CINXE.COM

Real number - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Real number - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"043c7b34-ec48-43c0-9b9d-d4356a57cae8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Real_number","wgTitle":"Real number","wgCurRevisionId":1257630769,"wgRevisionId":1257630769,"wgArticleId":20646438,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles containing French-language text","Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","Wikipedia indefinitely move-protected pages","Articles lacking in-text citations from July 2024","All articles lacking in-text citations","CS1 German-language sources (de)","Real numbers","Real algebraic geometry","Elementary mathematics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext", "wgRelevantPageName":"Real_number","wgRelevantArticleId":20646438,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":["sysop"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q12916","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness", "fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp", "ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Real_number_line.svg/1200px-Real_number_line.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="392"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Real_number_line.svg/800px-Real_number_line.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="261"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Real_number_line.svg/640px-Real_number_line.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="209"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Real number - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Real_number"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Real_number&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Real_number"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Real_number rootpage-Real_number skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Real+number" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Real+number" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Real+number" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Real+number" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Characterizing_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Characterizing_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Characterizing properties</span> </div> </a> <ul id="toc-Characterizing_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arithmetic" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Arithmetic"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Arithmetic</span> </div> </a> <button aria-controls="toc-Arithmetic-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Arithmetic subsection</span> </button> <ul id="toc-Arithmetic-sublist" class="vector-toc-list"> <li id="toc-Auxiliary_operations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Auxiliary_operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Auxiliary operations</span> </div> </a> <ul id="toc-Auxiliary_operations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Auxiliary_order_relations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Auxiliary_order_relations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Auxiliary order relations</span> </div> </a> <ul id="toc-Auxiliary_order_relations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integers_and_fractions_as_real_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integers_and_fractions_as_real_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Integers and fractions as real numbers</span> </div> </a> <ul id="toc-Integers_and_fractions_as_real_numbers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Dedekind_completeness" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Dedekind_completeness"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Dedekind completeness</span> </div> </a> <ul id="toc-Dedekind_completeness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Decimal_representation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Decimal_representation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Decimal representation</span> </div> </a> <ul id="toc-Decimal_representation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Topological_completeness" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Topological_completeness"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Topological completeness</span> </div> </a> <button aria-controls="toc-Topological_completeness-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Topological completeness subsection</span> </button> <ul id="toc-Topological_completeness-sublist" class="vector-toc-list"> <li id="toc-&quot;The_complete_ordered_field&quot;" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#&quot;The_complete_ordered_field&quot;"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>"The complete ordered field"</span> </div> </a> <ul id="toc-&quot;The_complete_ordered_field&quot;-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Cardinality" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Cardinality"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Cardinality</span> </div> </a> <ul id="toc-Cardinality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Other properties</span> </div> </a> <ul id="toc-Other_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Modern_analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modern_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Modern analysis</span> </div> </a> <ul id="toc-Modern_analysis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Formal_definitions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Formal_definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Formal definitions</span> </div> </a> <button aria-controls="toc-Formal_definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Formal definitions subsection</span> </button> <ul id="toc-Formal_definitions-sublist" class="vector-toc-list"> <li id="toc-Axiomatic_approach" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axiomatic_approach"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Axiomatic approach</span> </div> </a> <ul id="toc-Axiomatic_approach-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Construction_from_the_rational_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Construction_from_the_rational_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Construction from the rational numbers</span> </div> </a> <ul id="toc-Construction_from_the_rational_numbers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications_and_connections" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications_and_connections"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Applications and connections</span> </div> </a> <button aria-controls="toc-Applications_and_connections-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications and connections subsection</span> </button> <ul id="toc-Applications_and_connections-sublist" class="vector-toc-list"> <li id="toc-Physics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Physics</span> </div> </a> <ul id="toc-Physics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Logic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Logic</span> </div> </a> <ul id="toc-Logic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Computation"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>Computation</span> </div> </a> <ul id="toc-Computation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Set_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Set_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.4</span> <span>Set theory</span> </div> </a> <ul id="toc-Set_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Vocabulary_and_notation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Vocabulary_and_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Vocabulary and notation</span> </div> </a> <ul id="toc-Vocabulary_and_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations_and_extensions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalizations_and_extensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Generalizations and extensions</span> </div> </a> <ul id="toc-Generalizations_and_extensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.1</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.2</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Real number</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 118 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-118" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">118 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Re%C3%ABle_getal" title="Reële getal – Afrikaans" lang="af" hreflang="af" data-title="Reële getal" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Reelle_Zahl" title="Reelle Zahl – Alemannic" lang="gsw" hreflang="gsw" data-title="Reelle Zahl" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Reaalloho" title="Reaalloho – Inari Sami" lang="smn" hreflang="smn" data-title="Reaalloho" data-language-autonym="Anarâškielâ" data-language-local-name="Inari Sami" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%AD%D9%82%D9%8A%D9%82%D9%8A" title="عدد حقيقي – Arabic" lang="ar" hreflang="ar" data-title="عدد حقيقي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/N%C3%BAmberu_real" title="Númberu real – Asturian" lang="ast" hreflang="ast" data-title="Númberu real" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/H%C9%99qiqi_%C9%99d%C9%99dl%C9%99r" title="Həqiqi ədədlər – Azerbaijani" lang="az" hreflang="az" data-title="Həqiqi ədədlər" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%AD%D9%82%DB%8C%D9%82%DB%8C_%D8%B3%D8%A7%DB%8C%DB%8C%D9%84%D8%A7%D8%B1" title="حقیقی ساییلار – South Azerbaijani" lang="azb" hreflang="azb" data-title="حقیقی ساییلار" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AC%E0%A6%BE%E0%A6%B8%E0%A7%8D%E0%A6%A4%E0%A6%AC_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="বাস্তব সংখ্যা – Bangla" lang="bn" hreflang="bn" data-title="বাস্তব সংখ্যা" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Si%CC%8Dt-s%C3%B2%CD%98" title="Si̍t-sò͘ – Minnan" lang="nan" hreflang="nan" data-title="Si̍t-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%AB%D1%81%D1%8B%D0%BD_%D2%BB%D0%B0%D0%BD" title="Ысын һан – Bashkir" lang="ba" hreflang="ba" data-title="Ысын һан" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A0%D1%8D%D1%87%D0%B0%D1%96%D1%81%D0%BD%D1%8B_%D0%BB%D1%96%D0%BA" title="Рэчаісны лік – Belarusian" lang="be" hreflang="be" data-title="Рэчаісны лік" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A0%D1%8D%D1%87%D0%B0%D1%96%D1%81%D0%BD%D1%8B_%D0%BB%D1%96%D0%BA" title="Рэчаісны лік – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Рэчаісны лік" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A4%B5%E0%A4%BF%E0%A4%95_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="वास्तविक संख्या – Bhojpuri" lang="bh" hreflang="bh" data-title="वास्तविक संख्या" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Tunay_na_bilang" title="Tunay na bilang – Central Bikol" lang="bcl" hreflang="bcl" data-title="Tunay na bilang" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D0%BD%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Реално число – Bulgarian" lang="bg" hreflang="bg" data-title="Реално число" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Realan_broj" title="Realan broj – Bosnian" lang="bs" hreflang="bs" data-title="Realan broj" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%91%D0%BE%D0%B4%D0%BE%D1%82%D0%BE_%D1%82%D0%BE%D0%BE" title="Бодото тоо – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Бодото тоо" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://ca.wikipedia.org/wiki/Nombre_real" title="Nombre real – Catalan" lang="ca" hreflang="ca" data-title="Nombre real" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A7%C4%83%D0%BD_%D1%85%D0%B8%D1%81%D0%B5%D0%BF" title="Чăн хисеп – Chuvash" lang="cv" hreflang="cv" data-title="Чăн хисеп" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Re%C3%A1ln%C3%A9_%C4%8D%C3%ADslo" title="Reálné číslo – Czech" lang="cs" hreflang="cs" data-title="Reálné číslo" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rhif_real" title="Rhif real – Welsh" lang="cy" hreflang="cy" data-title="Rhif real" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Reelle_tal" title="Reelle tal – Danish" lang="da" hreflang="da" data-title="Reelle tal" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Reelle_Zahl" title="Reelle Zahl – German" lang="de" hreflang="de" data-title="Reelle Zahl" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Reaalarv" title="Reaalarv – Estonian" lang="et" hreflang="et" data-title="Reaalarv" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CF%81%CE%B1%CE%B3%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Πραγματικός αριθμός – Greek" lang="el" hreflang="el" data-title="Πραγματικός αριθμός" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/N%C3%B3mmer_re%C3%A8l" title="Nómmer reèl – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Nómmer reèl" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_real" title="Número real – Spanish" lang="es" hreflang="es" data-title="Número real" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Reelo" title="Reelo – Esperanto" lang="eo" hreflang="eo" data-title="Reelo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zenbaki_erreal" title="Zenbaki erreal – Basque" lang="eu" hreflang="eu" data-title="Zenbaki erreal" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%AD%D9%82%DB%8C%D9%82%DB%8C" title="عدد حقیقی – Persian" lang="fa" hreflang="fa" data-title="عدد حقیقی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Reelt_tal" title="Reelt tal – Faroese" lang="fo" hreflang="fo" data-title="Reelt tal" data-language-autonym="Føroyskt" data-language-local-name="Faroese" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_r%C3%A9el" title="Nombre réel – French" lang="fr" hreflang="fr" data-title="Nombre réel" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fur mw-list-item"><a href="https://fur.wikipedia.org/wiki/Numars_re%C3%A2i" title="Numars reâi – Friulian" lang="fur" hreflang="fur" data-title="Numars reâi" data-language-autonym="Furlan" data-language-local-name="Friulian" class="interlanguage-link-target"><span>Furlan</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/R%C3%A9aduimhir" title="Réaduimhir – Irish" lang="ga" hreflang="ga" data-title="Réaduimhir" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Feer_earroo" title="Feer earroo – Manx" lang="gv" hreflang="gv" data-title="Feer earroo" data-language-autonym="Gaelg" data-language-local-name="Manx" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/N%C3%BAmero_real" title="Número real – Galician" lang="gl" hreflang="gl" data-title="Número real" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%AF%A6%E6%95%B8" title="實數 – Gan" lang="gan" hreflang="gan" data-title="實數" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%91%D3%99%D3%99%D0%BB%D2%BB%D0%B0%D0%BD_%D1%82%D0%BE%D0%B9%D0%B3" title="Бәәлһан тойг – Kalmyk" lang="xal" hreflang="xal" data-title="Бәәлһан тойг" data-language-autonym="Хальмг" data-language-local-name="Kalmyk" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%8B%A4%EC%88%98" title="실수 – Korean" lang="ko" hreflang="ko" data-title="실수" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BB%D6%80%D5%A1%D5%AF%D5%A1%D5%B6_%D5%A9%D5%AB%D5%BE" title="Իրական թիվ – Armenian" lang="hy" hreflang="hy" data-title="Իրական թիվ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A4%B5%E0%A4%BF%E0%A4%95_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="वास्तविक संख्या – Hindi" lang="hi" hreflang="hi" data-title="वास्तविक संख्या" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Realni_broj" title="Realni broj – Croatian" lang="hr" hreflang="hr" data-title="Realni broj" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Reala_nombro" title="Reala nombro – Ido" lang="io" hreflang="io" data-title="Reala nombro" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Bilangan_riil" title="Bilangan riil – Indonesian" lang="id" hreflang="id" data-title="Bilangan riil" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Numero_real" title="Numero real – Interlingua" lang="ia" hreflang="ia" data-title="Numero real" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-os mw-list-item"><a href="https://os.wikipedia.org/wiki/%D0%91%C3%A6%D0%BB%D0%B2%D1%8B%D1%80%D0%B4_%D0%BD%D1%8B%D0%BC%C3%A6%D1%86" title="Бæлвырд нымæц – Ossetic" lang="os" hreflang="os" data-title="Бæлвырд нымæц" data-language-autonym="Ирон" data-language-local-name="Ossetic" class="interlanguage-link-target"><span>Ирон</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Rauntala" title="Rauntala – Icelandic" lang="is" hreflang="is" data-title="Rauntala" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Numero_reale" title="Numero reale – Italian" lang="it" hreflang="it" data-title="Numero reale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8_%D7%9E%D7%9E%D7%A9%D7%99" title="מספר ממשי – Hebrew" lang="he" hreflang="he" data-title="מספר ממשי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/Si%C5%8B%C5%8B_%C3%B1%CA%8A%C5%8B_(t%CA%8A%CA%8Az%CA%8A%CA%8A)" title="Siŋŋ ñʊŋ (tʊʊzʊʊ) – Kabiye" lang="kbp" hreflang="kbp" data-title="Siŋŋ ñʊŋ (tʊʊzʊʊ)" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%A8%E0%B3%88%E0%B2%9C_%E0%B2%B8%E0%B2%82%E0%B2%96%E0%B3%8D%E0%B2%AF%E0%B3%86" title="ನೈಜ ಸಂಖ್ಯೆ – Kannada" lang="kn" hreflang="kn" data-title="ನೈಜ ಸಂಖ್ಯೆ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9C%E1%83%90%E1%83%9B%E1%83%93%E1%83%95%E1%83%98%E1%83%9A%E1%83%98_%E1%83%A0%E1%83%98%E1%83%AA%E1%83%AE%E1%83%95%E1%83%98" title="ნამდვილი რიცხვი – Georgian" lang="ka" hreflang="ka" data-title="ნამდვილი რიცხვი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9D%D0%B0%D2%9B%D1%82%D1%8B_%D1%81%D0%B0%D0%BD" title="Нақты сан – Kazakh" lang="kk" hreflang="kk" data-title="Нақты сан" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Namba_halisi" title="Namba halisi – Swahili" lang="sw" hreflang="sw" data-title="Namba halisi" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Nonm_r%C3%A9y%C3%A8l" title="Nonm réyèl – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Nonm réyèl" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Hejmar%C3%AAn_rast%C3%AEn" title="Hejmarên rastîn – Kurdish" lang="ku" hreflang="ku" data-title="Hejmarên rastîn" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D0%BD%D1%8B%D0%BA_%D1%81%D0%B0%D0%BD" title="Анык сан – Kyrgyz" lang="ky" hreflang="ky" data-title="Анык сан" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%88%E0%BA%B3%E0%BA%99%E0%BA%A7%E0%BA%99%E0%BA%88%E0%BA%B4%E0%BA%87" title="ຈຳນວນຈິງ – Lao" lang="lo" hreflang="lo" data-title="ຈຳນວນຈິງ" data-language-autonym="ລາວ" data-language-local-name="Lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numerus_realis" title="Numerus realis – Latin" lang="la" hreflang="la" data-title="Numerus realis" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Re%C4%81ls_skaitlis" title="Reāls skaitlis – Latvian" lang="lv" hreflang="lv" data-title="Reāls skaitlis" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Realusis_skai%C4%8Dius" title="Realusis skaičius – Lithuanian" lang="lt" hreflang="lt" data-title="Realusis skaičius" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lij mw-list-item"><a href="https://lij.wikipedia.org/wiki/Numeri_re%C3%A6" title="Numeri reæ – Ligurian" lang="lij" hreflang="lij" data-title="Numeri reæ" data-language-autonym="Ligure" data-language-local-name="Ligurian" class="interlanguage-link-target"><span>Ligure</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Re%C3%ABel_getal" title="Reëel getal – Limburgish" lang="li" hreflang="li" data-title="Reëel getal" data-language-autonym="Limburgs" data-language-local-name="Limburgish" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Numero_real" title="Numero real – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Numero real" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/pavycimdyna%27u" title="pavycimdyna&#039;u – Lojban" lang="jbo" hreflang="jbo" data-title="pavycimdyna&#039;u" data-language-autonym="La .lojban." data-language-local-name="Lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Numer_real" title="Numer real – Lombard" lang="lmo" hreflang="lmo" data-title="Numer real" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Val%C3%B3s_sz%C3%A1mok" title="Valós számok – Hungarian" lang="hu" hreflang="hu" data-title="Valós számok" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D0%B5%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Реален број – Macedonian" lang="mk" hreflang="mk" data-title="Реален број" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Isa_voatsapa" title="Isa voatsapa – Malagasy" lang="mg" hreflang="mg" data-title="Isa voatsapa" data-language-autonym="Malagasy" data-language-local-name="Malagasy" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B5%E0%B4%BE%E0%B4%B8%E0%B5%8D%E0%B4%A4%E0%B4%B5%E0%B4%BF%E0%B4%95%E0%B4%B8%E0%B4%82%E0%B4%96%E0%B5%8D%E0%B4%AF" title="വാസ്തവികസംഖ്യ – Malayalam" lang="ml" hreflang="ml" data-title="വാസ്തവികസംഖ്യ" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A4%B5%E0%A4%BF%E0%A4%95_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="वास्तविक संख्या – Marathi" lang="mr" hreflang="mr" data-title="वास्तविक संख्या" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Nombor_nyata" title="Nombor nyata – Malay" lang="ms" hreflang="ms" data-title="Nombor nyata" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%80%E1%80%AD%E1%80%94%E1%80%BA%E1%80%B8%E1%80%85%E1%80%85%E1%80%BA" title="ကိန်းစစ် – Burmese" lang="my" hreflang="my" data-title="ကိန်းစစ်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Re%C3%ABel_getal" title="Reëel getal – Dutch" lang="nl" hreflang="nl" data-title="Reëel getal" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A4%B5%E0%A4%BF%E0%A4%95_%E0%A4%B8%E0%A4%99%E0%A5%8D%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="वास्तविक सङ्ख्या – Nepali" lang="ne" hreflang="ne" data-title="वास्तविक सङ्ख्या" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0" title="実数 – Japanese" lang="ja" hreflang="ja" data-title="実数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Re%27el_taal" title="Re&#039;el taal – Northern Frisian" lang="frr" hreflang="frr" data-title="Re&#039;el taal" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Reelt_tall" title="Reelt tall – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Reelt tall" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Reelle_tal" title="Reelle tal – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Reelle tal" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Nombre_real" title="Nombre real – Occitan" lang="oc" hreflang="oc" data-title="Nombre real" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Haqiqiy_sonlar" title="Haqiqiy sonlar – Uzbek" lang="uz" hreflang="uz" data-title="Haqiqiy sonlar" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B5%E0%A8%BE%E0%A8%B8%E0%A8%A4%E0%A8%B5%E0%A8%BF%E0%A8%95_%E0%A8%85%E0%A9%B0%E0%A8%95" title="ਵਾਸਤਵਿਕ ਅੰਕ – Punjabi" lang="pa" hreflang="pa" data-title="ਵਾਸਤਵਿਕ ਅੰਕ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Riil_nomba" title="Riil nomba – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Riil nomba" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%85%E1%9F%86%E1%9E%93%E1%9E%BD%E1%9E%93%E1%9E%96%E1%9E%B7%E1%9E%8F" title="ចំនួនពិត – Khmer" lang="km" hreflang="km" data-title="ចំនួនពិត" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/N%C3%B9mer_real" title="Nùmer real – Piedmontese" lang="pms" hreflang="pms" data-title="Nùmer real" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_rzeczywiste" title="Liczby rzeczywiste – Polish" lang="pl" hreflang="pl" data-title="Liczby rzeczywiste" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/N%C3%BAmero_real" title="Número real – Portuguese" lang="pt" hreflang="pt" data-title="Número real" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-crh mw-list-item"><a href="https://crh.wikipedia.org/wiki/Aqiqiy_say%C4%B1" title="Aqiqiy sayı – Crimean Tatar" lang="crh" hreflang="crh" data-title="Aqiqiy sayı" data-language-autonym="Qırımtatarca" data-language-local-name="Crimean Tatar" class="interlanguage-link-target"><span>Qırımtatarca</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_real" title="Număr real – Romanian" lang="ro" hreflang="ro" data-title="Număr real" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Вещественное число – Russian" lang="ru" hreflang="ru" data-title="Вещественное число" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%94%D1%8C%D0%B8%D2%A5%D0%BD%D1%8D%D1%8D%D1%85_%D1%87%D1%8B%D1%8B%D2%BB%D1%8B%D0%BB%D0%B0%D0%BB%D0%B0%D1%80" title="Дьиҥнээх чыыһылалар – Yakut" lang="sah" hreflang="sah" data-title="Дьиҥнээх чыыһылалар" data-language-autonym="Саха тыла" data-language-local-name="Yakut" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Numrat_real%C3%AB" title="Numrat realë – Albanian" lang="sq" hreflang="sq" data-title="Numrat realë" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/N%C3%B9mmuru_riali" title="Nùmmuru riali – Sicilian" lang="scn" hreflang="scn" data-title="Nùmmuru