CINXE.COM

Search results for: melanoma

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: melanoma</title> <meta name="description" content="Search results for: melanoma"> <meta name="keywords" content="melanoma"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="melanoma" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="melanoma"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 69</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: melanoma</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Metastatic Polypoid Nodular Melanoma Management During The COVID-19 Pandemic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Bradu">Stefan Bradu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Siegel"> Daniel Siegel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jameson%20Loyal"> Jameson Loyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Leaf"> Andrea Leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Alana%20Kurtti"> Alana Kurtti</a>, <a href="https://publications.waset.org/abstracts/search?q=Usha%20Alapati"> Usha Alapati</a>, <a href="https://publications.waset.org/abstracts/search?q=Jared%20Jagdeo"> Jared Jagdeo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compared with all other variants of nodular melanoma, patients with polypoid nodular melanoma have the lowest 5-year survival rate. The pathophysiology and management of polypoid melanoma are scarcely reported in the literature. Although surgical excision is the cornerstone of melanoma management, treatment of polypoid melanoma is complicated by several negative prognostic factors, including early metastasis. This report demonstrates the successful treatment of a rapidly developing red nodular polypoid melanoma with metastasis using surgery and adjuvant nivolumab in a SARS-CoV-2-positive patient who delayed seeking care due to the COVID-19 pandemic. In addition to detailing the successful treatment approach, the immunosuppressive effects of SARS-2-CoV and its possible contribution to the rapid progression of polypoid melanoma are discussed. This case highlights the complex challenges of melanoma diagnosis and management during the COVID-19 pandemic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=covid-19" title="covid-19">covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatology" title=" dermatology"> dermatology</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotherapy" title=" immunotherapy"> immunotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=nivolumab" title=" nivolumab"> nivolumab</a> </p> <a href="https://publications.waset.org/abstracts/140542/metastatic-polypoid-nodular-melanoma-management-during-the-covid-19-pandemic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Immunoliposomes Conjugated with CD133 Antibody for Targeting Melanoma Cancer Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuan%20Yin">Chuan Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer stem cells (CSCs) represent a subpopulation of cancer cells that possess the characteristics associated with normal stem cells. CD133 is a phenotype of melanoma CSCs responsible for melanoma metastasis and drug resistance. Although adriamycin (ADR) is commonly used drug in melanoma therapy, but it is ineffective in the treatment of melanoma CSCs. In this study, we constructed CD133 antibody conjugated ADR immunoliposomes (ADR-Lip-CD133) to target CD133+ melanoma CSCs. The results showed that the immunoliposomes possessed a small particle size (~150 nm), high drug encapsulation efficiency (~90%). After 72 hr treatment on the WM266-4 melanoma tumorspheres, the IC50 values of the drug formulated in ADR-Lip-CD133, ADR-Lip (ADR liposomes) and ADR are found to be 24.42, 57.13 and 59.98 ng/ml respectively, suggesting that ADR-Lip-CD133 was more effective than ADR-Lip and ADR. Significantly, ADR-Lip-CD133 could almost completely abolish the tumorigenic ability of WM266-4 tumorspheres in vivo, and showed the best therapeutic effect in WM266-4 melanoma xenograft mice. It is noteworthy that ADR-Lip-CD133 could selectively kill CD133+ melanoma CSCs of WM266-4 cells both in vitro and in vivo. ADR-Lip-CD133 represent a potential approach in targeting and killing CD133+ melanoma CSCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem%20cells" title="cancer stem cells">cancer stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoliposomes" title=" immunoliposomes"> immunoliposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=CD133" title=" CD133"> CD133</a> </p> <a href="https://publications.waset.org/abstracts/32389/immunoliposomes-conjugated-with-cd133-antibody-for-targeting-melanoma-cancer-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Trends of Cutaneous Melanoma in New Zealand: 2010 to 2020</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jack%20S.%20Pullman">Jack S. Pullman</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Wen"> Daniel Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Sharma"> Avinash Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bert%20Van%20Der%20Werf"> Bert Van Der Werf</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Martin"> Richard Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: New Zealand (NZ) melanoma incidence rates are amongst the highest in the world. Previous studies investigating the incidence of melanoma in NZ were performed for the periods 1995 – 1999 and 2000 – 2004 and suggested increasing melanoma incidence rates. Aim: The aim of the study is to provide an up-to-date review of trends in cutaneous melanoma in NZ from the New Zealand Cancer Registry (NZCR) 2010 – 2020. Methods: De-identified data were obtained from the NZCR, and relevant demographic and histopathologic information was extracted. Statistical analyses were conducted to calculate age-standardized incidence rates for invasive melanoma (IM) and melanoma in situ (MIS). Secondary results included Breslow thickness and melanoma subtype analysis. Results: There was a decline in the IM age-standardized incidence rate from 30.4 to 23.9 per 100,000 person-years between 2010 to 2020, alongside an increase in MIS incidence rate from 37.1 to 50.3 per 100,000 person-years. Men had a statistically significant higher IM incidence rate (p <0.001) and Breslow thickness (p <0.001) compared with women. Increased age was associated with a higher incidence of IM, presentation with melanoma of greater Breslow thickness and more advanced T stage. Conclusion: The incidence of IM in NZ has decreased in the last decade and was associated with an increase in MIS incidence over the same period. This can be explained due to earlier detection, dermoscopy, the maturity of prevention campaigns and/or a change in skin protection behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanoma" title="melanoma">melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=incidence" title=" incidence"> incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiology" title=" epidemiology"> epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=New%20Zealand" title=" New Zealand"> New Zealand</a> </p> <a href="https://publications.waset.org/abstracts/177556/trends-of-cutaneous-melanoma-in-new-zealand-2010-to-2020" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Isolation and Characterization of Anti-melanoma (Skin Cancer) Compounds from Corchorus olitorius .L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peramachi%20Sathiyamoorthy">Peramachi Sathiyamoorthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacop%20Gopas"> Jacop Gopas</a>, <a href="https://publications.waset.org/abstracts/search?q=Avi%20Golan%20Goldhirsh"> Avi Golan Goldhirsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corchorus olitorius is a leafy vegetable and an industrial crop. The herb has antioxidant, anti inflammatory, and anti-cancer properties. To assay the pharmaceutical properties, aqueous extracts of leaves and seeds from C. olitorius were tested against drug resistant melanoma cell line. The test showed LC50 of the extract was 0.08µg/ml. Aqueous seed extract exhibited higher melanoma inhibiting activity than leaf extract. Dialysis of seed extract showed that the active compound is less than 12 KDa. The compound with <3 KDa MW separated by microconcentration of seed extract showed 70.5 % inhibition of melanoma cell growth. Among the two fractions obtained by Gel filtration with G10 column, the first fraction at 1:2000 dilutions exhibited 100% inhibition of melanoma growth. The compound with Rf value 0.86 (MA4) isolated by TLC separation showed about 98% cytotoxicity against melanoma at 1: 1000 dilutions. Furthermore, HPLC separation of MA4 compound with Superdex 75 column resulted in 4 compounds. Out of 4, one compound showed melanoma inhibition. The active compound is identified by reagent methods as Strophanthidin. Further toxicological and clinical studies will lead to the development of a potential drug to treat drug resistant melanoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corchorus%20olitorius" title="corchorus olitorius">corchorus olitorius</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20development" title=" drug development"> drug development</a>, <a href="https://publications.waset.org/abstracts/search?q=strophanthidin" title=" strophanthidin"> strophanthidin</a> </p> <a href="https://publications.waset.org/abstracts/154432/isolation-and-characterization-of-anti-melanoma-skin-cancer-compounds-from-corchorus-olitorius-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Wound Healing Dressing and Some Composites Such as Zeolite, TiO2, Chitosan and PLGA as New Alternative for Melanoma Therapy: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20B.