) and interval-force (I-F) was made randomly with assignation of 11 participants for each group. The temporal series of heart rate was obtained before and after each training using the POLAR TEAM® heart monitor. The evaluation of the ANS was performed with spectral analysis of the heart rate variability (HRV) using the fast Fourier transform (Kubios software). A training of 8 weeks in each sequence (4 weeks with each training) with an intermediate period of two weeks of washout was implemented for each group. The power parameter of the HRV in the low frequency band (LF = 0.04-0.15Hz related to the sympathetic nervous system), high frequency (HF = 0.15-0.4Hz, related to the parasympathetic) and LF/HF (with reference to a modulation of parasympathetic over the sympathetic), were calculated. Afterward, the difference between the parameters before and after was realized. Then, to evaluate statistical differences between each training was implemented the method of Wellek (Wellek and Blettner, 2012, Medicine, 109 (15), 276-81). To determine the difference of effect over parasympathetic when FT and IT are used, the T test is implemented obtaining a T value of 0.73 with p-value ≤ 0.1. For the sympathetic was obtained a T of 0.33 with p ≤ 0.1 and for LF/HF the T was 1.44 with a p ≥ 0.1. Then, the carry over effect was evaluated and was not present. Significant changes over autonomic activity with strength or interval training were not observed. However, a modulation of the parasympathetic over the sympathetic can be observed. Probably, these findings should be explained because the sample is little and/or the time of training was insufficient to generate changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous" title="autonomic nervous">autonomic nervous</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20training" title=" force training"> force training</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20cycling" title=" indoor cycling"> indoor cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20training" title=" interval training"> interval training</a> </p> <a href="https://publications.waset.org/abstracts/95284/comparison-of-effects-over-the-autonomic-nervous-system-when-using-force-training-and-interval-training-in-indoor-cycling-with-university-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">298</span> Autonomic Nervous System Changes Associated with Rheumatoid Arthritis: Clinical and Electrophysiological Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Kamal%20Aziz%20Saba">Emmanuel Kamal Aziz Saba</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Al-Moghazy%20Sultan"> Hussein Al-Moghazy Sultan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to evaluate clinically and electro physiologically the autonomic nervous system changes associated with rheumatoid arthritis (RA). The present study included 25 patients with RA [22 women (88%)] and 30 apparently healthy control subjects [27 women (90%)]. A thorough clinical examination was carried out. Disease activity and functional disability were assessed. Tests for assessment of autonomic functions include active and passive orthostatic stress tests, and sympathetic skin response (SSR). The presence of abnormality in 2 tests or more was a clue for the presence of autonomic neuropathy (AN). Sural sensory nerve conduction study and posterior tibial motor nerve conduction study were done. There was a statistically significant decrease in standing systolic and diastolic blood pressure (BP) components of the active orthostatic stress test and SSR amplitude as well as statistically significant prolongation of SSR latency of RA patients when compared to control. Three patients (12%) had clinical symptoms suggestive of AN; increased to 14 patients (56 %) when orthostatic stress tests and SSR were utilized. There were no statistically significant differences between patients with different disease activity score 28 with 4 variables grades of RA activity and SSR latency and amplitude. There were no statistically significant differences between patients with different Stanford Health Assessment Questionnaire Disability Index grades of RA functional disability and SSR latency and amplitude. In conclusion, autonomic neuropathy is a common extra-articular manifestation of RA affecting sympathetic and parasympathetic fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20neuropathy" title="autonomic neuropathy">autonomic neuropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=orthostatic%20stress%20test" title=" orthostatic stress test"> orthostatic stress test</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=sympathetic%20skin%20response" title=" sympathetic skin response"> sympathetic skin response</a> </p> <a href="https://publications.waset.org/abstracts/30914/autonomic-nervous-system-changes-associated-with-rheumatoid-arthritis-clinical-and-electrophysiological-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">297</span> Heart Rate Variability Responses Pre-, during, and Post-Exercise among Special Olympics Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kearney%20Dover">Kearney Dover</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviene%20Temple"> Viviene Temple</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynneth%20Stuart-Hill"> Lynneth Stuart-Hill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heart Rate Variability (HRV) is the beat-to-beat variation in adjacent heartbeats. HRV is a non-invasive measure of the autonomic nervous system (ANS) and provides information about the sympathetic (SNS) and parasympathetic (PNS) nervous systems. The HRV of a well-conditioned heart is generally high at rest, whereas low HRV has been associated with adverse outcomes/conditions, including congestive heart failure, diabetic neuropathy, depression, and hospital admissions. HRV has received very little research attention among individuals with intellectual disabilities in general or Special Olympic athletes. Purpose: 1) Having a longer post-exercise rest and recovery time to establish how long it takes for the athletes’ HRV components to return to pre-exercise levels, 2) To determine if greater familiarization with the testing processes influences HRV. Participants: Two separate samples of 10 adult Special Olympics athletes will be recruited for 2 separate studies. Athletes will be between 18 and 50 years of age and will be members of Special Olympics BC. Anticipated Findings: To answer why the Special Olympics athletes display poor cardiac responsiveness to changes in autonomic modulation during exercise. By testing the cortisol levels in the athletes, we can determine their stress levels which will then explain their measured HRV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=6MWT" title="6MWT">6MWT</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomic%20modulation" title=" autonomic modulation"> autonomic modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cortisol%20levels" title=" cortisol levels"> cortisol levels</a>, <a href="https://publications.waset.org/abstracts/search?q=intellectual%20disability" title=" intellectual disability"> intellectual disability</a> </p> <a href="https://publications.waset.org/abstracts/83910/heart-rate-variability-responses-pre-during-and-post-exercise-among-special-olympics-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">296</span> Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Jen%20Wang">Yi Jen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Ju%20%20Chen"> Yu Ju Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous%20function" title="autonomic nervous function">autonomic nervous function</a>, <a href="https://publications.waset.org/abstracts/search?q=HRV%20biofeedback" title=" HRV biofeedback"> HRV biofeedback</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title=" heart rate variability"> heart rate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20breathing" title=" slow breathing"> slow breathing</a> </p> <a href="https://publications.waset.org/abstracts/139670/comparison-of-the-effect-of-heart-rate-variability-biofeedback-and-slow-breathing-training-on-promoting-autonomic-nervous-function-related-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">295</span> Autonomic Threat Avoidance and Self-Healing in Database Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wajahat%20Munir">Wajahat Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Haseeb"> Muhammad Haseeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeel%20Anjum"> Adeel Anjum</a>, <a href="https://publications.waset.org/abstracts/search?q=Basit%20Raza"> Basit Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Kamran%20Malik"> Ahmad Kamran Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20computing" title="autonomic computing">autonomic computing</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing" title=" self-healing"> self-healing</a>, <a href="https://publications.waset.org/abstracts/search?q=threat%20avoidance" title=" threat avoidance"> threat avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/71728/autonomic-threat-avoidance-and-self-healing-in-database-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">294</span> Significance of Apolipoprotein E (APOE) and Fat Mass and Obesity-Associated FTO Gene Polymorphisms in Cardiac Autonomic Neuropathy Among Individuals of Kazakh Nationality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bekenova">N. Bekenova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aitkaliyev"> A. Aitkaliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kassiyeva"> B. Kassiyeva</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Vochshenkova"> T. Vochshenkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiac autonomic neuropathy is not always detected in diabetes, and its phenotypic manifestations may not be evident. Therefore, the study of genetic markers predisposing to the disease is gaining increasing relevance. Research Objective: The goal is to investigate the association of polymorphisms in the APOE and FTO genes with cardiac autonomic neuropathy among individuals of Kazakh nationality. Materials and Methods: A case-control study included 147 patients with cardiac autonomic neuropathy (cases) and 153 patients without cardiac autonomic neuropathy (controls). 