riali" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%AD%E0%B7%8F%E0%B6%AD%E0%B7%8A%E0%B7%80%E0%B7%92%E0%B6%9A_%E0%B7%83%E0%B6%82%E0%B6%9B%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F" title="තාත්වික සංඛ්‍යා – Sinhala" lang="si" hreflang="si" data-title="තාත්වික සංඛ්‍යා" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Real_number" title="Real number – Simple English" lang="en-simple" hreflang="en-simple" data-title="Real number" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Re%C3%A1lne_%C4%8D%C3%ADslo" title="Reálne číslo – Slovak" lang="sk" hreflang="sk" data-title="Reálne číslo" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Realno_%C5%A1tevilo" title="Realno število – Slovenian" lang="sl" hreflang="sl" data-title="Realno število" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%98%D9%85%D8%A7%D8%B1%DB%95%DB%8C_%DA%95%D8%A7%D8%B3%D8%AA%DB%95%D9%82%DB%8C%D9%86%DB%95" title="ژمارەی ڕاستەقینە – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ژمارەی ڕاستەقینە" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D0%B0%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Реалан број – Serbian" lang="sr" hreflang="sr" data-title="Реалан број" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Realan_broj" title="Realan broj – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Realan broj" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Reaaliluku" title="Reaaliluku – Finnish" lang="fi" hreflang="fi" data-title="Reaaliluku" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Reella_tal" title="Reella tal – Swedish" lang="sv" hreflang="sv" data-title="Reella tal" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Tunay_na_bilang" title="Tunay na bilang – Tagalog" lang="tl" hreflang="tl" data-title="Tunay na bilang" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%86%E0%AE%AF%E0%AF%8D%E0%AE%AF%E0%AF%86%E0%AE%A3%E0%AF%8D" title="மெய்யெண் – Tamil" lang="ta" hreflang="ta" data-title="மெய்யெண்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B8%88%E0%B8%A3%E0%B8%B4%E0%B8%87" title="จำนวนจริง – Thai" lang="th" hreflang="th" data-title="จำนวนจริง" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Reel_say%C4%B1lar" title="Reel sayılar – Turkish" lang="tr" hreflang="tr" data-title="Reel sayılar" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D1%96%D0%B9%D1%81%D0%BD%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Дійсне число – Ukrainian" lang="uk" hreflang="uk" data-title="Дійсне число" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AD%D9%82%DB%8C%D9%82%DB%8C_%D8%B9%D8%AF%D8%AF" title="حقیقی عدد – Urdu" lang="ur" hreflang="ur" data-title="حقیقی عدد" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/S%E1%BB%91_th%E1%BB%B1c" title="Số thực – Vietnamese" lang="vi" hreflang="vi" data-title="Số thực" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Reaalarv" title="Reaalarv – Võro" lang="vro" hreflang="vro" data-title="Reaalarv" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%AF%A6%E6%95%B8" title="實數 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="實數" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%AE%9E%E6%95%B0" title="实数 – Wu" lang="wuu" hreflang="wuu" data-title="实数" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A8%D7%A2%D7%90%D7%9C%D7%A2_%D7%A6%D7%90%D7%9C" title="רעאלע צאל – Yiddish" lang="yi" hreflang="yi" data-title="רעאלע צאל" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://yo.wikipedia.org/wiki/N%E1%BB%8D%CC%81mb%C3%A0_gidi" title="Nọ́mbà gidi – Yoruba" lang="yo" hreflang="yo" data-title="Nọ́mbà gidi" data-language-autonym="Yorùbá" data-language-local-name="Yoruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%AF%A6%E6%95%B8" title="實數 – Cantonese" lang="yue" hreflang="yue" data-title="實數" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Amaro_reel" title="Amaro reel – Zazaki" lang="diq" hreflang="diq" data-title="Amaro reel" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AE%9E%E6%95%B0" title="实数 – Chinese" lang="zh" hreflang="zh" data-title="实数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Lumur_bendar" title="Lumur bendar – Iban" lang="iba" hreflang="iba" data-title="Lumur bendar" data-language-autonym="Jaku Iban" data-language-local-name="Iban" class="interlanguage-link-target"><span>Jaku Iban</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q12916#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Real_number" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Real_number" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Real_number"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Real_number&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Real_number&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Real_number"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Real_number&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Real_number&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Real_number" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Real_number" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Real_number&amp;oldid=1257630769" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Real_number&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Real_number&amp;id=1257630769&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReal_number"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReal_number"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Real_number&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Real_number&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Real_numbers" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q12916" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Number representing a continuous quantity</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For the real numbers used in descriptive set theory, see <a href="/wiki/Baire_space_(set_theory)" title="Baire space (set theory)">Baire space (set theory)</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_footnotes_needed plainlinks metadata ambox ambox-style ambox-More_footnotes_needed" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/40px-Text_document_with_red_question_mark.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/60px-Text_document_with_red_question_mark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/80px-Text_document_with_red_question_mark.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article includes a list of <a href="/wiki/Wikipedia:Citing_sources#General_references" title="Wikipedia:Citing sources">general references</a>, but <b>it lacks sufficient corresponding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a></b>.<span class="hide-when-compact"> Please help to <a href="/wiki/Wikipedia:WikiProject_Reliability" title="Wikipedia:WikiProject Reliability">improve</a> this article by <a href="/wiki/Wikipedia:When_to_cite" title="Wikipedia:When to cite">introducing</a> more precise citations.</span> <span class="date-container"><i>(<span class="date">July 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>real number</b> is a <a href="/wiki/Number" title="Number">number</a> that can be used to <a href="/wiki/Measurement" title="Measurement">measure</a> a <a href="/wiki/Continuous_variable" class="mw-redirect" title="Continuous variable">continuous</a> one-<a href="/wiki/Dimension" title="Dimension">dimensional</a> <a href="/wiki/Quantity" title="Quantity">quantity</a> such as a <a href="/wiki/Distance" title="Distance">distance</a>, <a href="/wiki/Time" title="Time">duration</a> or <a href="/wiki/Temperature" title="Temperature">temperature</a>. Here, <i>continuous</i> means that pairs of values can have arbitrarily small differences.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> Every real number can be almost uniquely represented by an infinite <a href="/wiki/Decimal_expansion" class="mw-redirect" title="Decimal expansion">decimal expansion</a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>The real numbers are fundamental in <a href="/wiki/Calculus" title="Calculus">calculus</a> (and in many other branches of mathematics), in particular by their role in the classical definitions of <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limits</a>, <a href="/wiki/Continuous_function" title="Continuous function">continuity</a> and <a href="/wiki/Derivative" title="Derivative">derivatives</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> </p><p>The set of real numbers, sometimes called "the reals", is traditionally <a href="/wiki/Mathematical_notation" title="Mathematical notation">denoted</a> by a bold <span class="texhtml"><b>R</b></span>, often using <a href="/wiki/Blackboard_bold" title="Blackboard bold">blackboard bold</a>, <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>&#8288;</span>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The adjective <i>real</i>, used in the 17th century by <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a>, distinguishes real numbers from <a href="/wiki/Imaginary_number" title="Imaginary number">imaginary numbers</a> such as the <a href="/wiki/Square_root" title="Square root">square roots</a> of <span class="texhtml">−1</span>.<sup id="cite_ref-Britannica_7-0" class="reference"><a href="#cite_note-Britannica-7"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>The real numbers include the <a href="/wiki/Rational_number" title="Rational number">rational numbers</a>, such as the <a href="/wiki/Integer" title="Integer">integer</a> <span class="texhtml">−5</span> and the <a href="/wiki/Fraction_(mathematics)" class="mw-redirect" title="Fraction (mathematics)">fraction</a> <span class="texhtml">4&#8202;/&#8202;3</span>. The rest of the real numbers are called <a href="/wiki/Irrational_number" title="Irrational number">irrational numbers</a>. Some irrational numbers (as well as all the rationals) are the <a href="/wiki/Zero_of_a_function" title="Zero of a function">root</a> of a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> with integer coefficients, such as the square root <span class="texhtml"><a href="/wiki/Square_root_of_2" title="Square root of 2">√2</a> = 1.414...</span>; these are called <a href="/wiki/Algebraic_number" title="Algebraic number">algebraic numbers</a>. There are also real numbers which are not, such as <span class="texhtml"><a href="/wiki/Pi" title="Pi"><span class="texhtml mvar" style="font-style:italic;">π</span></a> = 3.1415...</span>; these are called <a href="/wiki/Transcendental_numbers" class="mw-redirect" title="Transcendental numbers">transcendental numbers</a>.<sup id="cite_ref-Britannica_7-1" class="reference"><a href="#cite_note-Britannica-7"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Real numbers can be thought of as all points on a <a href="/wiki/Line_(geometry)" title="Line (geometry)">line</a> called the <a href="/wiki/Number_line" title="Number line">number line</a> or <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a>, where the points corresponding to integers (<span class="texhtml">..., −2, −1, 0, 1, 2, ...</span>) are equally spaced. </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent" style="padding-left: 1.6em;"><figure class="mw-default-size mw-halign-left" typeof="mw:File/Frameless"><a href="/wiki/File:Real_number_line.svg" class="mw-file-description" title="Real numbers can be thought of as all points on a number line"><img alt="Real numbers can be thought of as all points on a number line" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Real_number_line.svg/350px-Real_number_line.svg.png" decoding="async" width="350" height="114" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Real_number_line.svg/525px-Real_number_line.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Real_number_line.svg/700px-Real_number_line.svg.png 2x" data-file-width="689" data-file-height="225" /></a><figcaption>Real numbers can be thought of as all points on a number line</figcaption></figure></div> <p>Conversely, <a href="/wiki/Analytic_geometry" title="Analytic geometry">analytic geometry</a> is the association of points on lines (especially <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">axis lines</a>) to real numbers such that geometric <a href="/wiki/Displacement_(geometry)" title="Displacement (geometry)">displacements</a> are proportional to <a href="/wiki/Subtraction" title="Subtraction">differences</a> between corresponding numbers. </p><p>The informal descriptions above of the real numbers are not sufficient for ensuring the correctness of proofs of <a href="/wiki/Theorem" title="Theorem">theorems</a> involving real numbers. The realization that a better definition was needed, and the elaboration of such a definition was a major development of <a href="/wiki/History_of_mathematics#19th_century" title="History of mathematics">19th-century mathematics</a> and is the foundation of <a href="/wiki/Real_analysis" title="Real analysis">real analysis</a>, the study of <a href="/wiki/Real_function" class="mw-redirect" title="Real function">real functions</a> and real-valued <a href="/wiki/Sequence" title="Sequence">sequences</a>. A current <a href="/wiki/Axiom" title="Axiom">axiomatic</a> definition is that real numbers form the <a href="/wiki/Essentially_unique" title="Essentially unique">unique</a> (<a href="/wiki/Up_to" title="Up to">up to</a> an <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a>) <a href="/wiki/Dedekind-complete" class="mw-redirect" title="Dedekind-complete">Dedekind-complete</a> <a href="/wiki/Ordered_field" title="Ordered field">ordered field</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup> Other common definitions of real numbers include <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence classes</a> of <a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequences</a> (of rational numbers), <a href="/wiki/Dedekind_cut" title="Dedekind cut">Dedekind cuts</a>, and infinite <a href="/wiki/Decimal_representation" title="Decimal representation">decimal representations</a>. All these definitions satisfy the axiomatic definition and are thus equivalent. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Characterizing_properties">Characterizing properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=1" title="Edit section: Characterizing properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Real numbers are completely characterized by their fundamental properties that can be summarized by saying that they form an <a href="/wiki/Ordered_field" title="Ordered field">ordered field</a> that is <a href="/wiki/Dedekind_complete" class="mw-redirect" title="Dedekind complete">Dedekind complete</a>. Here, "completely characterized" means that there is a unique <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a> between any two Dedekind complete ordered fields, and thus that their elements have exactly the same properties. This implies that one can manipulate real numbers and compute with them, without knowing how they can be defined; this is what mathematicians and physicists did during several centuries before the first formal definitions were provided in the second half of the 19th century. See <a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">Construction of the real numbers</a> for details about these formal definitions and the proof of their equivalence. </p> <div class="mw-heading mw-heading2"><h2 id="Arithmetic">Arithmetic</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=2" title="Edit section: Arithmetic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The real numbers form an <a href="/wiki/Ordered_field" title="Ordered field">ordered field</a>. Intuitively, this means that methods and rules of <a href="/wiki/Elementary_arithmetic" title="Elementary arithmetic">elementary arithmetic</a> apply to them. More precisely, there are two <a href="/wiki/Binary_operation" title="Binary operation">binary operations</a>, <a href="/wiki/Addition" title="Addition">addition</a> and <a href="/wiki/Multiplication" title="Multiplication">multiplication</a>, and a <a href="/wiki/Total_order" title="Total order">total order</a> that have the following properties. </p> <ul><li>The <i>addition</i> of two real numbers <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> produce a real number denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f46e28334dbcbaf0e8510b0d3ac743f44d525b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.715ex; height:2.509ex;" alt="{\displaystyle a+b,}"></span> which is the <i>sum</i> of <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span>.</li> <li>The <i>multiplication</i> of two real numbers <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> produce a real number denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5535dcf69398b3a353906a003e100ac1e7de20f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.874ex; height:2.509ex;" alt="{\displaystyle ab,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/620419d3ed53abc98659a5fc0f3a5eb6177830ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.906ex; height:2.176ex;" alt="{\displaystyle a\cdot b}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\times b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\times b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a20deb883e14147a4bed3afc4ad71f94a55cfaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.715ex; height:2.509ex;" alt="{\displaystyle a\times b,}"></span> which is the <i>product</i> of <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span>.</li> <li>Addition and multiplication are both <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutative</a>, which means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b=b+a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b=b+a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684f43b5094501674e8314be5e24a80ee64682e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.234ex; height:2.343ex;" alt="{\displaystyle a+b=b+a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab=ba}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab=ba}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/794f6c310259e816eed4a00262d91bf4f53e37c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.553ex; height:2.176ex;" alt="{\displaystyle ab=ba}"></span> for every real numbers <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span>.</li> <li>Addition and multiplication are both <a href="/wiki/Associative" class="mw-redirect" title="Associative">associative</a>, which means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)+c=a+(b+c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)+c=a+(b+c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46b7b8d31d5845966e6abdbb030c73f343c17d4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.547ex; height:2.843ex;" alt="{\displaystyle (a+b)+c=a+(b+c)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ab)c=a(bc)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ab)c=a(bc)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebe39cd5b70c1c6b7e467d25b61554b02b1bd122" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.185ex; height:2.843ex;" alt="{\displaystyle (ab)c=a(bc)}"></span> for every real numbers <span class="texhtml mvar" style="font-style:italic;">a</span>, <span class="texhtml mvar" style="font-style:italic;">b</span> and <span class="texhtml mvar" style="font-style:italic;">c</span>, and that parentheses may be omitted in both cases.</li> <li>Multiplication is <a href="/wiki/Distributive_property" title="Distributive property">distributive</a> over addition, which means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(b+c)=ab+ac}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>b</mi> <mo>+</mo> <mi>a</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(b+c)=ab+ac}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5aad41bae613e8522d4d598bcf9f52772f472c55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.287ex; height:2.843ex;" alt="{\displaystyle a(b+c)=ab+ac}"></span> for every real numbers <span class="texhtml mvar" style="font-style:italic;">a</span>, <span class="texhtml mvar" style="font-style:italic;">b</span> and <span class="texhtml mvar" style="font-style:italic;">c</span>.</li> <li>There is a real number called <a href="/wiki/Zero" class="mw-redirect" title="Zero">zero</a> and denoted <span class="texhtml">0</span> which is an <a href="/wiki/Additive_identity" title="Additive identity">additive identity</a>, which means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+0=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mn>0</mn> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+0=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4564e28f0f8274644ca4e58664c0593ed48de541" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.561ex; height:2.343ex;" alt="{\displaystyle a+0=a}"></span> for every real number <span class="texhtml mvar" style="font-style:italic;">a</span>.</li> <li>There is a real number denoted <span class="texhtml">1</span> which is a <a href="/wiki/Multiplicative_identity" class="mw-redirect" title="Multiplicative identity">multiplicative identity</a>, which means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\times 1=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mn>1</mn> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\times 1=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e0634cfe81c515b29a69b624960f73b8167e60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.561ex; height:2.176ex;" alt="{\displaystyle a\times 1=a}"></span> for every real number <span class="texhtml mvar" style="font-style:italic;">a</span>.</li> <li>Every real number <span class="texhtml mvar" style="font-style:italic;">a</span> has an <a href="/wiki/Additive_inverse" title="Additive inverse">additive inverse</a> denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -a.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -a.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7894ce6a00eba1ed084486b10138019906535e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.685ex; height:2.176ex;" alt="{\displaystyle -a.}"></span> This means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+(-a)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+(-a)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bee04ca35f37fa95ee387e42959af9038fb8251" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.178ex; height:2.843ex;" alt="{\displaystyle a+(-a)=0}"></span> for every real number <span class="texhtml mvar" style="font-style:italic;">a</span>.</li> <li>Every nonzero real number <span class="texhtml mvar" style="font-style:italic;">a</span> has a <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverse</a> denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f5709c8d86f7fec8fb86069bf5d15a9eabe564e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.563ex; height:2.676ex;" alt="{\displaystyle a^{-1}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{a}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{a}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a859022c8d652c62c88b5926bafb0fea3330415c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.713ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{a}}.}"></span> This means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aa^{-1}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aa^{-1}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78ab9896f2fe53b99dfd6558f43e0053284a2367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.053ex; height:2.676ex;" alt="{\displaystyle aa^{-1}=1}"></span> for every nonzero real number <span class="texhtml mvar" style="font-style:italic;">a</span>.</li> <li>The total order is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e3eb27a8baca8de88c99780c03b7c38ea2c4dec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.973ex; height:2.176ex;" alt="{\displaystyle a&lt;b.}"></span> being that it is a total order means two properties: given two real numbers <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span>, exactly one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46f9e3247a4373970cad2b3b37920af5d23ec7c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.973ex; height:2.509ex;" alt="{\displaystyle a&lt;b,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1956b03d1314c7071ac1f45ed7b1e29422dcfcc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a=b}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b&lt;a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&lt;</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b&lt;a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec536027666ac731c00e6db3a3b0b10d7ebbe031" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle b&lt;a}"></span> is true; and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a7698e4c7401bb321f97888b872b583a9e4642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a&lt;b}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b&lt;c,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&lt;</mo> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b&lt;c,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ed504ef315749bdb93c39fa79851ff1787d7415" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.75ex; height:2.509ex;" alt="{\displaystyle b&lt;c,}"></span> then one has also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b684895b16391e41ba40fa838b610191c97a5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.982ex; height:1.843ex;" alt="{\displaystyle a&lt;c.