%20Naves">L. B. Naves</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Almeida"> L. Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of Drugs Delivery System (DDS), has been wildly investigated in the last decades. In this paper, first a general overview of traditional and modern wound dressing is presented. This is followed by a review of what scientist have done in the medical environment, focusing the possibility to develop a new alternative for DDS through transdermal pathway, aiming to treat melanoma skin cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title="cancer therapy">cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=dressing%20polymers" title=" dressing polymers"> dressing polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a> </p> <a href="https://publications.waset.org/abstracts/23920/wound-healing-dressing-and-some-composites-such-as-zeolite-tio2-chitosan-and-plga-as-new-alternative-for-melanoma-therapy-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Potential Activities of Human Endogenous Retroviral kDNA in Melanoma Pathogenesis and HIV-1 Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianli%20Dong">Jianli Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Fangling%20Xu"> Fangling Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gengming%20Huang"> Gengming Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human endogenous retroviral elements (HERVs) comprise approximately 8% of the human genome. They are thought to be germline-integrated genetic remnants of retroviral infections. Although HERV sequences are highly defective, some, especially the K type (HERV-K), have been shown to be expressed and may have biological activities in the pathogenesis of cancer, chronic inflammation and autoimmune diseases. We found that HERV-K GAG and ENV proteins were strongly expressed in pleomorphic melanoma cells. We also detected a critical role of HERV-K ENV in mediating intercellular fusion and colony formation of melanoma cells. Interestingly, we found that levels of HERV-K GAG and ENV expression correlated with the activation of ERK and loss of p16INK4A in melanoma cells, and inhibition of MEK or CDK4, especially in combination, reduced HERV-K expression in melanoma cells. We also performed a reverse transcription-polymerase chain reaction (RT-PCR) assay using DNase I digestion to remove “contaminating” HERV-K genomic DNA and examined HERV-K RNA expression in plasma samples from HIV-1 infected individuals. We found a covariation between HERV-K RNA expression and CD4 cell counts in HIV-1 positive samples. Although a causal link between HERV-K activation and melanoma development, and between HERV-K activation, HIV-1 infection and CD4 cell count have yet to be determined, existing data support the further research efforts in HERV-K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD4%20cell" title="CD4 cell">CD4 cell</a>, <a href="https://publications.waset.org/abstracts/search?q=HERV-K" title=" HERV-K"> HERV-K</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV-1" title=" HIV-1"> HIV-1</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a> </p> <a href="https://publications.waset.org/abstracts/58864/potential-activities-of-human-endogenous-retroviral-kdna-in-melanoma-pathogenesis-and-hiv-1-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Artificial Intelligence in Melanoma Prognosis: A Narrative Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shohreh%20Ghasemi">Shohreh Ghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=prognosis%20prediction" title=" prognosis prediction"> prognosis prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analysis" title=" image analysis"> image analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20medicine" title=" personalized medicine"> personalized medicine</a> </p> <a href="https://publications.waset.org/abstracts/171134/artificial-intelligence-in-melanoma-prognosis-a-narrative-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Epidemiology of Cutaneous Malignant Melanoma in Pakistan: Incidence, Clinical Subtypes, Tumor Stage and Localization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Warda%20Jabeen">Warda Jabeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Romaisa%20Shamim%20Khan"> Romaisa Shamim Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Shakeel"> Osama Shakeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Faraz%20Bhatti"> Ahmed Faraz Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Raza%20Hussain"> Raza Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The worldwide incidence of cutaneous melanoma (CM) has been on the rise over the past few decades. Primary prevention and early treatment remain the focus of management to reduce the burden of disease. This entails identification of risk factors to prompt early diagnosis. In Pakistan, there is a scarcity of clinico-pathological data relating to cutaneous malignant melanoma. Objective: The purpose of this study was to analyze the epidemiological and clinical characteristics of patients presenting with cutaneous malignant melanoma in Pakistan, and to compare the results with other studies. Method: Shaukat Khanum Memorial Cancer Hospital and Research Centre is currently the only dedicated cancer hospital in the country, accepting patients from all over Pakistan. Majority of the patients, however, belong to the northern half of the country. From the recorded data of the hospital, all cutaneous melanoma cases were identified and evaluated. Results: Between 1997 and 2017, a total of 169 cutaneous melanoma patients were registered at Shaukat Khanum. Mean age was 47.5 years. The highest incidence of melanoma was seen in the age group 40-59 years (n=69, 40.8%). Most commonly reported clinical subtype was unspecified melanoma (n=154, 91%). Amongst those in which T stage was reported, the most frequently observed T-stage at presentation was T4 (n=23, 13.6%). With regards to body distribution, in our study CM was seen most commonly in the lower limb including the hip. The yearly incidence of melanoma has increased/remained stable from 2007 to 2017. Conclusion: cutaneous malignant melanoma is a fairly common disease in Pakistan. Patients tend to present at a more advanced stage as compared to patients in developed countries. Identification of risk factors and tumor characteristics is therefore of paramount importance to deal with these patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epidemiology%20of%20cutaneous%20malignant%20melanoma" title="epidemiology of cutaneous malignant melanoma">epidemiology of cutaneous malignant melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=cutaneous%20malignant%20melanoma" title=" cutaneous malignant melanoma"> cutaneous malignant melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a> </p> <a href="https://publications.waset.org/abstracts/101508/epidemiology-of-cutaneous-malignant-melanoma-in-pakistan-incidence-clinical-subtypes-tumor-stage-and-localization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firas%20Gerges">Firas Gerges</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Y.%20Shih"> Frank Y. Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a> </p> <a href="https://publications.waset.org/abstracts/134720/a-convolutional-deep-neural-network-approach-for-skin-cancer-detection-using-skin-lesion-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemka%20C.%20Ihemelandu">Kemka C. Ihemelandu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chukwuemeka%20U.