300 individuals of Kazakh nationality were recruited from a hospital affiliated with the RSE ‘Medical Centre Hospital of the President's Affairs Administration of the Republic of Kazakhstan.’ Patients were genotyped for 5 FTO gene polymorphisms (rs17817449, rs1121980, rs11075995, rs9939609, rs12149832) and 2 APOE gene polymorphisms (rs429358, rs7412) using real-time PCR. Statistical analysis involved Chi-square methods and calculation of odds ratios (OR) with 95% confidence intervals (CI) and was performed using the Gen Expert genetic calculator. Results. Our research revealed an association between cardiac autonomic neuropathy and rs12149832 (FTO) and rs429358 (APOE). The AA genotype of the rs12149832 polymorphism was found to double the risk of neuropathy development, while the GA genotype decreased the risk of autonomic neuropathy (2.21 (1.38-3.52) and 0.61 (0.38-0.96), respectively, p=0.003). Additionally, we identified that the TC genotype of rs429358 predisposes individuals to the development of cardiac autonomic neuropathy, while the CC genotype decreases the risk (2.23 (1.18-4.22) and 0.26 (0.03-2.31), respectively). Conclusion. Thus, polymorphisms in the APOE and FTO genes (rs429358 and rs12149832) are associated with a predisposition to cardiac autonomic neuropathy and may play a significant role in the pathogenesis of the disease. Further research with a larger sample size and an assessment of their impact on the phenotype is necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymorphisms" title="polymorphisms">polymorphisms</a>, <a href="https://publications.waset.org/abstracts/search?q=APOE%20gene" title=" APOE gene"> APOE gene</a>, <a href="https://publications.waset.org/abstracts/search?q=FTO%20gene" title=" FTO gene"> FTO gene</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20neuropathy" title=" automatic neuropathy"> automatic neuropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazakh%20population." title=" Kazakh population."> Kazakh population.</a> </p> <a href="https://publications.waset.org/abstracts/190209/significance-of-apolipoprotein-e-apoe-and-fat-mass-and-obesity-associated-fto-gene-polymorphisms-in-cardiac-autonomic-neuropathy-among-individuals-of-kazakh-nationality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">293</span> Wharton&#039;s Jelly-Derived Mesenchymal Stem Cells Modulate Heart Rate Variability and Improve Baroreflex Sensitivity in Septic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%C3%B3ndor%20C.%20Jos%C3%A9">Cóndor C. José</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigues%20E.%20Camila"> Rodrigues E. Camila</a>, <a href="https://publications.waset.org/abstracts/search?q=Noronha%20L.%20Irene"> Noronha L. Irene</a>, <a href="https://publications.waset.org/abstracts/search?q=Dos%20Santos%20Fernando"> Dos Santos Fernando</a>, <a href="https://publications.waset.org/abstracts/search?q=Irigoyen%20M.%20Claudia"> Irigoyen M. Claudia</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrade%20L%C3%BAcia"> Andrade Lúcia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sepsis induces alterations in hemodynamics and autonomic nervous system (ASN). The autonomic activity can be calculated by measuring heart rate variability (HRV) that represents the complex interplay between ASN and cardiac pacemaker cells. Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are known to express genes and secreted factors involved in neuroprotective and immunological effects, also to improve the survival in experimental septic animals. We hypothesized, that WJ-MSCs present an important role in the autonomic activity and in the hemodynamic effects in a cecal ligation and puncture (CLP) model of sepsis. Methods: We used flow cytometry to evaluate WJ-MSCs phenotypes. We divided Wistar rats into groups: sham (shamoperated); CLP; and CLP+MSC (106 WJ-MSCs, i.p., 6 h after CLP). At 24 h post-CLP, we recorded the systolic arterial pressure (SAP) and heart rate (HR) over 20 min. The spectral analysis of HR and SAP; also the spontaneous baroreflex sensitivity (measure by bradycardic and tachycardic responses) were evaluated after recording. The one-way ANOVA and the post hoc Student– Newman– Keuls tests (P< 0.05) were used to data comparison Results: WJ-MSCs were negative for CD3, CD34, CD45 and HLA-DR, whereas they were positive for CD73, CD90 and CD105. The CLP group showed a reduction in variance of overall variability and in high-frequency power of HR (heart parasympathetic activity); furthermore, there is a low-frequency reduction of SAP (blood vessels sympathetic activity). The treatment with WJ-MSCs improved the autonomic activity by increasing the high and lowfrequency power; and restore the baroreflex sensitive. Conclusions: WJ-MSCs attenuate the impairment of autonomic control of the heart and vessels and might therefore play a protective role in sepsis. (Supported by FAPESP). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baroreflex%20response" title="baroreflex response">baroreflex response</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title=" heart rate variability"> heart rate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=sepsis" title=" sepsis"> sepsis</a>, <a href="https://publications.waset.org/abstracts/search?q=wharton%E2%80%99s%20jelly-derived%20mesenchymal%20stem%20cells" title=" wharton’s jelly-derived mesenchymal stem cells"> wharton’s jelly-derived mesenchymal stem cells</a> </p> <a href="https://publications.waset.org/abstracts/49413/whartons-jelly-derived-mesenchymal-stem-cells-modulate-heart-rate-variability-and-improve-baroreflex-sensitivity-in-septic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">292</span> Effect of Tai-Chi and Cyclic Meditation on Hemodynamic Responses of the Prefrontal Cortex: A Functional near Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Singh%20Deepeshwar">Singh Deepeshwar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Manjunath"> N. K. Manjunath</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Avinash"> M. Avinash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Meditation is a self-regulated conscious process associated with improved awareness, perception, attention and overall performance. Different traditional origin of meditation technique may have different effects on autonomic activity and brain functions. Based on this quest, the present study evaluated the effect of Tai-Chi Chuan (TCC, a Chines movement based meditation technique) and Cyclic Meditation (CM, an Indian traditional based stimulation and relaxation meditation technique) on the hemodynamic responses of the prefrontal cortex (PFC) and autonomic functions (such as R-R interval of heart rate variability and respiration). These two meditation practices were compared with simple walking. Employing 64 channel near infrared spectroscopy (NIRS), we measured hemoglobin concentration change (i.e., Oxyhemoglobin [ΔHbO], Deoxyhemoglobin [ΔHbR] and Total hemoglobin change [ΔTHC]) in the bilateral PFC before and after TCC, CM and Walking in young college students (n=25; average mean age ± SD; 23.4 ± 3.1 years). We observed the left PFC activity predominantly modulates sympathetic activity effects during the Tai-Chi whereas CM showed changes on right PFC with vagal dominance. However, the changes in oxyhemoglobin and total blood volume change after Tai-Chi was significant higher (p < 0.05, spam t-maps) on the left hemisphere, whereas after CM, there was a significant increase in oxyhemoglobin (p < 0.01) with a decrease in deoxyhemoglobin (p < 0.05) on right PFC. The normal walking showed decrease in Oxyhemoglobin with an increase in deoxyhemoglobin on left PFC. The autonomic functions result showed a significant increase in RR- interval (p < 0.05) along with significant reductions in HR (p < 0.05) in CM, whereas Tai-chi session showed significant increase in HR (p < 0.05) when compared to walking session. Within a group analysis showed a significant reduction in RR-I and significant increase in HR both in Tai-chi and walking sessions. The CM showed there were a significant improvement in the RR - interval of HRV (p < 0.01) with the reduction of heart rate and breath rate (p < 0.05). The result suggested that Tai-Chi and CM both have a positive effect on left and right prefrontal cortex and increase sympathovagal balance (alertful rest) in autonomic nervous system activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=hemodynamic%20responses" title=" hemodynamic responses"> hemodynamic responses</a>, <a href="https://publications.waset.org/abstracts/search?q=yoga" title=" yoga"> yoga</a>, <a href="https://publications.waset.org/abstracts/search?q=meditation" title=" meditation"> meditation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tai-Chi%20Chuan%20%28TCC%29" title=" Tai-Chi Chuan (TCC)"> Tai-Chi Chuan (TCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=walking" title=" walking"> walking</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability%20%28HRV%29" title=" heart rate variability (HRV)"> heart rate variability (HRV)</a> </p> <a href="https://publications.waset.org/abstracts/59390/effect-of-tai-chi-and-cyclic-meditation-on-hemodynamic-responses-of-the-prefrontal-cortex-a-functional-near-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> Identifying Psychosocial, Autonomic, and Pain Sensitivity Risk Factors of Chronic Temporomandibular Disorder by Using Ridge Logistic Regression and Bootstrapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haolin%20Li">Haolin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Bair"> Eric