}"></span></li> <li>The order is compatible with addition and multiplication, which means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a7698e4c7401bb321f97888b872b583a9e4642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a&lt;b}"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+c&lt;b+c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo>&lt;</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+c&lt;b+c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4e47dfc103d919e216bfb82b4d4fa645fcd292a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.02ex; height:2.343ex;" alt="{\displaystyle a+c&lt;b+c}"></span> for every real number <span class="texhtml mvar" style="font-style:italic;">c</span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47c6038f5e06468e8919db9a44a148112265af42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.488ex; height:2.176ex;" alt="{\displaystyle 0&lt;ab}"></span> is implied by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5ada64492c51887b535dfa3bad685943145e946" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.491ex; height:2.176ex;" alt="{\displaystyle 0&lt;a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;b.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>b</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;b.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2dffaee0ba4cd4ba6baac3cc7ae236ddcea733e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.905ex; height:2.176ex;" alt="{\displaystyle 0&lt;b.}"></span></li></ul> <p>Many other properties can be deduced from the above ones. In particular: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\cdot a=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\cdot a=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd10467dcb093cd67ab74eb5262e775d9b0d291" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.332ex; height:2.176ex;" alt="{\displaystyle 0\cdot a=0}"></span> for every real number <span class="texhtml mvar" style="font-style:italic;">a</span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b33e907a155a8f183638e65efa7465ff8c47335f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.423ex; height:2.176ex;" alt="{\displaystyle 0&lt;1}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;a^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;a^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aff723d1305777529ac3af582e8bcde58f3f9803" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.545ex; height:2.676ex;" alt="{\displaystyle 0&lt;a^{2}}"></span> for every nonzero real number <span class="texhtml mvar" style="font-style:italic;">a</span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Auxiliary_operations">Auxiliary operations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=3" title="Edit section: Auxiliary operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Several other operations are commonly used, which can be deduced from the above ones. </p> <ul><li><a href="/wiki/Subtraction" title="Subtraction">Subtraction</a>: the subtraction of two real numbers <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> results in the sum of <span class="texhtml mvar" style="font-style:italic;">a</span> and the <a href="/wiki/Additive_inverse" title="Additive inverse">additive inverse</a> <span class="texhtml">−<i>b</i></span> of <span class="texhtml mvar" style="font-style:italic;">b</span>; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a-b=a+(-b).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a-b=a+(-b).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a059850856108be16c12b4b4b746a2a750c7fda" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.498ex; height:2.843ex;" alt="{\displaystyle a-b=a+(-b).}"></span></li> <li><a href="/wiki/Division_(mathematics)" title="Division (mathematics)">Division</a>: the division of a real number <span class="texhtml mvar" style="font-style:italic;">a</span> by a nonzero real number <span class="texhtml mvar" style="font-style:italic;">b</span> is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {a}{b}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {a}{b}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e958e3000dc9b5bdaf60c60b9857483acfe5735f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.353ex; height:3.343ex;" alt="{\textstyle {\frac {a}{b}},}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a/b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a/b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a1b6c014398323cb45578581a536033fce1b28c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.39ex; height:2.843ex;" alt="{\displaystyle a/b}"></span> and defined as the multiplication of <span class="texhtml mvar" style="font-style:italic;">a</span> with the <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverse</a> of <span class="texhtml mvar" style="font-style:italic;">b</span>; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a}{b}}=ab^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> <mo>=</mo> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a}{b}}=ab^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7df72da78da82384a4acf79a52833d7115b7424" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.371ex; height:4.843ex;" alt="{\displaystyle {\frac {a}{b}}=ab^{-1}.}"></span></li> <li><a href="/wiki/Absolute_value" title="Absolute value">Absolute value</a>: the absolute value of a real number <span class="texhtml mvar" style="font-style:italic;">a</span>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a184c991d51abc8f8192454003abdb46786b1f0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.17ex; height:2.843ex;" alt="{\displaystyle |a|,}"></span> measures its distance from zero, and is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a|=\max(a,-a).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a|=\max(a,-a).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d44924dc07f66c3fe5d78525586788933d7337d7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.706ex; height:2.843ex;" alt="{\displaystyle |a|=\max(a,-a).}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Auxiliary_order_relations">Auxiliary order relations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=4" title="Edit section: Auxiliary order relations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Total_order" title="Total order">total order</a> that is considered above is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a7698e4c7401bb321f97888b872b583a9e4642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a&lt;b}"></span> and read as "<span class="texhtml mvar" style="font-style:italic;">a</span> is <a href="/wiki/Less_than" class="mw-redirect" title="Less than">less than</a> <span class="texhtml mvar" style="font-style:italic;">b</span>". Three other <a href="/wiki/Order_relation" class="mw-redirect" title="Order relation">order relations</a> are also commonly used: </p> <ul><li><a href="/wiki/Greater_than" class="mw-redirect" title="Greater than">Greater than</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&gt;b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&gt;</mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&gt;b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6d8ca5031f98a774d037e63bfc4296c44d41d6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.973ex; height:2.509ex;" alt="{\displaystyle a&gt;b,}"></span> read as "<span class="texhtml mvar" style="font-style:italic;">a</span> is greater than <span class="texhtml mvar" style="font-style:italic;">b</span>", is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&gt;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&gt;</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&gt;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83fc0063781fb9bf4ec7608b2fd11ed6d5b05a13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a&gt;b}"></span> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b&lt;a.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&lt;</mo> <mi>a</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b&lt;a.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aa0fb542f7b226476199bf09efc79193a37a32c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.973ex; height:2.176ex;" alt="{\displaystyle b&lt;a.}"></span></li> <li><a href="/wiki/Less_than_or_equal_to" class="mw-redirect" title="Less than or equal to">Less than or equal to</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\leq b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\leq b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda2fb7363a6f92f8b73a3713f06f1f434ef79f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.973ex; height:2.509ex;" alt="{\displaystyle a\leq b,}"></span> read as "<span class="texhtml mvar" style="font-style:italic;">a</span> is less than or equal to <span class="texhtml mvar" style="font-style:italic;">b</span>" or "<span class="texhtml mvar" style="font-style:italic;">a</span> is not greater than <span class="texhtml mvar" style="font-style:italic;">b</span>", is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a&lt;b){\text{ or }}(a=b),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;or&#xA0;</mtext> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a&lt;b){\text{ or }}(a=b),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4031f9b909f2f67885b7f65b12d5734fa850993" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.152ex; height:2.843ex;" alt="{\displaystyle (a&lt;b){\text{ or }}(a=b),}"></span> or equivalently as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{not }}(b&lt;a).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>not&#xA0;</mtext> </mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&lt;</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{not }}(b&lt;a).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28df041ba4f41515a167fffbe66ede72f74360af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.722ex; height:2.843ex;" alt="{\displaystyle {\text{not }}(b&lt;a).}"></span></li> <li><a href="/wiki/Greater_than_or_equal_to" class="mw-redirect" title="Greater than or equal to">Greater than or equal to</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\geq b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\geq b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a882391a90c14cc584571067671ce9617e5ee699" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.973ex; height:2.509ex;" alt="{\displaystyle a\geq b,}"></span> read as "<span class="texhtml mvar" style="font-style:italic;">a</span> is greater than or equal to <span class="texhtml mvar" style="font-style:italic;">b</span>" or "<span class="texhtml mvar" style="font-style:italic;">a</span> is not less than <span class="texhtml mvar" style="font-style:italic;">b</span>", is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (b&lt;a){\text{ or }}(a=b),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&lt;</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;or&#xA0;</mtext> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (b&lt;a){\text{ or }}(a=b),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e676a9b84be1731443f41495b8fbf9d935c82fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.152ex; height:2.843ex;" alt="{\displaystyle (b&lt;a){\text{ or }}(a=b),}"></span> or equivalently as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{not }}(a&lt;b).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>not&#xA0;</mtext> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{not }}(a&lt;b).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3e3ae6e57550e7d29558e1237bd5d914ac32b6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.722ex; height:2.843ex;" alt="{\displaystyle {\text{not }}(a&lt;b).}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Integers_and_fractions_as_real_numbers">Integers and fractions as real numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=5" title="Edit section: Integers and fractions as real numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The real numbers <span class="texhtml">0</span> and <span class="texhtml">1</span> are commonly identified with the <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> <span class="texhtml">0</span> and <span class="texhtml">1</span>. This allows identifying any natural number <span class="texhtml mvar" style="font-style:italic;">n</span> with the sum of <span class="texhtml mvar" style="font-style:italic;">n</span> real numbers equal to <span class="texhtml">1</span>. </p><p>This identification can be pursued by identifying a negative integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f00139753ecf4fe00a10a17bd5620b70a61b29e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.203ex; height:2.176ex;" alt="{\displaystyle -n}"></span> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is a natural number) with the additive inverse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f00139753ecf4fe00a10a17bd5620b70a61b29e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.203ex; height:2.176ex;" alt="{\displaystyle -n}"></span> of the real number identified with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e59df02a9f67a5da3c220f1244c99a46cc4eb1c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:1.676ex;" alt="{\displaystyle n.}"></span> Similarly a <a href="/wiki/Rational_number" title="Rational number">rational number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p/q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p/q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fa5bd4cf049744deac0ac4a04c07998bd6befa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:3.491ex; height:2.843ex;" alt="{\displaystyle p/q}"></span> (where <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span> are integers and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13d94671374212c0fc968f2dbb4bb9201152ca0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.33ex; height:2.676ex;" alt="{\displaystyle q\neq 0}"></span>) is identified with the division of the real numbers identified with <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span>. </p><p>These identifications make the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span> of the rational numbers an ordered <a href="/wiki/Subfield_(mathematics)" class="mw-redirect" title="Subfield (mathematics)">subfield</a> of the real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc9de9049e03e5e5a0cab57076dbe4a369c1e3a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} .}"></span> The <a href="/wiki/Dedekind_completeness" class="mw-redirect" title="Dedekind completeness">Dedekind completeness</a> described below implies that some real numbers, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74847cf19189c725cee56e0e5b513d59f6eb9402" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.745ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}},}"></span> are not rational numbers; they are called <a href="/wiki/Irrational_number" title="Irrational number">irrational numbers</a>. </p><p>The above identifications make sense, since natural numbers, integers and real numbers are generally not defined by their individual nature, but by defining properties (<a href="/wiki/Axiom" title="Axiom">axioms</a>). So, the identification of natural numbers with some real numbers is justified by the fact that <a href="/wiki/Peano_axioms" title="Peano axioms">Peano axioms</a> are satisfied by these real numbers, with the addition with <span class="texhtml">1</span> taken as the <a href="/wiki/Successor_function" title="Successor function">successor function</a>. </p><p>Formally, one has an injective <a href="/wiki/Homomorphism" title="Homomorphism">homomorphism</a> of <a href="/wiki/Ordered_monoid" class="mw-redirect" title="Ordered monoid">ordered monoids</a> from the natural numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></span> to the integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3aa4cb112cbe4f94a3ff8569f869c31dce5fce4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.197ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} ,}"></span> an injective homomorphism of <a href="/wiki/Ordered_ring" title="Ordered ring">ordered rings</a> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> to the rational numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91185244fbdded6ea99a5e9e6603299128b10928" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.455ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} ,}"></span> and an injective homomorphism of <a href="/wiki/Ordered_field" title="Ordered field">ordered fields</a> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span> to the real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc9de9049e03e5e5a0cab57076dbe4a369c1e3a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} .}"></span> The identifications consist of not distinguishing the source and the image of each injective homomorphism, and thus to write </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} \subset \mathbb {Q} \subset \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>&#x2282;<!-- ⊂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>&#x2282;<!-- ⊂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} \subset \mathbb {Q} \subset \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e733a6dbf60d2a08af4d23452719616fb6f8af7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.008ex; height:2.509ex;" alt="{\displaystyle \mathbb {N} \subset \mathbb {Q} \subset \mathbb {R} .}"></span></dd></dl> <p>These identifications are formally <a href="/wiki/Abuse_of_notation" title="Abuse of notation">abuses of notation</a> (since, formally, a rational number is an equivalence class of pairs of integers, and a real number is an equivalence class of Cauchy series), and are generally harmless. It is only in very specific situations, that one must avoid them and replace them by using explicitly the above homomorphisms. This is the case in <a href="/wiki/Constructive_mathematics" class="mw-redirect" title="Constructive mathematics">constructive mathematics</a> and <a href="/wiki/Computer_programming" title="Computer programming">computer programming</a>. In the latter case, these homomorphisms are interpreted as <a href="/wiki/Type_conversion" title="Type conversion">type conversions</a> that can often be done automatically by the <a href="/wiki/Compiler" title="Compiler">compiler</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Dedekind_completeness">Dedekind completeness</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=6" title="Edit section: Dedekind completeness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Previous properties do not distinguish real numbers from <a href="/wiki/Rational_number" title="Rational number">rational numbers</a>. This distinction is provided by <a href="/wiki/Dedekind_completeness" class="mw-redirect" title="Dedekind completeness">Dedekind completeness</a>, which states that every set of real numbers with an <a href="/wiki/Upper_bound" class="mw-redirect" title="Upper bound">upper bound</a> admits a <a href="/wiki/Least_upper_bound" class="mw-redirect" title="Least upper bound">least upper bound</a>. This means the following. A set of real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is <i>bounded above</i> if there is a real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\leq u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\leq u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40dc05034b6135de669ef847a675271cd8c38d21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.519ex; height:2.176ex;" alt="{\displaystyle s\leq u}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\in S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\in S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acce52dffd84d073a24f4606a175da60148fd0c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.43ex; height:2.176ex;" alt="{\displaystyle s\in S}"></span>; such a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> is called an <i>upper bound</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23bbb1f0f6ebdfa78b4fed06049640f7386bb44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.146ex; height:2.176ex;" alt="{\displaystyle S.}"></span> So, Dedekind completeness means that, if <span class="texhtml mvar" style="font-style:italic;">S</span> is bounded above, it has an upper bound that is less than any other upper bound. </p><p>Dedekind completeness implies other sorts of completeness (see below), but also has some important consequences. </p> <ul><li><a href="/wiki/Archimedean_property" title="Archimedean property">Archimedean property</a>: for every real number <span class="texhtml mvar" style="font-style:italic;">x</span>, there is an integer <span class="texhtml mvar" style="font-style:italic;">n</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x&lt;n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&lt;</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x&lt;n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/401c400f79731a9f044ac6bba6207e5f2f9503c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.823ex; height:1.843ex;" alt="{\displaystyle x&lt;n}"></span> (take, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=u+1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>u</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=u+1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/416c09070a3d8e4722fd153210105a0a492eaa21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.473ex; height:2.509ex;" alt="{\displaystyle n=u+1,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> is the least upper bound of the integers less than <span class="texhtml mvar" style="font-style:italic;">x</span>).</li> <li>Equivalently, if <span class="texhtml mvar" style="font-style:italic;">x</span> is a positive real number, there is a positive integer <span class="texhtml mvar" style="font-style:italic;">n</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;{\frac {1}{n}}&lt;x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>&lt;</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;{\frac {1}{n}}&lt;x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29a3a2ff4b060b4070e2eaca586f43a50244ceb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.92ex; height:5.176ex;" alt="{\displaystyle 0&lt;{\frac {1}{n}}&lt;x}"></span>.</li> <li>Every positive real number <span class="texhtml mvar" style="font-style:italic;">x</span> has a positive <a href="/wiki/Square_root" title="Square root">square root</a>, that is, there exist a positive real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}=x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}=x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97566cd6d91da0b946484c06ce8b2fe741664c02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.178ex; height:2.676ex;" alt="{\displaystyle r^{2}=x.}"></span></li> <li>Every <a href="/wiki/Univariate_polynomial" class="mw-redirect" title="Univariate polynomial">univariate polynomial</a> of odd degree with real coefficients has at least one real <a href="/wiki/Root_of_a_polynomial" class="mw-redirect" title="Root of a polynomial">root</a> (if the leading coefficient is positive, take the least upper bound of real numbers for which the value of the polynomial is negative).</li></ul> <p>The last two properties are summarized by saying that the real numbers form a <a href="/wiki/Real_closed_field" title="Real closed field">real closed field</a>. This implies the real version of the <a href="/wiki/Fundamental_theorem_of_algebra" title="Fundamental theorem of algebra">fundamental theorem of algebra</a>, namely that every polynomial with real coefficients can be factored into polynomials with real coefficients of degree at most two. </p> <div class="mw-heading mw-heading2"><h2 id="Decimal_representation">Decimal representation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=7" title="Edit section: Decimal representation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The most common way of describing a real number is via its <a href="/wiki/Decimal_representation" title="Decimal representation">decimal representation</a>, a sequence of <a href="/wiki/Decimal_digit" class="mw-redirect" title="Decimal digit">decimal digits</a> each representing the product of an integer between zero and nine times a <a href="/wiki/Power_of_ten" class="mw-redirect" title="Power of ten">power of ten</a>, extending to finitely many positive powers of ten to the left and infinitely many negative powers of ten to the right. For a number <span class="texhtml mvar" style="font-style:italic;">x</span> whose decimal representation extends <span class="texhtml mvar" style="font-style:italic;">k</span> places to the left, the standard notation is the juxtaposition of the digits <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{k}b_{k-1}\cdots b_{0}.a_{1}a_{2}\cdots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{k}b_{k-1}\cdots b_{0}.a_{1}a_{2}\cdots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdfbeeeebd19e48d07e81b75fd67fc0cfbae8288" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.569ex; height:2.509ex;" alt="{\displaystyle b_{k}b_{k-1}\cdots b_{0}.a_{1}a_{2}\cdots ,}"></span> in descending order by power of ten, with non-negative and negative powers of ten separated by a <a href="/wiki/Decimal_point" class="mw-redirect" title="Decimal point">decimal point</a>, representing the <a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">infinite series</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=b_{k}10^{k}+b_{k-1}10^{k-1}+\cdots +b_{0}+{\frac {a_{1}}{10}}+{\frac {a_{2}}{10^{2}}}+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>10</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=b_{k}10^{k}+b_{k-1}10^{k-1}+\cdots +b_{0}+{\frac {a_{1}}{10}}+{\frac {a_{2}}{10^{2}}}+\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32af3ba78707e1fb37f59963db7f017f6c9c0c0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:52.58ex; height:5.176ex;" alt="{\displaystyle x=b_{k}10^{k}+b_{k-1}10^{k-1}+\cdots +b_{0}+{\frac {a_{1}}{10}}+{\frac {a_{2}}{10^{2}}}+\cdots .