CINXE.COM

Biquaternion - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Biquaternion - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"4862b4f0-62c9-4784-8081-ae47604a4c38","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Biquaternion","wgTitle":"Biquaternion","wgCurRevisionId":1258811301,"wgRevisionId":1258811301,"wgArticleId":1207070,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles containing proofs","Composition algebras","Quaternions","Ring theory","Special relativity","William Rowan Hamilton"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Biquaternion","wgRelevantArticleId":1207070,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2590607","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Biquaternion - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Biquaternion"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Biquaternion&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Biquaternion"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Biquaternion rootpage-Biquaternion skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Biquaternion" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Biquaternion" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Biquaternion" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Biquaternion" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Place_in_ring_theory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Place_in_ring_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Place in ring theory</span> </div> </a> <button aria-controls="toc-Place_in_ring_theory-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Place in ring theory subsection</span> </button> <ul id="toc-Place_in_ring_theory-sublist" class="vector-toc-list"> <li id="toc-Linear_representation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Linear_representation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Linear representation</span> </div> </a> <ul id="toc-Linear_representation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Subalgebras" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Subalgebras"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Subalgebras</span> </div> </a> <ul id="toc-Subalgebras-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Algebraic_properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Algebraic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Algebraic properties</span> </div> </a> <button aria-controls="toc-Algebraic_properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Algebraic properties subsection</span> </button> <ul id="toc-Algebraic_properties-sublist" class="vector-toc-list"> <li id="toc-Relation_to_Lorentz_transformations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relation_to_Lorentz_transformations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Relation to Lorentz transformations</span> </div> </a> <ul id="toc-Relation_to_Lorentz_transformations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Associated_terminology" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Associated_terminology"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Associated terminology</span> </div> </a> <ul id="toc-Associated_terminology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_a_composition_algebra" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#As_a_composition_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>As a composition algebra</span> </div> </a> <ul id="toc-As_a_composition_algebra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Biquaternion</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 11 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-11" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">11 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Biquaternion#Hamilton_Biquaternion" title="Biquaternion – German" lang="de" hreflang="de" data-title="Biquaternion" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Bicuaterni%C3%B3n" title="Bicuaternión – Spanish" lang="es" hreflang="es" data-title="Bicuaternión" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Biquaternion" title="Biquaternion – French" lang="fr" hreflang="fr" data-title="Biquaternion" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Bikuaternion" title="Bikuaternion – Indonesian" lang="id" hreflang="id" data-title="Bikuaternion" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Biquaternium" title="Biquaternium – Latin" lang="la" hreflang="la" data-title="Biquaternium" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Bikwaterniony" title="Bikwaterniony – Polish" lang="pl" hreflang="pl" data-title="Bikwaterniony" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BA%D0%B2%D0%B0%D1%82%D0%B5%D1%80%D0%BD%D0%B8%D0%BE%D0%BD" title="Бикватернион – Russian" lang="ru" hreflang="ru" data-title="Бикватернион" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Bikvaternion" title="Bikvaternion – Slovenian" lang="sl" hreflang="sl" data-title="Bikvaternion" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Bid%C3%B6rdey" title="Bidördey – Turkish" lang="tr" hreflang="tr" data-title="Bidördey" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%91%D1%96%D0%BA%D0%B2%D0%B0%D1%82%D0%B5%D1%80%D0%BD%D1%96%D0%BE%D0%BD%D0%B8" title="Бікватерніони – Ukrainian" lang="uk" hreflang="uk" data-title="Бікватерніони" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%A4%87%E5%9B%9B%E5%85%83%E6%95%B8" title="複四元數 – Chinese" lang="zh" hreflang="zh" data-title="複四元數" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2590607#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Biquaternion" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Biquaternion" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Biquaternion"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Biquaternion&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Biquaternion&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Biquaternion"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Biquaternion&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Biquaternion&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Biquaternion" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Biquaternion" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Biquaternion&amp;oldid=1258811301" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Biquaternion&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Biquaternion&amp;id=1258811301&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBiquaternion"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBiquaternion"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Biquaternion&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Biquaternion&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2590607" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Quaternions with complex number coefficients</div> <p>In <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a>, the <b>biquaternions</b> are the numbers <span class="texhtml"><i>w</i> + <i>x</i> <b>i</b> + <i>y</i> <b>j</b> + <i>z</i> <b>k</b></span>, where <span class="texhtml"><i>w</i>, <i>x</i>, <i>y</i></span>, and <span class="texhtml mvar" style="font-style:italic;">z</span> are <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>, or variants thereof, and the elements of <span class="texhtml">{<b>1</b>, <b>i</b>, <b>j</b>, <b>k</b>}</span> multiply as in the <a href="/wiki/Quaternion_group" title="Quaternion group">quaternion group</a> and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof: </p> <ul><li>Biquaternions when the coefficients are <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>.</li> <li><a href="/wiki/Split-biquaternion" title="Split-biquaternion">Split-biquaternions</a> when the coefficients are <a href="/wiki/Split-complex_number" title="Split-complex number">split-complex numbers</a>.</li> <li><a href="/wiki/Dual_quaternion" title="Dual quaternion">Dual quaternions</a> when the coefficients are <a href="/wiki/Dual_numbers" class="mw-redirect" title="Dual numbers">dual numbers</a>.</li></ul> <p>This article is about the <i>ordinary biquaternions</i> named by <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">William Rowan Hamilton</a> in 1844.<sup id="cite_ref-FOOTNOTEHamilton1850_1-0" class="reference"><a href="#cite_note-FOOTNOTEHamilton1850-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Some of the more prominent proponents of these biquaternions include <a href="/wiki/Alexander_Macfarlane" title="Alexander Macfarlane">Alexander Macfarlane</a>, <a href="/wiki/Arthur_W._Conway" title="Arthur W. Conway">Arthur W. Conway</a>, <a href="/wiki/Ludwik_Silberstein" title="Ludwik Silberstein">Ludwik Silberstein</a>, and <a href="/wiki/Cornelius_Lanczos" title="Cornelius Lanczos">Cornelius Lanczos</a>. As developed below, the unit <a href="/wiki/Quasi-sphere" title="Quasi-sphere">quasi-sphere</a> of the biquaternions provides a representation of the <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a>, which is the foundation of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>. </p><p>The algebra of biquaternions can be considered as a <a href="/wiki/Tensor_product_of_algebras" title="Tensor product of algebras">tensor product</a> <span class="texhtml"><b>C</b> ⊗<sub><b>R</b></sub> <b>H</b></span>, where <span class="texhtml"><b>C</b></span> is the <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> of complex numbers and <span class="texhtml"><b>H</b></span> is the <a href="/wiki/Division_algebra" title="Division algebra">division algebra</a> of (real) <a href="/wiki/Quaternions" class="mw-redirect" title="Quaternions">quaternions</a>. In other words, the biquaternions are just the <a href="/wiki/Complexification" title="Complexification">complexification</a> of the quaternions. Viewed as a complex algebra, the biquaternions are isomorphic to the algebra of <span class="texhtml">2 × 2</span> complex matrices <span class="texhtml">M<sub>2</sub>(<b>C</b>)</span>. They are also isomorphic to several <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebras</a> including <span class="texhtml"><span class="texhtml"><b>C</b> ⊗<sub><b>R</b></sub> <b>H</b></span> = Cl<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.9em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">[0]</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span>(<b>C</b>) = Cl<sub>2</sub>(<b>C</b>) = Cl<sub>1,2</sub>(<b>R</b>)</span>,<sup id="cite_ref-FOOTNOTEGarling2011112,_113_2-0" class="reference"><a href="#cite_note-FOOTNOTEGarling2011112,_113-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> the <a href="/wiki/Pauli_algebra" class="mw-redirect" title="Pauli algebra">Pauli algebra</a> <span class="texhtml">Cl<sub>3,0</sub>(<b>R</b>)</span>,<sup id="cite_ref-FOOTNOTEGarling2011112_3-0" class="reference"><a href="#cite_note-FOOTNOTEGarling2011112-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEFrancisKosowsky2005404_4-0" class="reference"><a href="#cite_note-FOOTNOTEFrancisKosowsky2005404-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> and the even part <span class="texhtml">Cl<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.9em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">[0]</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1,3</sub></span></span>(<b>R</b>) = Cl<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.9em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">[0]</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3,1</sub></span></span>(<b>R</b>)</span> of the <a href="/wiki/Spacetime_algebra" title="Spacetime algebra">spacetime algebra</a>.