%20Ihemelandu"> Chukwuemeka U. Ihemelandu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanoma" title="melanoma">melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum" title="momentum">momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20hyperparameter" title="batch hyperparameter">batch hyperparameter</a> </p> <a href="https://publications.waset.org/abstracts/147490/optimization-of-a-convolutional-neural-network-for-the-automated-diagnosis-of-melanoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Histone Deacetylases Inhibitor - Valproic Acid Sensitizes Human Melanoma Cells for alkylating agent and PARP inhibitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ma%C5%82gorzata%20Drzewiecka">Małgorzata Drzewiecka</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20%C5%9Aliwi%C5%84ski"> Tomasz Śliwiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Radek"> Maciej Radek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inhibition of histone deacetyles (HDACs) holds promise as a potential anti-cancer therapy because histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, histone deacetylase inhibitors (HDACi) such as class I HDAC inhibitor - valproic acid (VPA) have been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that, using of VPA in combination with talazoparib (BMN-637 – PARP1 inhibitor – PARPi) and/or Dacarabazine (DTIC - alkylating agent) resulted in increased DNA double strand break (DSB) and reduced survival (while not affecting primary melanocytes )and proliferation of melanoma cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-637. In addition, inhibition of HDAC caused sensitization of melanoma cells to dacarbazine and BMN-637 in melanoma xenografts in vivo. At the mRNA and protein level histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study provides that combining HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is known for being one of the most aggressive malignant tumors. The findings presented here point to a scenario in which HDAC via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanoma" title="melanoma">melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=hdac" title=" hdac"> hdac</a>, <a href="https://publications.waset.org/abstracts/search?q=parp%20inhibitor" title=" parp inhibitor"> parp inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=valproic%20acid" title=" valproic acid"> valproic acid</a> </p> <a href="https://publications.waset.org/abstracts/167232/histone-deacetylases-inhibitor-valproic-acid-sensitizes-human-melanoma-cells-for-alkylating-agent-and-parp-inhibitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Targeting the EphA2 Receptor Tyrosine Kinases in Melanoma Cancer, both in Humans and Dogs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shabnam%20Abdi">Shabnam Abdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Toosi"> Behzad Toosi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Melanoma is the most lethal type of malignant skin cancer in humans and dogs since it spreads rapidly throughout the body. Despite significant advances in treatment, cancer at an advanced stage has a poor prognosis. Hence, more effective treatments are needed to enhance outcomes with fewer side effects. Erythropoietin-producing hepatocellular receptors are the largest family of receptor tyrosine kinases and are divided into two subfamilies, EphA and EphB, both of which play a significant role in disease, especially cancer. Due to their association with proliferation and invasion in many aggressive types of cancer, Eph receptor tyrosine kinases (Eph RTKs) are promising cancer therapy molecules. Because these receptors have not been studied in canine melanoma, we investigated how EphA2 influences survival and tumorigenicity of melanoma cells. Methods: Expression of EphA2 protein in canine melanoma cell lines and human melanoma cell line was evaluated by Western blot. Melanoma cells were transduced with lentiviral particles encoding Eph-targeting shRNAs or non-silencing shRNAs (control) for silencing the expression of EphA2 receptor, and silencing was confirmed by Western blotting and immunofluorescence. The effect of siRNA treatment on cellular proliferation, colony formation, tumorsphere assay, invasion was analyzed by Resazurin assay Matrigel invasion assay, respectively. Results: Expression of EphA2 was detected in canine and human melanoma cell lines. Moreover, stably silencing EphA2 by specific shRNAs significantly and consistently decreased the expression of EphA2 protein in both human and canine melanoma cells. Proliferation, colony formation, tumorsphere and invasion of melanoma cells were significantly decreased in EphA2 siRNA-treated cells compared to control. Conclusion: Our data provide the first functional evidence that the EphA2 receptor plays a critical role in the malignant cellular behavior of melanoma in both human and dogs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ephA2" title="ephA2">ephA2</a>, <a href="https://publications.waset.org/abstracts/search?q=targeting" title=" targeting"> targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=human" title=" human"> human</a>, <a href="https://publications.waset.org/abstracts/search?q=canine" title=" canine"> canine</a> </p> <a href="https://publications.waset.org/abstracts/173830/targeting-the-epha2-receptor-tyrosine-kinases-in-melanoma-cancer-both-in-humans-and-dogs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> New Approach for Melanoma Skin Cancer Controled Releasing Drugs for Neutron Capture Therapy: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucas%20Bernardes%20Naves">Lucas Bernardes Naves</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Almeida"> Luis Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper includes a review concerning the use of some composites including poly(lactide-co-glycolide) (PGLA), zeolite and Gadopentetic acid (Gd-DTPA) loaded chitosan nanoparticles (Gd-nanoCPs) in order to establish a new alternative for the treatment of Melanoma Skin Cancer. The main goal of this paper it to make a review of what scientist have done in the last few years, as well as to propose a less invasive therapy for skin cancer, by using Hydrocolloid, based on PLGA coated with Gd-nanoCPs for Neutron Capture Therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title="cancer therapy">cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=dressing%20polymers" title=" dressing polymers"> dressing polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a> </p> <a href="https://publications.waset.org/abstracts/29758/new-approach-for-melanoma-skin-cancer-controled-releasing-drugs-for-neutron-capture-therapy-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> An Unusual Presentation of Uveal Melanoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Goh">Natasha Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Brown"> Sebastian Brown</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This case report describes an unusual presentation of uveal melanoma. Method: Case notes, imaging, and histopathological specimen were reviewed for this case report. Result: The patient is a 62-year-old lady of Chinese heritage who had been receiving follow-up at the eye clinic of a tertiary hospital. She had a longstanding history of poor vision in her right eye after sustaining trauma to the eye at age 3. She was found to have a carotid-cavernous sinus fistula in the right eye in 2009 and underwent stenting in China. Unfortunately, this was unsuccessful and resulted in a painful blind eye. She had represented with headaches, worsening eye pain, and ptosis in Sydney in 2016. Her CT angiogram showed a calcified vascular structure in the orbit and globe, and she was offered a digital subtraction angiography by the neurosurgical team, which she ultimately declined. She had since been followed up at the eye clinic for the pthisical eye. Due to chronic ocular pain and recurrent conjunctivitis, the decision was made for an evisceration in 2021. The specimen was sent for routine histopathological examination and returned positive for uveal melanoma. The patient was subsequently referred to a melanoma center for further follow-up, which comprised serial imaging and radiotherapy treatment. Conclusion: Clinicians should bear in mind that uveal melanomas may present in a longstanding phthisical eye and in patients with no or little apparent risk factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uveal%20melanoma" title="uveal melanoma">uveal melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=pthisical%20eye" title=" pthisical eye"> pthisical eye</a>, <a href="https://publications.waset.org/abstracts/search?q=carotid%20cavernous%20fistula" title=" carotid cavernous fistula"> carotid cavernous fistula</a>, <a href="https://publications.waset.org/abstracts/search?q=uveal%20melanoma%20risk%20factors" title=" uveal melanoma risk factors"> uveal melanoma risk factors</a> </p> <a href="https://publications.waset.org/abstracts/156002/an-unusual-presentation-of-uveal-melanoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Non-Melanoma Skin Cancer in Ha’il Region in the Kingdom