}"></span></dd></dl> <p>For example, for the circle constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi =3.14159\cdots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mo>=</mo> <mn>3.14159</mn> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi =3.14159\cdots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fcb47a0bdeb5182cf54a349a63b38958cbafc75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.196ex; height:2.509ex;" alt="{\displaystyle \pi =3.14159\cdots ,}"></span> <span class="texhtml mvar" style="font-style:italic;">k</span> is zero and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{0}=3,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{0}=3,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/858b64222fb2ca887bf8644bf66db70d2fdafe97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.96ex; height:2.509ex;" alt="{\displaystyle b_{0}=3,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/314f8ff50afe6b08a2e759a9b69487216620ae73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.192ex; height:2.509ex;" alt="{\displaystyle a_{1}=1,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{2}=4,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{2}=4,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a01964682ffcbc94aa50e2b292e0bb441a1db68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.192ex; height:2.509ex;" alt="{\displaystyle a_{2}=4,}"></span> etc. </p><p>More formally, a <i>decimal representation</i> for a nonnegative real number <span class="texhtml mvar" style="font-style:italic;">x</span> consists of a nonnegative integer <span class="texhtml mvar" style="font-style:italic;">k</span> and integers between zero and nine in the <a href="/wiki/Infinite_sequence" class="mw-redirect" title="Infinite sequence">infinite sequence</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{k},b_{k-1},\ldots ,b_{0},a_{1},a_{2},\ldots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{k},b_{k-1},\ldots ,b_{0},a_{1},a_{2},\ldots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93754b0fdce476ca3c7855f90e0e43d0218ea811" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.964ex; height:2.509ex;" alt="{\displaystyle b_{k},b_{k-1},\ldots ,b_{0},a_{1},a_{2},\ldots .}"></span></dd></dl> <p>(If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k&gt;0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k&gt;0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/549d18cca65d346b3e92efdaac24eae22da4da35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.119ex; height:2.509ex;" alt="{\displaystyle k&gt;0,}"></span> then by convention <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{k}\neq 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2260;<!-- ≠ --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{k}\neq 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3de5081650099f150f6f8585da5dca892cf3a434" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.994ex; height:2.676ex;" alt="{\displaystyle b_{k}\neq 0.}"></span>) </p><p>Such a decimal representation specifies the real number as the least upper bound of the <a href="/wiki/Decimal_fraction" class="mw-redirect" title="Decimal fraction">decimal fractions</a> that are obtained by <a href="/wiki/Truncation" title="Truncation">truncating</a> the sequence: given a positive integer <span class="texhtml mvar" style="font-style:italic;">n</span>, the truncation of the sequence at the place <span class="texhtml mvar" style="font-style:italic;">n</span> is the finite <a href="/wiki/Partial_sum" class="mw-redirect" title="Partial sum">partial sum</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}D_{n}&amp;=b_{k}10^{k}+b_{k-1}10^{k-1}+\cdots +b_{0}+{\frac {a_{1}}{10}}+\cdots +{\frac {a_{n}}{10^{n}}}\\&amp;=\sum _{i=0}^{k}b_{i}10^{i}+\sum _{j=1}^{n}a_{j}10^{-j}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>10</mn> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>j</mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}D_{n}&amp;=b_{k}10^{k}+b_{k-1}10^{k-1}+\cdots +b_{0}+{\frac {a_{1}}{10}}+\cdots +{\frac {a_{n}}{10^{n}}}\\&amp;=\sum _{i=0}^{k}b_{i}10^{i}+\sum _{j=1}^{n}a_{j}10^{-j}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62c5443872d0158fa7e85a43ef6c10231e5aafa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:54.275ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}D_{n}&amp;=b_{k}10^{k}+b_{k-1}10^{k-1}+\cdots +b_{0}+{\frac {a_{1}}{10}}+\cdots +{\frac {a_{n}}{10^{n}}}\\&amp;=\sum _{i=0}^{k}b_{i}10^{i}+\sum _{j=1}^{n}a_{j}10^{-j}\end{aligned}}}"></span></dd></dl> <p>The real number <span class="texhtml mvar" style="font-style:italic;">x</span> defined by the sequence is the least upper bound of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f791ccfe467d310fef894c66d25763afacfb438e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.79ex; height:2.509ex;" alt="{\displaystyle D_{n},}"></span> which exists by Dedekind completeness. </p><p>Conversely, given a nonnegative real number <span class="texhtml mvar" style="font-style:italic;">x</span>, one can define a decimal representation of <span class="texhtml mvar" style="font-style:italic;">x</span> by <a href="/wiki/Mathematical_induction" title="Mathematical induction">induction</a>, as follows. Define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{k}\cdots b_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{k}\cdots b_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/429759d7b35abe0cad2f2db791b8eed010c78fca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.636ex; height:2.509ex;" alt="{\displaystyle b_{k}\cdots b_{0}}"></span> as decimal representation of the largest integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b943acf3ade50743482c4ee4570ad3de335d90d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle D_{0}}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{0}\leq x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{0}\leq x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/447f1579a62139fd233b23f2e57ede504a26ffa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.407ex; height:2.509ex;" alt="{\displaystyle D_{0}\leq x}"></span> (this integer exists because of the Archimedean property). Then, supposing by <a href="/wiki/Mathematical_induction" title="Mathematical induction">induction</a> that the decimal fraction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f07b53d3212e08ca316a536c8aac0bbefa79ee1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.724ex; height:2.509ex;" alt="{\displaystyle D_{i}}"></span> has been defined for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i&lt;n,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&lt;</mo> <mi>n</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i&lt;n,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72633327784d8178c3c190440d7a0d69e2822693" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.942ex; height:2.509ex;" alt="{\displaystyle i&lt;n,}"></span> one defines <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790f9209748c2dca7ed7b81932c37c02af1dbc31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.448ex; height:2.009ex;" alt="{\displaystyle a_{n}}"></span> as the largest digit such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{n-1}+a_{n}/10^{n}\leq a,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mi>a</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{n-1}+a_{n}/10^{n}\leq a,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d002ba6c1ce6bcd078f8a95c595339f754736ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.213ex; height:2.843ex;" alt="{\displaystyle D_{n-1}+a_{n}/10^{n}\leq a,}"></span> and one sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{n}=D_{n-1}+a_{n}/10^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{n}=D_{n-1}+a_{n}/10^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55c3626b15b9d122fd0971b0afeb911a6fa69036" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.126ex; height:2.843ex;" alt="{\displaystyle D_{n}=D_{n-1}+a_{n}/10^{n}.}"></span> </p><p>One can use the defining properties of the real numbers to show that <span class="texhtml mvar" style="font-style:italic;">x</span> is the least upper bound of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93d4ed899749eb2323c226dd59cbc09586507f3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.79ex; height:2.509ex;" alt="{\displaystyle D_{n}.}"></span> So, the resulting sequence of digits is called a <i>decimal representation</i> of <span class="texhtml mvar" style="font-style:italic;">x</span>. </p><p>Another decimal representation can be obtained by replacing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leq x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfaf3180ac459488b27b0c7fa38d9d2d5fdf0198" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.783ex; height:2.176ex;" alt="{\displaystyle \leq x}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle &lt;x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&lt;</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle &lt;x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a877ea342f0586e27f88f73408cd1a3e5705b81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.783ex; height:1.843ex;" alt="{\displaystyle &lt;x}"></span> in the preceding construction. These two representations are identical, unless <span class="texhtml mvar" style="font-style:italic;">x</span> is a <a href="/wiki/Decimal_fraction" class="mw-redirect" title="Decimal fraction">decimal fraction</a> of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {m}{10^{h}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {m}{10^{h}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22deaeade236937804abf3c781c9b9a1e32fc18c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:4.06ex; height:3.676ex;" alt="{\textstyle {\frac {m}{10^{h}}}.}"></span> In this case, in the first decimal representation, all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790f9209748c2dca7ed7b81932c37c02af1dbc31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.448ex; height:2.009ex;" alt="{\displaystyle a_{n}}"></span> are zero for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;h,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mi>h</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;h,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98234f3abdb3d56d164a6c7a2a9d51a28ae9d0c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.479ex; height:2.509ex;" alt="{\displaystyle n&gt;h,}"></span> and, in the second representation, all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790f9209748c2dca7ed7b81932c37c02af1dbc31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.448ex; height:2.009ex;" alt="{\displaystyle a_{n}}"></span> 9. (see <a href="/wiki/0.999..." title="0.999...">0.999...</a> for details). </p><p>In summary, there is a <a href="/wiki/Bijection" title="Bijection">bijection</a> between the real numbers and the decimal representations that do not end with infinitely many trailing 9. </p><p>The preceding considerations apply directly for every <a href="/wiki/Numeral_base" class="mw-redirect" title="Numeral base">numeral base</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\geq 2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\geq 2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef09cb6e27c2a26643b2b48ffae57c0a99c16fd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.672ex; height:2.509ex;" alt="{\displaystyle B\geq 2,}"></span> simply by replacing 10 with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> and 9 with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B-1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2212;<!-- − --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B-1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f049d49a84ccb0af4dbce30954bb6bcafa4d4dfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.414ex; height:2.343ex;" alt="{\displaystyle B-1.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Topological_completeness">Topological completeness <span class="anchor" id="Completeness"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=8" title="Edit section: Topological completeness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Completeness_of_the_real_numbers" title="Completeness of the real numbers">Completeness of the real numbers</a></div> <p>A main reason for using real numbers is so that many sequences have <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limits</a>. More formally, the reals are <a href="/wiki/Completeness_(topology)" class="mw-redirect" title="Completeness (topology)">complete</a> (in the sense of <a href="/wiki/Metric_space" title="Metric space">metric spaces</a> or <a href="/wiki/Uniform_space" title="Uniform space">uniform spaces</a>, which is a different sense than the Dedekind completeness of the order in the previous section): </p><p>A <a href="/wiki/Sequence" title="Sequence">sequence</a> (<i>x</i><sub><i>n</i></sub>) of real numbers is called a <i><a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequence</a></i> if for any <span class="nowrap">ε &gt; 0</span> there exists an integer <i>N</i> (possibly depending on ε) such that the <a href="/wiki/Distance" title="Distance">distance</a> <span class="nowrap">|<i>x<sub>n</sub></i> − <i>x<sub>m</sub></i>|</span> is less than ε for all <i>n</i> and <i>m</i> that are both greater than <i>N</i>. This definition, originally provided by <a href="/wiki/Augustin_Louis_Cauchy" class="mw-redirect" title="Augustin Louis Cauchy">Cauchy</a>, formalizes the fact that the <i>x</i><sub><i>n</i></sub> eventually come and remain arbitrarily close to each other. </p><p>A sequence (<i>x</i><sub><i>n</i></sub>) <i>converges to the limit</i> <i>x</i> if its elements eventually come and remain arbitrarily close to <i>x</i>, that is, if for any <span class="nowrap">ε &gt; 0</span> there exists an integer <i>N</i> (possibly depending on ε) such that the distance <span class="nowrap">|<i>x<sub>n</sub></i> − <i>x</i>|</span> is less than ε for <i>n</i> greater than <i>N</i>. </p><p>Every convergent sequence is a Cauchy sequence, and the converse is true for real numbers, and this means that the <a href="/wiki/Topological_space" title="Topological space">topological space</a> of the real numbers is complete. </p><p>The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive <a href="/wiki/Square_root" title="Square root">square root</a> of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive <a href="/wiki/Square_root" title="Square root">square root</a> of 2). </p><p>The completeness property of the reals is the basis on which <a href="/wiki/Calculus" title="Calculus">calculus</a>, and more generally <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, are built. In particular, the test that a sequence is a Cauchy sequence allows proving that a sequence has a limit, without computing it, and even without knowing it. </p><p>For example, the standard series of the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67a9298efa55f8da4b31868da8e08f68e6bc2ae2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.481ex; height:6.843ex;" alt="{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}}"></span></dd></dl> <p>converges to a real number for every <i>x</i>, because the sums </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=N}^{M}{\frac {x^{n}}{n!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=N}^{M}{\frac {x^{n}}{n!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fd930a0fe0e8bd408aae4336638725269fdfbc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:7.495ex; height:7.343ex;" alt="{\displaystyle \sum _{n=N}^{M}{\frac {x^{n}}{n!}}}"></span></dd></dl> <p>can be made arbitrarily small (independently of <i>M</i>) by choosing <i>N</i> sufficiently large. This proves that the sequence is Cauchy, and thus converges, showing that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/841c0d168e64191c45a45e54c7e447defd17ec6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.256ex; height:2.343ex;" alt="{\displaystyle e^{x}}"></span> is well defined for every <i>x</i>. </p> <div class="mw-heading mw-heading3"><h3 id="&quot;The_complete_ordered_field&quot;"><span id=".22The_complete_ordered_field.22"></span>"The complete ordered field"</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=9" title="Edit section: &quot;The complete ordered field&quot;"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The real numbers are often described as "the complete ordered field", a phrase that can be interpreted in several ways. </p><p>First, an order can be <a href="/wiki/Complete_lattice" title="Complete lattice">lattice-complete</a>. It is easy to see that no ordered field can be lattice-complete, because it can have no <a href="/wiki/Largest_element" class="mw-redirect" title="Largest element">largest element</a> (given any element <i>z</i>, <span class="nowrap"><i>z</i> + 1</span> is larger). </p><p>Additionally, an order can be Dedekind-complete, see <a href="#Axiomatic_approach">§&#160;Axiomatic approach</a>. The uniqueness result at the end of that section justifies using the word "the" in the phrase "complete ordered field" when this is the sense of "complete" that is meant. This sense of completeness is most closely related to the construction of the reals from Dedekind cuts, since that construction starts from an ordered field (the rationals) and then forms the Dedekind-completion of it in a standard way. </p><p>These two notions of completeness ignore the field structure. However, an <a href="/wiki/Ordered_group" class="mw-redirect" title="Ordered group">ordered group</a> (in this case, the additive group of the field) defines a <a href="/wiki/Uniform_space" title="Uniform space">uniform</a> structure, and uniform structures have a notion of <a href="/wiki/Completeness_(topology)" class="mw-redirect" title="Completeness (topology)">completeness</a>; the description in <a href="#Completeness">§ Completeness</a> is a special case. (We refer to the notion of completeness in uniform spaces rather than the related and better known notion for <a href="/wiki/Metric_space" title="Metric space">metric spaces</a>, since the definition of metric space relies on already having a characterization of the real numbers.) It is not true that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is the <i>only</i> uniformly complete ordered field, but it is the only uniformly complete <i><a href="/wiki/Archimedean_field" class="mw-redirect" title="Archimedean field">Archimedean field</a></i>, and indeed one often hears the phrase "complete Archimedean field" instead of "complete ordered field". Every uniformly complete Archimedean field must also be Dedekind-complete (and vice versa), justifying using "the" in the phrase "the complete Archimedean field". This sense of completeness is most closely related to the construction of the reals from Cauchy sequences (the construction carried out in full in this article), since it starts with an Archimedean field (the rationals) and forms the uniform completion of it in a standard way. </p><p>But the original use of the phrase "complete Archimedean field" was by <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a>, who meant still something else by it. He meant that the real numbers form the <i>largest</i> Archimedean field in the sense that every other Archimedean field is a subfield of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is "complete" in the sense that nothing further can be added to it without making it no longer an Archimedean field. This sense of completeness is most closely related to the construction of the reals from <a href="/wiki/Surreal_number" title="Surreal number">surreal numbers</a>, since that construction starts with a proper class that contains every ordered field (the surreals) and then selects from it the largest Archimedean subfield. </p> <div class="mw-heading mw-heading2"><h2 id="Cardinality">Cardinality</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=10" title="Edit section: Cardinality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The set of all real numbers is <a href="/wiki/Uncountable_set" title="Uncountable set">uncountable</a>, in the sense that while both the set of all <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> <span class="texhtml">{1, 2, 3, 4, ...} </span> and the set of all real numbers are <a href="/wiki/Infinite_set" title="Infinite set">infinite sets</a>, there exists no <a href="/wiki/One-to-one_function" class="mw-redirect" title="One-to-one function">one-to-one function</a> from the real numbers to the natural numbers. The <a href="/wiki/Cardinality" title="Cardinality">cardinality</a> of the set of all real numbers is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {c}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {c}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dcc5360afa3bd774bd5b0b6f4376515b4850abb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.551ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {c}}.}"></span> and called the <a href="/wiki/Cardinality_of_the_continuum" title="Cardinality of the continuum">cardinality of the continuum</a>. It is strictly greater than the cardinality of the set of all natural numbers (denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721cd7f8c15a2e72ad162bdfa5baea8eef98aab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{0}}"></span> and called <a href="/wiki/Aleph_number#Aleph-nought" title="Aleph number">'aleph-naught'</a>), and equals the cardinality of the <a href="/wiki/Power_set" title="Power set">power set</a> of the set of the natural numbers. </p><p>The statement that there is no subset of the reals with cardinality strictly greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721cd7f8c15a2e72ad162bdfa5baea8eef98aab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{0}}"></span> and strictly smaller than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21924b960341255be18e538e51404718f29cbc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.905ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {c}}}"></span> is known as the <a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">continuum hypothesis</a> (CH). It is neither provable nor refutable using the axioms of <a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel set theory</a> including the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a> (ZFC)—the standard foundation of modern mathematics. In fact, some models of ZFC satisfy CH, while others violate it.