<sup id="cite_ref-FOOTNOTEFrancisKosowsky2005386_5-0" class="reference"><a href="#cite_note-FOOTNOTEFrancisKosowsky2005386-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml">{<b>1</b>, <b>i</b>, <b>j</b>, <b>k</b>}</span> be the basis for the (real) <a href="/wiki/Quaternion" title="Quaternion">quaternions</a> <span class="texhtml"><b>H</b></span>, and let <span class="texhtml"><i>u</i>, <i>v</i>, <i>w</i>, <i>x</i></span> be complex numbers, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=u\mathbf {1} +v\mathbf {i} +w\mathbf {j} +x\mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mo>+</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=u\mathbf {1} +v\mathbf {i} +w\mathbf {j} +x\mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5147d89b35452d618683f2653f3dbf6df233e9fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.446ex; height:2.509ex;" alt="{\displaystyle q=u\mathbf {1} +v\mathbf {i} +w\mathbf {j} +x\mathbf {k} }"></span></dd></dl> <p>is a <i>biquaternion</i>.<sup id="cite_ref-FOOTNOTEHamilton1853639_6-0" class="reference"><a href="#cite_note-FOOTNOTEHamilton1853639-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> To distinguish square roots of minus one in the biquaternions, Hamilton<sup id="cite_ref-FOOTNOTEHamilton1853730_7-0" class="reference"><a href="#cite_note-FOOTNOTEHamilton1853730-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEHamilton1866289_8-0" class="reference"><a href="#cite_note-FOOTNOTEHamilton1866289-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Arthur_W._Conway" title="Arthur W. Conway">Arthur W. Conway</a> used the convention of representing the square root of minus one in the scalar field <span class="texhtml"><b>C</b></span> by <span class="texhtml"><i>h</i></span> to avoid confusion with the <span class="texhtml"><b>i</b></span> in the quaternion group. <a href="/wiki/Commutativity" class="mw-redirect" title="Commutativity">Commutativity</a> of the scalar field with the quaternion group is assumed: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\mathbf {i} =\mathbf {i} h,\ \ h\mathbf {j} =\mathbf {j} h,\ \ h\mathbf {k} =\mathbf {k} h.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mi>h</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mi>h</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mi>h</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\mathbf {i} =\mathbf {i} h,\ \ h\mathbf {j} =\mathbf {j} h,\ \ h\mathbf {k} =\mathbf {k} h.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68b75bbc05bea4f3b30702d8da8059608f641943" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:28.305ex; height:2.509ex;" alt="{\displaystyle h\mathbf {i} =\mathbf {i} h,\ \ h\mathbf {j} =\mathbf {j} h,\ \ h\mathbf {k} =\mathbf {k} h.}"></span></dd></dl> <p>Hamilton introduced the terms <i><a href="/wiki/Bivector_(complex)" title="Bivector (complex)">bivector</a></i>, <i>biconjugate</i>, <i>bitensor</i>, and <i>biversor</i> to extend notions used with real quaternions <span class="texhtml"><b>H</b></span>. </p><p>Hamilton's primary exposition on biquaternions came in 1853 in his <i>Lectures on Quaternions</i>. The editions of <i>Elements of Quaternions</i>, in 1866 by <a href="/wiki/William_Edwin_Hamilton" title="William Edwin Hamilton">William Edwin Hamilton</a> (son of Rowan), and in 1899, 1901 by <a href="/wiki/Charles_Jasper_Joly" title="Charles Jasper Joly">Charles Jasper Joly</a>, reduced the biquaternion coverage in favour of the real quaternions. </p><p>Considered with the operations of component-wise addition, and multiplication according to the quaternion group, this collection forms a <a href="/wiki/Four-dimensional_space" title="Four-dimensional space">4-dimensional</a> <a href="/wiki/Algebra_over_a_field" title="Algebra over a field">algebra</a> over the complex numbers <span class="texhtml"><b>C</b></span>. The algebra of biquaternions is <a href="/wiki/Associative" class="mw-redirect" title="Associative">associative</a>, but not <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutative</a>. A biquaternion is either a <a href="/wiki/Unit_(ring_theory)" title="Unit (ring theory)">unit</a> or a <a href="/wiki/Zero_divisor" title="Zero divisor">zero divisor</a>. The algebra of biquaternions forms a <a href="/wiki/Composition_algebra" title="Composition algebra">composition algebra</a> and can be constructed from <a href="/wiki/Bicomplex_number" title="Bicomplex number">bicomplex numbers</a>. See <i><a href="#As_a_composition_algebra">§&#160;As a composition algebra</a></i> below. </p> <div class="mw-heading mw-heading2"><h2 id="Place_in_ring_theory">Place in ring theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=2" title="Edit section: Place in ring theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Linear_representation">Linear representation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=3" title="Edit section: Linear representation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Note that the <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">matrix product</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}h&amp;0\\0&amp;-h\end{pmatrix}}{\begin{pmatrix}0&amp;1\\-1&amp;0\end{pmatrix}}={\begin{pmatrix}0&amp;h\\h&amp;0\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>h</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>h</mi> </mtd> </mtr> <mtr> <mtd> <mi>h</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}h&amp;0\\0&amp;-h\end{pmatrix}}{\begin{pmatrix}0&amp;1\\-1&amp;0\end{pmatrix}}={\begin{pmatrix}0&amp;h\\h&amp;0\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88628533666111f73d77d8c8e9e97a3ecd0a5040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.881ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}h&amp;0\\0&amp;-h\end{pmatrix}}{\begin{pmatrix}0&amp;1\\-1&amp;0\end{pmatrix}}={\begin{pmatrix}0&amp;h\\h&amp;0\end{pmatrix}}}"></span>.</dd></dl> <p>Because <span class="texhtml"><i>h</i></span> is the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a>, each of these three arrays has a square equal to the negative of the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>. When this matrix product is interpreted as <span class="texhtml"><b>i</b> <b>j</b> = <b>k</b></span>, then one obtains a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of matrices that is <a href="/wiki/Isomorphism" title="Isomorphism">isomorphic</a> to the <a href="/wiki/Quaternion_group" title="Quaternion group">quaternion group</a>. Consequently, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}u+hv&amp;w+hx\\-w+hx&amp;u-hv\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>u</mi> <mo>+</mo> <mi>h</mi> <mi>v</mi> </mtd> <mtd> <mi>w</mi> <mo>+</mo> <mi>h</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>w</mi> <mo>+</mo> <mi>h</mi> <mi>x</mi> </mtd> <mtd> <mi>u</mi> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> <mi>v</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}u+hv&amp;w+hx\\-w+hx&amp;u-hv\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88ef1c2d61a67b466430a8ccf757890e01188962" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.65ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}u+hv&amp;w+hx\\-w+hx&amp;u-hv\end{pmatrix}}}"></span></dd></dl> <p>represents biquaternion <span class="texhtml"><i>q</i> = <i>u</i> <b>1</b> + <i>v</i> <b>i</b> + <i>w</i> <b>j</b> + <i>x</i> <b>k</b></span>. Given any <span class="texhtml">2 × 2</span> complex matrix, there are complex values <span class="texhtml"><i>u</i></span>, <span class="texhtml"><i>v</i></span>, <span class="texhtml"><i>w</i></span>, and <span class="texhtml"><i>x</i></span> to put it in this form so that the <a href="/wiki/Matrix_ring" title="Matrix ring">matrix ring</a> <span class="texhtml">M(2, <b>C</b>)</span> is isomorphic<sup id="cite_ref-FOOTNOTEDickson191413_9-0" class="reference"><a href="#cite_note-FOOTNOTEDickson191413-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> to the biquaternion <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Subalgebras">Subalgebras</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=4" title="Edit section: Subalgebras"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Considering the biquaternion algebra over the scalar field of real numbers <span class="texhtml"><b>R</b></span>, the set </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\mathbf {1} ,h,\mathbf {i} ,h\mathbf {i} ,\mathbf {j} ,h\mathbf {j} ,\mathbf {k} ,h\mathbf {k} \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mo>,</mo> <mi>h</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>,</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>,</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>,</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\mathbf {1} ,h,\mathbf {i} ,h\mathbf {i} ,\mathbf {j} ,h\mathbf {j} ,\mathbf {k} ,h\mathbf {k} \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55162bfe71a1ea40b223f1bfe583848b5c14aa6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.194ex; height:2.843ex;" alt="{\displaystyle \{\mathbf {1} ,h,\mathbf {i} ,h\mathbf {i} ,\mathbf {j} ,h\mathbf {j} ,\mathbf {k} ,h\mathbf {k} \}}"></span></dd></dl> <p>forms a <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a> so the algebra has eight real <a href="/wiki/Dimension" title="Dimension">dimensions</a>. The squares of the elements <span class="texhtml"><i>h</i><b>i</b>, <i>h</i><b>j</b></span>, and <span class="texhtml"><i>h</i><b>k</b></span> are all positive one, for example, <span class="texhtml">(<i>h</i><b>i</b>)<sup>2</sup> = <i>h</i><sup>2</sup><b>i</b><sup>2</sup> = (−<b>1</b>)(−<b>1</b>) = +<b>1</b></span>. </p><p>The <a href="/wiki/Subalgebra" title="Subalgebra">subalgebra</a> given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x+y(h\mathbf {i} ):x,y\in \mathbb {R} \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo stretchy="false">)</mo> <mo>:</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x+y(h\mathbf {i} ):x,y\in \mathbb {R} \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c257b60b4ed93139fc7a992ea13d5d7c3222d972" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.516ex; height:2.843ex;" alt="{\displaystyle \{x+y(h\mathbf {i} ):x,y\in \mathbb {R} \}}"></span></dd></dl> <p>is <a href="/wiki/Ring_isomorphism" class="mw-redirect" title="Ring isomorphism">ring isomorphic</a> to the plane of <a href="/wiki/Split-complex_number" title="Split-complex number">split-complex numbers</a>, which has an algebraic structure built upon the <a href="/wiki/Unit_hyperbola" title="Unit hyperbola">unit hyperbola</a>. The elements <span class="texhtml"><i>h</i><b>j</b></span> and <span class="texhtml"><i>h</i><b>k</b></span> also determine such subalgebras. </p><p>Furthermore, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x+y\mathbf {j} :x,y\in \mathbb {C} \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>:</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x+y\mathbf {j} :x,y\in \mathbb {C} \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/478da1d51fa4b3e8f6d4d6d83e73bcf340b7cf1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.442ex; height:2.843ex;" alt="{\displaystyle \{x+y\mathbf {j} :x,y\in \mathbb {C} \}}"></span></dd></dl> <p>is a subalgebra isomorphic to the bicomplex numbers. </p><p>A third subalgebra called <a href="/wiki/Coquaternion" class="mw-redirect" title="Coquaternion">coquaternions</a> is generated by <span class="texhtml"><i>h</i><b>j</b></span> and <span class="texhtml"><i>h</i><b>k</b></span>. It is seen that <span class="texhtml">(<i>h</i><b>j</b>)(<i>h</i><b>k</b>) = (−<b>1</b>)<b>i</b></span>, and that the square of this element is <span class="texhtml">−<b>1</b></span>. These elements generate the <a href="/wiki/Dihedral_group" title="Dihedral group">dihedral group</a> of the square. The <a href="/wiki/Linear_subspace" title="Linear subspace">linear subspace</a> with basis <span class="texhtml">{<b>1</b>, <b>i</b>, <i>h</i><b>j</b>, <i>h</i><b>k</b>}</span> thus is closed under multiplication, and forms the coquaternion algebra. </p><p>In the context of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> and <a href="/wiki/Spinor" title="Spinor">spinor</a> algebra, the biquaternions <span class="texhtml"><i>h</i><b>i</b>, <i>h</i><b>j</b></span>, and <span class="texhtml"><i>h</i><b>k</b></span> (or their negatives), viewed in the <span class="texhtml">M<sub>2</sub>(<b>C</b>)</span> representation, are called <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Algebraic_properties">Algebraic properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=5" title="Edit section: Algebraic properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The biquaternions have two <i>conjugations</i>: </p> <ul><li>the <b>biconjugate</b> or biscalar minus <a href="/wiki/Bivector_(complex)" title="Bivector (complex)">bivector</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{*}=w-x\mathbf {i} -y\mathbf {j} -z\mathbf {k} \!