of Saudi Arabia: A Clinicopathological Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Seada">Laila Seada</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouf%20Al%20Gharbi"> Nouf Al Gharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaimaa%20Dawa"> Shaimaa Dawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although skin cancers are prevalent worldwide, it is uncommon in Ha&rsquo;il region in the Kingdom of Saudi Arabia, mostly non-melanoma sub-type. During a 4-year period from 2014 to 2017, out of a total of 120 cases of skin lesions, 29 non-melanoma cancers were retrieved from histopathology files obtained from King Khalid Hospital. As part of the study, all cases of skin cancer diagnosed during 2014 -2017 have been revised and the clinicopathological data recorded. The results show that Basal cell carcinoma (BCC) was the most common neoplasm (36%), followed by cutaneous lymphomas (mostly mycosis fungoides 25%), squamous cell carcinoma (SCC) (21%) and dermatofibrosarcoma protuberans (DFSP) (11%). Only one case of metastatic carcinoma was recorded. BCC nodular type was the most prevalent, with a mean age 57.6 years and mean size 2.73 cm. SCC was mostly grade 2, with mean size 1.9 cm and an older mean age of 72.3 cm. Increased size of lesion positively correlated with older age (<em>p </em>= 0.001). Non-melanoma skin cancer in Ha&rsquo;il region is not frequently encountered. BCC is the most frequent followed by cutaneous T-cell lymphomas and SCC. The findings in this study were in accordance with other parts of, but much lower than other parts of the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20melanoma%20skin%20cancer" title="non melanoma skin cancer">non melanoma skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hail%20Region" title=" Hail Region"> Hail Region</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathology" title=" histopathology"> histopathology</a>, <a href="https://publications.waset.org/abstracts/search?q=BCC" title=" BCC"> BCC</a> </p> <a href="https://publications.waset.org/abstracts/103210/non-melanoma-skin-cancer-in-hail-region-in-the-kingdom-of-saudi-arabia-a-clinicopathological-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemka%20Ihemelandu">Kemka Ihemelandu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chukwuemeka%20Ihemelandu"> Chukwuemeka Ihemelandu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bias" title="bias">bias</a>, <a href="https://publications.waset.org/abstracts/search?q=augmentation" title=" augmentation"> augmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a> </p> <a href="https://publications.waset.org/abstracts/147487/bias-prevention-in-automated-diagnosis-of-melanoma-augmentation-of-a-convolutional-neural-network-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaira%20L.%20Kee">Shaira L. Kee</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Aaron%20G.%20Sy"> Michael Aaron G. Sy</a>, <a href="https://publications.waset.org/abstracts/search?q=Myles%20%20Joshua%20%20T.%20Tan"> Myles Joshua T. Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hezerul%20Abdul%20Karim"> Hezerul Abdul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouar%20AlDahoul"> Nouar AlDahoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning%20-%20VGG16%20-%20efficientNet%20-%20CNN%20%E2%80%93%20ensemble%20%E2%80%93%0D%0Adermoscopic%20images%20-%20%20melanoma" title="deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma">deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma</a> </p> <a href="https://publications.waset.org/abstracts/162765/melanoma-and-non-melanoma-skin-lesion-classification-using-a-deep-learning-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Human 3D Metastatic Melanoma Models for in vitro Evaluation of Targeted Therapy Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Delphine%20Morales">Delphine Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Lombart"> Florian Lombart</a>, <a href="https://publications.waset.org/abstracts/search?q=Agathe%20Truchot"> Agathe Truchot</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20Maire"> Pauline Maire</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascale%20%20Vigneron"> Pascale Vigneron</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Galmiche"> Antoine Galmiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Lok"> Catherine Lok</a>, <a href="https://publications.waset.org/abstracts/search?q=Muriel%20Vayssade"> Muriel Vayssade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Targeted therapy molecules are used as a first-line treatment for metastatic melanoma with B-Raf mutation. Nevertheless, these molecules can cause side effects to patients and are efficient on 50 to 60 % of them. Indeed, melanoma cell sensitivity to targeted therapy molecules is dependent on tumor microenvironment (cell-cell and cell-extracellular matrix interactions). To better unravel factors modulating cell sensitivity to B-Raf inhibitor, we have developed and compared several melanoma models: from metastatic melanoma cells cultured as monolayer (2D) to a co-culture in a 3D dermal equivalent. Cell response was studied in different melanoma cell lines such as SK-MEL-28 (mutant B-Raf (V600E), sensitive to Vemurafenib), SK-MEL-3 (mutant B-Raf (V600E), resistant to Vemurafenib) and a primary culture of dermal human fibroblasts (HDFn). Assays have initially been performed in a monolayer cell culture (2D), then a second time on a 3D dermal equivalent (dermal human fibroblasts embedded in a collagen gel). All cell lines were treated with Vemurafenib (a B-Raf inhibitor) for 48 hours at various concentrations. Cell sensitivity to treatment was assessed under various aspects: Cell proliferation (cell counting, EdU incorporation, MTS assay), MAPK signaling pathway analysis (Western-Blotting), Apoptosis (TUNEL), Cytokine release (IL-6, IL-1α, HGF, TGF-β, TNF-α) upon Vemurafenib treatment (ELISA) and histology for 3D models. In 2D configuration, the inhibitory effect of Vemurafenib on cell proliferation was confirmed on SK-MEL-28 cells (IC50=0.5 µM), and not on the SK-MEL-3 cell line. No apoptotic signal was detected in SK-MEL-28-treated cells, suggesting a cytostatic effect of the Vemurafenib rather than a cytotoxic one. The inhibition of SK-MEL-28 cell proliferation upon treatment was correlated with a strong expression decrease of phosphorylated proteins involved in the MAPK pathway (ERK, MEK, and AKT/PKB). Vemurafenib (from 5 µM to 10 µM) also slowed down HDFn proliferation, whatever cell culture configuration (monolayer or 3D dermal equivalent). SK-MEL-28 cells cultured in the dermal equivalent were still sensitive to high Vemurafenib concentrations. To better characterize all cell population impacts (melanoma cells, dermal fibroblasts) on Vemurafenib efficacy, cytokine release is being studied in 2D and 3D models. We have successfully developed and validated a relevant 3D model, mimicking cutaneous metastatic melanoma and tumor microenvironment. This 3D melanoma model will become more complex by adding a third cell population, keratinocytes, allowing us to characterize the epidermis influence on the melanoma cell sensitivity to Vemurafenib. In the long run, the establishment of more relevant 3D melanoma models with patients’ cells might be useful for personalized therapy development. The authors would like to thank the Picardie region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work and Oise committee of "La ligue contre le cancer". <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20human%20skin%20model" title="3D human skin model">3D human skin model</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=vemurafenib%20efficiency" title=" vemurafenib efficiency"> vemurafenib efficiency</a> </p> <a href="https://publications.waset.org/abstracts/61595/human-3d-metastatic-melanoma-models-for-in-vitro-evaluation-of-targeted-therapy-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Dermoscopy Compliance: Improving Melanoma Detection Pathways Through Quality Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Max%20Butler">Max Butler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melanoma accounts for 80% of skin cancer-related deaths globally. The poor prognosis and increasing incidence of melanoma impose a significant burden on global healthcare systems. Early detection, precise diagnosis, and preventative strategies are critical to improving patient outcomes. Dermoscopy is the gold standard for specialist assessments of pigmented skin lesions, as it can differentiate between benign and malignant growths with greater accuracy than visual inspection. In the United Kingdom, guidelines from the National Institute of Clinical Excellence (NICE) state dermoscopy should be used in all specialist assessments of