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Other_properties">Other properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=11" title="Edit section: Other properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Real_line" class="mw-redirect" title="Real line">Real line</a></div> <p>As a topological space, the real numbers are <a href="/wiki/Separable_space" title="Separable space">separable</a>. This is because the set of rationals, which is countable, is <a href="/wiki/Dense_set" title="Dense set">dense</a> in the real numbers. The irrational numbers are also dense in the real numbers, however they are uncountable and have the same cardinality as the reals. </p><p>The real numbers form a <a href="/wiki/Metric_space" title="Metric space">metric space</a>: the distance between <i>x</i> and <i>y</i> is defined as the <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> <span class="nowrap">|<i>x</i> − <i>y</i>|</span>. By virtue of being a totally ordered set, they also carry an <a href="/wiki/Order_topology" title="Order topology">order topology</a>; the <a href="/wiki/Topology" title="Topology">topology</a> arising from the metric and the one arising from the order are identical, but yield different presentations for the topology—in the order topology as ordered intervals, in the metric topology as epsilon-balls. The Dedekind cuts construction uses the order topology presentation, while the Cauchy sequences construction uses the metric topology presentation. The reals form a <a href="/wiki/Contractible" class="mw-redirect" title="Contractible">contractible</a> (hence <a href="/wiki/Connected_space" title="Connected space">connected</a> and <a href="/wiki/Simply_connected" class="mw-redirect" title="Simply connected">simply connected</a>), <a href="/wiki/Separable_space" title="Separable space">separable</a> and <a href="/wiki/Complete_space" class="mw-redirect" title="Complete space">complete</a> metric space of <a href="/wiki/Hausdorff_dimension" title="Hausdorff dimension">Hausdorff dimension</a>&#160;1. The real numbers are <a href="/wiki/Local_compactness" class="mw-redirect" title="Local compactness">locally compact</a> but not <a href="/wiki/Compact_space" title="Compact space">compact</a>. There are various properties that uniquely specify them; for instance, all unbounded, connected, and separable <a href="/wiki/Total_order" title="Total order">order topologies</a> are necessarily <a href="/wiki/Homeomorphic" class="mw-redirect" title="Homeomorphic">homeomorphic</a> to the reals. </p><p>Every nonnegative real number has a <a href="/wiki/Square_root" title="Square root">square root</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>, although no negative number does. This shows that the order on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is determined by its algebraic structure. Also, every <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> of odd degree admits at least one real root: these two properties make <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> the premier example of a <a href="/wiki/Real_closed_field" title="Real closed field">real closed field</a>. Proving this is the first half of one proof of the <a href="/wiki/Fundamental_theorem_of_algebra" title="Fundamental theorem of algebra">fundamental theorem of algebra</a>. </p><p>The reals carry a canonical <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measure</a>, the <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a>, which is the <a href="/wiki/Haar_measure" title="Haar measure">Haar measure</a> on their structure as a <a href="/wiki/Topological_group" title="Topological group">topological group</a> normalized such that the <a href="/wiki/Unit_interval" title="Unit interval">unit interval</a> [0;1] has measure 1. There exist sets of real numbers that are not Lebesgue measurable, e.g. <a href="/wiki/Vitali_set" title="Vitali set">Vitali sets</a>. </p><p>The supremum axiom of the reals refers to subsets of the reals and is therefore a second-order logical statement. It is not possible to characterize the reals with <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a> alone: the <a href="/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem" title="Löwenheim–Skolem theorem">Löwenheim–Skolem theorem</a> implies that there exists a countable dense subset of the real numbers satisfying exactly the same sentences in first-order logic as the real numbers themselves. The set of <a href="/wiki/Hyperreal_number" title="Hyperreal number">hyperreal numbers</a> satisfies the same first order sentences as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. Ordered fields that satisfy the same first-order sentences as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> are called <a href="/wiki/Nonstandard_model" class="mw-redirect" title="Nonstandard model">nonstandard models</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. This is what makes <a href="/wiki/Nonstandard_analysis" title="Nonstandard analysis">nonstandard analysis</a> work; by proving a first-order statement in some nonstandard model (which may be easier than proving it in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>), we know that the same statement must also be true of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. </p><p>The <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> of real numbers is an <a href="/wiki/Extension_field" class="mw-redirect" title="Extension field">extension field</a> of the field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span> of rational numbers, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> can therefore be seen as a <a href="/wiki/Vector_space" title="Vector space">vector space</a> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>. <a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel set theory</a> with the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a> guarantees the existence of a <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a> of this vector space: there exists a set <i>B</i> of real numbers such that every real number can be written uniquely as a finite <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of elements of this set, using rational coefficients only, and such that no element of <i>B</i> is a rational linear combination of the others. However, this existence theorem is purely theoretical, as such a base has never been explicitly described. </p><p>The <a href="/wiki/Well-ordering_theorem" title="Well-ordering theorem">well-ordering theorem</a> implies that the real numbers can be <a href="/wiki/Well-order" title="Well-order">well-ordered</a> if the axiom of choice is assumed: there exists a total order on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> with the property that every nonempty <a href="/wiki/Subset" title="Subset">subset</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> has a <a href="/wiki/Least_element" class="mw-redirect" title="Least element">least element</a> in this ordering. (The standard ordering ≤ of the real numbers is not a well-ordering since e.g. an <a href="/wiki/Open_interval" class="mw-redirect" title="Open interval">open interval</a> does not contain a least element in this ordering.) Again, the existence of such a well-ordering is purely theoretical, as it has not been explicitly described. If <a href="/wiki/V%3DL" class="mw-redirect" title="V=L">V=L</a> is assumed in addition to the axioms of ZF, a well ordering of the real numbers can be shown to be explicitly definable by a formula.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>A real number may be either <a href="/wiki/Computable_number" title="Computable number">computable</a> or uncomputable; either <a href="/wiki/Algorithmically_random_sequence" title="Algorithmically random sequence">algorithmically random</a> or not; and either <a href="/wiki/Algorithmically_random_sequence#Stronger_than_Martin-Löf_randomness" title="Algorithmically random sequence">arithmetically random</a> or not. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=12" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Number-systems.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Number-systems.svg/220px-Number-systems.svg.png" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Number-systems.svg/330px-Number-systems.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/17/Number-systems.svg/440px-Number-systems.svg.png 2x" data-file-width="800" data-file-height="400" /></a><figcaption>Real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66964ab8a4912f2be91dc22cceb762be1d3d8d05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle (\mathbb {R} )}"></span> include the rational numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Q} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Q} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a721495ab8dcae6b57e2b3e33402f94d57f7b9b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.617ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Q} )}"></span>, which include the integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e7c394740649bbc95dc603df09ceebaac387c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.36ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} )}"></span>, which in turn include the natural numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {N} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {N} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df81a020f988536b900afeb19accc316516b1b08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle (\mathbb {N} )}"></span></figcaption></figure> <p><a href="/wiki/Fraction_(mathematics)#Simple,_common,_or_vulgar_fractions" class="mw-redirect" title="Fraction (mathematics)">Simple fractions</a> were used by the <a href="/wiki/History_of_Egypt" title="History of Egypt">Egyptians</a> around 1000&#160;BC; the <a href="/wiki/Vedic_civilization" class="mw-redirect" title="Vedic civilization">Vedic</a> "<a href="/wiki/Shulba_Sutras" title="Shulba Sutras">Shulba Sutras</a>" ("The rules of chords") in <span class="nowrap"><abbr title="circa">c.</abbr> 600 BC</span> include what may be the first "use" of irrational numbers. The concept of irrationality was implicitly accepted by early <a href="/wiki/Indian_mathematics" title="Indian mathematics">Indian mathematicians</a> such as <a href="/wiki/Manava" title="Manava">Manava</a> <span class="nowrap">(<abbr title="circa">c.</abbr> 750–690 BC)</span>, who was aware that the <a href="/wiki/Square_root" title="Square root">square roots</a> of certain numbers, such as 2 and 61, could not be exactly determined.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>Around 500&#160;BC, the <a href="/wiki/Greek_mathematics" title="Greek mathematics">Greek mathematicians</a> led by <a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a> also realized that the <a href="/wiki/Square_root_of_2" title="Square root of 2">square root of 2</a> is irrational. </p><p>For Greek mathematicians, numbers were only the <a href="/wiki/Natural_number" title="Natural number">natural numbers</a>. Real numbers were called "proportions", being the ratios of two lengths, or equivalently being measures of a length in terms of another length, called unit length. Two lengths are "commensurable", if there is a unit in which they are both measured by integers, that is, in modern terminology, if their ratio is a <a href="/wiki/Rational_number" title="Rational number">rational number</a>. <a href="/wiki/Eudoxus_of_Cnidus" title="Eudoxus of Cnidus">Eudoxus of Cnidus</a> (c. 390−340 BC) provided a definition of the equality of two irrational proportions in a way that is similar to <a href="/wiki/Dedekind_cut" title="Dedekind cut">Dedekind cuts</a> (introduced more than 2,000 years later), except that he did not use any <a href="/wiki/Arithmetic_operation" class="mw-redirect" title="Arithmetic operation">arithmetic operation</a> other than multiplication of a length by a natural number (see <a href="/wiki/Eudoxus_of_Cnidus" title="Eudoxus of Cnidus">Eudoxus of Cnidus</a>). This may be viewed as the first definition of the real numbers. </p><p>The <a href="/wiki/Middle_Ages" title="Middle Ages">Middle Ages</a> brought about the acceptance of <a href="/wiki/Zero" class="mw-redirect" title="Zero">zero</a>, <a href="/wiki/Negative_number" title="Negative number">negative numbers</a>, integers, and <a href="/wiki/Fraction_(mathematics)" class="mw-redirect" title="Fraction (mathematics)">fractional</a> numbers, first by <a href="/wiki/Indian_mathematics" title="Indian mathematics">Indian</a> and <a href="/wiki/Chinese_mathematics" title="Chinese mathematics">Chinese mathematicians</a>, and then by <a href="/wiki/Mathematics_in_medieval_Islam" class="mw-redirect" title="Mathematics in medieval Islam">Arabic mathematicians</a>, who were also the first to treat irrational numbers as algebraic objects (the latter being made possible by the development of algebra).<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Arabic mathematicians merged the concepts of "<a href="/wiki/Number" title="Number">number</a>" and "<a href="/wiki/Magnitude_(mathematics)" title="Magnitude (mathematics)">magnitude</a>" into a more general idea of real numbers.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> The Egyptian mathematician <a href="/wiki/Ab%C5%AB_K%C4%81mil_Shuj%C4%81_ibn_Aslam" class="mw-redirect" title="Abū Kāmil Shujā ibn Aslam">Abū Kāmil Shujā ibn Aslam</a> <span class="nowrap">(<abbr title="circa">c.</abbr> 850–930)</span> was the first to accept irrational numbers as solutions to <a href="/wiki/Quadratic_equation" title="Quadratic equation">quadratic equations</a>, or as <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> in an <a href="/wiki/Equation" title="Equation">equation</a> (often in the form of square roots, <a href="/wiki/Cube_root" title="Cube root">cube roots</a>, and <a href="/wiki/Nth_root" title="Nth root">fourth roots</a>).<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> In Europe, such numbers, not commensurable with the numerical unit, were called <i>irrational</i> or <a href="/wiki/Nth_root" title="Nth root"><i>surd</i></a> ("deaf"). </p><p>In the 16th century, <a href="/wiki/Simon_Stevin" title="Simon Stevin">Simon Stevin</a> created the basis for modern <a href="/wiki/Decimal" title="Decimal">decimal</a> notation, and insisted that there is no difference between rational and irrational numbers in this regard. </p><p>In the 17th century, <a href="/wiki/Descartes" class="mw-redirect" title="Descartes">Descartes</a> introduced the term "real" to describe roots of a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a>, distinguishing them from "imaginary" numbers. </p><p>In the 18th and 19th centuries, there was much work on irrational and transcendental numbers. <a href="/wiki/Johann_Heinrich_Lambert" title="Johann Heinrich Lambert">Lambert</a> (1761) gave a flawed proof that <span class="texhtml mvar" style="font-style:italic;">π</span> cannot be rational; <a href="/wiki/Adrien-Marie_Legendre" title="Adrien-Marie Legendre">Legendre</a> (1794) completed the proof<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> and showed that <span class="texhtml mvar" style="font-style:italic;">π</span> is not the square root of a rational number.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Joseph_Liouville" title="Joseph Liouville">Liouville</a> (1840) showed that neither <span class="texhtml mvar" style="font-style:italic;">e</span> nor <span class="texhtml"><i>e</i><sup>2</sup></span> can be a root of an integer <a href="/wiki/Quadratic_equation" title="Quadratic equation">quadratic equation</a>, and then established the existence of transcendental numbers; <a href="/wiki/Georg_Cantor" title="Georg Cantor">Cantor</a> (1873) extended and greatly simplified this proof.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Charles_Hermite" title="Charles Hermite">Hermite</a> (1873) proved that <a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)"><span class="texhtml mvar" style="font-style:italic;">e</span></a> is transcendental, and <a href="/wiki/Ferdinand_von_Lindemann" title="Ferdinand von Lindemann">Lindemann</a> (1882), showed that <span class="texhtml mvar" style="font-style:italic;">π</span> is transcendental. Lindemann's proof was much simplified by Weierstrass (1885), <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a> (1893), <a href="/wiki/Adolf_Hurwitz" title="Adolf Hurwitz">Hurwitz</a>,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Paul_Gordan" title="Paul Gordan">Gordan</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>The concept that many points existed between rational numbers, such as the square root of 2, was well known to the ancient Greeks. The existence of a continuous number line was considered self-evident, but the nature of this continuity, presently called <a href="/wiki/Completeness_of_the_real_numbers" title="Completeness of the real numbers">completeness</a>, was not understood. The rigor developed for geometry did not cross over to the concept of numbers until the 1800s.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Modern_analysis">Modern analysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=13" title="Edit section: Modern analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The developers of <a href="/wiki/Calculus" title="Calculus">calculus</a> used real numbers and <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limits</a> without defining them rigorously. In his <i><a href="/wiki/Cours_d%27Analyse" title="Cours d&#39;Analyse">Cours d'Analyse</a></i> (1821), <a href="/wiki/Cauchy" class="mw-redirect" title="Cauchy">Cauchy</a> made calculus rigorous, but he used the real numbers without defining them, and assumed without proof that every <a href="/wiki/Cauchy" class="mw-redirect" title="Cauchy">Cauchy</a> sequence has a limit and that this limit is a real number. </p><p>In 1854 <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> highlighted the limitations of calculus in the method of <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a>, showing the need for a rigorous definition of the real numbers.<sup id="cite_ref-OxfordHistory_21-0" class="reference"><a href="#cite_note-OxfordHistory-21"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 672">&#58;&#8202;672&#8202;</span></sup> </p><p>Beginning with <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a> in 1858, several mathematicians worked on the definition of the real numbers, including <a href="/wiki/Hermann_Hankel" title="Hermann Hankel">Hermann Hankel</a>, <a href="/wiki/Charles_M%C3%A9ray" title="Charles Méray">Charles Méray</a>, and <a href="/wiki/Eduard_Heine" title="Eduard Heine">Eduard Heine</a>, leading to the publication in 1872 of two independent definitions of real numbers, one by Dedekind, as <a href="/wiki/Dedekind_cut" title="Dedekind cut">Dedekind cuts</a>, and the other one by <a href="/wiki/Georg_Cantor" title="Georg Cantor">Georg Cantor</a>, as equivalence classes of Cauchy sequences.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> Several problems were left open by these definitions, which contributed to the <a href="/wiki/Foundational_crisis_of_mathematics" class="mw-redirect" title="Foundational crisis of mathematics">foundational crisis of mathematics</a>. Firstly both definitions suppose that <a href="/wiki/Rational_number" title="Rational number">rational numbers</a> and thus <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> are rigorously defined; this was done a few years later with <a href="/wiki/Peano_axioms" title="Peano axioms">Peano axioms</a>. Secondly, both definitions involve <a href="/wiki/Infinite_set" title="Infinite set">infinite sets</a> (Dedekind cuts and sets of the elements of a Cauchy sequence), and Cantor's <a href="/wiki/Set_theory" title="Set theory">set theory</a> was published several years later. Thirdly, these definitions imply <a href="/wiki/Quantification_(logic)" class="mw-redirect" title="Quantification (logic)">quantification</a> on infinite sets, and this cannot be formalized in the classical <a href="/wiki/Mathematical_logic" title="Mathematical logic">logic</a> of <a href="/wiki/First-order_predicate" title="First-order predicate">first-order predicates</a>. This is one of the reasons for which <a href="/wiki/Higher-order_logic" title="Higher-order logic">higher-order logics</a> were developed in the first half of the 20th century. </p><p>In 1874 Cantor showed that the set of all real numbers is <a href="/wiki/Uncountable" class="mw-redirect" title="Uncountable">uncountably infinite</a>, but the set of all algebraic numbers is <a href="/wiki/Countable" class="mw-redirect" title="Countable">countably infinite</a>. <a href="/wiki/Cantor%27s_first_uncountability_proof" class="mw-redirect" title="Cantor&#39;s first uncountability proof">Cantor's first uncountability proof</a> was different from his famous <a href="/wiki/Cantor%27s_diagonal_argument" title="Cantor&#39;s diagonal argument">diagonal argument</a> published in 1891. </p> <div class="mw-heading mw-heading2"><h2 id="Formal_definitions">Formal definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=14" title="Edit section: Formal definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">Construction of the real numbers</a></div> <p>The real number system <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ;{}+{};{}\cdot {};{}&lt;{})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ;{}+{};{}\cdot {};{}&lt;{})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff154b8792236508b68b8acae57419c62b82c93c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.207ex; height:2.843ex;" alt="{\displaystyle (\mathbb {R} ;{}+{};{}\cdot {};{}&lt;{})}"></span> can be defined <a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatically</a> up to an <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a>, which is described hereinafter. There are also many ways to construct "the" real number system, and a popular approach involves starting from natural numbers, then defining rational numbers algebraically, and finally defining real numbers as equivalence classes of their <a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequences</a> or as Dedekind cuts, which are certain subsets of rational numbers.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Another approach is to start from some rigorous axiomatization of Euclidean geometry (say of Hilbert or of <a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Tarski</a>), and then define the real number system geometrically. All these constructions of the real numbers have been shown to be equivalent, in the sense that the resulting number systems are <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Axiomatic_approach">Axiomatic approach</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=15" title="Edit section: Axiomatic approach"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> denote the <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> of all real numbers. Then: </p> <ul><li>The set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>, meaning that <a href="/wiki/Addition" title="Addition">addition</a> and <a href="/wiki/Multiplication" title="Multiplication">multiplication</a> are defined and have the usual properties.</li> <li>The field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is ordered, meaning that there is a <a href="/wiki/Total_order" title="Total order">total order</a> ≥ such that for all real numbers <i>x</i>, <i>y</i> and <i>z</i>: <ul><li>if <i>x</i> ≥ <i>y</i>, then <i>x</i> + <i>z</i> ≥ <i>y</i> + <i>z</i>;</li> <li>if <i>x</i> ≥ 0 and <i>y</i> ≥ 0, then <i>xy</i> ≥ 0.</li></ul></li> <li>The order is Dedekind-complete, meaning that every nonempty subset <i>S</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> with an <a href="/wiki/Upper_bound" class="mw-redirect" title="Upper bound">upper bound</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> has a <a href="/wiki/Supremum" class="mw-redirect" title="Supremum">least upper bound</a> (a.k.a., supremum) in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>.</li></ul> <p>The last property applies to the real numbers but not to the rational numbers (or to <a href="/wiki/Ordered_field#Examples_of_ordered_fields" title="Ordered field">other more exotic ordered fields</a>). For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x\in \mathbb {Q} :x^{2}&lt;2\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>:</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mn>2</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x\in \mathbb {Q} :x^{2}&lt;2\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83fa3b4d01cd46631546f4f5fb874daaa149a27c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.885ex; height:3.176ex;" alt="{\displaystyle \{x\in \mathbb {Q} :x^{2}&lt;2\}}"></span> has a rational upper bound (e.g., 1.42), but no <i>least</i> rational upper bound, because <a href="/wiki/Square_root" title="Square root"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span></a> is not rational. </p><p>These properties imply the <a href="/wiki/Archimedean_property" title="Archimedean property">Archimedean property</a> (which is not implied by other definitions of completeness), which states that the set of integers has no upper bound in the reals. In fact, if this were false, then the integers would have a least upper bound <i>N</i>; then, <i>N</i> – 1 would not be an upper bound, and there would be an integer <i>n</i> such that <span class="nowrap"><i>n</i> &gt; <i>N</i> – 1</span>, and thus <span class="nowrap"><i>n</i> + 1 &gt; <i>N</i></span>, which is a contradiction with the upper-bound property of <i>N</i>. </p><p>The real numbers are uniquely specified by the above properties. More precisely, given any two Dedekind-complete ordered fields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/880c089509beeddaae996a6985f29fb00a7f45e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.732ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} _{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/139c792da4e0dfb9cca58316eb540fb919dce79d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.732ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} _{2}}"></span>, there exists a unique field <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/880c089509beeddaae996a6985f29fb00a7f45e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.732ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} _{1}}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R_{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="double-struck">R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="double-struck">2</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R_{2}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/647c077b3e97c62ac9987a516c658d71614ded86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.732ex; height:2.509ex;" alt="{\displaystyle \mathbb {R_{2}} }"></span>. This uniqueness allows us to think of them as essentially the same mathematical object. </p><p>For another axiomatization of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> see <a href="/wiki/Tarski%27s_axiomatization_of_the_reals" title="Tarski&#39;s axiomatization of the reals">Tarski's axiomatization of the reals</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Construction_from_the_rational_numbers">Construction from the rational numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=16" title="Edit section: Construction from the rational numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The real numbers can be constructed as a <a href="/wiki/Complete_metric_space" title="Complete metric space">completion</a> of the rational numbers, in such a way that a sequence defined by a decimal or binary expansion like (3; 3.1; 3.14; 3.141; 3.1415; ...) <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">converges</a> to a unique real number—in this case <span class="texhtml mvar" style="font-style:italic;">π</span>. For details and other constructions of real numbers, see <i><a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">Construction of the real numbers</a></i>. </p> <div class="mw-heading mw-heading2"><h2 id="Applications_and_connections">Applications and connections</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=17" title="Edit section: Applications and connections"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Physics">Physics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=18" title="Edit section: Physics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the physical sciences most physical constants, such as the universal gravitational constant, and physical variables, such as position, mass, speed, and electric charge, are modeled using real numbers. In fact the fundamental physical theories such as <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>, <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a>, <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, <a href="/wiki/General_relativity" title="General relativity">general relativity</a>, and the <a href="/wiki/Standard_model" class="mw-redirect" title="Standard model">standard model</a> are described using mathematical structures, typically <a href="/wiki/Smooth_manifolds" class="mw-redirect" title="Smooth manifolds">smooth manifolds</a> or <a href="/wiki/Hilbert_spaces" class="mw-redirect" title="Hilbert spaces">Hilbert spaces</a>, that are based on the real numbers, although actual measurements of physical quantities are of finite <a href="/wiki/Accuracy_and_precision" title="Accuracy and precision">accuracy and precision</a>. </p><p>Physicists have occasionally suggested that a more fundamental theory would replace the real numbers with quantities that do not form a continuum, but such proposals remain speculative.