\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>w</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mspace width="negativethinmathspace" /> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{*}=w-x\mathbf {i} -y\mathbf {j} -z\mathbf {k} \!\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/655525a74a3ce1a6599e0ff626e2a29a342c632a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.801ex; height:2.676ex;" alt="{\displaystyle q^{*}=w-x\mathbf {i} -y\mathbf {j} -z\mathbf {k} \!\ ,}"></span> and</li> <li>the <a href="/wiki/Complex_conjugation" class="mw-redirect" title="Complex conjugation">complex conjugation</a> of biquaternion coefficients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {q}}={\bar {w}}+{\bar {x}}\mathbf {i} +{\bar {y}}\mathbf {j} +{\bar {z}}\mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {q}}={\bar {w}}+{\bar {x}}\mathbf {i} +{\bar {y}}\mathbf {j} +{\bar {z}}\mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed161325b4b12610025454145892202ee729d366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.558ex; height:2.509ex;" alt="{\displaystyle {\bar {q}}={\bar {w}}+{\bar {x}}\mathbf {i} +{\bar {y}}\mathbf {j} +{\bar {z}}\mathbf {k} }"></span></li></ul> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {z}}=a-bh}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {z}}=a-bh}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6cb2b17f2771f40fc1e53ad1dae10f8a51b29b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.801ex; height:2.343ex;" alt="{\displaystyle {\bar {z}}=a-bh}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bh,\quad a,b\in \mathbb {R} ,\quad h^{2}=-\mathbf {1} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>h</mi> <mo>,</mo> <mspace width="1em" /> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mspace width="1em" /> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bh,\quad a,b\in \mathbb {R} ,\quad h^{2}=-\mathbf {1} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d5c053c24c4eb64a136bb00aafcdf34254442" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:34.37ex; height:3.009ex;" alt="{\displaystyle z=a+bh,\quad a,b\in \mathbb {R} ,\quad h^{2}=-\mathbf {1} .}"></span> </p><p>Note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (pq)^{*}=q^{*}p^{*},\quad {\overline {pq}}={\bar {p}}{\bar {q}},\quad {\overline {q^{*}}}={\bar {q}}^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>p</mi> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>p</mi> <mi>q</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (pq)^{*}=q^{*}p^{*},\quad {\overline {pq}}={\bar {p}}{\bar {q}},\quad {\overline {q^{*}}}={\bar {q}}^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce63a541eb4d7c23a1ae8647e981f928dee0de4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.907ex; height:3.509ex;" alt="{\displaystyle (pq)^{*}=q^{*}p^{*},\quad {\overline {pq}}={\bar {p}}{\bar {q}},\quad {\overline {q^{*}}}={\bar {q}}^{*}.}"></span> </p><p>Clearly, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle qq^{*}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle qq^{*}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc76cd6616fd2298aed25c5ac77a01766d7270e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.464ex; height:2.676ex;" alt="{\displaystyle qq^{*}=0}"></span> then <span class="texhtml"><i>q</i></span> is a zero divisor. Otherwise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lbrace qq^{*}\rbrace ^{-\mathbf {1} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lbrace qq^{*}\rbrace ^{-\mathbf {1} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4092421ff68b45cd413be7b18b80bfd2ff92088" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.984ex; height:3.176ex;" alt="{\displaystyle \lbrace qq^{*}\rbrace ^{-\mathbf {1} }}"></span> is a complex number. Further, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle qq^{*}=q^{*}q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle qq^{*}=q^{*}q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c30afe84888031fa8845de169a3aa009280b5c09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.505ex; height:2.676ex;" alt="{\displaystyle qq^{*}=q^{*}q}"></span> is easily verified. This allows the inverse to be defined by </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{-1}=q^{*}\lbrace qq^{*}\rbrace ^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{-1}=q^{*}\lbrace qq^{*}\rbrace ^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/081ef4fbac9dc1bf91dbab1dda6b2292c60cde21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.505ex; height:3.176ex;" alt="{\displaystyle q^{-1}=q^{*}\lbrace qq^{*}\rbrace ^{-1}}"></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle qq^{*}\neq 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2260;<!-- ≠ --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle qq^{*}\neq 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a362fd45268b4e9efb4caa807ba4db948227aa5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.111ex; height:2.843ex;" alt="{\displaystyle qq^{*}\neq 0.}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Relation_to_Lorentz_transformations">Relation to Lorentz transformations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=6" title="Edit section: Relation to Lorentz transformations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/History_of_Lorentz_transformations#Lorentz_transformation_via_quaternions_and_hyperbolic_numbers" title="History of Lorentz transformations">Lorentz transformation via quaternions and hyperbolic numbers</a> and <a href="/wiki/History_of_Lorentz_transformations#Noether" title="History of Lorentz transformations">Relativistic biquaternions by Noether (1910), Klein (1910), Conway (1911), Silberstein (1911)</a></div> <p>Consider now the linear subspace<sup id="cite_ref-FOOTNOTELanczos1949See_equation_94.16,_page_305._The_following_algebra_compares_to_Lanczos,_except_he_uses_~_to_signify_quaternion_conjugation_and_*_for_complex_conjugation_10-0" class="reference"><a href="#cite_note-FOOTNOTELanczos1949See_equation_94.16,_page_305._The_following_algebra_compares_to_Lanczos,_except_he_uses_~_to_signify_quaternion_conjugation_and_*_for_complex_conjugation-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=\lbrace q\colon q^{*}={\bar {q}}\rbrace =\lbrace t+x(h\mathbf {i} )+y(h\mathbf {j} )+z(h\mathbf {k} )\colon t,x,y,z\in \mathbb {R} \rbrace .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>q</mi> <mo>&#x003A;<!-- : --></mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>t</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>z</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x003A;<!-- : --></mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=\lbrace q\colon q^{*}={\bar {q}}\rbrace =\lbrace t+x(h\mathbf {i} )+y(h\mathbf {j} )+z(h\mathbf {k} )\colon t,x,y,z\in \mathbb {R} \rbrace .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c039daeedb77da4e02bc8677a795b07940c6b469" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:61.064ex; height:2.843ex;" alt="{\displaystyle M=\lbrace q\colon q^{*}={\bar {q}}\rbrace =\lbrace t+x(h\mathbf {i} )+y(h\mathbf {j} )+z(h\mathbf {k} )\colon t,x,y,z\in \mathbb {R} \rbrace .}"></span></dd></dl> <p><span class="texhtml"><i>M</i></span> is not a subalgebra since it is not <a href="/wiki/Closure_(mathematics)" title="Closure (mathematics)">closed under products</a>; for example <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h\mathbf {i} )(h\mathbf {j} )=h^{2}\mathbf {ij} =-\mathbf {k} \notin M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> <mi mathvariant="bold">j</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>&#x2209;<!-- ∉ --></mo> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h\mathbf {i} )(h\mathbf {j} )=h^{2}\mathbf {ij} =-\mathbf {k} \notin M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f12def42e612941225c78f887471040822470daf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.152ex; height:3.176ex;" alt="{\displaystyle (h\mathbf {i} )(h\mathbf {j} )=h^{2}\mathbf {ij} =-\mathbf {k} \notin M.}"></span> Indeed, <span class="texhtml"><i>M</i></span> cannot form an algebra if it is not even a <a href="/wiki/Magma_(algebra)" title="Magma (algebra)">magma</a>. </p><p><b>Proposition:</b> If <span class="texhtml mvar" style="font-style:italic;">q</span> is in <span class="texhtml mvar" style="font-style:italic;">M</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle qq^{*}=t^{2}-x^{2}-y^{2}-z^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle qq^{*}=t^{2}-x^{2}-y^{2}-z^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c5c26fa8261ed002b40dda2a777c65548f04a1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.107ex; height:3.009ex;" alt="{\displaystyle qq^{*}=t^{2}-x^{2}-y^{2}-z^{2}.}"></span> </p><p>Proof: From the definitions, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}qq^{*}&amp;=(t+xh\mathbf {i} +yh\mathbf {j} +zh\mathbf {k} )(t-xh\mathbf {i} -yh\mathbf {j} -zh\mathbf {k} )\\&amp;=t^{2}-x^{2}(h\mathbf {i} )^{2}-y^{2}(h\mathbf {j} )^{2}-z^{2}(h\mathbf {k} )^{2}\\&amp;=t^{2}-x^{2}-y^{2}-z^{2}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>x</mi> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <mi>y</mi> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <mi>z</mi> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}qq^{*}&amp;=(t+xh\mathbf {i} +yh\mathbf {j} +zh\mathbf {k} )(t-xh\mathbf {i} -yh\mathbf {j} -zh\mathbf {k} )\\&amp;=t^{2}-x^{2}(h\mathbf {i} )^{2}-y^{2}(h\mathbf {j} )^{2}-z^{2}(h\mathbf {k} )^{2}\\&amp;=t^{2}-x^{2}-y^{2}-z^{2}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eaf309413966d9f6b2fa91605bb288d2d552a21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:50.513ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}qq^{*}&amp;=(t+xh\mathbf {i} +yh\mathbf {j} +zh\mathbf {k} )(t-xh\mathbf {i} -yh\mathbf {j} -zh\mathbf {k} )\\&amp;=t^{2}-x^{2}(h\mathbf {i} )^{2}-y^{2}(h\mathbf {j} )^{2}-z^{2}(h\mathbf {k} )^{2}\\&amp;=t^{2}-x^{2}-y^{2}-z^{2}.\end{aligned}}}"></span></dd></dl> <p><b>Definition:</b> Let biquaternion <span class="texhtml mvar" style="font-style:italic;">g</span> satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle gg^{*}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle gg^{*}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35778deed0affd0317b053420340cbd2eea91045" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.196ex; height:2.676ex;" alt="{\displaystyle gg^{*}=1.}"></span> Then the <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a> associated with <span class="texhtml mvar" style="font-style:italic;">g</span> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(q)=g^{*}q{\bar {g}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(q)=g^{*}q{\bar {g}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8876300edb4a0f766d40b926106c31488f62a4d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.734ex; height:2.843ex;" alt="{\displaystyle T(q)=g^{*}q{\bar {g}}.