pigmented skin lesions. Compliance with this guideline is low, resulting in missed and delayed melanoma diagnoses. To address this problem, a quality improvement project was initiated at Buckinghamshire Healthcare Trust (BHT) within the plastic surgery department. The target group was a trainee and consultant plastic surgeons conducting outpatient skin cancer clinics. Analysis of clinic documentation over a one-month period found that only 62% (38/61) of patients referred with pigmented skin lesions were examined using dermoscopy. To increase dermoscopy rates, teaching was delivered to the department highlighting national guidelines and the evidence base for dermoscopic examination. In addition, clinic paperwork was redesigned to include a text box for dermoscopic examination. Reauditing after the intervention found a significant increase in dermoscopy rates (52/61, p = 0.014). In conclusion, implementing a quality improvement project with targeted teaching and documentation template templates successfully increased dermoscopy rates. This is a promising step toward improving early melanoma detection and patient outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanoma" title="melanoma">melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=dermoscopy" title=" dermoscopy"> dermoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20surgery" title=" plastic surgery"> plastic surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20improvement" title=" quality improvement"> quality improvement</a> </p> <a href="https://publications.waset.org/abstracts/170872/dermoscopy-compliance-improving-melanoma-detection-pathways-through-quality-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> ESDN Expression in the Tumor Microenvironment Coordinates Melanoma Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Coppo">Roberto Coppo</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Orso"> Francesca Orso</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Dettori"> Daniela Dettori</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Quaglino"> Elena Quaglino</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Nie"> Lei Nie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehran%20M.%20Sadeghi"> Mehran M. Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Taverna"> Daniela Taverna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malignant melanoma is currently the fifth most common cancer in the white population and it is fatal in its metastatic stage. Several research studies in recent years have provided evidence that cancer initiation and progression are driven by genetic alterations of the tumor and paracrine interactions between tumor and microenvironment. Scattered data show that the Endothelial and Smooth muscle cell-Derived Neuropilin-like molecule (ESDN) controls cell proliferation and movement of stroma and tumor cells. To investigate the role of ESDN in the tumor microenvironment during melanoma progression, murine melanoma cells (B16 or B16-F10) were injected in ESDN knockout mice in order to evaluate how the absence of ESDN in stromal cells could influence melanoma progression. While no effect was found on primary tumor growth, increased cell extravasation and lung metastasis formation was observed in ESDN knockout mice compared to wild type controls. In order to understand how cancer cells cross the endothelial barrier during metastatic dissemination in an ESDN-null microenvironment, structure, and permeability of lung blood vessels were analyzed. Interestingly, ESDN knockout mice showed structurally altered and more permeable vessels compared to wild type animals. Since cell surface molecules mediate the process of tumor cell extravasation, the expression of a panel of extravasation-related ligands and receptors was analyzed. Importantly, modulations of N-cadherin, E-selectin, ICAM-1 and VAP-1 were observed in ESDN knockout endothelial cells, suggesting the presence of a favorable tumor microenvironment which facilitates melanoma cell extravasation and metastasis formation in the absence of ESDN. Furthermore, a potential contribution of immune cells in tumor dissemination was investigated. An increased recruitment of macrophages in the lungs of ESDN knockout mice carrying subcutaneous B16-F10 tumors was found. In conclusion, our data suggest a functional role of ESDN in the tumor microenvironment during melanoma progression and the identification of the mechanisms that regulate tumor cell extravasation could lead to the development of new therapies to reduce metastasis formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanoma" title="melanoma">melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20microenvironment" title=" tumor microenvironment"> tumor microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=extravasation" title=" extravasation"> extravasation</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20surface%20molecules" title=" cell surface molecules"> cell surface molecules</a> </p> <a href="https://publications.waset.org/abstracts/44830/esdn-expression-in-the-tumor-microenvironment-coordinates-melanoma-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Clinical Efficacy of Nivolumab and Ipilimumab Combination Therapy for the Treatment of Advanced Melanoma: A Systematic Review and Meta-Analysis of Clinical Trials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Yan">Zhipeng Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Janice%20Wing-Tung%20Kwong"> Janice Wing-Tung Kwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Lung%20Lai"> Ching-Lung Lai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Advanced melanoma accounts for the majority of skin cancer death due to its poor prognosis. Nivolumab and ipilimumab are monoclonal antibodies targeting programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocytes antigen 4 (CTLA-4). Nivolumab and ipilimumab combination therapy has been proven to be effective for advanced melanoma. This systematic review and meta-analysis are to evaluate its clinical efficacy and adverse events. Method: A systematic search was done on databases (Pubmed, Embase, Medline, Cochrane) on 21 June 2020. Search keywords were nivolumab, ipilimumab, melanoma, and randomised controlled trials. Clinical trials fulfilling the inclusion criteria were selected to evaluate the efficacy of combination therapy in terms of prolongation of progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). The odd ratios and distributions of grade 3 or above adverse events were documented. Subgroup analysis was performed based on PD-L1 expression-status and BRAF-mutation status. Results: Compared with nivolumab monotherapy, the hazard ratios of PFS, OS and odd ratio of ORR in combination therapy were 0.64 (95% CI, 0.48-0.85; p=0.002), 0.84 (95% CI, 0.74-0.95; p=0.007) and 1.76 (95% CI, 1.51-2.06; p < 0.001), respectively. Compared with ipilimumab monotherapy, the hazard ratios of PFS, OS and odd ratio of ORR were 0.46 (95% CI, 0.37-0.57; p < 0.001), 0.54 (95% CI, 0.48-0.61; p < 0.001) and 6.18 (95% CI, 5.19-7.36; p < 0.001), respectively. In combination therapy, the odds ratios of grade 3 or above adverse events were 4.71 (95% CI, 3.57-6.22; p < 0.001) compared with nivolumab monotherapy, and 3.44 (95% CI, 2.49-4.74; p < 0.001) compared with ipilimumab monotherapy, respectively. High PD-L1 expression level and BRAF mutation were associated with better clinical outcomes in patients receiving combination therapy. Conclusion: Combination therapy is effective for the treatment of advanced melanoma. Adverse events were common but manageable. Better clinical outcomes were observed in patients with high PD-L1 expression levels and positive BRAF-mutation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nivolumab" title="nivolumab">nivolumab</a>, <a href="https://publications.waset.org/abstracts/search?q=ipilimumab" title=" ipilimumab"> ipilimumab</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20melanoma" title=" advanced melanoma"> advanced melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20review" title=" systematic review"> systematic review</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-analysis" title=" meta-analysis"> meta-analysis</a> </p> <a href="https://publications.waset.org/abstracts/136653/clinical-efficacy-of-nivolumab-and-ipilimumab-combination-therapy-for-the-treatment-of-advanced-melanoma-a-systematic-review-and-meta-analysis-of-clinical-trials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Primary Melanocytic Tumors of the Central Nervous System: A Clinico-Pathological Study of Seven Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushila%20Jaiswal">Sushila Jaiswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Awadhesh%20Kumar%20Jaiswal"> Awadhesh