Bair</a>, <a href="https://publications.waset.org/abstracts/search?q=Jane%20Monaco"> Jane Monaco</a>, <a href="https://publications.waset.org/abstracts/search?q=Quefeng%20Li"> Quefeng Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temporomandibular disorder (TMD) is a series of musculoskeletal disorders ranging from jaw pain to chronic debilitating pain, and the risk factors for the onset and maintenance of TMD are still unclear. Prior researches have shown that the potential risk factors for chronic TMD are related to psychosocial factors, autonomic functions, and pain sensitivity. Using data from the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study’s baseline case-control study, we examine whether the risk factors identified by prior researches are still statistically significant after taking all of the risk measures into account in one single model, and we also compare the relative influences of the risk factors in three different perspectives (psychosocial factors, autonomic functions, and pain sensitivity) on the chronic TMD. The statistical analysis is conducted by using ridge logistic regression and bootstrapping, in which the performance of the algorithms has been assessed using extensive simulation studies. The results support most of the findings of prior researches that there are many psychosocial and pain sensitivity measures that have significant associations with chronic TMD. However, it is surprising that most of the risk factors of autonomic functions have not presented significant associations with chronic TMD, as described by a prior research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20function" title="autonomic function">autonomic function</a>, <a href="https://publications.waset.org/abstracts/search?q=OPPERA%20study" title=" OPPERA study"> OPPERA study</a>, <a href="https://publications.waset.org/abstracts/search?q=pain%20sensitivity" title=" pain sensitivity"> pain sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=psychosocial%20measures" title=" psychosocial measures"> psychosocial measures</a>, <a href="https://publications.waset.org/abstracts/search?q=temporomandibular%20disorder" title=" temporomandibular disorder"> temporomandibular disorder</a> </p> <a href="https://publications.waset.org/abstracts/106948/identifying-psychosocial-autonomic-and-pain-sensitivity-risk-factors-of-chronic-temporomandibular-disorder-by-using-ridge-logistic-regression-and-bootstrapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">290</span> Autonomic Nervous System and CTRA Gene Expression among Healthy Young Adults in Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshino%20Murakami">Yoshino Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Hashimoto"> Takeshi Hashimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Cole"> Steve Cole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The autonomic nervous system (ANS), particularly the sympathetic (SNS) and parasympathetic (PNS) branches, plays a vital role in modulating immune function and physiological homeostasis. In recent years, the Conserved Transcriptional Response to Adversity (CTRA) has emerged as a key marker of the body's response to chronic stress. This gene expression profile is characterized by SNS-mediated upregulation of pro-inflammatory genes (such as IL1B and TNF) and downregulation of antiviral response genes (e.g., IFI and MX families). CTRA has been observed in individuals exposed to prolonged stressors like loneliness, social isolation, and bereavement. Some research suggests that PNS activity, as indicated by heart rate variability (HRV), may help counteract the CTRA. However, previous PNS-CTRA studies have focused on Western populations, raising questions about the generalizability of these findings across different cultural and ethnic backgrounds. This study aimed to examine the relationship between HRV and CTRA gene expression in young, healthy adults in Japan. We hypothesized that HRV would be inversely related to CTRA gene expression, similar to patterns observed in previous Western studies. A total of 49 participants aged 20 to 39 were recruited, and after data exclusions, 26 participants' HRV and CTRA data were analyzed. HRV was measured using an electrocardiogram (ECG), and two time-domain indices were utilized: the root mean square of successive differences (RMSSD) and the standard deviation of NN intervals (SDNN). Blood samples were collected for gene expression analysis, focusing on a standard set of 47 CTRA indicator gene transcripts. it findings revealed a significant inverse relationship between HRV and CTRA gene expression, with higher HRV correlating with reduced pro-inflammatory gene activity and increased antiviral response. These results are consistent with findings from Western populations and demonstrate that the relationship between ANS function and immune response generalizes to an East Asian population. The study highlights the importance of HRV as a biomarker for psychophysiological health, reflecting the body's ability to buffer stress and maintain immune balance. These findings have implications for understanding how physiological systems interact across different cultures and ethnicities. Given the influence of chronic stress in promoting inflammation and disease risk, interventions aimed at improving HRV, such as mindfulness-based practices or physical exercise, could provide significant health benefits. Future research should focus on larger sample sizes and experimental interventions to better understand the causal pathways linking HRV to CTRA gene expression, and determine whether improving HRV may help mitigate the harmful effects of stress on health by reducing inflammation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous%20activity" title="autonomic nervous activity">autonomic nervous activity</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroendocrine%20system" title=" neuroendocrine system"> neuroendocrine system</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=Japan" title=" Japan"> Japan</a> </p> <a href="https://publications.waset.org/abstracts/191071/autonomic-nervous-system-and-ctra-gene-expression-among-healthy-young-adults-in-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">289</span> Autonomic Recovery Plan with Server Virtualization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Hameed">S. Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anwer"> S. Anwer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saad"> M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saady"> M. Saady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20intelligence" title="autonomous intelligence">autonomous intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20recovery" title=" disaster recovery"> disaster recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=server%20virtualization" title=" server virtualization"> server virtualization</a> </p> <a href="https://publications.waset.org/abstracts/129654/autonomic-recovery-plan-with-server-virtualization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">288</span> Physiological and Psychological Influence on Office Workers during Demand Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Megumi%20Nishida">Megumi Nishida</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoya%20Motegi"> Naoya Motegi</a>, <a href="https://publications.waset.org/abstracts/search?q=Takurou%20Kikuchi"> Takurou Kikuchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoko%20Tokumura"> Tomoko Tokumura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, power system has been changed and flexible power pricing system such as demand response has been sought in Japan. The demand response system is simple in the household sector and the owner, decision-maker, can gain the benefits of power saving. On the other hand, the execution of the demand response in the office building is more complex than household because various people such as owners, building administrators and occupants are involved in making decisions. While the owners benefit from the demand saving, the occupants are forced to be exposed to demand-saved environment certain benefits. One of the reasons is that building systems are usually centralized control and each occupant cannot choose either participate demand response event or not, and contribution of each occupant to demand response is unclear to provide incentives. However, the recent development of IT and building systems enables the personalized control of office environment where each occupant can control the lighting level or temperature around him or herself. Therefore, it can be possible to have a system which each occupant can make a decision of demand response participation in office building. This study investigates the personal behavior upon demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their task lights are automatically turned off. The participation rates in the demand response events are compared between four groups which are divided by different motivation, the presence or absence of incentives and the way of participation. The result shows that there are the significant differences of participation rates in demand response event between four groups. The way of participation has a large effect on the participation rate. ‘Opt-out’ group, where the occupants are automatically enrolled in a demand response event if they don't express non-participation, will have the highest participation rate in the four groups. The incentive has also an effect on the participation rate. This study also reports that the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective symptoms about the fatigue of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title="demand response">demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=illumination" title=" illumination"> illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title=" electrocardiogram"> electrocardiogram</a> </p> <a