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Logic">Logic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=19" title="Edit section: Logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The real numbers are most often formalized using the <a href="/wiki/Zermelo%E2%80%93Fraenkel" class="mw-redirect" title="Zermelo–Fraenkel">Zermelo–Fraenkel</a> axiomatization of set theory, but some mathematicians study the real numbers with other logical foundations of mathematics. In particular, the real numbers are also studied in <a href="/wiki/Reverse_mathematics" title="Reverse mathematics">reverse mathematics</a> and in <a href="/wiki/Constructivism_(mathematics)" class="mw-redirect" title="Constructivism (mathematics)">constructive mathematics</a>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Hyperreal_number" title="Hyperreal number">hyperreal numbers</a> as developed by <a href="/wiki/Edwin_Hewitt" title="Edwin Hewitt">Edwin Hewitt</a>, <a href="/wiki/Abraham_Robinson" title="Abraham Robinson">Abraham Robinson</a>, and others extend the set of the real numbers by introducing <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> and infinite numbers, allowing for building <a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">infinitesimal calculus</a> in a way closer to the original intuitions of <a href="/wiki/Leibniz" class="mw-redirect" title="Leibniz">Leibniz</a>, <a href="/wiki/Euler" class="mw-redirect" title="Euler">Euler</a>, <a href="/wiki/Cauchy" class="mw-redirect" title="Cauchy">Cauchy</a>, and others. </p><p><a href="/wiki/Edward_Nelson" title="Edward Nelson">Edward Nelson</a>'s <a href="/wiki/Internal_set_theory" title="Internal set theory">internal set theory</a> enriches the <a href="/wiki/Zermelo%E2%80%93Fraenkel" class="mw-redirect" title="Zermelo–Fraenkel">Zermelo–Fraenkel</a> set theory syntactically by introducing a unary predicate "standard". In this approach, infinitesimals are (non-"standard") elements of the set of the real numbers (rather than being elements of an extension thereof, as in Robinson's theory). </p><p>The <a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">continuum hypothesis</a> posits that the cardinality of the set of the real numbers is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c211ce8badf4ffbf9417ecceb0ef7ab0a8caed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{1}}"></span>; i.e. the smallest infinite <a href="/wiki/Cardinal_number" title="Cardinal number">cardinal number</a> after <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721cd7f8c15a2e72ad162bdfa5baea8eef98aab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{0}}"></span>, the cardinality of the integers. <a href="/wiki/Paul_Cohen_(mathematician)" class="mw-redirect" title="Paul Cohen (mathematician)">Paul Cohen</a> proved in 1963 that it is an axiom independent of the other axioms of set theory; that is: one may choose either the continuum hypothesis or its negation as an axiom of set theory, without contradiction. </p> <div class="mw-heading mw-heading3"><h3 id="Computation">Computation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=20" title="Edit section: Computation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Calculator" title="Calculator">Electronic calculators</a> and <a href="/wiki/Computers" class="mw-redirect" title="Computers">computers</a> cannot operate on arbitrary real numbers, because finite computers cannot directly store infinitely many digits or other infinite representations. Nor do they usually even operate on arbitrary <a href="/wiki/Definable_real_number" title="Definable real number">definable real numbers</a>, which are inconvenient to manipulate. </p><p>Instead, computers typically work with finite-precision approximations called <a href="/wiki/Floating-point_number" class="mw-redirect" title="Floating-point number">floating-point numbers</a>, a representation similar to <a href="/wiki/Scientific_notation" title="Scientific notation">scientific notation</a>. The achievable precision is limited by the <a href="/wiki/Computer_data_storage" title="Computer data storage">data storage space</a> allocated for each number, whether as <a href="/wiki/Fixed-point_arithmetic" title="Fixed-point arithmetic">fixed-point</a>, floating-point, or <a href="/wiki/Arbitrary-precision_arithmetic" title="Arbitrary-precision arithmetic">arbitrary-precision numbers</a>, or some other representation. Most <a href="/wiki/Computational_science" title="Computational science">scientific computation</a> uses <a href="/wiki/Binary_number" title="Binary number">binary</a> floating-point arithmetic, often a <a href="/wiki/Double-precision_floating-point_format" title="Double-precision floating-point format">64-bit representation</a> with around 16 decimal <a href="/wiki/Significant_figures" title="Significant figures">digits of precision</a>. Real numbers satisfy the <a href="/wiki/Field_(mathematics)#Definition_and_illustration" title="Field (mathematics)">usual rules of arithmetic</a>, but <a href="/wiki/Floating-point_arithmetic#Accuracy_problems" title="Floating-point arithmetic">floating-point numbers do not</a>. The field of <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical analysis</a> studies the <a href="/wiki/Numerical_stability" title="Numerical stability">stability</a> and <a href="/wiki/Accuracy_and_precision" title="Accuracy and precision">accuracy</a> of numerical <a href="/wiki/Algorithm" title="Algorithm">algorithms</a> implemented with approximate arithmetic. </p><p>Alternately, <a href="/wiki/Computer_algebra_system" title="Computer algebra system">computer algebra systems</a> can operate on irrational quantities exactly by <a href="/wiki/Symbolic_computation" class="mw-redirect" title="Symbolic computation">manipulating symbolic formulas</a> for them (such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0f5c15c16a3fd0a131a84b96064b3f11ba697f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.745ex; height:3.009ex;" alt="{\textstyle {\sqrt {2}},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \arctan 5,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>5</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \arctan 5,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32036042a792282343ab9423598b7082e83ee3ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.662ex; height:2.509ex;" alt="{\textstyle \arctan 5,}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int _{0}^{1}x^{x}\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int _{0}^{1}x^{x}\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5985a6f02db89ab30214ea284ff563b6956cb38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.39ex; height:3.676ex;" alt="{\textstyle \int _{0}^{1}x^{x}\,dx}"></span>) rather than their rational or decimal approximation.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> But exact and symbolic arithmetic also have limitations: for instance, they are computationally more expensive; it is not in general possible to determine whether two symbolic expressions are equal (the <a href="/wiki/Constant_problem" title="Constant problem">constant problem</a>); and arithmetic operations can cause <a href="/wiki/Exponential_growth" title="Exponential growth">exponential</a> explosion in the size of representation of a single number (for instance, squaring a rational number roughly doubles the number of digits in its numerator and denominator, and squaring a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> roughly doubles its number of terms), overwhelming finite computer storage.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p><p>A real number is called <i><a href="/wiki/Computable_number" title="Computable number">computable</a></i> if there exists an algorithm that yields its digits. Because there are only <a href="/wiki/Countably_infinite" class="mw-redirect" title="Countably infinite">countably</a> many algorithms,<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> but an uncountable number of reals, <a href="/wiki/Almost_all" title="Almost all">almost all</a> real numbers fail to be computable. Moreover, the equality of two computable numbers is an <a href="/wiki/Undecidable_problem" title="Undecidable problem">undecidable problem</a>. Some <a href="/wiki/Constructivism_(mathematics)" class="mw-redirect" title="Constructivism (mathematics)">constructivists</a> accept the existence of only those reals that are computable. The set of <a href="/wiki/Definable_number" class="mw-redirect" title="Definable number">definable numbers</a> is broader, but still only countable. </p> <div class="mw-heading mw-heading3"><h3 id="Set_theory">Set theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=21" title="Edit section: Set theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Set_theory" title="Set theory">set theory</a>, specifically <a href="/wiki/Descriptive_set_theory" title="Descriptive set theory">descriptive set theory</a>, the <a href="/wiki/Baire_space_(set_theory)" title="Baire space (set theory)">Baire space</a> is used as a surrogate for the real numbers since the latter have some topological properties (connectedness) that are a technical inconvenience. Elements of Baire space are referred to as "reals". </p> <div class="mw-heading mw-heading2"><h2 id="Vocabulary_and_notation">Vocabulary and notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=22" title="Edit section: Vocabulary and notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> of all real numbers is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> (<a href="/wiki/Blackboard_bold" title="Blackboard bold">blackboard bold</a>) or <b>R</b> (upright bold). As it is naturally endowed with the structure of a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>, the expression <i>field of real numbers</i> is frequently used when its algebraic properties are under consideration. </p><p>The sets of positive real numbers and negative real numbers are often noted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97dc5e850d079061c24290bac160c8d3b62ee139" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} ^{+}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/158001a03e958f49f5885033776a420fc47b7267" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} ^{-}}"></span>,<sup id="cite_ref-Schumacher96_29-0" class="reference"><a href="#cite_note-Schumacher96-29"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> respectively; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c1f2c2437bae14145e43c54cb7e1ee2701b2106" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} _{+}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f88dff0035ce657c35306af2a2215090830a3e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} _{-}}"></span> are also used.<sup id="cite_ref-nombres-reels-ens-paris_30-0" class="reference"><a href="#cite_note-nombres-reels-ens-paris-30"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> The non-negative real numbers can be noted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{\geq 0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{\geq 0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9a4a3e12ef5eafe6c5aac324c8c7c7f62619a89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.011ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} _{\geq 0}}"></span> but one often sees this set noted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{+}\cup \{0\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>&#x222A;<!-- ∪ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{+}\cup \{0\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e11b6148d221878ac20195abd2fd94642a0f0b2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.906ex; height:3.009ex;" alt="{\displaystyle \mathbb {R} ^{+}\cup \{0\}.}"></span><sup id="cite_ref-Schumacher96_29-1" class="reference"><a href="#cite_note-Schumacher96-29"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> In French mathematics, the <i>positive real numbers</i> and <i>negative real numbers</i> commonly include <a href="/wiki/Zero" class="mw-redirect" title="Zero">zero</a>, and these sets are noted respectively <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R_{+}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="double-struck">R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="double-struck">+</mo> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R_{+}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e016b40067d775020f8ad6015e7a971c8e3ae1b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \mathbb {R_{+}} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{-}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{-}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e7222b31552da05d2a47d772c4232789d505c11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.836ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} _{-}.}"></span><sup id="cite_ref-nombres-reels-ens-paris_30-1" class="reference"><a href="#cite_note-nombres-reels-ens-paris-30"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> In this understanding, the respective sets without zero are called strictly positive real numbers and strictly negative real numbers, and are noted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{+}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{+}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef42e5e064679de6752f88a8a2ab8f1e1b6185b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.189ex; height:3.009ex;" alt="{\displaystyle \mathbb {R} _{+}^{*}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{-}^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{-}^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/905470ff883d4c85e0fa146e9989205d6a9932d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.836ex; height:3.009ex;" alt="{\displaystyle \mathbb {R} _{-}^{*}.}"></span><sup id="cite_ref-nombres-reels-ens-paris_30-2" class="reference"><a href="#cite_note-nombres-reels-ens-paris-30"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p><p>The notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> refers to the set of the <a href="/wiki/Tuple" title="Tuple"><span class="texhtml mvar" style="font-style:italic;">n</span>-tuples</a> of elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> (<a href="/wiki/Real_coordinate_space" title="Real coordinate space">real coordinate space</a>), which can be identified to the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> of <span class="texhtml mvar" style="font-style:italic;">n</span> copies of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc9de9049e03e5e5a0cab57076dbe4a369c1e3a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} .}"></span> It is an <span class="texhtml mvar" style="font-style:italic;">n</span>-<a href="/wiki/Dimension" title="Dimension">dimensional</a> <a href="/wiki/Vector_space" title="Vector space">vector space</a> over the field of the real numbers, often called the <a href="/wiki/Coordinate_space" class="mw-redirect" title="Coordinate space">coordinate space</a> of dimension <span class="texhtml mvar" style="font-style:italic;">n</span>; this space may be identified to the <span class="texhtml mvar" style="font-style:italic;">n</span>-<a href="/wiki/Dimension" title="Dimension">dimensional</a> <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> as soon as a <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a> has been chosen in the latter. In this identification, a <a href="/wiki/Point_(geometry)" title="Point (geometry)">point</a> of the Euclidean space is identified with the tuple of its <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a>. </p><p>In mathematics <i>real</i> is used as an adjective, meaning that the underlying field is the field of the real numbers (or <i>the real field</i>). For example, <i>real <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a></i>, <i>real polynomial</i> and <i>real <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a></i>. The word is also used as a <a href="/wiki/Noun" title="Noun">noun</a>, meaning a real number (as in "the set of all reals"). </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations_and_extensions">Generalizations and extensions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=23" title="Edit section: Generalizations and extensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The real numbers can be generalized and extended in several different directions: </p> <ul><li>The <a href="/wiki/Complex_number" title="Complex number">complex numbers</a> contain solutions to all polynomial equations and hence are an <a href="/wiki/Algebraically_closed_field" title="Algebraically closed field">algebraically closed field</a> unlike the real numbers. However, the complex numbers are not an ordered field.</li> <li>The <a href="/wiki/Affinely_extended_real_number_system" class="mw-redirect" title="Affinely extended real number system">affinely extended real number system</a> adds two elements <span class="texhtml">+∞</span> and <span class="texhtml">−∞</span>. It is a <a href="/wiki/Compact_space" title="Compact space">compact space</a>. It is no longer a field, or even an additive group, but it still has a total order; moreover, it is a <a href="/wiki/Complete_lattice" title="Complete lattice">complete lattice</a>.</li> <li>The <a href="/wiki/Real_projective_line" title="Real projective line">real projective line</a> adds only one value <span class="texhtml">∞</span>. It is also a compact space. Again, it is no longer a field, or even an additive group. However, it allows division of a nonzero element by zero. It has <a href="/wiki/Cyclic_order" title="Cyclic order">cyclic order</a> described by a <a href="/wiki/Separation_relation" title="Separation relation">separation relation</a>.</li> <li>The <a href="/wiki/Long_line_(topology)" title="Long line (topology)">long real line</a> pastes together <span class="texhtml">ℵ<sub>1</sub>* + ℵ<sub>1</sub></span> copies of the real line plus a single point (here <span class="texhtml">ℵ<sub>1</sub>*</span> denotes the reversed ordering of <span class="texhtml">ℵ<sub>1</sub></span>) to create an ordered set that is "locally" identical to the real numbers, but somehow longer; for instance, there is an order-preserving embedding of <span class="texhtml">ℵ<sub>1</sub></span> in the long real line but not in the real numbers. The long real line is the largest ordered set that is complete and locally Archimedean. As with the previous two examples, this set is no longer a field or additive group.</li> <li>Ordered fields extending the reals are the <a href="/wiki/Hyperreal_number" title="Hyperreal number">hyperreal numbers</a> and the <a href="/wiki/Surreal_number" title="Surreal number">surreal numbers</a>; both of them contain <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> and infinitely large numbers and are therefore <a href="/wiki/Non-Archimedean_ordered_field" title="Non-Archimedean ordered field">non-Archimedean ordered fields</a>.</li> <li><a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">Self-adjoint operators</a> on a <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> (for example, self-adjoint square complex <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a>) generalize the reals in many respects: they can be ordered (though not totally ordered), they are complete, all their <a href="/wiki/Eigenvector" class="mw-redirect" title="Eigenvector">eigenvalues</a> are real and they form a real <a href="/wiki/Associative_algebra" title="Associative algebra">associative algebra</a>. <a href="/wiki/Positive-definite" class="mw-redirect" title="Positive-definite">Positive-definite</a> operators correspond to the positive reals and <a href="/wiki/Normal_operator" title="Normal operator">normal operators</a> correspond to the complex numbers.</li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=24" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <ul><li><a href="/wiki/Completeness_of_the_real_numbers" title="Completeness of the real numbers">Completeness of the real numbers</a></li> <li><a href="/wiki/Continued_fraction" title="Continued fraction">Continued fraction</a></li> <li><a href="/wiki/Definable_real_number" title="Definable real number">Definable real numbers</a></li> <li><a href="/wiki/Positive_real_numbers" title="Positive real numbers">Positive real numbers</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li></ul> <table style="margin:2em; border:2px solid silver; font-size:95%; border-collapse:collapse"> <tbody><tr> <td> <table style="margin:4px; border:2px solid silver"> <tbody><tr> <td> <table style="margin:1em"> <caption><a href="/wiki/Number_system" class="mw-redirect" title="Number system">Number systems</a> </caption> <tbody><tr> <td><a href="/wiki/Complex_number" title="Complex number">Complex</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :\;\mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :\;\mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0c800b917bd652c093461395df2d796718aef00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.615ex; height:2.176ex;" alt="{\displaystyle :\;\mathbb {C} }"></span> </td> <td> <table style="border-left:4px solid green"> <tbody><tr> <td> <table> <tbody><tr> <td><a class="mw-selflink selflink">Real</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :\;\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :\;\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b09bba427588b2a529ebcf8fdb7536da42003b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.615ex; height:2.176ex;" alt="{\displaystyle :\;\mathbb {R} }"></span> </td> <td> <table style="border-left:4px solid green"> <tbody><tr> <td> <table> <tbody><tr> <td><a href="/wiki/Rational_number" title="Rational number">Rational</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :\;\mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :\;\mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f77b368ade52a03084dad12fba5b25129cebe0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.745ex; height:2.509ex;" alt="{\displaystyle :\;\mathbb {Q} }"></span> </td> <td> <table style="border-left:4px solid green"> <tbody><tr> <td> <table> <tbody><tr> <td><a href="/wiki/Integer" title="Integer">Integer</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :\;\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :\;\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cff631a0751189f28ca66b5d8ab161f05259f8f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle :\;\mathbb {Z} }"></span> </td> <td> <table style="border-left:4px solid green"> <tbody><tr> <td> <table> <tbody><tr> <td><a href="/wiki/Natural_number" title="Natural number">Natural</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :\;\mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :\;\mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51ba123110cb54a0b89909e10845ed2ee8c52e8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.615ex; height:2.176ex;" alt="{\displaystyle :\;\mathbb {N} }"></span> </td> <td> <table style="border-left:4px solid green"> <tbody><tr> <td><a href="/wiki/Zero" class="mw-redirect" title="Zero">Zero</a>: 0 </td></tr> <tr> <td><a href="/wiki/One" class="mw-redirect" title="One">One</a>: 1 </td></tr> <tr> <td><a href="/wiki/Prime_number" title="Prime number">Prime numbers</a> </td></tr> <tr> <td><a href="/wiki/Composite_number" title="Composite number">Composite numbers</a> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr> <tr> <td><a href="/wiki/Negative_integer" class="mw-redirect" title="Negative integer">Negative integers</a> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr> <tr> <td> <table> <tbody><tr> <td><a href="/wiki/Fraction" title="Fraction">Fraction</a> </td> <td> <table style="border-left:4px solid green"> <tbody><tr> <td><a href="/wiki/Finite_decimal" class="mw-redirect" title="Finite decimal">Finite decimal</a> </td></tr> <tr> <td><a href="/wiki/Dyadic_rational" title="Dyadic rational">Dyadic (finite binary)</a> </td></tr> <tr> <td><a href="/wiki/Repeating_decimal" title="Repeating decimal">Repeating decimal</a> </td> <td> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr> <tr> <td> <table> <tbody><tr> <td><a href="/wiki/Irrational_number" title="Irrational number">Irrational</a> </td> <td> <table style="border-left:4px solid green"> <tbody><tr> <td><a href="/wiki/Algebraic_number" title="Algebraic number">Algebraic irrational</a> </td></tr> <tr> <td><a href="/wiki/Period_(algebraic_geometry)" title="Period (algebraic geometry)">Irrational period</a> </td></tr> <tr> <td><a href="/wiki/Transcendental_number" title="Transcendental number">Transcendental</a> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr> <tr> <td><a href="/wiki/Imaginary_number" title="Imaginary number">Imaginary</a> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=25" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">This is not sufficient for distinguishing the real numbers from the <a href="/wiki/Rational_number" title="Rational number">rational numbers</a>; a property of <a href="/wiki/Completeness_of_the_real_numbers" title="Completeness of the real numbers">completeness</a> is also required.