Kumar Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Primary melanocytic tumors of the central nervous system (CNS) are uncommon lesions and arise from the melanocytes located within the leptomeninges. Aim and objective: The aim of the study was to evaluate the clinical details, histomorphology of the primary melanocytic tumor of CNS. Method: The study was performed by the retrospective review of the case records of the primary melanocytic tumors of CNS diagnosed in our department. The formalin-fixed, paraffin embedded tissue blocks and tissue sections were retrieved and reviewed. Results: Seven cases (6 males, 1 female; age range- 16-40 years; mean age- 27 years) of primary melanocytic tumors of CNS were retrieved over last seven years. The tumor was intracranial (n=5; frontal – 1 case, parietal – 1 case, cerebello-pontine angle- 1 case, occipital -1 case, foramen magnum-1 case) and intra spinal (n=2; cervical – 2 cases). All patients presented with the neurological deficits related to the location of the tumor. Four cases were malignant melanoma; two were melanocytoma of intermediate grade and remaining one was melanocytoma. On histopathology, melanocytoma and melanoma both displayed sheets of well-differentiated melanocytes having round to oval nuclei with finely dispersed chromatin, occasional single eosinophilic nucleoli and a moderate amount of cytoplasm with abundant granular melanin pigment. The absence of mitosis and macronucleoli was noticed in melanocytoma while melanoma showed frequent mitosis and macronucleoli. On immunohistochemistry, both showed diffuse strong HMB45 and S-100 immunopositivity. Conclusion: Primary melanocytic tumors of CNS are rare and predominantly seen in males. It is important to differentiate melanoma from melanocytoma as prognosis of later is good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanocytoma" title="melanocytoma">melanocytoma</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor" title=" brain tumor"> brain tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=melanin" title=" melanin"> melanin</a> </p> <a href="https://publications.waset.org/abstracts/54456/primary-melanocytic-tumors-of-the-central-nervous-system-a-clinico-pathological-study-of-seven-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Melanoma Antigen Proteins Are Involved in DNA Damage Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivier%20de%20Backer">Olivier de Backer</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Khelfi"> Alexis Khelfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Svensek"> Olivier Svensek</a>, <a href="https://publications.waset.org/abstracts/search?q=Axelle%20Nolmans"> Axelle Nolmans</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Desnoeck"> Dominique Desnoeck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The SMC5-SMC6 complex helps replication and repair of DNA double-strand breaks. Nse1, Nse3 and Nse4 are non-SMC components of the complex in which Nse3 stimulates the E3 ubiquitin ligase activity of Nse1 and is required for recruiting the complex on DNA. In most eukaryotes, Nse3 is a single protein, but in eutherians (placental mammals), it belongs to a large family of proteins called MAGE (Melanoma antigen) that share a conserved domain of about 200 aa known as MHD (Mage homology domain). MAGE assembles specific RING and HECT ubiquitin ligases and determines new substrates for ubiquitination. The MHD is required for the interaction with the cognate E3 ligase. Some MAGEs (referred to as Type I) are exclusively expressed in germ cells of the testis but are often expressed ectopically in cancer cells as the result of epigenetic modifications. The 12 MAGE-A genes belong to this category. Serval MAGE-A proteins could promote tumorigenesis by targeting tumor suppressor proteins (including p53) for ubiquitination and degradation. We showed that depletion of MAGE-A proteins in melanoma cells results in impaired DNA damage response and increased double-strand breaks after exposure to camptothecin. Moreover, it was shown that other actors of the DNA Damage Response were impacted when cells were depleted of MAGEA proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage%20response" title="DNA damage response">DNA damage response</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=camptothecin" title=" camptothecin"> camptothecin</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20role" title=" new role"> new role</a>, <a href="https://publications.waset.org/abstracts/search?q=MAGEA" title=" MAGEA"> MAGEA</a> </p> <a href="https://publications.waset.org/abstracts/169692/melanoma-antigen-proteins-are-involved-in-dna-damage-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Prognosis, Clinical Outcomes and Short Term Survival Analyses of Patients with Cutaneous Melanomas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Shakeel">Osama Shakeel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the paper is to study the clinic-pathological factors, survival analyses, recurrence rate, metastatic rate, risk factors and the management of cutaneous malignant melanoma at Shaukat Khanum Memorial Cancer Hospital and Research Center. Methodology: From 2014 to 2017, all patients with a diagnosis of cutaneous malignant melanoma (CMM) were included in the study. Demographic variables were collected. Short and long term oncological outcomes were recorded. All data were entered and analyzed in SPSS version 21. Results: A total of 28 patients were included in the study. Median age was 46.5 +/-15.9 years. There were 16 male and 12 female patients. The family history of melanoma was present in 7.1% (n=2) of the patients. All patients had a mean survival of 13.43+/- 9.09 months. Lower limb was the commonest site among all which constitutes 46.4%(n=13). On histopathological analyses, ulceration was seen in 53.6% (n=15) patients. Unclassified tumor type was present in 75%(n=21) of the patients followed by nodular 21.4% (n=6) and superficial spreading 3.5%(n=1). Clark level IV was the commonest presentation constituting 46.4%(n=13). Metastases were seen in 50%(n=14) of the patients. Local recurrence was observed in 60.7%(n=17). 64.3%(n=18) lived after one year of treatment. Conclusion: CMM is a fatal disease. Although its disease of fair skin individuals, however, the incidence of CMM is also rising in this part of the world. Management includes early diagnoses and prompt management. However, mortality associated with this disease is still not favorable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malignant%20cancer%20of%20skin" title="malignant cancer of skin">malignant cancer of skin</a>, <a href="https://publications.waset.org/abstracts/search?q=cutaneous%20malignant%20melanoma" title=" cutaneous malignant melanoma"> cutaneous malignant melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20analyses" title=" survival analyses"> survival analyses</a> </p> <a href="https://publications.waset.org/abstracts/101504/prognosis-clinical-outcomes-and-short-term-survival-analyses-of-patients-with-cutaneous-melanomas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Synthetic Coumarin Derivatives and Their Anticancer Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kabange%20Kasumbwe">Kabange Kasumbwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Viresh%20Mohanlall"> Viresh Mohanlall</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharti%20Odhav"> Bharti Odhav</a>, <a href="https://publications.waset.org/abstracts/search?q=Venu%20Narayanaswamy"> Venu Narayanaswamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coumarins are naturally occurring plant metabolites known for their pharmacological properties such as anticoagulant, antimicrobial, anticancer, antioxidant, anti-inflammatory and antiviral properties. The pharmacological and biochemical properties and curative applications of coumarins depend on the substitution around the coumarin core structure. In the present study, seven halogenated coumarins CMRN1-CMRN7 were synthesized and evaluated for their anticancer activity. The cytotoxicity potential of the test compounds was evaluated against UACC62 (Melanoma), MCF-7 (Breast cancer) and PBM (Peripheral Blood Mononuclear) cell lines using MTT assay keeping doxorubicin as standard drug. The apoptotic potential of the coumarin compounds was evaluated against UACC62 (Melanoma) cell by assessing their morphological changes, membrane change, mitochondria membrane potential; pro-apoptotic changes were investigated using the AnnexinV-PI staining, JC-1, caspase-3 enzyme kits respectively on flow cytometer. The synthetic coumarin has strongly suppressed the cell proliferation of UACC-62 (Melanoma) and MCF-7 (Breast) Cancer cells, the higher toxicity of these compounds against UACC-62 (Melanoma) and MCF-7 (Breast) were CMRN3, CMRN4, CMRN5, CMRN6. However, compounds CMRN1, CMRN2, and CMRN7 had no significant inhibitory effect. Furthermore the active compounds CMRN3, CMRN4, CMRN5, CMRN6 exerted antiproliferative effects through apoptosis induction against UACC-62 (Melanoma), suggesting their potential could be considered as attractive lead molecules in the future for the development of potential anticancer agents since one of the important criteria in the development of therapeutic drugs for cancer treatment is to have high selectivity and less or no side-effects on normal cells and these compounds had no inhibitory effect against the PBMC cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coumarin" title="coumarin">coumarin</a>, <a href="https://publications.waset.org/abstracts/search?q=MTT" title=" MTT"> MTT</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/59987/synthetic-coumarin-derivatives-and-their-anticancer-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Influence of Gender, Race, and Psychiatric Disorders on Sun Protective Behavior and Outcomes: A Population-Based Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Holly%20D.