href="https://publications.waset.org/abstracts/32950/physiological-and-psychological-influence-on-office-workers-during-demand-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">287</span> Sympathetic Skin Response and Reaction Times in Chronic Autoimmune Thyroiditis; An Overlooked Electrodiagnostic Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oya%20Umit%20Yemisci">Oya Umit Yemisci</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Saracgil%20Cosar"> Nur Saracgil Cosar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tubanur%20Ozturk%20Sisman"> Tubanur Ozturk Sisman</a>, <a href="https://publications.waset.org/abstracts/search?q=Selin%20Ozen"> Selin Ozen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic autoimmune thyroiditis (AIT) may result in a wide spectrum of reversible abnormalities in the neuromuscular function. Usually, proximal muscle-related symptoms and neuropathic findings such as mild axonal peripheral neuropathy have been reported. Sympathetic skin responses are useful in evaluating sudomotor activity of the unmyelinated sympathetic fibers of the autonomic nervous system. Neurocognitive impairment may also be a prominent feature of hypothyroidism, particularly in elderly patients. Electromyographic reaction times as a highly sensitive parameter provides. Objective data concerning cognitive and motor functions. The aim of this study was to evaluate peripheral nerve functions, sympathetic skin response and electroneuromyographic (ENMG) reaction times in euthyroid and subclinically hypothyroid patients with a diagnosis of AIT and compare to those of a control group. Thirty-five euthyroid, 19 patients with subclinical hypothyroidism and 35 age and sex-matched healthy subjects were included in the study. Motor and sensory nerve conduction studies, sympathetic skin responses recorded from hand and foot by stimulating contralateral median nerve and simple reaction times by stimulating tibial nerve and recording from extensor indicis proprius muscle were performed to all patients and control group. Only median nerve sensory conduction velocities of the forearm were slower in patients with AIT compared to the control group (p=0.019). Otherwise, nerve conduction studies and sympathetic skin responses showed no significant difference between the patients and the control group. However, reaction times were shorter in the healthy subjects compared to AIT patients. Prolongation in the reaction times may be considered as a parameter reflecting the alterations in the cognitive functions related to the primary disease process in AIT. Combining sympathetic skin responses with more quantitative tests such as cardiovascular tests and sudomotor axon reflex testing may allow us to determine higher rates of involvement of the autonomic nervous system in AIT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sympathetic%20skin%20response" title="sympathetic skin response">sympathetic skin response</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20reaction%20time" title=" simple reaction time"> simple reaction time</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20autoimmune%20thyroiditis" title=" chronic autoimmune thyroiditis"> chronic autoimmune thyroiditis</a> </p> <a href="https://publications.waset.org/abstracts/120327/sympathetic-skin-response-and-reaction-times-in-chronic-autoimmune-thyroiditis-an-overlooked-electrodiagnostic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">286</span> The Role of Behavioral Syndromes in Human-Cattle Interactions: A Physiological Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fruzsina%20Luca%20K%C3%A9z%C3%A9r">Fruzsina Luca Kézér</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Jurkovich"> Viktor Jurkovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Ott%C3%B3%20Szenci"> Ottó Szenci</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A1nos%20T%C5%91zs%C3%A9r"> János Tőzsér</a>, <a href="https://publications.waset.org/abstracts/search?q=Levente%20Kov%C3%A1cs"> Levente Kovács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Positive interaction between people and animals could have a favorable effect on the welfare and production by reducing stress levels. However, to the repeated contact with humans (e.g. farm staff, veterinarians or herdsmen), animals may respond with escape behavior or avoidance, which both have negative effects on the ease of handling, welfare and may lead to the expression of aggressive behaviors. Rough or aversive handling can impair health and the function of the cardiac autonomic activity due to fear and stress, which also can be determined by certain parameters of heart rate variability (HRV). Although the essential relationships between fear from humans and basal tone of the autonomic nervous system were described by the authors previously, several questions remained unclear in terms of the associations between different coping strategies (behavioral syndromes) of the animals and physiological responsiveness to humans. The main goal of this study was to find out whether human behavior and emotions to the animals have an impact on cardiac function and behavior of animals with different coping styles in response situations. Therefore, in the present study, special (fear, approaching, restraint, novel arena, novel object) tests were performed on healthy, 2-year old heifers (n = 104) differing in coping styles [reactive (passive) vs. proactive (active) coping]. Animals were categorized as reactive or proactive based on the following tests: 1) aggressive behavior at the feeding bunk, 2) avoidance from an approaching person, 3) immobility, and 4) daily activity (number of posture changes). Heart rate, the high frequency (HF) component of HRV as a measure of vagal activity and the ratio between the low frequency (LF) and HF components (LF/HF ratio) as a parameter of sympathetic nervous system activity were calculated for all individual during lying posture (baseline) and for response situations in novel object, novel arena, and unfamiliar person tests (both for 5 min), respectively. The differences between baseline and response were compared between groups. Higher sympathetic (higher heart rates and LF/HF ratios) and lower parasympathetic activity (lower HF) was found for proactive animals in response situations than for reactive (passive) animals either during the novel object, the novel arena and the unfamiliar person test. It suggests that animals with different behavioral traits differ in their immediate autonomic adaptation to novelty and people. Based on our preliminary results, it seems, that the analysis of HRV can help to understand the physiological manifestation of responsiveness to novelty and human presence in dairy cattle with different behavioral syndromes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavioral%20syndromes" title="behavioral syndromes">behavioral syndromes</a>, <a href="https://publications.waset.org/abstracts/search?q=human-cattle%20interaction" title=" human-cattle interaction"> human-cattle interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20arena%20test" title=" novel arena test"> novel arena test</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20responsiveness" title=" physiological responsiveness"> physiological responsiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=proactive%20coping" title=" proactive coping"> proactive coping</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20coping" title=" reactive coping"> reactive coping</a> </p> <a href="https://publications.waset.org/abstracts/61950/the-role-of-behavioral-syndromes-in-human-cattle-interactions-a-physiological-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">285</span> Autonomic Sonar Sensor Fault Manager for Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Doran">Martin Doran</a>, <a href="https://publications.waset.org/abstracts/search?q=Roy%20Sterritt"> Roy Sterritt</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Wilkie"> George Wilkie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining &lsquo;enabled&rsquo; sonars sensors to compensate for those sonar sensors that are &lsquo;disabled&rsquo;. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic" title="autonomic">autonomic</a>, <a href="https://publications.waset.org/abstracts/search?q=self-adaption" title=" self-adaption"> self-adaption</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing" title=" self-healing"> self-healing</a>, <a href="https://publications.waset.org/abstracts/search?q=self-optimization" title=" self-optimization"> self-optimization</a> </p> <a href="https://publications.waset.org/abstracts/61324/autonomic-sonar-sensor-fault-manager-for-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">284</span> Alternative Epinephrine Injector to Combat Allergy Induced Anaphylaxis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Bost">Jeremy Bost</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Brett"> Matthew Brett</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Flynn"> Jacob Flynn</a>, <a href="https://publications.waset.org/abstracts/search?q=Weihui%20Li"> Weihui Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One response during anaphylaxis is reduced blood pressure due to blood vessels relaxing and dilating. Epinephrine causes the blood vessels to constrict, which raises blood pressure to counteract the symptoms. When going through an allergic reaction, an Epinephrine injector is used to administer a shot of epinephrine intramuscularly. Epinephrine injectors have become an integral part of day-to-day life for people with allergies. Current Epinephrine injectors (EpiPen) are completely mechanical and have no sensors to monitor the vital signs of patients or give suggestions the optimal time for the shot. The EpiPens are also large and inconvenient to carry daily. The current price of an EpiPen is roughly 600$ for a pack of two. This