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">The terminating rational numbers may have two decimal expansions (see <a href="/wiki/0.999..." title="0.999...">0.999...</a>); the other real numbers have exactly one decimal expansion.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Limits and continuity can be defined in <a href="/wiki/General_topology" title="General topology">general topology</a> without reference to real numbers, but these generalizations are relatively recent, and used only in very specific cases.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">More precisely, given two complete totally ordered fields, there is a <i>unique</i> isomorphism between them. This implies that the identity is the unique field automorphism of the reals that is compatible with the ordering. In fact, the identity is the unique field automorphism of the reals, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x&gt;y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&gt;</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x&gt;y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e8432c5c4451b66818abae111d41f27d6de8623" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.176ex;" alt="{\displaystyle x&gt;y}"></span> is equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists z\mid x-y=z^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>z</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>=</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists z\mid x-y=z^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ff6d85fd7a910def673bca7d8a8e0d05d39839f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.533ex; height:3.176ex;" alt="{\displaystyle \exists z\mid x-y=z^{2},}"></span> and the second formula is stable under field automorphisms.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=26" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Citations">Citations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=27" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100406944">"Real number"</a>. <i>Oxford Reference</i>. 2011-08-03.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Oxford+Reference&amp;rft.atitle=Real+number&amp;rft.date=2011-08-03&amp;rft_id=https%3A%2F%2Fwww.oxfordreference.com%2Fview%2F10.1093%2Foi%2Fauthority.20110803100406944&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://www.oed.com/view/Entry/158926">"real"</a></span>. <i><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a></i> (3rd&#160;ed.). 2008. 'real', <i>n.2</i>, B.4. <q><i>Mathematics.</i> A real number. Usually in <i>plural</i></q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=real&amp;rft.btitle=Oxford+English+Dictionary&amp;rft.pages=%27real%27%2C+%27%27n.2%27%27%2C+B.4&amp;rft.edition=3rd&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fwww.oed.com%2Fview%2FEntry%2F158926&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWebb2018" class="citation book cs1">Webb, Stephen (2018). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/webb-stephen-clash-of-symbols-a-ride-through-the-riches-of-glyphs/page/198/mode/1up">"Set of Natural Numbers ℕ"</a></span>. <i>Clash Of Symbols: A Ride Through The Riches Of Glyphs</i>. Springer. pp.&#160;198–199.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Set+of+Natural+Numbers+%E2%84%95&amp;rft.btitle=Clash+Of+Symbols%3A+A+Ride+Through+The+Riches+Of+Glyphs&amp;rft.pages=198-199&amp;rft.pub=Springer&amp;rft.date=2018&amp;rft.aulast=Webb&amp;rft.aufirst=Stephen&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fwebb-stephen-clash-of-symbols-a-ride-through-the-riches-of-glyphs%2Fpage%2F198%2Fmode%2F1up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-Britannica-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Britannica_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Britannica_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/science/real-number">"Real number"</a>. <i>Encyclopedia Britannica</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Encyclopedia+Britannica&amp;rft.atitle=Real+number&amp;rft_id=https%3A%2F%2Fwww.britannica.com%2Fscience%2Freal-number&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoellner2013" class="citation book cs1"><a href="/wiki/Peter_Koellner" title="Peter Koellner">Koellner, Peter</a> (2013). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/spr2019/entries/continuum-hypothesis/">"The Continuum Hypothesis"</a>. In <a href="/wiki/Edward_N._Zalta" title="Edward N. Zalta">Zalta, Edward N.</a> (ed.). <i>The Stanford Encyclopedia of Philosophy</i>. Stanford University.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Continuum+Hypothesis&amp;rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&amp;rft.pub=Stanford+University&amp;rft.date=2013&amp;rft.aulast=Koellner&amp;rft.aufirst=Peter&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Farchives%2Fspr2019%2Fentries%2Fcontinuum-hypothesis%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoschovakis1980" class="citation cs2"><a href="/wiki/Yiannis_N._Moschovakis" title="Yiannis N. Moschovakis">Moschovakis, Yiannis N.</a> (1980), <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/descriptivesetth0000mosc/page/274/">"5. The Constructible Universe"</a></span>, <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/descriptivesetth0000mosc/"><i>Descriptive Set Theory</i></a></span>, North-Holland, pp.&#160;274–285, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-444-85305-9" title="Special:BookSources/978-0-444-85305-9"><bdi>978-0-444-85305-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=5.+The+Constructible+Universe&amp;rft.btitle=Descriptive+Set+Theory&amp;rft.pages=274-285&amp;rft.pub=North-Holland&amp;rft.date=1980&amp;rft.isbn=978-0-444-85305-9&amp;rft.aulast=Moschovakis&amp;rft.aufirst=Yiannis+N.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdescriptivesetth0000mosc%2Fpage%2F274%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">T. K. Puttaswamy, "The Accomplishments of Ancient Indian Mathematicians", pp. 410–11.&#160;In: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSelinD&#39;Ambrosio2000" class="citation cs2"><a href="/wiki/Helaine_Selin" title="Helaine Selin">Selin, Helaine</a>; <a href="/wiki/Ubiratan_D%27Ambrosio" title="Ubiratan D&#39;Ambrosio">D'Ambrosio, Ubiratan</a>, eds. (2000), <i>Mathematics Across Cultures: The History of Non-western Mathematics</i>, <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4020-0260-1" title="Special:BookSources/978-1-4020-0260-1"><bdi>978-1-4020-0260-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+Across+Cultures%3A+The+History+of+Non-western+Mathematics&amp;rft.pub=Springer&amp;rft.date=2000&amp;rft.isbn=978-1-4020-0260-1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span>.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson1999" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a> (1999), <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/HistTopics/Arabic_mathematics.html">"Arabic mathematics: forgotten brilliance?"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Arabic+mathematics%3A+forgotten+brilliance%3F&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.date=1999&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHistTopics%2FArabic_mathematics.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatvievskaya1987" class="citation cs2">Matvievskaya, Galina (1987), "The Theory of Quadratic Irrationals in Medieval Oriental Mathematics", <i><a href="/wiki/New_York_Academy_of_Sciences" title="New York Academy of Sciences">Annals of the New York Academy of Sciences</a></i>, <b>500</b> (1): 253–77 [254], <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1987NYASA.500..253M">1987NYASA.500..253M</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1749-6632.1987.tb37206.x">10.1111/j.1749-6632.1987.tb37206.x</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121416910">121416910</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&amp;rft.atitle=The+Theory+of+Quadratic+Irrationals+in+Medieval+Oriental+Mathematics&amp;rft.volume=500&amp;rft.issue=1&amp;rft.pages=253-77+254&amp;rft.date=1987&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121416910%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1749-6632.1987.tb37206.x&amp;rft_id=info%3Abibcode%2F1987NYASA.500..253M&amp;rft.aulast=Matvievskaya&amp;rft.aufirst=Galina&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Jacques Sesiano, "Islamic mathematics", p. 148, in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSelinD&#39;Ambrosio2000" class="citation cs2">Selin, Helaine; D'Ambrosio, Ubiratan (2000), <i>Mathematics Across Cultures: The History of Non-western Mathematics</i>, <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4020-0260-1" title="Special:BookSources/978-1-4020-0260-1"><bdi>978-1-4020-0260-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+Across+Cultures%3A+The+History+of+Non-western+Mathematics&amp;rft.pub=Springer&amp;rft.date=2000&amp;rft.isbn=978-1-4020-0260-1&amp;rft.aulast=Selin&amp;rft.aufirst=Helaine&amp;rft.au=D%27Ambrosio%2C+Ubiratan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeckmann1971" class="citation book cs1">Beckmann, Petr (1971). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/historyofpipi0000beck_g8t1/"><i>A History of <span class="texhtml mvar" style="font-style:italic;">π</span> (PI)</i></a></span>. St. Martin's Press. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/historyofpipi0000beck_g8t1/page/170/">170</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780312381851" title="Special:BookSources/9780312381851"><bdi>9780312381851</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3E%CF%80%3C%2Fspan%3E+%28PI%29&amp;rft.pages=170&amp;rft.pub=St.+Martin%27s+Press&amp;rft.date=1971&amp;rft.isbn=9780312381851&amp;rft.aulast=Beckmann&amp;rft.aufirst=Petr&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofpipi0000beck_g8t1%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArndtHaenel2001" class="citation cs2">Arndt, Jörg; Haenel, Christoph (2001), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QwwcmweJCDQC&amp;pg=PA192"><i>Pi Unleashed</i></a>, Springer, p.&#160;192, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-66572-4" title="Special:BookSources/978-3-540-66572-4"><bdi>978-3-540-66572-4</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2015-11-15</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pi+Unleashed&amp;rft.pages=192&amp;rft.pub=Springer&amp;rft.date=2001&amp;rft.isbn=978-3-540-66572-4&amp;rft.aulast=Arndt&amp;rft.aufirst=J%C3%B6rg&amp;rft.au=Haenel%2C+Christoph&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQwwcmweJCDQC%26pg%3DPA192&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span>.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunham2015" class="citation cs2">Dunham, William (2015), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aYTYBQAAQBAJ&amp;pg=PA127"><i>The Calculus Gallery: Masterpieces from Newton to Lebesgue</i></a>, Princeton University Press, p.&#160;127, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4008-6679-3" title="Special:BookSources/978-1-4008-6679-3"><bdi>978-1-4008-6679-3</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2015-02-17</span></span>, <q>Cantor found a remarkable shortcut to reach Liouville's conclusion with a fraction of the work</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Calculus+Gallery%3A+Masterpieces+from+Newton+to+Lebesgue&amp;rft.pages=127&amp;rft.pub=Princeton+University+Press&amp;rft.date=2015&amp;rft.isbn=978-1-4008-6679-3&amp;rft.aulast=Dunham&amp;rft.aufirst=William&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DaYTYBQAAQBAJ%26pg%3DPA127&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHurwitz1893" class="citation journal cs1">Hurwitz, Adolf (1893). "Beweis der Transendenz der Zahl e". <i>Mathematische Annalen</i> (43): 134–35.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=Beweis+der+Transendenz+der+Zahl+e&amp;rft.issue=43&amp;rft.pages=134-35&amp;rft.date=1893&amp;rft.aulast=Hurwitz&amp;rft.aufirst=Adolf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGordan1893" class="citation journal cs1">Gordan, Paul (1893). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1428218">"Transcendenz von <i>e</i> und π"</a>. <i><a href="/wiki/Mathematische_Annalen" title="Mathematische Annalen">Mathematische Annalen</a></i>. <b>43</b> (2–3): 222–224. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01443647">10.1007/bf01443647</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123203471">123203471</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=Transcendenz+von+e+und+%CF%80&amp;rft.volume=43&amp;rft.issue=2%E2%80%933&amp;rft.pages=222-224&amp;rft.date=1893&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01443647&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123203471%23id-name%3DS2CID&amp;rft.aulast=Gordan&amp;rft.aufirst=Paul&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1428218&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">Stefan Drobot "Real numbers". Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964 vii+102 pp.</span> </li> <li id="cite_note-OxfordHistory-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-OxfordHistory_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobsonStedall2009" class="citation book cs1">Robson, Eleanor; Stedall, Jacqueline A., eds. (2009). <a rel="nofollow" class="external text" href="https://www.worldcat.org/title/229023665"><i>The Oxford handbook of the history of mathematics</i></a>. Oxford handbooks. Oxford&#160;; New York: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-921312-2" title="Special:BookSources/978-0-19-921312-2"><bdi>978-0-19-921312-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/229023665">229023665</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Oxford+handbook+of+the+history+of+mathematics&amp;rft.place=Oxford+%3B+New+York&amp;rft.series=Oxford+handbooks&amp;rft.pub=Oxford+University+Press&amp;rft.date=2009&amp;rft_id=info%3Aoclcnum%2F229023665&amp;rft.isbn=978-0-19-921312-2&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Ftitle%2F229023665&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson2005" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a> (October 2005), <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/HistTopics/Real_numbers_2.html">"The real numbers: Stevin to Hilbert"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+real+numbers%3A+Stevin+to+Hilbert&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.date=2005-10&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHistTopics%2FReal_numbers_2.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://math.mit.edu/classes/18.095/2015IAP/lecture1/padic.pdf">"Lecture #1"</a> <span class="cs1-format">(PDF)</span>. <i>18.095 Lecture Series in Mathematics</i>. 2015-01-05.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=18.095+Lecture+Series+in+Mathematics&amp;rft.atitle=Lecture+%231&amp;rft.date=2015-01-05&amp;rft_id=https%3A%2F%2Fmath.mit.edu%2Fclasses%2F18.095%2F2015IAP%2Flecture1%2Fpadic.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWheeler1986" class="citation journal cs1"><a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler, John Archibald</a> (1986). "Hermann Weyl and the Unity of Knowledge: In the linkage of four mysteries—the "how come" of existence, time, the mathematical continuum, and the discontinuous yes-or-no of quantum physics—may lie the key to deep new insight". <i><a href="/wiki/American_Scientist" title="American Scientist">American Scientist</a></i>. <b>74</b> (4): 366–75. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1986AmSci..74..366W">1986AmSci..74..366W</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/27854250">27854250</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Scientist&amp;rft.atitle=Hermann+Weyl+and+the+Unity+of+Knowledge%3A+In+the+linkage+of+four+mysteries%E2%80%94the+%22how+come%22+of+existence%2C+time%2C+the+mathematical+continuum%2C+and+the+discontinuous+yes-or-no+of+quantum+physics%E2%80%94may+lie+the+key+to+deep+new+insight&amp;rft.volume=74&amp;rft.issue=4&amp;rft.pages=366-75&amp;rft.date=1986&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F27854250%23id-name%3DJSTOR&amp;rft_id=info%3Abibcode%2F1986AmSci..74..366W&amp;rft.aulast=Wheeler&amp;rft.aufirst=John+Archibald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span><br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBengtsson2017" class="citation journal cs1">Bengtsson, Ingemar (2017). "The Number Behind the Simplest SIC-POVM". <i><a href="/wiki/Foundations_of_Physics" title="Foundations of Physics">Foundations of Physics</a></i>. <b>47</b> (8): 1031–41. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1611.09087">1611.09087</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017FoPh...47.1031B">2017FoPh...47.1031B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-017-0078-3">10.1007/s10701-017-0078-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118954904">118954904</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Foundations+of+Physics&amp;rft.atitle=The+Number+Behind+the+Simplest+SIC-POVM&amp;rft.volume=47&amp;rft.issue=8&amp;rft.pages=1031-41&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1611.09087&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118954904%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10701-017-0078-3&amp;rft_id=info%3Abibcode%2F2017FoPh...47.1031B&amp;rft.aulast=Bengtsson&amp;rft.aufirst=Ingemar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBishopBridges1985" class="citation cs2">Bishop, Errett; Bridges, Douglas (1985), <i>Constructive analysis</i>, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.&#160;279, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-15066-4" title="Special:BookSources/978-3-540-15066-4"><bdi>978-3-540-15066-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Constructive+analysis&amp;rft.place=Berlin%2C+New+York&amp;rft.series=Grundlehren+der+Mathematischen+Wissenschaften+%5BFundamental+Principles+of+Mathematical+Sciences%5D&amp;rft.pub=Springer-Verlag&amp;rft.date=1985&amp;rft.isbn=978-3-540-15066-4&amp;rft.aulast=Bishop&amp;rft.aufirst=Errett&amp;rft.au=Bridges%2C+Douglas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span>, chapter 2.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohen2002" class="citation cs2">Cohen, Joel S. (2002), <i>Computer algebra and symbolic computation: elementary algorithms</i>, vol.&#160;1, A K Peters, p.&#160;32, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-56881-158-1" title="Special:BookSources/978-1-56881-158-1"><bdi>978-1-56881-158-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Computer+algebra+and+symbolic+computation%3A+elementary+algorithms&amp;rft.pages=32&amp;rft.pub=A+K+Peters&amp;rft.date=2002&amp;rft.isbn=978-1-56881-158-1&amp;rft.aulast=Cohen&amp;rft.aufirst=Joel+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrefethen2007" class="citation journal cs1">Trefethen, Lloyd N. (2007). <a rel="nofollow" class="external text" href="https://people.maths.ox.ac.uk/trefethen/trefethen_functions.pdf">"Computing numerically with functions instead of numbers"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics in Computer Science</i>. <b>1</b> (1): 9–19. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11786-007-0001-y">10.1007/s11786-007-0001-y</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+in+Computer+Science&amp;rft.atitle=Computing+numerically+with+functions+instead+of+numbers&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=9-19&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1007%2Fs11786-007-0001-y&amp;rft.aulast=Trefethen&amp;rft.aufirst=Lloyd+N.&amp;rft_id=https%3A%2F%2Fpeople.maths.ox.ac.uk%2Ftrefethen%2Ftrefethen_functions.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHein2010" class="citation cs2">Hein, James L. (2010), "14.1.1", <a rel="nofollow" class="external text" href="https://books.google.com/books?id=vmlcc2IH9dEC"><i>Discrete Structures, Logic, and Computability</i></a> (3&#160;ed.), Sudbury, MA: Jones and Bartlett Publishers, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/97-80763772062" title="Special:BookSources/97-80763772062"><bdi>97-80763772062</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2015-11-15</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=14.1.1&amp;rft.btitle=Discrete+Structures%2C+Logic%2C+and+Computability&amp;rft.place=Sudbury%2C+MA&amp;rft.edition=3&amp;rft.pub=Jones+and+Bartlett+Publishers&amp;rft.date=2010&amp;rft.isbn=97-80763772062&amp;rft.aulast=Hein&amp;rft.aufirst=James+L.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dvmlcc2IH9dEC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-Schumacher96-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-Schumacher96_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Schumacher96_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchumacher1996" class="citation book cs1"><a href="/wiki/Carol_Schumacher" title="Carol Schumacher">Schumacher, Carol</a> (1996). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/chapterzerofunda0000schu/"><i>Chapter Zero: Fundamental Notions of Abstract Mathematics</i></a></span>. Addison-Wesley. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/chapterzerofunda0000schu/page/114/">114–115</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780201826531" title="Special:BookSources/9780201826531"><bdi>9780201826531</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Chapter+Zero%3A+Fundamental+Notions+of+Abstract+Mathematics&amp;rft.pages=114-115&amp;rft.pub=Addison-Wesley&amp;rft.date=1996&amp;rft.isbn=9780201826531&amp;rft.aulast=Schumacher&amp;rft.aufirst=Carol&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fchapterzerofunda0000schu%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></span> </li> <li id="cite_note-nombres-reels-ens-paris-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-nombres-reels-ens-paris_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-nombres-reels-ens-paris_30-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-nombres-reels-ens-paris_30-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/%C3%89cole_Normale_Sup%C3%A9rieure" class="mw-redirect" title="École Normale Supérieure">École Normale Supérieure</a> of <a href="/wiki/Paris" title="Paris">Paris</a>, <a rel="nofollow" class="external text" href="http://culturemath.ens.fr/maths/pdf/logique/reels.pdf">"<span title="French-language text"><i lang="fr">Nombres réels</i></span>" ("Real numbers")</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140508122311/http://culturemath.ens.fr/maths/pdf/logique/reels.pdf">Archived</a> 2014-05-08 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, p. 6</span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Sources">Sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=28" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBos2001" class="citation book cs1"><a href="/wiki/Henk_J._M._Bos" title="Henk J. M. Bos">Bos, Henk J.M.