%20Shan">Holly D. Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Monique%20L.%20Bautista%20Neughebauer"> Monique L. Bautista Neughebauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sunscreen usage is emphasized in public health strategy as it reduces the risk of sunburns and skin cancers. This study aims to explore factors that influence sun protective behavior and outcomes. Data was received from the National Health Interview Survey (NHIS) 2020. Adults were asked how often they wore sunscreen when outside on a sunny day. Consistent use (“always”) of sunscreen, the incidence of sunburn within a year, and ever having a diagnosis of skin melanoma were compared by gender, race, and the diagnosis of anxiety, depression, and dementia. Individuals identifying as a mixed race were excluded. Statistical analysis was adjusted for large-scale surveys using STATA VSN 7.0, and a two-sided p<0.05 was considered significant. Of the 37,352 participants (53.18% females, 75.01% white, 10.49% black, 0.76% Indian Americans,5.60% Asian), 13.11% had a diagnosis of anxiety, 14.78% depression, and 0.84% dementia. Females wore sunscreen more often than males (24.72% vs. 10.91%, p<0.001). White individuals wore sunscreen most frequently; black individuals the least (17.37% vs. 6.49%, p<0.001). White individuals had the highest rate of sunburn (25.61%, p<0.001) and a history of skin melanoma (3.38%, p<0.001). Participants with anxiety, depression, and dementia all had statistically significantly decreased sunscreen use and increased frequency of sunburn compared to the general population. Only those with dementia had an increased incidence of skin melanoma (2.85% vs. 1.22%, p=0.009). Dermatologists and public health professionals should consider gender, race, and psychiatric comorbidities when counseling patients on sun protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sun%20protective%20behavior" title="sun protective behavior">sun protective behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=psychiatric%20disorder" title=" psychiatric disorder"> psychiatric disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=sunburn" title=" sunburn"> sunburn</a> </p> <a href="https://publications.waset.org/abstracts/156191/influence-of-gender-race-and-psychiatric-disorders-on-sun-protective-behavior-and-outcomes-a-population-based-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> A Short Dermatoscopy Training Increases Diagnostic Performance in Medical Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Chrab%C4%85szcz">Magdalena Chrabąszcz</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Wolniewicz"> Teresa Wolniewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Cezary%20%20Maciejewski"> Cezary Maciejewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Czuwara"> Joanna Czuwara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND: Dermoscopy is a clinical tool known to improve the early detection of melanoma and other malignancies of the skin. Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Early diagnosis remains the best method to reduce melanoma and non-melanoma skin cancer– related mortality and morbidity. Dermoscopy is a noninvasive technique that consists of viewing pigmented skin lesions through a hand-held lens. This simple procedure increases melanoma diagnostic accuracy by up to 35%. Dermoscopy is currently the standard for clinical differential diagnosis of cutaneous melanoma and for qualifying lesion for the excision biopsy. Like any clinical tool, training is required for effective use. The introduction of small and handy dermoscopes contributed significantly to the switch of dermatoscopy toward a first-level useful tool. Non-dermatologist physicians are well positioned for opportunistic melanoma detection; however, education in the skin cancer examination is limited during medical school and traditionally lecture-based. AIM: The aim of this randomized study was to determine whether the adjunct of dermoscopy to the standard fourth year medical curriculum improves the ability of medical students to distinguish between benign and malignant lesions and assess acceptability and satisfaction with the intervention. METHODS: We performed a prospective study in 2 cohorts of fourth-year medical students at Medical University of Warsaw. Groups having dermatology course, were randomly assigned to:  cohort A: with limited access to dermatoscopy from their teacher only – 1 dermatoscope for 15 people  Cohort B: with a full access to use dermatoscopy during their clinical classes:1 dermatoscope for 4 people available constantly plus 15-minute dermoscopy tutorial. Students in both study arms got an image-based test of 10 lesions to assess ability to differentiate benign from malignant lesions and postintervention survey collecting minimal background information, attitudes about the skin cancer examination and course satisfaction. RESULTS: The cohort B had higher scores than the cohort A in recognition of nonmelanocytic (P < 0.05) and melanocytic (P <0.05) lesions. Medical students who have a possibility to use dermatoscope by themselves have also a higher satisfaction rates after the dermatology course than the group with limited access to this diagnostic tool. Moreover according to our results they were more motivated to learn dermatoscopy and use it in their future everyday clinical practice. LIMITATIONS: There were limited participants. Further study of the application on clinical practice is still needed. CONCLUSION: Although the use of dermatoscope in dermatology as a specialty is widely accepted, sufficiently validated clinical tools for the examination of potentially malignant skin lesions are lacking in general practice. Introducing medical students to dermoscopy in their fourth year curricula of medical school may improve their ability to differentiate benign from malignant lesions. It can can also encourage students to use dermatoscopy in their future practice which can significantly improve early recognition of malignant lesions and thus decrease melanoma mortality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dermatoscopy" title="dermatoscopy">dermatoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20detection%20of%20melanoma" title=" early detection of melanoma"> early detection of melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20education" title=" medical education"> medical education</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a> </p> <a href="https://publications.waset.org/abstracts/121511/a-short-dermatoscopy-training-increases-diagnostic-performance-in-medical-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Analysis of Differentially Expressed Genes in Spontaneously Occurring Canine Melanoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simona%20Perga">Simona Perga</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiara%20Beltramo"> Chiara Beltramo</a>, <a href="https://publications.waset.org/abstracts/search?q=Floriana%20Fruscione"> Floriana Fruscione</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabella%20Martini"> Isabella Martini</a>, <a href="https://publications.waset.org/abstracts/search?q=Federica%20Cavallo"> Federica Cavallo</a>, <a href="https://publications.waset.org/abstracts/search?q=Federica%20Riccardo"> Federica Riccardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Buracco"> Paolo Buracco</a>, <a href="https://publications.waset.org/abstracts/search?q=Selina%20Iussich"> Selina Iussich</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabetta%20Razzuoli"> Elisabetta Razzuoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Katia%20Varello"> Katia