makes carrying an EpiPen very expensive, especially when they need to be switched out when the epinephrine expires. This new design is in the form of a bracelet, which has the ability to inject epinephrine. The bracelet will be equipped with vital signs monitors that can aid the patient to sense the allergic reaction. The vital signs that would be of interest are blood pressure, heart rate and Electrodermal activity (EDA). The heart rate of the patient will be tracked by a photoplethysmograph (PPG) that is incorporated into the sensors. The heart rate is expected to increase during anaphylaxis. Blood pressure will be monitored through a radar sensor, which monitors the phase changes in electromagnetic waves as they reflect off of the blood vessel. EDA is under autonomic control. Allergen-induced anaphylaxis is caused by a release of chemical mediators from mast cells and basophils, thus changes the autonomic activity of the patient. So by measuring EDA, it will give the wearer an alert on how their autonomic nervous system is reacting. After the vital signs are collected, they will be sent to an application on a smartphone to be analyzed, which can then alert an emergency contact if the epinephrine injector on the bracelet is activated. Overall, this design creates a safer system by aiding the user in keeping track of their epinephrine injector, while making it easier to track their vital signs. Also, our design will be more affordable and more convenient to replace. Rather than replacing the entire product, only the needle and drug will be switched out and not the entire design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allergy" title="allergy">allergy</a>, <a href="https://publications.waset.org/abstracts/search?q=anaphylaxis" title=" anaphylaxis"> anaphylaxis</a>, <a href="https://publications.waset.org/abstracts/search?q=epinephrine" title=" epinephrine"> epinephrine</a>, <a href="https://publications.waset.org/abstracts/search?q=injector" title=" injector"> injector</a>, <a href="https://publications.waset.org/abstracts/search?q=vital%20signs%20monitor" title=" vital signs monitor"> vital signs monitor</a> </p> <a href="https://publications.waset.org/abstracts/69247/alternative-epinephrine-injector-to-combat-allergy-induced-anaphylaxis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">283</span> End-to-End Control and Management of Multi-AS Virtual Service Networks Using SDN and Autonomic Computing Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Xue">Yong Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20A.%20Menasc%C3%A9"> Daniel A. Menascé</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated and end-to-end network resource management and provisioning for virtual service networks in a multiple autonomous systems (a.k.a multi-AS) environment is a challenging and open problem. This paper proposes a novel, scalable and interoperable high-level architecture that incorporates a number of emerging enabling technologies including Software Defined Network (SDN), Network Function Virtualization (NFV), Service Oriented Architecture (SOA), and Autonomic Computing. The proposed architecture can be used to not only automate network resource management and provisioning for virtual service networks across multiple autonomous substrate networks, but also provide an adaptive capability for achieving optimal network resource management and maintaining network-level end-to-end network performance as well. The paper argues that this SDN and autonomic computing based architecture lays a solid foundation that can facilitate the development of the future Internet based on the pluralistic paradigm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20network" title="virtual network">virtual network</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20defined%20network" title=" software defined network"> software defined network</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20service%20network" title=" virtual service network"> virtual service network</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20resource%20management" title=" adaptive resource management"> adaptive resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=SOA" title=" SOA"> SOA</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-AS" title=" multi-AS"> multi-AS</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-domain" title=" inter-domain"> inter-domain</a> </p> <a href="https://publications.waset.org/abstracts/14547/end-to-end-control-and-management-of-multi-as-virtual-service-networks-using-sdn-and-autonomic-computing-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> Human’s Sensitive Reactions during Different Geomagnetic Activity: An Experimental Study in Natural and Simulated Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ketevan%20Janashia">Ketevan Janashia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Tsibadze"> Tamar Tsibadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Levan%20Tvildiani"> Levan Tvildiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikoloz%20Invia"> Nikoloz Invia</a>, <a href="https://publications.waset.org/abstracts/search?q=Elguja%20Kubaneishvili"> Elguja Kubaneishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasili%20Kukhianidze"> Vasili Kukhianidze</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Ramishvili"> George Ramishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study considers the possible effects of geomagnetic activity (GMA) on humans situated on Earth by performing experiments concerning specific sensitive reactions in humans in both: natural conditions during different GMA and by the simulation of different GMA in the lab. The measurements of autonomic nervous system (ANS) responses to different GMA via measuring the heart rate variability (HRV) indices and stress index (SI) and their comparison with the K-index of GMA have been presented and discussed. The results of experiments indicate an intensification of the sympathetic part of the ANS as a stress reaction of the human organism when it is exposed to high level of GMA as natural as well as in simulated conditions. Aim: We tested the hypothesis whether the GMF when disturbed can have effects on human ANS causing specific sensitive stress-reactions depending on the initial type of ANS. Methods: The study focuses on the effects of different GMA on ANS by comparing of HRV indices and stress index (SI) of n= 78, 18-24 years old healthy male volunteers. Experiments were performed as natural conditions on days of low (K= 1-3) and high (K= 5-7) GMA as well as in the lab by the simulation of different GMA using the device of geomagnetic storm (GMS) compensation and simulation. Results: In comparison with days of low GMA (K=1-3) the initial values of HRV shifted towards the intensification of the sympathetic part (SP) of the ANS during days of GMSs (K=5-7) with statistical significance p-values: HR (heart rate, p= 0.001), SDNN (Standard deviation of all Normal to Normal intervals, p= 0.0001), RMSSD (The square root of the arithmetical mean of the sum of the squares of differences between adjacent NN intervals, p= 0.0001). In comparison with conditions during GMSs compensation mode (K= 0, B= 0-5nT), the ANS balance was observed to shift during exposure to simulated GMSs with intensities in the range of natural GMSs (K= 7, B= 200nT). However, the initial values of the ANS resulted in different dynamics in its variation depending of GMA level. In the case of initial balanced regulation type (HR > 80) significant intensification of SP was observed with p-values: HR (p= 0.0001), SDNN (p= 0.047), RMSSD (p= 0.28), LF/HF (p=0.03), SI (p= 0.02); while in the case of initial parasympathetic regulation type (HR < 80), an insignificant shift to the intensification of the parasympathetic part (PP) was observed. Conclusions: The results indicate an intensification of SP as a stress reaction of the human organism when it is exposed to high level of GMA in both natural and simulated conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous%20system" title="autonomic nervous system">autonomic nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20of%20magneto%20compensation%2Fsimulation" title=" device of magneto compensation/simulation"> device of magneto compensation/simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=geomagnetic%20storms" title=" geomagnetic storms"> geomagnetic storms</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title=" heart rate variability"> heart rate variability</a> </p> <a href="https://publications.waset.org/abstracts/109633/humans-sensitive-reactions-during-different-geomagnetic-activity-an-experimental-study-in-natural-and-simulated-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> The Concept of Neurostatistics as a Neuroscience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igwenagu%20Chinelo%20Mercy">Igwenagu Chinelo Mercy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is on the concept of Neurostatistics in relation to neuroscience. Neuroscience also known as neurobiology is the scientific study of the nervous system. In the study of neuroscience, it has been noted that brain function and its relations to the process of acquiring knowledge and behaviour can be better explained by the use of various interrelated methods. The scope of neuroscience has broadened over time to include different approaches used to study the nervous system at different scales. On the other hand, Neurostatistics based on this study is viewed as a statistical concept that uses similar techniques of neuron mechanisms to solve some problems especially in the field of life science. This study is imperative in this era of Artificial intelligence/Machine leaning in the sense that clear understanding of the technique and its proper application could assist in solving some medical disorder that are mainly associated with the nervous system. This will also help