</a> (2001). <i>Redefining Geometrical Exactness: Descartes' Transformation of the Early Modern Concept of Construction</i>. Sources and Studies in the History of Mathematics and Physical Sciences. Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4613-0087-8">10.1007/978-1-4613-0087-8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-6521-4" title="Special:BookSources/978-1-4612-6521-4"><bdi>978-1-4612-6521-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Redefining+Geometrical+Exactness%3A+Descartes%27+Transformation+of+the+Early+Modern+Concept+of+Construction&amp;rft.series=Sources+and+Studies+in+the+History+of+Mathematics+and+Physical+Sciences&amp;rft.pub=Springer&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4613-0087-8&amp;rft.isbn=978-1-4612-6521-4&amp;rft.aulast=Bos&amp;rft.aufirst=Henk+J.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBottazzini1986" class="citation book cs1"><a href="/wiki/Umberto_Bottazzini" title="Umberto Bottazzini">Bottazzini, Umberto</a> (1986). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/highercalculushi0000bott/"><i>The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass</i></a></span>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780387963020" title="Special:BookSources/9780387963020"><bdi>9780387963020</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Higher+Calculus%3A+A+History+of+Real+and+Complex+Analysis+from+Euler+to+Weierstrass&amp;rft.pub=Springer&amp;rft.date=1986&amp;rft.isbn=9780387963020&amp;rft.aulast=Bottazzini&amp;rft.aufirst=Umberto&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhighercalculushi0000bott%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCantor1874" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Georg_Cantor" title="Georg Cantor">Cantor, Georg</a> (1874). "<a href="/wiki/Cantor%27s_first_set_theory_article" title="Cantor&#39;s first set theory article">Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen</a>" &#91;On a property of the collection of all real algebraic numbers&#93;. <i><a href="/wiki/Crelle%27s_Journal" title="Crelle&#39;s Journal">Crelle's Journal</a></i> (in German). <b>77</b>: 258–62.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Crelle%27s+Journal&amp;rft.atitle=%C3%9Cber+eine+Eigenschaft+des+Inbegriffes+aller+reellen+algebraischen+Zahlen&amp;rft.volume=77&amp;rft.pages=258-62&amp;rft.date=1874&amp;rft.aulast=Cantor&amp;rft.aufirst=Georg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDieudonné1960" class="citation book cs1"><a href="/wiki/Jean_Dieudonn%C3%A9" title="Jean Dieudonné">Dieudonné, Jean</a> (1960). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/foundationsofmod0000dieu/"><i>Foundations of Modern Analysis</i></a></span>. Academic Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Modern+Analysis&amp;rft.pub=Academic+Press&amp;rft.date=1960&amp;rft.aulast=Dieudonn%C3%A9&amp;rft.aufirst=Jean&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffoundationsofmod0000dieu%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeferman1964" class="citation book cs1"><a href="/wiki/Solomon_Feferman" title="Solomon Feferman">Feferman, Solomon</a> (1964). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/numbersystemsfou0000fefe"><i>The Number Systems: Foundations of Algebra and Analysis</i></a></span>. Addison-Wesley.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Number+Systems%3A+Foundations+of+Algebra+and+Analysis&amp;rft.pub=Addison-Wesley&amp;rft.date=1964&amp;rft.aulast=Feferman&amp;rft.aufirst=Solomon&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fnumbersystemsfou0000fefe&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowie2001" class="citation book cs1"><a href="/wiki/John_Mackintosh_Howie" title="John Mackintosh Howie">Howie, John M.</a> (2001). <i>Real Analysis</i>. Springer Undergraduate Mathematics Series. Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4471-0341-7">10.1007/978-1-4471-0341-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-85233-314-0" title="Special:BookSources/978-1-85233-314-0"><bdi>978-1-85233-314-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+Analysis&amp;rft.series=Springer+Undergraduate+Mathematics+Series&amp;rft.pub=Springer&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4471-0341-7&amp;rft.isbn=978-1-85233-314-0&amp;rft.aulast=Howie&amp;rft.aufirst=John+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatz1964" class="citation book cs1">Katz, Robert (1964). <i>Axiomatic Analysis</i>. Heath.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Axiomatic+Analysis&amp;rft.pub=Heath&amp;rft.date=1964&amp;rft.aulast=Katz&amp;rft.aufirst=Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrantzLuceSuppesTversky1971" class="citation book cs1">Krantz, David H.; <a href="/wiki/R._Duncan_Luce" title="R. Duncan Luce">Luce, R. Duncan</a>; <a href="/wiki/Patrick_Suppes" title="Patrick Suppes">Suppes, Patrick</a>; <a href="/wiki/Amos_Tversky" title="Amos Tversky">Tversky, Amos</a> (1971). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/foundationsofmea00emen"><i>Foundations of Measurement, Vol. 1</i></a></span>. Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780124254015" title="Special:BookSources/9780124254015"><bdi>9780124254015</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Measurement%2C+Vol.+1&amp;rft.pub=Academic+Press&amp;rft.date=1971&amp;rft.isbn=9780124254015&amp;rft.aulast=Krantz&amp;rft.aufirst=David+H.&amp;rft.au=Luce%2C+R.+Duncan&amp;rft.au=Suppes%2C+Patrick&amp;rft.au=Tversky%2C+Amos&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffoundationsofmea00emen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span> Vol. 2, 1989. Vol. 3, 1990.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMac_Lane1986" class="citation book cs1"><a href="/wiki/Saunders_Mac_Lane" title="Saunders Mac Lane">Mac Lane, Saunders</a> (1986). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicsformf0000macl/page/92/">"4. Real Numbers"</a></span>. <i>Mathematics: Form and Function</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780387962177" title="Special:BookSources/9780387962177"><bdi>9780387962177</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=4.+Real+Numbers&amp;rft.btitle=Mathematics%3A+Form+and+Function&amp;rft.pub=Springer&amp;rft.date=1986&amp;rft.isbn=9780387962177&amp;rft.aulast=Mac+Lane&amp;rft.aufirst=Saunders&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicsformf0000macl%2Fpage%2F92%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandau1966" class="citation book cs1"><a href="/wiki/Edmund_Landau" title="Edmund Landau">Landau, Edmund</a> (1966). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/foundationsofana0000land_o4f9"><i>Foundations of Analysis</i></a></span> (3rd&#160;ed.). Chelsea. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780828400794" title="Special:BookSources/9780828400794"><bdi>9780828400794</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Analysis&amp;rft.edition=3rd&amp;rft.pub=Chelsea&amp;rft.date=1966&amp;rft.isbn=9780828400794&amp;rft.aulast=Landau&amp;rft.aufirst=Edmund&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffoundationsofana0000land_o4f9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span> Translated from the German <a rel="nofollow" class="external text" href="https://archive.org/details/grundlagenderana0000edmu/"><i>Grundlagen der Analysis</i></a>, 1930.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStevenson2000" class="citation book cs1">Stevenson, Frederick W. (2000). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/exploringrealnum0000stev"><i>Exploring the Real Numbers</i></a></span>. Prentice Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780130402615" title="Special:BookSources/9780130402615"><bdi>9780130402615</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Exploring+the+Real+Numbers&amp;rft.pub=Prentice+Hall&amp;rft.date=2000&amp;rft.isbn=9780130402615&amp;rft.aulast=Stevenson&amp;rft.aufirst=Frederick+W.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fexploringrealnum0000stev&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStillwell2013" class="citation book cs1"><a href="/wiki/John_Stillwell" title="John Stillwell">Stillwell, John</a> (2013). <i>The Real Numbers: An Introduction to Set Theory and Analysis</i>. Undergraduate Texts in Mathematics. Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-01577-4">10.1007/978-3-319-01577-4</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-01576-7" title="Special:BookSources/978-3-319-01576-7"><bdi>978-3-319-01576-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Real+Numbers%3A+An+Introduction+to+Set+Theory+and+Analysis&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-01577-4&amp;rft.isbn=978-3-319-01576-7&amp;rft.aulast=Stillwell&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_number&amp;action=edit&amp;section=29" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Real_number">"Real number"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Real+number&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DReal_number&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+number" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Real_numbers" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Real_numbers" title="Template:Real numbers"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Real_numbers" title="Template talk:Real numbers"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Real_numbers" title="Special:EditPage/Template:Real numbers"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Real_numbers" style="font-size:114%;margin:0 4em"><a class="mw-selflink selflink">Real numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/0.999..." title="0.999...">0.999...</a></li> <li><a href="/wiki/Absolute_difference" title="Absolute difference">Absolute difference</a></li> <li><a href="/wiki/Cantor_set" title="Cantor set">Cantor set</a></li> <li><a href="/wiki/Cantor%E2%80%93Dedekind_axiom" title="Cantor–Dedekind axiom">Cantor–Dedekind axiom</a></li> <li><a href="/wiki/Completeness_of_the_real_numbers" title="Completeness of the real numbers">Completeness</a></li> <li><a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">Construction</a></li> <li><a href="/wiki/Decidability_of_first-order_theories_of_the_real_numbers" title="Decidability of first-order theories of the real numbers">Decidability of first-order theories</a></li> <li><a href="/wiki/Extended_real_number_line" title="Extended real number line">Extended real number line</a></li> <li><a href="/wiki/Gregory_number" title="Gregory number">Gregory number</a></li> <li><a href="/wiki/Irrational_number" title="Irrational number">Irrational number</a></li> <li><a href="/wiki/Normal_number" title="Normal number">Normal number</a></li> <li><a href="/wiki/Rational_number" title="Rational number">Rational number</a></li> <li><a href="/wiki/Rational_zeta_series" title="Rational zeta series">Rational zeta series</a></li> <li><a href="/wiki/Real_coordinate_space" title="Real coordinate space">Real coordinate space</a></li> <li><a href="/wiki/Real_line" class="mw-redirect" title="Real line">Real line</a></li> <li><a href="/wiki/Tarski%27s_axiomatization_of_the_reals" title="Tarski&#39;s axiomatization of the reals">Tarski axiomatization</a></li> <li><a href="/wiki/Vitali_set" title="Vitali set">Vitali set</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Complex_numbers" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Complex_numbers" title="Template:Complex numbers"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Complex_numbers" title="Template talk:Complex numbers"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Complex_numbers" title="Special:EditPage/Template:Complex numbers"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Complex_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Complex_number" title="Complex number">Complex numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Complex_conjugate" title="Complex conjugate">Complex conjugate</a></li> <li><a href="/wiki/Complex_plane" title="Complex plane">Complex plane</a></li> <li><a href="/wiki/Imaginary_number" title="Imaginary number">Imaginary number</a></li> <li><a class="mw-selflink selflink">Real number</a></li> <li><a href="/wiki/Unit_complex_number" class="mw-redirect" title="Unit complex number">Unit complex number</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Number_systems" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Number_systems" title="Template:Number systems"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Number_systems" title="Template talk:Number systems"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Number_systems" title="Special:EditPage/Template:Number systems"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Number_systems" style="font-size:114%;margin:0 4em"><a href="/wiki/Number" title="Number">Number</a> systems</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sets of <a href="/wiki/Definable_number" class="mw-redirect" title="Definable number">definable numbers</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Natural_number" title="Natural number">Natural numbers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></span>)</li> <li><a href="/wiki/Integer" title="Integer">Integers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li> <li><a href="/wiki/Rational_number" title="Rational number">Rational numbers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>)</li> <li><a href="/wiki/Constructible_number" title="Constructible number">Constructible numbers</a></li> <li><a href="/wiki/Algebraic_number" title="Algebraic number">Algebraic numbers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fb423c16a5f403edbaf66438b75e7a36e725af6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {A} }"></span>)</li> <li><a href="/wiki/Closed-form_expression#Closed-form_number" title="Closed-form expression">Closed-form numbers</a></li> <li><a href="/wiki/Period_(algebraic_geometry)" title="Period (algebraic geometry)">Periods</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span>)</li> <li><a href="/wiki/Computable_number" title="Computable number">Computable numbers</a></li> <li><a href="/wiki/Definable_real_number#Definability_in_arithmetic" title="Definable real number">Arithmetical numbers</a></li> <li><a href="/wiki/Definable_real_number#Definability_in_models_of_ZFC" title="Definable real number">Set-theoretically definable numbers</a></li> <li><a href="/wiki/Gaussian_integer" title="Gaussian integer">Gaussian integers</a> <ul><li><a href="/wiki/Gaussian_rational" title="Gaussian rational">Gaussian rationals</a></li></ul></li> <li><a href="/wiki/Eisenstein_integer" title="Eisenstein integer">Eisenstein integers</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Composition_algebra" title="Composition algebra">Composition algebras</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Division_algebra" title="Division algebra">Division algebras</a>: <a class="mw-selflink selflink">Real numbers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>)</li> <li><a href="/wiki/Complex_number" title="Complex number">Complex numbers</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>)</li> <li><a href="/wiki/Quaternion" title="Quaternion">Quaternions</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e050965453c42bcc6bd544546703c836bdafeac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {H} }"></span>)</li> <li><a href="/wiki/Octonion" title="Octonion">Octonions</a>&#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {O} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">O</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {O} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1ed2664a4fe515e6fbed25a7193ce663b82920c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {O} }"></span>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Split<br />types</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>:</li> <li><a href="/wiki/Split-complex_number" title="Split-complex number">Split-complex numbers</a></li> <li><a href="/wiki/Split-quaternion" title="Split-quaternion">Split-quaternions</a></li> <li><a href="/wiki/Split-octonion" title="Split-octonion">Split-octonions</a><br /> Over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>:</li> <li><a href="/wiki/Bicomplex_number" title="Bicomplex number">Bicomplex numbers</a></li> <li><a href="/wiki/Biquaternion" title="Biquaternion">Biquaternions</a></li> <li><a href="/wiki/Bioctonion" title="Bioctonion">Bioctonions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other <a href="/wiki/Hypercomplex_number" title="Hypercomplex number">hypercomplex</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dual_number" title="Dual number">Dual numbers</a></li> <li><a href="/wiki/Dual_quaternion" title="Dual quaternion">Dual quaternions</a></li> <li><a href="/wiki/Dual-complex_number" class="mw-redirect" title="Dual-complex number">Dual-complex numbers</a></li> <li><a href="/wiki/Hyperbolic_quaternion" title="Hyperbolic quaternion">Hyperbolic quaternions</a></li> <li><a href="/wiki/Sedenion" title="Sedenion">Sedenions</a> &#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f9d5874c5d7f68eba1cec9da9ccbe53903303bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:2.176ex;" alt="{\displaystyle \mathbb {S} }"></span>)</li> <li><a href="/wiki/Trigintaduonion" title="Trigintaduonion">Trigintaduonions</a> &#160;(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {T} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">T</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {T} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c039979935c00b3b216cbb065999207872677f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {T} }"></span>)</li> <li><a href="/wiki/Split-biquaternion" title="Split-biquaternion">Split-biquaternions</a></li> <li><a href="/wiki/Multicomplex_number" title="Multicomplex number">Multicomplex numbers</a></li> <li><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a>/<a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a> <ul><li><a href="/wiki/Algebra_of_physical_space" title="Algebra of physical space">Algebra of physical space</a></li> <li><a href="/wiki/Spacetime_algebra" title="Spacetime algebra">Spacetime algebra</a></li> <li><a href="/wiki/Plane-based_geometric_algebra" title="Plane-based geometric algebra">Plane-based geometric algebra</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Infinity" title="Infinity">Infinities</a> and <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimals</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cardinal_number" title="Cardinal number">Cardinal numbers</a></li> <li><a href="/wiki/Extended_natural_numbers" title="Extended natural numbers">Extended natural numbers</a></li> <li><a href="/wiki/Extended_real_number_line" title="Extended real number line">Extended real numbers</a> <ul><li><a href="/wiki/Projectively_extended_real_line" title="Projectively extended real line">Projective</a></li></ul></li> <li><a href="/wiki/Riemann_sphere" title="Riemann sphere">Extended complex numbers</a></li> <li><a href="/wiki/Hyperreal_number" title="Hyperreal number">Hyperreal numbers</a></li> <li><a href="/wiki/Levi-Civita_field" title="Levi-Civita field">Levi-Civita field</a></li> <li><a href="/wiki/Ordinal_number" title="Ordinal number">Ordinal numbers</a></li> <li><a href="/wiki/Supernatural_number" title="Supernatural number">Supernatural numbers</a></li> <li><a href="/wiki/Surreal_number" title="Surreal number">Surreal numbers</a></li> <li><a href="/wiki/Superreal_number" title="Superreal number">Superreal numbers</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other types</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Irrational_number" title="Irrational number">Irrational numbers</a></li> <li><a href="/wiki/Fuzzy_number" title="Fuzzy number">Fuzzy numbers</a></li> <li><a href="/wiki/Transcendental_number" title="Transcendental number">Transcendental numbers</a></li> <li><a href="/wiki/P-adic_number" title="P-adic number"><span class="nowrap"><i>p</i>-adic</span> numbers</a> (<a href="/wiki/Solenoid_(mathematics)#p-adic_solenoids" title="Solenoid (mathematics)"><span class="nowrap"><i>p</i>-adic</span> solenoids</a>)</li> <li><a href="/wiki/Profinite_integer" title="Profinite integer">Profinite integers</a></li> <li><a href="/wiki/Normal_number" title="Normal number">Normal numbers</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><a href="/wiki/Number#Main_classification" title="Number">Classification</a></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_types_of_numbers" title="List of types of numbers">List</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q12916#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4202628-3">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85093221">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Nombres réels"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11977586x">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Nombres réels"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11977586x">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00574870">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="reálná čísla"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph125164&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007538747105171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐5z882 Cached time: 20241122143539 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.099 seconds Real time usage: 1.367 seconds Preprocessor visited node count: 6608/1000000 Post‐expand include size: 121731/2097152 bytes Template argument size: 5021/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 163457/5000000 bytes Lua time usage: 0.575/10.000 seconds Lua memory usage: 26216171/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 890.894 1 -total 40.52% 361.013 2 Template:Reflist 12.07% 107.565 1 Template:Lang 10.96% 97.629 3 Template:Cite_web 10.02% 89.302 1 Template:Short_description 9.82% 87.503 3 Template:Navbox 9.27% 82.549 17 Template:Cite_book 8.74% 77.887 1 Template:Real_numbers 7.09% 63.167 2 Template:Pagetype 5.45% 48.564 1 Template:More_footnotes_needed --> <!-- Saved in parser cache with key enwiki:pcache:idhash:20646438-0!canonical and timestamp 20241122143539 and revision id 1257630769. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Real_number&amp;oldid=1257630769">https://en.wikipedia.org/w/index.php?title=Real_number&amp;oldid=1257630769</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Real_numbers" title="Category:Real numbers">Real numbers</a></li><li><a href="/wiki/Category:Real_algebraic_geometry" title="Category:Real algebraic geometry">Real algebraic geometry</a></li><li><a href="/wiki/Category:Elementary_mathematics" title="Category:Elementary mathematics">Elementary mathematics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_containing_French-language_text" title="Category:Articles containing French-language text">Articles containing French-language text</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_indefinitely_move-protected_pages" title="Category:Wikipedia indefinitely move-protected pages">Wikipedia indefinitely move-protected pages</a></li><li><a href="/wiki/Category:Articles_lacking_in-text_citations_from_July_2024" title="Category:Articles lacking in-text citations from July 2024">Articles lacking in-text citations from July 2024</a></li><li><a href="/wiki/Category:All_articles_lacking_in-text_citations" title="Category:All articles lacking in-text citations">All articles lacking in-text citations</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 15 November 2024, at 22:55<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Real_number&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-gfg4b","wgBackendResponseTime":175,"wgPageParseReport":{"limitreport":{"cputime":"1.099","walltime":"1.367","ppvisitednodes":{"value":6608,"limit":1000000},"postexpandincludesize":{"value":121731,"limit":2097152},"templateargumentsize":{"value":5021,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":163457,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 890.894 1 -total"," 40.52% 361.013 2 Template:Reflist"," 12.07% 107.565 1 Template:Lang"," 10.96% 97.629 3 Template:Cite_web"," 10.02% 89.302 1 Template:Short_description"," 9.82% 87.503 3 Template:Navbox"," 9.27% 82.549 17 Template:Cite_book"," 8.74% 77.887 1 Template:Real_numbers"," 7.09% 63.167 2 Template:Pagetype"," 5.45% 48.564 1 Template:More_footnotes_needed"]},"scribunto":{"limitreport-timeusage":{"value":"0.575","limit":"10.000"},"limitreport-memusage":{"value":26216171,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-5z882","timestamp":"20241122143539","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Real number","url":"https:\/\/en.wikipedia.org\/wiki\/Real_number","sameAs":"http:\/\/www.wikidata.org\/entity\/Q12916","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q12916","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-30T13:43:51Z","dateModified":"2024-11-15T22:55:17Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/d7\/Real_number_line.svg","headline":"quantity along a continuous line"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10