Varello</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorella%20Maniscalco"> Lorella Maniscalco</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Bozzetta"> Elena Bozzetta</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Ferrari"> Angelo Ferrari</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20Modesto"> Paola Modesto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Human and canine melanoma have common clinical, histologic characteristics making dogs a good model for comparative oncology. The identification of specific genes and a better understanding of the genetic landscape, signaling pathways, and tumor–microenvironmental interactions involved in the cancer onset and progression is essential for the development of therapeutic strategies against this tumor in both species. In the present study, the differential expression of genes in spontaneously occurring canine melanoma and in paired normal tissue was investigated by targeted RNAseq. Material and Methods: Total RNA was extracted from 17 canine malignant melanoma (CMM) samples and from five paired normal tissues stored in RNA-later. In order to capture the greater genetic variability, gene expression analysis was carried out using two panels (Qiagen): Human Immuno-Oncology (HIO) and Mouse-Immuno-Oncology (MIO) and the miSeq platform (Illumina). These kits allow the detection of the expression profile of 990 genes involved in the immune response against tumors in humans and mice. The data were analyzed through the CLCbio Genomics Workbench (Qiagen) software using the Canis lupus familiaris genome as a reference. Data analysis were carried out both comparing the biologic group (tumoral vs. healthy tissues) and comparing neoplastic tissue vs. paired healthy tissue; a Fold Change greater than two and a p-value less than 0.05 were set as the threshold to select interesting genes. Results and Discussion: Using HIO 63, down-regulated genes were detected; 13 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Eighteen genes were up-regulated, 14 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Using the MIO, 35 down regulated-genes were detected; only four of these were down-regulated, also comparing neoplastic sample vs. paired healthy tissue. Twelve genes were up-regulated in both types of analysis. Considering the two kits, the greatest variation in Fold Change was in up-regulated genes. Dogs displayed a greater genetic homology with humans than mice; moreover, the results have shown that the two kits are able to detect different genes. Most of these genes have specific cellular functions or belong to some enzymatic categories; some have already been described to be correlated to human melanoma and confirm the validity of the dog as a model for the study of molecular aspects of human melanoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20model" title="animal model">animal model</a>, <a href="https://publications.waset.org/abstracts/search?q=canine%20melanoma" title=" canine melanoma"> canine melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=spontaneous%20tumors" title=" spontaneous tumors"> spontaneous tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=targeted%20RNAseq" title=" targeted RNAseq"> targeted RNAseq</a> </p> <a href="https://publications.waset.org/abstracts/141871/analysis-of-differentially-expressed-genes-in-spontaneously-occurring-canine-melanoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Sakalauskiene">Kristina Sakalauskiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Renaldas%20Raisutis"> Renaldas Raisutis</a>, <a href="https://publications.waset.org/abstracts/search?q=Gintare%20Linkeviciute"> Gintare Linkeviciute</a>, <a href="https://publications.waset.org/abstracts/search?q=Skaidra%20Valiukeviciene"> Skaidra Valiukeviciene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutaneous%20melanoma" title="cutaneous melanoma">cutaneous melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20diagnosis" title=" differential diagnosis"> differential diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=high-frequency%20ultrasound" title=" high-frequency ultrasound"> high-frequency ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=melanocytic%20skin%20tumours" title=" melanocytic skin tumours"> melanocytic skin tumours</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometric%20imaging" title=" spectrophotometric imaging"> spectrophotometric imaging</a> </p> <a href="https://publications.waset.org/abstracts/94893/automatic-differential-diagnosis-of-melanocytic-skin-tumours-using-ultrasound-and-spectrophotometric-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> The Lessons Learned from Managing Malignant Melanoma During COVID-19 in a Plastic Surgery Unit in Ireland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amenah%20Dhannoon">Amenah Dhannoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ciaran%20Martin%20Hurley"> Ciaran Martin Hurley</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Wrafter"> Laura Wrafter</a>, <a href="https://publications.waset.org/abstracts/search?q=Podraic%20J.%20Regan"> Podraic J. Regan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The COVID-19 pandemic continues to present unprecedented challenges for healthcare systems. This has resulted in the pragmatic shift in the practice of plastic surgery units worldwide. During this period, many units reported a significant fall in urgent melanoma referrals, leading to patients presenting with advanced disease requiring more extensive surgery and inferior outcomes. Our objective was to evaluate our unit's experience with both non-invasive and invasive melanoma during the COVID-19 pandemic and characterize our experience and contrast it to that experienced by our neighbors in the UK, mainland Europe and North America. Methods: a retrospective chart review was performed on all patients diagnosed with invasive and non-invasive cutaneous melanoma between March to December of 2019 (control) compared to 2020 (COVID-19 pandemic) in a single plastic surgery unit in Ireland. Patient demographics, referral source, surgical procedures, tumour characteristics, radiological findings, oncological therapies and follow-up were recorded. All data were anonymized and stored in Microsoft Excel. Results: A total of 589 patients were included in the study. Of these, 314 (53%) with invasive melanoma, compared to 275 (47%) with the non-invasive disease. Overall, more patients were diagnosed with both invasive and non-invasive melanoma in 2020 than in 2019 (p<0.05). However, significantly longer waiting times in 2020 (64 days) compared to 2019 (28 days) (p<0.05), with the majority of the referral being from GP in 2019 (83%) compared to 61% in 2020. Positive sentinel lymph node were higher in 2019 at 56% (n=28) compared to 24% (n=22) in 2020. There was no statistically significant difference in the tutor characteristics or metastasis status. Discussion: While other countries have noticed a fall in the melanoma diagnosis. Our units experienced a higher number of disease diagnoses. This can be due to multiple reasons. In Ireland, the government reached an early agreement with the private sector to continue elective surgery on an urgent basis in private hospitals. This allowed access to local anesthetic procedures and local skin cancer cases were triaged to non-COVID-19 provider centers. Our unit also adapted a fast, effective and minimal patient contact strategy for triaging skin cancer based on telemedicine. Thirdly, a skin cancer nurse specialist maintained patient follow-ups and triaging a dedicated email service. Finally, our plastic surgery service continued to maintain a virtual complex skin cancer multidisciplinary team meeting during the pandemic, ensuring local clinical governance has adhered to each clinical case. Conclusion: Our study highlights that with the prompt efficient restructuring of services, we could reserve successful management of skin cancer even in the most devastating times. It is important to reflect on the success during the pandemic and emphasize the importance of preparation for a potentially difficult future <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malignant%20melanoma" title="malignant melanoma">malignant melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=triage" title=" triage"> triage</a> </p> <a href="https://publications.waset.org/abstracts/141570/the-lessons-learned-from-managing-malignant-melanoma-during-covid-19-in-a-plastic-surgery-unit-in-ireland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melanoma&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melanoma&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melanoma&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10