in layman’s understanding of the technique of the nervous system in order to overcome some of the health challenges associated with it. For this concept to be well understood, an illustrative example using a brain associated disorder was used for demonstration. Structural equation modelling was adopted in the analysis. The results clearly show the link between the techniques of statistical model and nervous system. Hence, based on this study, the appropriateness of Neurostatistics application in relation to neuroscience could be based on the understanding of the behavioural pattern of both concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=neurons" title=" neurons"> neurons</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroscience" title=" neuroscience"> neuroscience</a>, <a href="https://publications.waset.org/abstracts/search?q=neurostatistics" title=" neurostatistics"> neurostatistics</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a> </p> <a href="https://publications.waset.org/abstracts/173355/the-concept-of-neurostatistics-as-a-neuroscience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Autonomic Management for Mobile Robot Battery Degradation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Doran">Martin Doran</a>, <a href="https://publications.waset.org/abstracts/search?q=Roy%20Sterritt"> Roy Sterritt</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Wilkie"> George Wilkie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of today&rsquo;s mobile robots are very dependent on battery power. Mobile robots can operate untethered for a number of hours but eventually they will need to recharge their batteries in-order to continue to function. While computer processing and sensors have become cheaper and more powerful each year, battery development has progress very little. They are slow to re-charge, inefficient and lagging behind in the general progression of robotic development we see today. However, batteries are relatively cheap and when fully charged, can supply high power output necessary for operating heavy mobile robots. As there are no cheap alternatives to batteries, we need to find efficient ways to manage the power that batteries provide during their operational lifetime. This paper proposes the use of autonomic principles of self-adaption to address the behavioral changes a battery experiences as it gets older. In life, as we get older, we cannot perform tasks in the same way as we did in our youth; these tasks generally take longer to perform and require more of our energy to complete. Batteries also suffer from a form of degradation. As a battery gets older, it loses the ability to retain the same charge capacity it would have when brand new. This paper investigates how we can adapt the current state of a battery charge and cycle count, to the requirements of a mobile robot to perform its tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic" title="autonomic">autonomic</a>, <a href="https://publications.waset.org/abstracts/search?q=self-adaptive" title=" self-adaptive"> self-adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=self-optimising" title=" self-optimising"> self-optimising</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/77739/autonomic-management-for-mobile-robot-battery-degradation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> Exploring the Relationship between Mediolateral Center of Pressure and Galvanic Skin Response during Balance Tasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karlee%20J.%20Hall">Karlee J. Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Laylor"> Mark Laylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessy%20Varghese"> Jessy Varghese</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Polastri"> Paula Polastri</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Van%20Ooteghem"> Karen Van Ooteghem</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20McIlroy"> William McIlroy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Balance training is a common part of physiotherapy treatment and often involves a set of proprioceptive exercises which the patient carries out in the clinic and as part of their exercise program. Understanding all contributing factors to altered balance is of utmost importance to the clinical success of treatment of balance dysfunctions. A critical role for the autonomic nervous system (ANS) in the control of balance reactions has been proposed previously, with evidence for potential involvement being inferred from the observation of phasic galvanic skin responses (GSR) evoked by external balance perturbations. The current study explored whether the coupling between ANS reactivity and balance reactions would be observed during spontaneously occurring instability while standing, including standard positions typical of physiotherapy balance assessments. It was hypothesized that time-varying changes in GSR (ANS reactivity) would be associated with time-varying changes in the mediolateral center of pressure (ML-COP) (somatomotor reactivity). Nine individuals (5 females, 4 males, aged 19-37 years) were recruited. To induce varying balance demands during standing, the study compared ML-COP and GSR data across different task conditions varying the availability of vision and width of the base of support. Subjects completed 3, 30-second trials for each of the following stance conditions: standard, narrow, and tandem eyes closed, tandem eyes open, tandem eyes open with dome to shield visual input, and restricted peripheral visual field. ANS activity was evaluated by measures of GSR recorded from Ag-AgCl electrodes on the middle phalanges of digits 2 and 4 on the left hand; balance measures include ML-COP excursion frequency and amplitude recorded from two force plates embedded in the floor underneath each foot. Subjects were instructed to stand as still as possible with arms crossed in front of their chest. When comparing mean task differences across subjects, there was an expected increase in postural sway from tasks with a wide stance and no sensory restrictions (least challenging) to those with a narrow stance and no vision (most challenging). The correlation analysis revealed a significant positive relationship between ML-COP variability and GSR variability when comparing across tasks (r=0.94, df=5, p < 0.05). In addition, correlations coincided within each subject and revealed a significant positive correlation in 7 participants (r= 0.47, 0.57, 0.62, 0.62, 0.81, 0.64, 0.69 respectively, df=19, p < 0.05) and no significant relationship in 2 participants (r=0.36, 0.29 respectively, df=19, p > 0.05). The current study revealed a significant relationship between ML-COP and GSR during balance tasks, revealing the ANS reactivity associated with naturally occurring instability when standing still, which is proportional to the degree of instability. Understanding the link between ANS activity and control of COP is an important step forward in the enhancement of assessment of contributing factors to poor balance and treatment of balance dysfunctions. The next steps will explore the temporal association between the time-varying changes in COP and GSR to establish if the ANS reactivity phase leads or lags the evoked motor reactions, as well as exploration of potential biomarkers for use in screening of ANS activity as a contributing factor to altered balance control clinically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous%20system" title="autonomic nervous system">autonomic nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=balance%20control" title=" balance control"> balance control</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20pressure" title=" center of pressure"> center of pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20nervous%20system" title=" somatic nervous system"> somatic nervous system</a> </p> <a href="https://publications.waset.org/abstracts/132524/exploring-the-relationship-between-mediolateral-center-of-pressure-and-galvanic-skin-response-during-balance-tasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> Modeling of Bioelectric Activity of Nerve Cells Using Bond Graph Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghasemi">M. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Eskandari"> F. Eskandari</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hamzehei"> B. Hamzehei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Arshi"> A. R. Arshi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioelectric activity of nervous cells might be changed causing by various factors. This alteration can lead to unforeseen circumstances in other organs of the body. Therefore, the purpose of this study was to model a single neuron and its behavior under an initial stimulation. This study was developed based on cable theory by means of the Bond Graph method. The numerical values of the parameters were derived from empirical studies of cellular electrophysiology experiments. Initial excitation was applied through square current functions, and the resulted action potential was estimated along the neuron. The results revealed that the model was developed in this research adapted with the results of experimental studies and demonstrated the electrical behavior of nervous cells properly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond%20graph" title="bond graph">bond graph</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulation" title=" stimulation"> stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nervous%20cells" title=" nervous cells"> nervous cells</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/32701/modeling-of-bioelectric-activity-of-nerve-cells-using-bond-graph-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> John Cunningham Virus Interaction with Multiple Sclerosis Disease Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially the John Cunningham virus (JCV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on JCV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", " John Cunningham virus ", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2019 and 2022 were searched, and 12 articles were chosen, studied, and analyzed. Results: MS patients are candidates for natalizumab therapy, which inhibits lymphocyte migration and increases the risk of progressive multifocal leukoencephalopathy (PML), a rare lytic infection of glial cells caused by JCV. Oligodendrocytes may be the target of JCV infection in the central nervous system (CNS). Conclusion: There is a high expression of JCV during the natalizumab treatment period for MS patients, suggesting that the virus may play a role in the development of MS by inducing an inflammatory state. Therefore, it is necessary to evaluate anti-JCV antibody serum as an important risk factor for the development of PML before deciding on the treatment course for these patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Cunningham%20virus" title=" John Cunningham virus"> John Cunningham virus</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmunity" title=" autoimmunity"> autoimmunity</a> </p> <a href="https://publications.waset.org/abstracts/159420/john-cunningham-virus-interaction-with-multiple-sclerosis-disease-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> MR Imaging Spectrum of Intracranial Infections: An Experience of 100 Cases in a Tertiary Hospital in Northern India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avik%20Banerjee">Avik Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavita%20Saggar"> Kavita Saggar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infections of the nervous system and adjacent structures are often life-threatening conditions. Despite the recent advances in neuroimaging evaluation, the diagnosis of unclear infectious CNS disease remains a challenge. Our aim is to evaluate the typical and atypical neuro-imaging features of the various routinely encountered CNS infected patients so as to form guidelines for their imaging recognition and differentiation from tumoral, vascular and other entities that warrant a different line of therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system%20%28CNS%29" title="central nervous system (CNS)">central nervous system (CNS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Cerebro%20Spinal%20Fluid%20%28Csf%29" title=" Cerebro Spinal Fluid (Csf)"> Cerebro Spinal Fluid (Csf)</a>, <a href="https://publications.waset.org/abstracts/search?q=Creutzfeldt%20Jakob%20Disease%20%28CJD%29" title=" Creutzfeldt Jakob Disease (CJD)"> Creutzfeldt Jakob Disease (CJD)</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20multifocal%20leukoencephalopathy%20%28PML%29" title=" progressive multifocal leukoencephalopathy (PML)"> progressive multifocal leukoencephalopathy (PML)</a> </p> <a href="https://publications.waset.org/abstracts/16087/mr-imaging-spectrum-of-intracranial-infections-an-experience-of-100-cases-in-a-tertiary-hospital-in-northern-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Non-AIDS Related Multiple Brain and Orbital Lymphoma Mimicking Meningioma: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eghosa%20Morgan">Eghosa Morgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bourtarbouch%20Mahjouba"> Bourtarbouch Mahjouba</a>, <a href="https://publications.waset.org/abstracts/search?q=Heida%20El%20Ouahabi"> Heida El Ouahabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Poluyi%20Edward"> Poluyi Edward</a>, <a href="https://publications.waset.org/abstracts/search?q=Diawarra%20Seylan"> Diawarra Seylan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-AIDS lymphoma, a type of primary central nervous system (CNS) lymphoma is an uncommon aggressive infiltrative malignant tumour involving several sites in the central nervous system, such as the periventricular region and leptomeninges. In this article, the authors presented a 26-year old man with painless progressive right exophthalmos and scalp swelling with no symptoms and signs of intracranial hypertension and hyperthyroidism. Magnetic resonance imaging (MRI) done revealed isointense masses with brilliant homogenous enhancement on contrast administration resembling a meningioma, with a dura tail – like attachment as seen in meningioma. He had surgery for the right orbital tumour and histopathological diagnosis confirmed our suspicion of lymphoma (B type). Steroid was given in the post-operative period which led to significant regression of the tumours, hence its description as ‘vanishing tumour’. He is presently receiving methotrexate-based chemotherapy and subsequently planned for radiotherapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system%20%28CNS%29" title="central nervous system (CNS)">central nervous system (CNS)</a>, <a href="https://publications.waset.org/abstracts/search?q=meningioma" title=" meningioma"> meningioma</a>, <a href="https://publications.waset.org/abstracts/search?q=non-aids%20lymphoma" title=" non-aids lymphoma"> non-aids lymphoma</a>, <a href="https://publications.waset.org/abstracts/search?q=orbital" title=" orbital"> orbital</a> </p> <a href="https://publications.waset.org/abstracts/153811/non-aids-related-multiple-brain-and-orbital-lymphoma-mimicking-meningioma-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Interoception and Its Role in Connecting Empathy, Bodily Perception and Conceptual Representations: A Cross-Cultural Online Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Marson">Fabio Marson</a>, <a href="https://publications.waset.org/abstracts/search?q=Revital%20Naor-Ziv"> Revital Naor-Ziv</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrizio%20Paoletti"> Patrizio Paoletti</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Glicksohn"> Joseph Glicksohn</a>, <a href="https://publications.waset.org/abstracts/search?q=Filippo%20Carducci"> Filippo Carducci</a>, <a href="https://publications.waset.org/abstracts/search?q=Tal%20Dotan%20Ben-Soussan"> Tal Dotan Ben-Soussan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to embodied cognition theories, higher-order cognitive functions and complex behaviors seems to be affected by bodily states. For example, the polyvagal theory suggests that the human autonomic nervous system evolved to support social interactions. Accordingly, integration and perception of information related to the physiological state arising from the peripherical nervous system (i.e., interoception) play a role in the regulation of social interaction by modulating emotional responses and prosocial behaviors. Moreover, recent studies showed that interoception is involved in the representations of conceptual knowledge, suggesting that the bodily information carried by the interoceptive system provides a perceptual basis for the embodiment of abstract concepts, especially those related to social and emotional domains. However, to the best of our knowledge, no studies explored the relationship between interoception, prosocial behaviors, and conceptual representations. Considering the privileged position of interoception in mediating higher-order cognition and social interaction, we designed a cross-cultural study to explore the relationship between interoception, the sensitivity of bodily functions, and empathy. We recruited Italian, English, and Hebrew participants, and we asked them to fill in a questionnaire about empathy (Empathy Quotient), a questionnaire about bodily perception (Body Perception Questionnaire), and to rate different concrete and abstract concepts for the extent such concepts can be experienced through vision, hearing, taste, smell, touch, and interoception. We observed that in all languages, interoception ratings for abstract concepts were greater than for concrete concepts. Importantly, interoception ratings for abstract concepts were positively correlated with empathy and sensitivity of bodily functions. Our results suggest that participants with higher empathy and sensitivity of bodily functions show also a greater embodiment of abstract concepts in interoception, providing further evidence for the importance of the interoceptive system in regulating prosocial behaviors and integrating conceptual representations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptual%20representations" title="conceptual representations">conceptual representations</a>, <a href="https://publications.waset.org/abstracts/search?q=embodiment" title=" embodiment"> embodiment</a>, <a href="https://publications.waset.org/abstracts/search?q=empathy" title=" empathy"> empathy</a>, <a href="https://publications.waset.org/abstracts/search?q=empathy%20quotient" title=" empathy quotient"> empathy quotient</a>, <a href="https://publications.waset.org/abstracts/search?q=interoception" title=" interoception"> interoception</a>, <a href="https://publications.waset.org/abstracts/search?q=prosocial%20behaviors" title=" prosocial behaviors"> prosocial behaviors</a> </p> <a href="https://publications.waset.org/abstracts/135686/interoception-and-its-role-in-connecting-empathy-bodily-perception-and-conceptual-representations-a-cross-cultural-online-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Recurrent Fevers with Weight Gain - Possible Rapid onset Obesity with Hypoventilation, Hypothalamic Dysfunction and Autonomic Dysregulation Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Rui">Lee Rui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Ramachandran"> Rajeev Ramachandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The approach to recurrent fevers in the paediatric or adolescent age group is not a straightforward one. Causes range from infectious diseases to rheumatological conditions to endocrinopathies, and are usually accompanied by weight loss rather than weight gain. We present an interesting case of a 16-year-old girl brought by her mother to the General Pediatrics Clinic for concerns of recurrent fever