}"></span></dd></dl> <p><b>Proposition:</b> If <span class="texhtml mvar" style="font-style:italic;">q</span> is in <span class="texhtml mvar" style="font-style:italic;">M</span>, then <span class="texhtml"><i>T</i>(<i>q</i>)</span> is also in <span class="texhtml"><i>M</i></span>. </p><p>Proof: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g^{*}q{\bar {g}})^{*}={\bar {g}}^{*}q^{*}g={\overline {g^{*}}}{\bar {q}}g={\overline {g^{*}q{\bar {g}})}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>g</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>g</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g^{*}q{\bar {g}})^{*}={\bar {g}}^{*}q^{*}g={\overline {g^{*}}}{\bar {q}}g={\overline {g^{*}q{\bar {g}})}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/752c04fd0585729a331a780a4ae2a8cf5ef0c70a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.089ex; height:3.676ex;" alt="{\displaystyle (g^{*}q{\bar {g}})^{*}={\bar {g}}^{*}q^{*}g={\overline {g^{*}}}{\bar {q}}g={\overline {g^{*}q{\bar {g}})}}.}"></span> </p><p><b>Proposition:</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad T(q)(T(q))^{*}=qq^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mi>T</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad T(q)(T(q))^{*}=qq^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/614f60443d5e1472766ebdac02ae34e86aa8ab16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.518ex; height:2.843ex;" alt="{\displaystyle \quad T(q)(T(q))^{*}=qq^{*}}"></span> </p><p>Proof: Note first that <i>gg</i>* = 1 implies that the sum of the squares of its four complex components is one. Then the sum of the squares of the <i>complex conjugates</i> of these components is also one. Therefore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {g}}({\bar {g}})^{*}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {g}}({\bar {g}})^{*}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f56b1e1fd1a59b28a7140da80ffe6d817d129a6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.235ex; height:2.843ex;" alt="{\displaystyle {\bar {g}}({\bar {g}})^{*}=1.}"></span> Now </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g^{*}q{\bar {g}})(g^{*}q{\bar {g}})^{*}=g^{*}q({\bar {g}}{\bar {g}}^{*})q^{*}g=g^{*}qq^{*}g=qq^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>q</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>g</mi> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>g</mi> <mo>=</mo> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g^{*}q{\bar {g}})(g^{*}q{\bar {g}})^{*}=g^{*}q({\bar {g}}{\bar {g}}^{*})q^{*}g=g^{*}qq^{*}g=qq^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c86b23d143c23ec32e2f28d535df64bb127560b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.076ex; height:2.843ex;" alt="{\displaystyle (g^{*}q{\bar {g}})(g^{*}q{\bar {g}})^{*}=g^{*}q({\bar {g}}{\bar {g}}^{*})q^{*}g=g^{*}qq^{*}g=qq^{*}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Associated_terminology">Associated terminology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=7" title="Edit section: Associated terminology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As the biquaternions have been a fixture of <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a> since the beginnings of <a href="/wiki/Mathematical_physics" title="Mathematical physics">mathematical physics</a>, there is an array of concepts that are illustrated or represented by biquaternion algebra. The <a href="/wiki/Transformation_group" class="mw-redirect" title="Transformation group">transformation group</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=\lbrace g:gg^{*}=1\rbrace }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>:</mo> <mi>g</mi> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=\lbrace g:gg^{*}=1\rbrace }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b46dca2607c70b3de9bfd34c8d6d6a8f95d195b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.853ex; height:2.843ex;" alt="{\displaystyle G=\lbrace g:gg^{*}=1\rbrace }"></span> has two parts, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\cap H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\cap H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/927a14c2f8dbc5358a6617feb5ed35471906a36e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.473ex; height:2.176ex;" alt="{\displaystyle G\cap H}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\cap M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\cap M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96d6229be3e5ebda12196ae52538edf8c44fdc4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.498ex; height:2.176ex;" alt="{\displaystyle G\cap M.}"></span> The first part is characterized by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g={\bar {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g={\bar {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d2bd861fcb5a883851e44db187b212c7a693fe4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.446ex; height:2.343ex;" alt="{\displaystyle g={\bar {g}}}"></span>&#160;; then the Lorentz transformation corresponding to <span class="texhtml mvar" style="font-style:italic;">g</span> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(q)=g^{-1}qg}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>q</mi> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(q)=g^{-1}qg}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b95b96f583da71a5b89ac57b0f06013d3d7b2714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.25ex; height:3.176ex;" alt="{\displaystyle T(q)=g^{-1}qg}"></span> since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g^{*}=g^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g^{*}=g^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a46419068d3378ac2d05c742b09bd564e42878b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.369ex; height:3.009ex;" alt="{\displaystyle g^{*}=g^{-1}.}"></span> Such a transformation is a <a href="/wiki/Quaternions_and_spatial_rotation" title="Quaternions and spatial rotation">rotation by quaternion multiplication</a>, and the collection of them is <span class="texhtml"><a href="/wiki/SO(3)" class="mw-redirect" title="SO(3)">SO(3)</a></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cong G\cap H.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2245;<!-- ≅ --></mo> <mi>G</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>H</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cong G\cap H.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ca1af911c05fdce9fb90f774bdfeb053acf543d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.573ex; height:2.176ex;" alt="{\displaystyle \cong G\cap H.}"></span> But this subgroup of <span class="texhtml mvar" style="font-style:italic;">G</span> is not a <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroup</a>, so no <a href="/wiki/Quotient_group" title="Quotient group">quotient group</a> can be formed. </p><p>To view <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\cap M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\cap M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c859c09300bfe42f268295cb628f7a5d51cfd879" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.852ex; height:2.176ex;" alt="{\displaystyle G\cap M}"></span> it is necessary to show some subalgebra structure in the biquaternions. Let <span class="texhtml mvar" style="font-style:italic;">r</span> represent an element of the <a href="/wiki/Quaternion#Square_roots_of_−1" title="Quaternion">sphere of square roots of minus one</a> in the real quaternion subalgebra <span class="texhtml"><b>H</b></span>. Then <span class="texhtml">(<i>hr</i>)<sup>2</sup> = +1</span> and the plane of biquaternions given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{r}=\lbrace z=x+yhr:x,y\in \mathbb {R} \rbrace }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>z</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mi>h</mi> <mi>r</mi> <mo>:</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{r}=\lbrace z=x+yhr:x,y\in \mathbb {R} \rbrace }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d9354c920ed71716f0b4964121f07b9116d50fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.196ex; height:2.843ex;" alt="{\displaystyle D_{r}=\lbrace z=x+yhr:x,y\in \mathbb {R} \rbrace }"></span> is a commutative subalgebra isomorphic to the plane of split-complex numbers. Just as the ordinary complex plane has a unit circle, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8783bccae1e365d5e58cd502bea46ce4eee7fe34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.898ex; height:2.509ex;" alt="{\displaystyle D_{r}}"></span> has a <a href="/wiki/Unit_hyperbola" title="Unit hyperbola">unit hyperbola</a> given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp(ahr)=\cosh(a)+hr\ \sinh(a),\quad a\in R.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>h</mi> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cosh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>h</mi> <mi>r</mi> <mtext>&#xA0;</mtext> <mi>sinh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp(ahr)=\cosh(a)+hr\ \sinh(a),\quad a\in R.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1a064687caed15a77ef68f718d92e69847117b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.741ex; height:2.843ex;" alt="{\displaystyle \exp(ahr)=\cosh(a)+hr\ \sinh(a),\quad a\in R.}"></span></dd></dl> <p>Just as the unit circle turns by multiplication through one of its elements, so the hyperbola turns because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp(ahr)\exp(bhr)=\exp((a+b)hr).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>h</mi> <mi>r</mi> <mo stretchy="false">)</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mi>h</mi> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mi>h</mi> <mi>r</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp(ahr)\exp(bhr)=\exp((a+b)hr).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/805e19e5ec523e34a88389c9505148fd1986939a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.485ex; height:2.843ex;" alt="{\displaystyle \exp(ahr)\exp(bhr)=\exp((a+b)hr).}"></span> Hence these algebraic operators on the hyperbola are called <a href="/wiki/Versor#Hyperbolic_versor" title="Versor">hyperbolic versors</a>. The unit circle in <span class="texhtml"><b>C</b></span> and unit hyperbola in <span class="texhtml"><i>D</i><sub><i>r</i></sub></span> are examples of <a href="/wiki/One-parameter_group" title="One-parameter group">one-parameter groups</a>. For every square root <span class="texhtml"><i>r</i></span> of minus one in <span class="texhtml"><b>H</b></span>, there is a one-parameter group in the biquaternions given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\cap D_{r}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\cap D_{r}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa8fe593065636d39922a4a2453f98abd601e2c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.954ex; height:2.509ex;" alt="{\displaystyle G\cap D_{r}.}"></span> </p><p>The space of biquaternions has a natural <a href="/wiki/Topology" title="Topology">topology</a> through the <a href="/wiki/Euclidean_metric" class="mw-redirect" title="Euclidean metric">Euclidean metric</a> on <span class="texhtml">8</span>-space. With respect to this topology, <span class="texhtml mvar" style="font-style:italic;">G</span> is a <a href="/wiki/Topological_group" title="Topological group">topological group</a>. Moreover, it has analytic structure making it a six-parameter <a href="/wiki/Lie_group" title="Lie group">Lie group</a>. Consider the subspace of bivectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\lbrace q:q^{*}=-q\rbrace }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>q</mi> <mo>:</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\lbrace q:q^{*}=-q\rbrace }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0385035eb234168099d3424c5d93bc3ec0642cb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.283ex; height:2.843ex;" alt="{\displaystyle A=\lbrace q:q^{*}=-q\rbrace }"></span>. Then the <a href="/wiki/Exponential_map_(Lie_theory)" title="Exponential map (Lie theory)">exponential map</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp :A\to G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>:</mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp :A\to G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/231d3ed5ec4f6756e44e213b3fb4687eb15014be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.673ex; height:2.509ex;" alt="{\displaystyle \exp :A\to G}"></span> takes the real vectors to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\cap H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\cap H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/927a14c2f8dbc5358a6617feb5ed35471906a36e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.473ex; height:2.176ex;" alt="{\displaystyle G\cap H}"></span> and the <span class="texhtml mvar" style="font-style:italic;">h</span>-vectors to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\cap M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\cap M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96d6229be3e5ebda12196ae52538edf8c44fdc4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.498ex; height:2.176ex;" alt="{\displaystyle G\cap M.