CINXE.COM
Search results for: injection pressure
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: injection pressure</title> <meta name="description" content="Search results for: injection pressure"> <meta name="keywords" content="injection pressure"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="injection pressure" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="injection pressure"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4764</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: injection pressure</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4764</span> Evaluating the effects of Gas Injection on Enhanced Gas-Condensate Recovery and Reservoir Pressure Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Alavi">F. S. Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mowla"> D. Mowla</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Esmaeilzadeh"> F. Esmaeilzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Eclipse 300 simulator was used to perform compositional modeling of gas injection process for enhanced condensate recovery of a real gas condensate well in south of Iran here referred to as SA4. Some experimental data were used to tune the Peng-Robinson equation of state for this case. Different scenarios of gas injection at current reservoir pressure and at abandonment reservoir pressure had been considered with different gas compositions. Methane, carbon dioxide, nitrogen and two other gases with specified compositions were considered as potential gases for injection. According to the obtained results, nitrogen leads to highest pressure maintenance in the reservoir but methane results in highest condensate recovery among the selected injection gases. At low injection rates, condensate recovery percent is strongly affected by gas injection rate but this dependency shifts to zero at high injection rates. Condensate recovery is higher in all cases of injection at current reservoir pressure than injection at abandonment pressure. Using a constant injection rate, increasing the production well bottom hole pressure results in increasing the condensate recovery percent and time of gas breakthrough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-condensate%20reservoir" title="gas-condensate reservoir">gas-condensate reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=case-study" title=" case-study"> case-study</a>, <a href="https://publications.waset.org/abstracts/search?q=compositional%20modelling" title=" compositional modelling"> compositional modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20condensate%20recovery" title=" enhanced condensate recovery"> enhanced condensate recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20injection" title=" gas injection"> gas injection</a> </p> <a href="https://publications.waset.org/abstracts/153670/evaluating-the-effects-of-gas-injection-on-enhanced-gas-condensate-recovery-and-reservoir-pressure-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4763</span> Effect of Fuel Injection Discharge Curve and Injection Pressure on Upgrading Power and Combustion Parameters in HD Diesel Engine with CFD Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Chamehsara">Saeed Chamehsara</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mostafa%20Mirsalim"> Seyed Mostafa Mirsalim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Tajdari"> Mehdi Tajdari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of fuel injection discharge curve and injection pressure simultaneously for upgrading power of heavy duty diesel engine by simulation of combustion process in AVL-Fire software are discussed. Hence, the fuel injection discharge curve was changed from semi-triangular to rectangular which is usual in common rail fuel injection system. Injection pressure with respect to amount of injected fuel and nozzle hole diameter are changed. Injection pressure is calculated by an experimental equation which is for heavy duty diesel engines with common rail fuel injection system. Upgrading power for 1000 and 2000 bar injection pressure are discussed. For 1000 bar injection pressure with 188 mg injected fuel and 3 mm nozzle hole diameter in compare with first state which is semi-triangular discharge curve with 139 mg injected fuel and 3 mm nozzle hole diameter, upgrading power is about 19% whereas the special change has not been observed in cylinder pressure. On the other hand, both the NOX emission and the Soot emission decreased about 30% and 6% respectively. Compared with first state, for 2000 bar injection pressure that injected fuel and nozzle diameter are 196 mg and 2.6 mm respectively, upgrading power is about 22% whereas cylinder pressure has been fixed and NOX emission and the Soot emissions are decreased 36% and 20%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title="CFD simulation">CFD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=HD%20diesel%20engine" title=" HD diesel engine"> HD diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading%20power" title=" upgrading power"> upgrading power</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20pressure" title=" injection pressure"> injection pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20injection%20discharge%20curve" title=" fuel injection discharge curve"> fuel injection discharge curve</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20process" title=" combustion process"> combustion process</a> </p> <a href="https://publications.waset.org/abstracts/14565/effect-of-fuel-injection-discharge-curve-and-injection-pressure-on-upgrading-power-and-combustion-parameters-in-hd-diesel-engine-with-cfd-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4762</span> Experimental and Theoretical Study of Melt Viscosity in Injection Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Chih%20Lin">Chung-Chih Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Teng%20Wang"> Wen-Teng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Chiuan%20Kuo"> Chin-Chiuan Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chieh-Liang%20Wu"> Chieh-Liang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20viscosity" title=" melt viscosity"> melt viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor%20bushing%20%28PSB%29" title=" pressure sensor bushing (PSB)"> pressure sensor bushing (PSB)</a> </p> <a href="https://publications.waset.org/abstracts/7574/experimental-and-theoretical-study-of-melt-viscosity-in-injection-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4761</span> Effects