paired with significant weight gain over 1.5 years, with no identifiable cause found despite extensive work-up by specialists ranging from Rheumatologists to Oncologists. This case provides a learning opportunity on the approach to weight gain paired with persistent fevers in a paediatric population, one which is not commonly encountered and prompts further evaluation and consideration of less common diagnoses. In a span of 2 years, the girl’s weight had increased from 55 kg at 13 years old (75th centile) to 73.9 kg at 16 years old (>97th centile). About 1 year into her rapid weight gain, she started developing recurrent fevers of documented temperatures > 37.5 – 38.6 every 2-3 days, resulting in school absenteeism when she was sent home after temperature-taking in school found her to be febrile. The rapid onset of weight gain paired with unexplained fevers prompted the treating physician to consider the diagnosis of ROHHAD syndrome. Rapid onset obesity with hypoventilation, hypothalamic dysfunction and autonomic dysregulation (ROHHAD) syndrome is a rare disorder first described in 2007. It is characterized by dysfunction of the autonomic and endocrine system, characterized by hyperphagia and rapid-onset weight gain. This rapid weight gain is classically followed by hypothalamic manifestations with neuroendocrine deficiencies, hypo-ventilatory breathing abnormalities, and autonomic dysregulation. ROHHAD is challenging to diagnose with and diagnosis is made based mostly on clinical judgement. However if truly diagnosed, the condition is characterized by high morbidity and mortality rates. Early recognition of sleep disorders breathing and targeted therapeutic interventions helps limit morbidity and mortality associated with ROHHAD syndrome. This case poses an interesting diagnostic challenge and a diagnosis of ROHHAD has to be considered, given the serious complications that can come with disease progression while conditions such as Munchausen’s or drug fever remain as diagnoses of exclusion until we have exhausted all other possible conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pediatrics" title="pediatrics">pediatrics</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine" title=" endocrine"> endocrine</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20gain" title=" weight gain"> weight gain</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20fever" title=" recurrent fever"> recurrent fever</a>, <a href="https://publications.waset.org/abstracts/search?q=adolescent" title=" adolescent"> adolescent</a> </p> <a href="https://publications.waset.org/abstracts/156376/recurrent-fevers-with-weight-gain-possible-rapid-onset-obesity-with-hypoventilation-hypothalamic-dysfunction-and-autonomic-dysregulation-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Autoantibodies against Central Nervous System Antigens and the Serum Levels of IL-32 in Patients with Schizophrenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Keshavarz">Fatemeh Keshavarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Schizophrenia is a disease of the nervous system, and immune system disorders can affect its pathogenesis. Activation of microglia, proinflammatory cytokines, disruption of the blood-brain barrier (BBB) due to inflammation, activation of autoreactive B cells, and consequently the production of autoantibodies against system antigens are among the immune processes involved in neurological diseases. interleukin 32 (IL-32) a proinflammatory cytokine that important player in the activation of the innate and adaptive immune responses. This study aimed to measure the serum level of IL-32 as well as the frequency of autoantibody positivity against several nervous system antigens in patients with schizophrenia. Material and Methods: This study was conducted on 40 patients with schizophrenia and 40 healthy individuals in the control group. Serum IL-32 levels were measured by ELISA. The frequency of autoantibodies against Hu, Ri, Yo, Tr, CV2, Amphiphysin, SOX1, Zic4, ITPR1, CARP, GAD, Recoverin, Titin, and Ganglioside antigens were measured by indirect immunofluorescence method. Results: Serum IL-32 levels in patients with schizophrenia were significantly higher compared to the control group. Autoantibodies were positive in 8 patients for GAD antigen and 5 patients for Ri antigen, which showed a significant relationship compared to the control group. Autoantibodies were also positive in 2 patients for CV2, in 1 patient for Hu, and in 1 patient for CARP. Negative results were reported for other antigens. Conclusion: Our findings suggest that elevated the serum IL-32 level and autoantibody positivity against several nervous system antigens may be involved in the pathogenesis of schizophrenia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=schizophrenia" title="schizophrenia">schizophrenia</a>, <a href="https://publications.waset.org/abstracts/search?q=microglia" title=" microglia"> microglia</a>, <a href="https://publications.waset.org/abstracts/search?q=autoantibodies" title=" autoantibodies"> autoantibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-32" title=" IL-32"> IL-32</a> </p> <a href="https://publications.waset.org/abstracts/147605/autoantibodies-against-central-nervous-system-antigens-and-the-serum-levels-of-il-32-in-patients-with-schizophrenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Acute Poisoning Based on Age and Gender Caused by Pharmaceuticals and Therapies That Influence the Nervous System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ragy%20Raafat%20Gaber%20Attaalla">Ragy Raafat Gaber Attaalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: We looked at acute poisonings brought on by illegal drugs and pharmaceuticals that influence the nervous system at Assiut University Hospitals. Methods: Between January 2010 and December 2015, we conducted a retrospective examination of patient records from the largest tertiary toxicology referral center in Assiut. We examined the frequency, pattern, and distribution of ages and genders of acute nervous system agent poisoning. Results: 29,083 individuals total—16,657 (57.27%) males and 12,426 (42.73%) females—were included in the current study. Men's and women's median ages were 29 and 26, respectively (p < 0.0001). 10,326 (83.10%) women and 12,071 (72.47%) men under 40 were present (p < 0.001). 44.10% of cases had a history of poisoning, and the majority of cases (69.38% in men and 79.00% in women, p<0.001) were purposeful. Between various age groups and nervous system agents, there were notable variations in the ratios of men and women. The most often used agent for women was alprazolam, whereas methadone was more popular for men. Overall, there was a rising tendency in acute poisoning associated with alcohol and opioids used to treat addiction disorders, but a declining trend with benzodiazepines and antidepressants. Conclusion: Addiction to methadone was widespread, particularly in young males, and the majority of these cases were self-inflicted. Alprazolam and clonazepam poisoning most commonly affect women and males in the 20–29 age range, respectively. Opium was utilized by men over 30 and women over 60. Over half of the deaths were related to illicit narcotics, with opium being the most common. This research could raise awareness and lead to the development of gender- and age-specific local programs for education and prevention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20poisonings" title="acute poisonings">acute poisonings</a>, <a href="https://publications.waset.org/abstracts/search?q=illegal%20drugs" title=" illegal drugs"> illegal drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20system" title=" nerve system"> nerve system</a> </p> <a href="https://publications.waset.org/abstracts/189153/acute-poisoning-based-on-age-and-gender-caused-by-pharmaceuticals-and-therapies-that-influence-the-nervous-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Acute Renal Failure Associated Tetanus Infection: A Case Report from Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shohra%20Qaderi">Shohra Qaderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Tetanus is a severe infection characterized by the spasm of skeletal muscles that often progresses toward respiratory failure. Acute Renal failure (ARF) is an important complication associated Tetanus infection, occurring in 15%-39% of cases. Presentation of cases: A previous healthy 14-year-old boy was admitted to the Tetanus ward of a hospital in Kabul, presenting with severe muscle spasms. On day four of admission, he started having cola-colored urine with decreased urine output. Due to lack of peritoneal dialysis, he went under hemodialysis in view of rapidly raising in blood urea (from baseline 32 mg/dl to 150 mg/dl) and creatinine from (baseline 0.9 mg/dl to 6.2g/dl). Despite all efforts, he had a sudden cardiac arrest and passed away on day 6 of admission. Discussion: ARF is a complication of tetanus, reported to be mild and non-oliguric. Suggested pathological mechanisms include autonomic dysfunction and rhabdomyolysis, owing to uncontrolled muscle spasms. Autonomic dysfunction, most evident in the first two weeks of infection. Conclusion: The prevalence and mortality of tetanus is high in Afghanistan. Physicians and pediatricians need to be aware of this complication of tetanus so as to take appropriate preventive measures and recognize and manage it early. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=afghanistan" title="afghanistan">afghanistan</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20renal%20failure" title=" acute renal failure"> acute renal failure</a>, <a href="https://publications.waset.org/abstracts/search?q=child" title=" child"> child</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/135422/acute-renal-failure-associated-tetanus-infection-a-case-report-from-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10