}"></span> When equipped with the <a href="/wiki/Commutator" title="Commutator">commutator</a>, <span class="texhtml mvar" style="font-style:italic;">A</span> forms the <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> of <span class="texhtml mvar" style="font-style:italic;">G</span>. Thus this study of a <a href="/wiki/Six-dimensional_space" title="Six-dimensional space">six-dimensional space</a> serves to introduce the general concepts of <a href="/wiki/Lie_theory" title="Lie theory">Lie theory</a>. When viewed in the matrix representation, <span class="texhtml mvar" style="font-style:italic;">G</span> is called the <a href="/wiki/Special_linear_group" title="Special linear group">special linear group</a> <span class="texhtml"><a href="/wiki/SL(2,C)" class="mw-redirect" title="SL(2,C)">SL(2,C)</a></span> in <span class="texhtml">M(2, <b>C</b>)</span>. </p><p>Many of the concepts of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a> are illustrated through the biquaternion structures laid out. The subspace <span class="texhtml mvar" style="font-style:italic;">M</span> corresponds to <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a>, with the four coordinates giving the time and space locations of events in a resting <a href="/wiki/Frame_of_reference" title="Frame of reference">frame of reference</a>. Any hyperbolic versor <span class="texhtml">exp(<i>ahr</i>)</span> corresponds to a <a href="/wiki/Velocity" title="Velocity">velocity</a> in direction <span class="texhtml mvar" style="font-style:italic;">r</span> of speed <span class="texhtml"><i>c</i> tanh <i>a</i></span> where <span class="texhtml mvar" style="font-style:italic;">c</span> is the <a href="/wiki/Velocity_of_light" class="mw-redirect" title="Velocity of light">velocity of light</a>. The inertial frame of reference of this velocity can be made the resting frame by applying the <a href="/wiki/Lorentz_boost" class="mw-redirect" title="Lorentz boost">Lorentz boost</a> <span class="texhtml mvar" style="font-style:italic;">T</span> given by <span class="texhtml"><i>g</i> = exp(0.5<i>ahr</i>)</span> since then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g^{\star }=\exp(-0.5ahr)=g^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22C6;<!-- ⋆ --></mo> </mrow> </msup> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>0.5</mn> <mi>a</mi> <mi>h</mi> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g^{\star }=\exp(-0.5ahr)=g^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/775be315baa35903ecad6fb68f914b7799c3d1d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.301ex; height:2.843ex;" alt="{\displaystyle g^{\star }=\exp(-0.5ahr)=g^{*}}"></span> so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(\exp(ahr))=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>h</mi> <mi>r</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(\exp(ahr))=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1f117e8a7b65d191d11386ef38f0f725f0ed7cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.332ex; height:2.843ex;" alt="{\displaystyle T(\exp(ahr))=1.}"></span> Naturally the <a href="/wiki/Hyperboloid" title="Hyperboloid">hyperboloid</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\cap M,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>M</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\cap M,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e280eadc8eb742cd4def84de121574ba1f8a552" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.498ex; height:2.509ex;" alt="{\displaystyle G\cap M,}"></span> which represents the range of velocities for sub-luminal motion, is of physical interest. There has been considerable work associating this "velocity space" with the <a href="/wiki/Hyperboloid_model" title="Hyperboloid model">hyperboloid model</a> of <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a>. In special relativity, the <a href="/wiki/Hyperbolic_angle" title="Hyperbolic angle">hyperbolic angle</a> parameter of a hyperbolic versor is called <a href="/wiki/Rapidity" title="Rapidity">rapidity</a>. Thus we see the biquaternion group <span class="texhtml mvar" style="font-style:italic;">G</span> provides a <a href="/wiki/Group_representation" title="Group representation">group representation</a> for the <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a>.<sup id="cite_ref-FOOTNOTEHermann1974chapter_6.4_Complex_Quaternions_and_Maxwell&#39;s_Equations_11-0" class="reference"><a href="#cite_note-FOOTNOTEHermann1974chapter_6.4_Complex_Quaternions_and_Maxwell&#39;s_Equations-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>After the introduction of <a href="/wiki/Spinor" title="Spinor">spinor</a> theory, particularly in the hands of <a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Wolfgang Pauli</a> and <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a>, the biquaternion representation of the Lorentz group was superseded. The new methods were founded on <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis vectors</a> in the set </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{q\ :\ qq^{*}=0\}=\left\{w+x\mathbf {i} +y\mathbf {j} +z\mathbf {k} \ :\ w^{2}+x^{2}+y^{2}+z^{2}=0\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>q</mi> <mtext>&#xA0;</mtext> <mo>:</mo> <mtext>&#xA0;</mtext> <mi>q</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>w</mi> <mo>+</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mtext>&#xA0;</mtext> <mo>:</mo> <mtext>&#xA0;</mtext> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{q\ :\ qq^{*}=0\}=\left\{w+x\mathbf {i} +y\mathbf {j} +z\mathbf {k} \ :\ w^{2}+x^{2}+y^{2}+z^{2}=0\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49b8b7f16b20af280a26920d404f6b32100b30f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:61.836ex; height:3.343ex;" alt="{\displaystyle \{q\ :\ qq^{*}=0\}=\left\{w+x\mathbf {i} +y\mathbf {j} +z\mathbf {k} \ :\ w^{2}+x^{2}+y^{2}+z^{2}=0\right\}}"></span></dd></dl> <p>which is called the <i>complex light cone</i>. The above <a href="/wiki/Representation_theory_of_the_Lorentz_group" title="Representation theory of the Lorentz group">representation of the Lorentz group</a> coincides with what physicists refer to as <a href="/wiki/Four-vector" title="Four-vector">four-vectors</a>. Beyond four-vectors, the <a href="/wiki/Standard_model" class="mw-redirect" title="Standard model">standard model</a> of particle physics also includes other Lorentz representations, known as <a href="/wiki/Lorentz_scalar" title="Lorentz scalar">scalars</a>, and the <span class="texhtml">(1, 0) ⊕ (0, 1)</span>-representation associated with e.g. the <a href="/wiki/Electromagnetic_field_tensor" class="mw-redirect" title="Electromagnetic field tensor">electromagnetic field tensor</a>. Furthermore, particle physics makes use of the <span class="texhtml">SL(2, <b>C</b>)</span> representations (or <a href="/wiki/Projective_representation" title="Projective representation">projective representations</a> of the Lorentz group) known as left- and right-handed <a href="/wiki/Weyl_spinor" class="mw-redirect" title="Weyl spinor">Weyl spinors</a>, <a href="/wiki/Majorana_spinor" class="mw-redirect" title="Majorana spinor">Majorana spinors</a>, and <a href="/wiki/Dirac_spinor" title="Dirac spinor">Dirac spinors</a>. It is known that each of these seven representations can be constructed as invariant subspaces within the biquaternions.<sup id="cite_ref-FOOTNOTEFurey2012_12-0" class="reference"><a href="#cite_note-FOOTNOTEFurey2012-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="As_a_composition_algebra">As a composition algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=8" title="Edit section: As a composition algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although W. R. Hamilton introduced biquaternions in the 19th century, its delineation of its <a href="/wiki/Mathematical_structure" title="Mathematical structure">mathematical structure</a> as a special type of <a href="/wiki/Algebra_over_a_field" title="Algebra over a field">algebra over a field</a> was accomplished in the 20th century: the biquaternions may be generated out of the <a href="/wiki/Bicomplex_number" title="Bicomplex number">bicomplex numbers</a> in the same way that <a href="/wiki/Adrian_Albert" class="mw-redirect" title="Adrian Albert">Adrian Albert</a> generated the real quaternions out of complex numbers in the so-called <a href="/wiki/Cayley%E2%80%93Dickson_construction" title="Cayley–Dickson construction">Cayley–Dickson construction</a>. In this construction, a bicomplex number <span class="texhtml">(<i>w</i>, <i>z</i>)</span> has conjugate <span class="texhtml">(<i>w</i>, <i>z</i>)* = (<i>w</i>, – <i>z</i>)</span>. </p><p>The biquaternion is then a pair of bicomplex numbers <span class="texhtml">(<i>a</i>, <i>b</i>)</span>, where the product with a second biquaternion <span class="texhtml">(<i>c</i>, <i>d</i>)</span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)(c,d)=(ac-d^{*}b,da+bc^{*}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>b</mi> <mo>,</mo> <mi>d</mi> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)(c,d)=(ac-d^{*}b,da+bc^{*}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7877c1398f55be9a974a7d7ee97afd0a046029e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.417ex; height:2.843ex;" alt="{\displaystyle (a,b)(c,d)=(ac-d^{*}b,da+bc^{*}).}"></span></dd></dl> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=(u,v),b=(w,z),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=(u,v),b=(w,z),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e27f4c83a21db5a86166144dc6fcd6bf853a98b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.001ex; height:2.843ex;" alt="{\displaystyle a=(u,v),b=(w,z),}"></span> then the <i>biconjugate</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)^{*}=(a^{*},-b).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)^{*}=(a^{*},-b).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bc2ee60c3dc6f28b711cb3419eb68fbb557ee7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.803ex; height:2.843ex;" alt="{\displaystyle (a,b)^{*}=(a^{*},-b).}"></span> </p><p>When <span class="texhtml">(<i>a</i>, <i>b</i>)*</span> is written as a 4-vector of ordinary complex numbers, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u,v,w,z)^{*}=(u,-v,-w,-z).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo>,</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mi>w</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (u,v,w,z)^{*}=(u,-v,-w,-z).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26a27e2e34da8496dc57e349a3cf84879d9fef49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.465ex; height:2.843ex;" alt="{\displaystyle (u,v,w,z)^{*}=(u,-v,-w,-z).}"></span></dd></dl> <p>The biquaternions form an example of a <a href="/wiki/Quaternion_algebra" title="Quaternion algebra">quaternion algebra</a>, and it has norm </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N(u,v,w,z)=u^{2}+v^{2}+w^{2}+z^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N(u,v,w,z)=u^{2}+v^{2}+w^{2}+z^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86604132256b5c43661ffe32cc5d8214a02a720e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.88ex; height:3.176ex;" alt="{\displaystyle N(u,v,w,z)=u^{2}+v^{2}+w^{2}+z^{2}.}"></span></dd></dl> <p>Two biquaternions <span class="texhtml"><i>p</i></span> and <span class="texhtml"><i>q</i></span> satisfy <span class="texhtml"><i>N</i>(<i>pq</i>) = <i>N</i>(<i>p</i>) <i>N</i>(<i>q</i>)</span>, indicating that <span class="texhtml"><i>N</i></span> is a quadratic form admitting composition, so that the biquaternions form a <a href="/wiki/Composition_algebra" title="Composition algebra">composition algebra</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=9" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Biquaternion_algebra" title="Biquaternion algebra">Biquaternion algebra</a></li> <li><a href="/wiki/Hypercomplex_number" title="Hypercomplex number">Hypercomplex number</a></li> <li><a href="/wiki/Hypercomplex_analysis" title="Hypercomplex analysis">Hypercomplex analysis</a></li> <li><a href="/wiki/Joachim_Lambek" title="Joachim Lambek">Joachim Lambek</a></li> <li><a href="/wiki/Hyperbolic_quaternion#MacFarlane&#39;s_hyperbolic_quaternion_paper_of_1900" title="Hyperbolic quaternion">MacFarlane's use</a></li> <li><a href="/wiki/Quotient_ring#Quaternions_and_alternatives" title="Quotient ring">Quotient ring</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=10" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-2"> <ol class="references"> <li id="cite_note-FOOTNOTEHamilton1850-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHamilton1850_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHamilton1850">Hamilton 1850</a>.</span> </li> <li id="cite_note-FOOTNOTEGarling2011112,_113-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGarling2011112,_113_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGarling2011">Garling 2011</a>, pp.&#160;112, 113.</span> </li> <li id="cite_note-FOOTNOTEGarling2011112-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGarling2011112_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGarling2011">Garling 2011</a>, p.&#160;112.</span> </li> <li id="cite_note-FOOTNOTEFrancisKosowsky2005404-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFrancisKosowsky2005404_4-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFrancisKosowsky2005">Francis &amp; Kosowsky 2005</a>, p.&#160;404.</span> </li> <li id="cite_note-FOOTNOTEFrancisKosowsky2005386-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFrancisKosowsky2005386_5-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFrancisKosowsky2005">Francis &amp; Kosowsky 2005</a>, p.&#160;386.</span> </li> <li id="cite_note-FOOTNOTEHamilton1853639-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHamilton1853639_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHamilton1853">Hamilton 1853</a>, p.&#160;639.</span> </li> <li id="cite_note-FOOTNOTEHamilton1853730-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHamilton1853730_7-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHamilton1853">Hamilton 1853</a>, p.&#160;730.</span> </li> <li id="cite_note-FOOTNOTEHamilton1866289-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHamilton1866289_8-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHamilton1866">Hamilton 1866</a>, p.&#160;289.</span> </li> <li id="cite_note-FOOTNOTEDickson191413-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDickson191413_9-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDickson1914">Dickson 1914</a>, p.&#160;13.</span> </li> <li id="cite_note-FOOTNOTELanczos1949See_equation_94.16,_page_305._The_following_algebra_compares_to_Lanczos,_except_he_uses_~_to_signify_quaternion_conjugation_and_*_for_complex_conjugation-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELanczos1949See_equation_94.16,_page_305._The_following_algebra_compares_to_Lanczos,_except_he_uses_~_to_signify_quaternion_conjugation_and_*_for_complex_conjugation_10-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLanczos1949">Lanczos 1949</a>, See equation 94.16, page 305. The following algebra compares to Lanczos, except he uses ~ to signify quaternion conjugation and * for complex conjugation.</span> </li> <li id="cite_note-FOOTNOTEHermann1974chapter_6.4_Complex_Quaternions_and_Maxwell&#39;s_Equations-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHermann1974chapter_6.4_Complex_Quaternions_and_Maxwell&#39;s_Equations_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHermann1974">Hermann 1974</a>, chapter 6.4 Complex Quaternions and Maxwell's Equations.</span> </li> <li id="cite_note-FOOTNOTEFurey2012-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFurey2012_12-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFurey2012">Furey 2012</a>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biquaternion&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikibooks-logo-en-noslogan.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></a></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/Associative_Composition_Algebra" class="extiw" title="wikibooks:Associative Composition Algebra">Associative Composition Algebra</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Associative_Composition_Algebra/Quaternions" class="extiw" title="wikibooks:Associative Composition Algebra/Quaternions">Biquaternions</a></b></i></div></div> </div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><a href="/wiki/Arthur_Buchheim" title="Arthur Buchheim">Arthur Buchheim</a> (1885) <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2369176">"A Memoir on biquaternions"</a>, <a href="/wiki/American_Journal_of_Mathematics" title="American Journal of Mathematics">American Journal of Mathematics</a> 7(4):293 to 326 from <a href="/wiki/Jstor" class="mw-redirect" title="Jstor">Jstor</a> early content.</li> <li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFConway1911" class="citation cs2"><a href="/wiki/Arthur_W._Conway" title="Arthur W. Conway">Conway, Arthur W.</a> (1911), "On the application of quaternions to some recent developments in electrical theory", <i>Proceedings of the Royal Irish Academy</i>, <b>29A</b>: <span class="nowrap">1–</span>9</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Irish+Academy&amp;rft.atitle=On+the+application+of+quaternions+to+some+recent+developments+in+electrical+theory&amp;rft.volume=29A&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E9&amp;rft.date=1911&amp;rft.aulast=Conway&amp;rft.aufirst=Arthur+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDickson1914" class="citation cs2"><a href="/wiki/Leonard_Dickson" class="mw-redirect" title="Leonard Dickson">Dickson, Leonard</a> (1914), <a rel="nofollow" class="external text" href="https://babel.hathitrust.org/cgi/pt?id=uc1.b5008837;view=1up;seq=25"><i>Linear Algebras, §13 "Equivalence of the complex quaternion and matric algebras"</i></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+Algebras%2C+%C2%A713+%22Equivalence+of+the+complex+quaternion+and+matric+algebras%22&amp;rft.date=1914&amp;rft.aulast=Dickson&amp;rft.aufirst=Leonard&amp;rft_id=https%3A%2F%2Fbabel.hathitrust.org%2Fcgi%2Fpt%3Fid%3Duc1.b5008837%3Bview%3D1up%3Bseq%3D25&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span> via <a href="/wiki/HathiTrust" title="HathiTrust">HathiTrust</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFurey2012" class="citation journal cs1">Furey, C. (2012). "Unified Theory of Ideals". <i>Phys. Rev. D</i>. <b>86</b> (2): 025024. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1002.1497">1002.1497</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhRvD..86b5024F">2012PhRvD..86b5024F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.86.025024">10.1103/PhysRevD.86.025024</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118458623">118458623</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Phys.+Rev.+D&amp;rft.atitle=Unified+Theory+of+Ideals&amp;rft.volume=86&amp;rft.issue=2&amp;rft.pages=025024&amp;rft.date=2012&amp;rft_id=info%3Aarxiv%2F1002.1497&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118458623%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevD.86.025024&amp;rft_id=info%3Abibcode%2F2012PhRvD..86b5024F&amp;rft.aulast=Furey&amp;rft.aufirst=C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrancisKosowsky2005" class="citation cs2">Francis; Kosowsky (2005), <a rel="nofollow" class="external text" href="http://www.sciencedirect.com/science/article/pii/S0003491604002209">"The construction of spinors in geometric algebra"</a>, <i>Annals of Physics</i>, <b>317</b> (2): 317, <span class="nowrap">384–</span>409, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math-ph/0403040">math-ph/0403040</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005AnPhy.317..383F">2005AnPhy.317..383F</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.aop.2004.11.008">10.1016/j.aop.2004.11.008</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119632876">119632876</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Physics&amp;rft.atitle=The+construction+of+spinors+in+geometric+algebra&amp;rft.volume=317&amp;rft.issue=2&amp;rft.pages=317%2C+%3Cspan+class%3D%22nowrap%22%3E384-%3C%2Fspan%3E409&amp;rft.date=2005&amp;rft_id=info%3Aarxiv%2Fmath-ph%2F0403040&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119632876%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.aop.2004.11.008&amp;rft_id=info%3Abibcode%2F2005AnPhy.317..383F&amp;rft.au=Francis&amp;rft.au=Kosowsky&amp;rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0003491604002209&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarling2011" class="citation cs2">Garling, D. J. H. (2011), <i>Clifford Algebras: An Introduction</i>, Cambridge University Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Clifford+Algebras%3A+An+Introduction&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2011&amp;rft.aulast=Garling&amp;rft.aufirst=D.+J.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGirard1984" class="citation cs2">Girard, P. R. (1984), "The quaternion group and modern physics", <i><a href="/wiki/European_Journal_of_Physics" title="European Journal of Physics">European Journal of Physics</a></i>, <b>5</b> (1): <span class="nowrap">25–</span>32, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1984EJPh....5...25G">1984EJPh....5...25G</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0143-0807%2F5%2F1%2F007">10.1088/0143-0807/5/1/007</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250775753">250775753</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=European+Journal+of+Physics&amp;rft.atitle=The+quaternion+group+and+modern+physics&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E25-%3C%2Fspan%3E32&amp;rft.date=1984&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250775753%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0143-0807%2F5%2F1%2F007&amp;rft_id=info%3Abibcode%2F1984EJPh....5...25G&amp;rft.aulast=Girard&amp;rft.aufirst=P.+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamilton1850" class="citation cs2">Hamilton, Willian R. (1850), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ggoFAAAAQAAJ&amp;dq=proceedings+of+royal+irish+academy+1844+Hamilton&amp;pg=PA388">"On Geometrical Interpretation of Some Results obtained by Calculation with Biquaternions"</a>, <i><a href="/wiki/Proceedings_of_the_Royal_Irish_Academy" title="Proceedings of the Royal Irish Academy">Proceedings of the Royal Irish Academy</a></i>, <b>5</b>: 388</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Irish+Academy&amp;rft.atitle=On+Geometrical+Interpretation+of+Some+Results+obtained+by+Calculation+with+Biquaternions&amp;rft.volume=5&amp;rft.pages=388&amp;rft.date=1850&amp;rft.aulast=Hamilton&amp;rft.aufirst=Willian+R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DggoFAAAAQAAJ%26dq%3Dproceedings%2Bof%2Broyal%2Birish%2Bacademy%2B1844%2BHamilton%26pg%3DPA388&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamilton1853" class="citation cs2"><a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton, William Rowan</a> (1853), <a rel="nofollow" class="external text" href="https://catalog.hathitrust.org/Record/000470490"><i>Lectures on Quaternions, Article 669</i></a>, Hodges and Smith; [etc., etc.]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lectures+on+Quaternions%2C+Article+669&amp;rft.pub=Hodges+and+Smith%3B+%5Betc.%2C+etc.%5D&amp;rft.date=1853&amp;rft.aulast=Hamilton&amp;rft.aufirst=William+Rowan&amp;rft_id=https%3A%2F%2Fcatalog.hathitrust.org%2FRecord%2F000470490&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamilton1866" class="citation cs2"><a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton, William Rowan</a> (1866), <a href="/wiki/William_Edwin_Hamilton" title="William Edwin Hamilton">Hamilton, William Edwin</a> (ed.), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fIRAAAAAIAAJ"><i>Elements of Quaternions</i></a> (1st&#160;ed.), <a href="/wiki/Longmans,_Green_%26_Co." class="mw-redirect" title="Longmans, Green &amp; Co.">Longmans, Green &amp; Co.</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Quaternions&amp;rft.edition=1st&amp;rft.pub=Longmans%2C+Green+%26+Co.&amp;rft.date=1866&amp;rft.aulast=Hamilton&amp;rft.aufirst=William+Rowan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfIRAAAAAIAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamilton1899" class="citation cs2"><a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton, William Rowan</a> (1899), <a href="/wiki/Charles_Jasper_Joly" title="Charles Jasper Joly">Joly, Jasper Joly</a> (ed.), <i>Elements of Quaternions</i>, vol.&#160;I (2nd&#160;ed.), <a href="/wiki/Longmans,_Green_%26_Co." class="mw-redirect" title="Longmans, Green &amp; Co.">Longmans, Green &amp; Co.</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Quaternions&amp;rft.edition=2nd&amp;rft.pub=Longmans%2C+Green+%26+Co.&amp;rft.date=1899&amp;rft.aulast=Hamilton&amp;rft.aufirst=William+Rowan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamilton1901" class="citation cs2"><a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton, William Rowan</a> (1901), <a href="/wiki/Charles_Jasper_Joly" title="Charles Jasper Joly">Joly, Jasper Joly</a> (ed.), <i>Elements of Quaternions</i>, vol.&#160;II (2nd&#160;ed.), <a href="/wiki/Longmans,_Green_%26_Co." class="mw-redirect" title="Longmans, Green &amp; Co.">Longmans, Green &amp; Co.</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Quaternions&amp;rft.edition=2nd&amp;rft.pub=Longmans%2C+Green+%26+Co.&amp;rft.date=1901&amp;rft.aulast=Hamilton&amp;rft.aufirst=William+Rowan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHermann1974" class="citation cs2"><a href="/wiki/Robert_Hermann_(mathematician)" title="Robert Hermann (mathematician)">Hermann, Robert</a> (1974), <i>Spinors, Clifford and Cayley Algebras</i>, Interdisciplinary Mathematics, vol.&#160;VII, Math Sci Press, pp.&#160;<span class="nowrap">250–</span>265, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-915692-06-6" title="Special:BookSources/0-915692-06-6"><bdi>0-915692-06-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spinors%2C+Clifford+and+Cayley+Algebras&amp;rft.series=Interdisciplinary+Mathematics&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E250-%3C%2Fspan%3E265&amp;rft.pub=Math+Sci+Press&amp;rft.date=1974&amp;rft.isbn=0-915692-06-6&amp;rft.aulast=Hermann&amp;rft.aufirst=Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKilmister1994" class="citation cs2">Kilmister, C. W. (1994), <a href="/wiki/Fundamental_theory_(Eddington)" class="mw-redirect" title="Fundamental theory (Eddington)"><i>Eddington's search for a fundamental theory</i></a>, Cambridge University Press, pp.&#160;121, 122, 179, 180, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-37165-0" title="Special:BookSources/978-0-521-37165-0"><bdi>978-0-521-37165-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Eddington%27s+search+for+a+fundamental+theory&amp;rft.pages=121%2C+122%2C+179%2C+180&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1994&amp;rft.isbn=978-0-521-37165-0&amp;rft.aulast=Kilmister&amp;rft.aufirst=C.+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKravchenko2003" class="citation cs2">Kravchenko, Vladislav (2003), <i>Applied Quaternionic Analysis</i>, Heldermann Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-88538-228-8" title="Special:BookSources/3-88538-228-8"><bdi>3-88538-228-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Applied+Quaternionic+Analysis&amp;rft.pub=Heldermann+Verlag&amp;rft.date=2003&amp;rft.isbn=3-88538-228-8&amp;rft.aulast=Kravchenko&amp;rft.aufirst=Vladislav&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLanczos1949" class="citation cs2"><a href="/wiki/Cornelius_Lanczos" title="Cornelius Lanczos">Lanczos, Cornelius</a> (1949), <i>The Variational Principles of Mechanics</i>, <a href="/wiki/University_of_Toronto_Press" title="University of Toronto Press">University of Toronto Press</a>, pp.&#160;<span class="nowrap">304–</span>312</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Variational+Principles+of+Mechanics&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E304-%3C%2Fspan%3E312&amp;rft.pub=University+of+Toronto+Press&amp;rft.date=1949&amp;rft.aulast=Lanczos&amp;rft.aufirst=Cornelius&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilberstein1912" class="citation cs2"><a href="/wiki/Ludwik_Silberstein" title="Ludwik Silberstein">Silberstein, Ludwik</a> (1912), <a rel="nofollow" class="external text" href="https://zenodo.org/record/1430762">"Quaternionic form of relativity"</a>, <i><a href="/wiki/Philosophical_Magazine" title="Philosophical Magazine">Philosophical Magazine</a></i>, Series 6, <b>23</b> (137): <span class="nowrap">790–</span>809, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786440508637276">10.1080/14786440508637276</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Magazine&amp;rft.atitle=Quaternionic+form+of+relativity&amp;rft.volume=23&amp;rft.issue=137&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E790-%3C%2Fspan%3E809&amp;rft.date=1912&amp;rft_id=info%3Adoi%2F10.1080%2F14786440508637276&amp;rft.aulast=Silberstein&amp;rft.aufirst=Ludwik&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1430762&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilberstein1914" class="citation cs2">Silberstein, Ludwik (1914), <i>The Theory of Relativity</i></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+Relativity&amp;rft.date=1914&amp;rft.aulast=Silberstein&amp;rft.aufirst=Ludwik&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSynge1972" class="citation cs2">Synge, J. L. (1972), "Quaternions, Lorentz transformations, and the Conway-Dirac-Eddington matrices", <i>Communications of the Dublin Institute for Advanced Studies</i>, Series A, <b>21</b></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+of+the+Dublin+Institute+for+Advanced+Studies&amp;rft.atitle=Quaternions%2C+Lorentz+transformations%2C+and+the+Conway-Dirac-Eddington+matrices&amp;rft.volume=21&amp;rft.date=1972&amp;rft.aulast=Synge&amp;rft.aufirst=J.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSangwineEllLe_Bihan2010" class="citation cs2">Sangwine, Stephen J.; Ell, Todd A.; Le Bihan, Nicolas (2010), "Fundamental representations and algebraic properties of biquaternions or complexified quaternions", <i><a href="/wiki/Advances_in_Applied_Clifford_Algebras" title="Advances in Applied Clifford Algebras">Advances in Applied Clifford Algebras</a></i>, <b>21</b> (3): <span class="nowrap">1–</span>30, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1001.0240">1001.0240</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00006-010-0263-3">10.1007/s00006-010-0263-3</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54729224">54729224</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Applied+Clifford+Algebras&amp;rft.atitle=Fundamental+representations+and+algebraic+properties+of+biquaternions+or+complexified+quaternions&amp;rft.volume=21&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E30&amp;rft.date=2010&amp;rft_id=info%3Aarxiv%2F1001.0240&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54729224%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00006-010-0263-3&amp;rft.aulast=Sangwine&amp;rft.aufirst=Stephen+J.&amp;rft.au=Ell%2C+Todd+A.&amp;rft.au=Le+Bihan%2C+Nicolas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSangwineAlfsmann2010" class="citation cs2">Sangwine, Stephen J.; Alfsmann, Daniel (2010), "Determination of the biquaternion divisors of zero, including idempotents and nilpotents", <i><a href="/wiki/Advances_in_Applied_Clifford_Algebras" title="Advances in Applied Clifford Algebras">Advances in Applied Clifford Algebras</a></i>, <b>20</b> (2): <span class="nowrap">401–</span>410, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0812.1102">0812.1102</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008arXiv0812.1102S">2008arXiv0812.1102S</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00006-010-0202-3">10.1007/s00006-010-0202-3</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14246706">14246706</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Applied+Clifford+Algebras&amp;rft.atitle=Determination+of+the+biquaternion+divisors+of+zero%2C+including+idempotents+and+nilpotents&amp;rft.volume=20&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E401-%3C%2Fspan%3E410&amp;rft.date=2010&amp;rft_id=info%3Aarxiv%2F0812.1102&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14246706%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00006-010-0202-3&amp;rft_id=info%3Abibcode%2F2008arXiv0812.1102S&amp;rft.aulast=Sangwine&amp;rft.aufirst=Stephen+J.&amp;rft.au=Alfsmann%2C+Daniel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTanişli2006" class="citation cs2">Tanişli, M. (2006), "Gauge transformation and electromagnetism with biquaternions", <i><a href="/wiki/Europhysics_Letters" class="mw-redirect" title="Europhysics Letters">Europhysics Letters</a></i>, <b>74</b> (4): 569, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006EL.....74..569T">2006EL.....74..569T</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1209%2Fepl%2Fi2005-10571-6">10.1209/epl/i2005-10571-6</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250862773">250862773</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Europhysics+Letters&amp;rft.atitle=Gauge+transformation+and+electromagnetism+with+biquaternions&amp;rft.volume=74&amp;rft.issue=4&amp;rft.pages=569&amp;rft.date=2006&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250862773%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1209%2Fepl%2Fi2005-10571-6&amp;rft_id=info%3Abibcode%2F2006EL.....74..569T&amp;rft.aulast=Tani%C5%9Fli&amp;rft.aufirst=M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiquaternion" class="Z3988"></span></li></ul> </div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Number_systems351" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Number_systems" title="Template:Number systems"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Number_systems" title="Template talk:Number systems"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Number_systems" title="Special:EditPage/Template:Number systems"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Number_systems351" style="font-size:114%;margin:0 4em"><a href="/wiki/Number" title="Number">Number</a> systems</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sets of <a href="/wiki/Definable_number" class="mw-redirect" title="Definable number">definable numbers</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Natural_number" title="Natural number">Natural numbers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></span>)</li> <li><a href="/wiki/Integer" title="Integer">Integers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li> <li><a href="/wiki/Rational_number" title="Rational number">Rational numbers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>)</li> <li><a href="/wiki/Constructible_number" title="Constructible number">Constructible numbers</a></li> <li><a href="/wiki/Algebraic_number" title="Algebraic number">Algebraic numbers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fb423c16a5f403edbaf66438b75e7a36e725af6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {A} }"></span>)</li> <li><a href="/wiki/Closed-form_expression#Closed-form_number" title="Closed-form expression">Closed-form numbers</a></li> <li><a href="/wiki/Period_(algebraic_geometry)" title="Period (algebraic geometry)">Periods</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span>)</li> <li><a href="/wiki/Computable_number" title="Computable number">Computable numbers</a></li> <li><a href="/wiki/Definable_real_number#Definability_in_arithmetic" title="Definable real number">Arithmetical numbers</a></li> <li><a href="/wiki/Definable_real_number#Definability_in_models_of_ZFC" title="Definable real number">Set-theoretically definable numbers</a></li> <li><a href="/wiki/Gaussian_integer" title="Gaussian integer">Gaussian integers</a> <ul><li><a href="/wiki/Gaussian_rational" title="Gaussian rational">Gaussian rationals</a></li></ul></li> <li><a href="/wiki/Eisenstein_integer" title="Eisenstein integer">Eisenstein integers</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Composition_algebra" title="Composition algebra">Composition algebras</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Division_algebra" title="Division algebra">Division algebras</a>: <a href="/wiki/Real_number" title="Real number">Real numbers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>)</li> <li><a href="/wiki/Complex_number" title="Complex number">Complex numbers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>)</li> <li><a href="/wiki/Quaternion" title="Quaternion">Quaternions</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e050965453c42bcc6bd544546703c836bdafeac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {H} }"></span>)</li> <li><a href="/wiki/Octonion" title="Octonion">Octonions</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {O} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">O</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {O} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1ed2664a4fe515e6fbed25a7193ce663b82920c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {O} }"></span>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Split<br />types</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>:</li> <li><a href="/wiki/Split-complex_number" title="Split-complex number">Split-complex numbers</a></li> <li><a href="/wiki/Split-quaternion" title="Split-quaternion">Split-quaternions</a></li> <li><a href="/wiki/Split-octonion" title="Split-octonion">Split-octonions</a><br /> Over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>:</li> <li><a href="/wiki/Bicomplex_number" title="Bicomplex number">Bicomplex numbers</a></li> <li><a class="mw-selflink selflink">Biquaternions</a></li> <li><a href="/wiki/Bioctonion" title="Bioctonion">Bioctonions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other <a href="/wiki/Hypercomplex_number" title="Hypercomplex number">hypercomplex</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dual_number" title="Dual number">Dual numbers</a></li> <li><a href="/wiki/Dual_quaternion" title="Dual quaternion">Dual quaternions</a></li> <li><a href="/wiki/Dual-complex_number" class="mw-redirect" title="Dual-complex number">Dual-complex numbers</a></li> <li><a href="/wiki/Hyperbolic_quaternion" title="Hyperbolic quaternion">Hyperbolic quaternions</a></li> <li><a href="/wiki/Sedenion" title="Sedenion">Sedenions</a> &#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f9d5874c5d7f68eba1cec9da9ccbe53903303bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:2.176ex;" alt="{\displaystyle \mathbb {S} }"></span>)</li> <li><a href="/wiki/Trigintaduonion" title="Trigintaduonion">Trigintaduonions</a> &#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {T} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">T</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {T} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c039979935c00b3b216cbb065999207872677f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {T} }"></span>)</li> <li><a href="/wiki/Split-biquaternion" title="Split-biquaternion">Split-biquaternions</a></li> <li><a href="/wiki/Multicomplex_number" title="Multicomplex number">Multicomplex numbers</a></li> <li><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a>/<a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a> <ul><li><a href="/wiki/Algebra_of_physical_space" title="Algebra of physical space">Algebra of physical space</a></li> <li><a href="/wiki/Spacetime_algebra" title="Spacetime algebra">Spacetime algebra</a></li> <li><a href="/wiki/Plane-based_geometric_algebra" title="Plane-based geometric algebra">Plane-based geometric algebra</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Infinity" title="Infinity">Infinities</a> and <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimals</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cardinal_number" title="Cardinal number">Cardinal numbers</a></li> <li><a href="/wiki/Extended_natural_numbers" title="Extended natural numbers">Extended natural numbers</a></li> <li><a href="/wiki/Extended_real_number_line" title="Extended real number line">Extended real numbers</a> <ul><li><a href="/wiki/Projectively_extended_real_line" title="Projectively extended real line">Projective</a></li></ul></li> <li><a href="/wiki/Riemann_sphere" title="Riemann sphere">Extended complex numbers</a></li> <li><a href="/wiki/Hyperreal_number" title="Hyperreal number">Hyperreal numbers</a></li> <li><a href="/wiki/Levi-Civita_field" title="Levi-Civita field">Levi-Civita field</a></li> <li><a href="/wiki/Ordinal_number" title="Ordinal number">Ordinal numbers</a></li> <li><a href="/wiki/Supernatural_number" title="Supernatural number">Supernatural numbers</a></li> <li><a href="/wiki/Surreal_number" title="Surreal number">Surreal numbers</a></li> <li><a href="/wiki/Superreal_number" title="Superreal number">Superreal numbers</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other types</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Irrational_number" title="Irrational number">Irrational numbers</a></li> <li><a href="/wiki/Fuzzy_number" title="Fuzzy number">Fuzzy numbers</a></li> <li><a href="/wiki/Transcendental_number" title="Transcendental number">Transcendental numbers</a></li> <li><a href="/wiki/P-adic_number" title="P-adic number"><span class="nowrap"><i>p</i>-adic</span> numbers</a> (<a href="/wiki/Solenoid_(mathematics)#p-adic_solenoids" title="Solenoid (mathematics)"><span class="nowrap"><i>p</i>-adic</span> solenoids</a>)</li> <li><a href="/wiki/Profinite_integer" title="Profinite integer">Profinite integers</a></li> <li><a href="/wiki/Normal_number" title="Normal number">Normal numbers</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><a href="/wiki/Number#Main_classification" title="Number">Classification</a></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_types_of_numbers" title="List of types of numbers">List</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐5b65fffc7d‐s59g7 Cached time: 20250214044234 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.608 seconds Real time usage: 0.801 seconds Preprocessor visited node count: 5898/1000000 Post‐expand include size: 76645/2097152 bytes Template argument size: 8866/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 67165/5000000 bytes Lua time usage: 0.353/10.000 seconds Lua memory usage: 7380500/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 571.635 1 -total 28.61% 163.554 20 Template:Citation 15.70% 89.730 1 Template:Number_systems 15.38% 87.908 1 Template:Navbox 14.14% 80.812 72 Template:Math 12.90% 73.733 1 Template:Short_description 12.57% 71.836 12 Template:Sfn 8.56% 48.940 2 Template:Pagetype 4.73% 27.017 87 Template:Main_other 4.53% 25.901 1 Template:Wikibooks --> <!-- Saved in parser cache with key enwiki:pcache:1207070:|#|:idhash:canonical and timestamp 20250214044234 and revision id 1258811301. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Biquaternion&amp;oldid=1258811301">https://en.wikipedia.org/w/index.php?title=Biquaternion&amp;oldid=1258811301</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Composition_algebras" title="Category:Composition algebras">Composition algebras</a></li><li><a href="/wiki/Category:Quaternions" title="Category:Quaternions">Quaternions</a></li><li><a href="/wiki/Category:Ring_theory" title="Category:Ring theory">Ring theory</a></li><li><a href="/wiki/Category:Special_relativity" title="Category:Special relativity">Special relativity</a></li><li><a href="/wiki/Category:William_Rowan_Hamilton" title="Category:William Rowan Hamilton">William Rowan Hamilton</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 November 2024, at 19:23<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Biquaternion&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Biquaternion</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>11 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-d4b4q","wgBackendResponseTime":140,"wgPageParseReport":{"limitreport":{"cputime":"0.608","walltime":"0.801","ppvisitednodes":{"value":5898,"limit":1000000},"postexpandincludesize":{"value":76645,"limit":2097152},"templateargumentsize":{"value":8866,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":67165,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 571.635 1 -total"," 28.61% 163.554 20 Template:Citation"," 15.70% 89.730 1 Template:Number_systems"," 15.38% 87.908 1 Template:Navbox"," 14.14% 80.812 72 Template:Math"," 12.90% 73.733 1 Template:Short_description"," 12.57% 71.836 12 Template:Sfn"," 8.56% 48.940 2 Template:Pagetype"," 4.73% 27.017 87 Template:Main_other"," 4.53% 25.901 1 Template:Wikibooks"]},"scribunto":{"limitreport-timeusage":{"value":"0.353","limit":"10.000"},"limitreport-memusage":{"value":7380500,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFConway1911\"] = 1,\n [\"CITEREFDickson1914\"] = 1,\n [\"CITEREFFrancisKosowsky2005\"] = 1,\n [\"CITEREFFurey2012\"] = 1,\n [\"CITEREFGarling2011\"] = 1,\n [\"CITEREFGirard1984\"] = 1,\n [\"CITEREFHamilton1850\"] = 1,\n [\"CITEREFHamilton1853\"] = 1,\n [\"CITEREFHamilton1866\"] = 1,\n [\"CITEREFHamilton1899\"] = 1,\n [\"CITEREFHamilton1901\"] = 1,\n [\"CITEREFHermann1974\"] = 1,\n [\"CITEREFKilmister1994\"] = 1,\n [\"CITEREFKravchenko2003\"] = 1,\n [\"CITEREFLanczos1949\"] = 1,\n [\"CITEREFSangwineAlfsmann2010\"] = 1,\n [\"CITEREFSangwineEllLe_Bihan2010\"] = 1,\n [\"CITEREFSilberstein1912\"] = 1,\n [\"CITEREFSilberstein1914\"] = 1,\n [\"CITEREFSynge1972\"] = 1,\n [\"CITEREFTanişli2006\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Citation\"] = 20,\n [\"Cite journal\"] = 1,\n [\"Further\"] = 1,\n [\"Math\"] = 70,\n [\"Mset\"] = 1,\n [\"Mvar\"] = 20,\n [\"Number systems\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Section link\"] = 1,\n [\"Sfn\"] = 12,\n [\"Short description\"] = 1,\n [\"Su\"] = 3,\n [\"Wikibooks\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.main-5b65fffc7d-s59g7","timestamp":"20250214044234","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Biquaternion","url":"https:\/\/en.wikipedia.org\/wiki\/Biquaternion","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2590607","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2590607","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-11-25T02:57:18Z","dateModified":"2024-11-21T19:23:32Z","headline":"numbers w + x i + y j + z k, where w, x, y, and z are complex numbers, or variants thereof, and the elements of {1, i, j, k} multiply as in the quaternion group"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10