of Injector Nozzle Geometry on Spray Atomization Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arya%20Pirooz">Arya Pirooz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air and fuel must be mixed correctly so that there is perfect combustion, which calls for fuel atomization by injection. In this study, the effects of different parameters such as number of orifices, length and diameter of orifices, diameter of nozzle sac and the angle of needle seat in injectors were investigated with the use of rate of injection and sac pressure. The unit pump of the OM-457 diesel engine was modelled on Avl-Hydsim. The results illustrate that the sac pressure decreased by 46% when the number of holes were doubled, although the rate of injection had an immense change. Also, the sac pressure increased up to 60% when the diameter of orifices decreased by 40% in spite of the semi-constant injection rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection" title="injection">injection</a>, <a href="https://publications.waset.org/abstracts/search?q=OM-457%20engine" title=" OM-457 engine"> OM-457 engine</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20geometry" title=" nozzle geometry"> nozzle geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=atomization" title=" atomization"> atomization</a> </p> <a href="https://publications.waset.org/abstracts/7020/effects-of-injector-nozzle-geometry-on-spray-atomization-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4760</span> Effects of Injection Conditions on Flame Structures in Gas-Centered Swirl Coaxial Injector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wooseok%20Song">Wooseok Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunjung%20Park"> Sunjung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongkwon%20Lee"> Jongkwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaye%20Koo"> Jaye Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to observe the effects of injection conditions on flame structures in gas-centered swirl coaxial injector. Gaseous oxygen and liquid kerosene were used as propellants. For different injection conditions, two types of injector, which only differ in the diameter of the tangential inlet, were used in this study. In addition, oxidizer injection pressure was varied to control the combustion chamber pressure in different types of injector. In order to analyze the combustion instability intensity, the dynamic pressure was measured in both the combustion chamber and propellants lines. With the increase in differential pressure between the propellant injection pressure and the combustion chamber pressure, the combustion instability intensity increased. In addition, the flame structure was recorded using a high-speed camera to detect CH* chemiluminescence intensity. With the change in the injection conditions in the gas-centered swirl coaxial injector, the flame structure changed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20rocket%20engine" title="liquid rocket engine">liquid rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20structure" title=" flame structure"> flame structure</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20instability" title=" combustion instability"> combustion instability</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pressure" title=" dynamic pressure"> dynamic pressure</a> </p> <a href="https://publications.waset.org/abstracts/90887/effects-of-injection-conditions-on-flame-structures-in-gas-centered-swirl-coaxial-injector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4759</span> Experimental Investigation of Compressed Natural Gas Injector for Direct Injection System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafal%20Sochaczewski">Rafal Sochaczewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Baranski"> Grzegorz Baranski</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Majczak"> Adam Majczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the bench research results on a CNG injector at steady state. The quantities measured included voltage and current in a solenoid, pressure of gas behind an injector and injector’s flow rate. Accordingly, injector’s operation parameters were determined according to needle’s lift and injection pressure. The discrepancies between the theoretical (electric) and actual time of injection were defined to specify injector’s opening and closing lag times and the uniqueness of these values in successive cycles of gas injection. It has been demonstrated that needle’s lift has got a stronger impact on injector’s operating parameters than injection pressure. With increasing injection pressure, the force increases and closes an injection valve, which adversely affects uniqueness of injector’s operation. The paper also describes the concept of an injector dedicated to direct CNG injection into a combustion chamber in a dual-fuel engine. The injector’s design enables us to replace 80% of diesel fuel in a dual-fuel engine with a maximum power of 85 kW. Minimum injection pressure is 1,4 MPa then. Simultaneously, injector’s characteristics for varied needle’s lifts and injector’s nonlinear operating points were developed. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development, under Grant Agreement No. PBS1/A6/4/2012. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNG%20injector" title="CNG injector">CNG injector</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20injection" title=" direct injection"> direct injection</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20fuel" title=" dual fuel"> dual fuel</a> </p> <a href="https://publications.waset.org/abstracts/50146/experimental-investigation-of-compressed-natural-gas-injector-for-direct-injection-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4758</span> Gas Lift Optimization to Improve Well Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20G.%20H.%20Abdalsadig">Mohamed A. G. H. Abdalsadig</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Nourian"> Amir Nourian</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Nasr"> G. G. Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Babaie"> Meisam Babaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20rate" title=" production rate"> production rate</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20pressure%20effect" title=" reservoir pressure effect"> reservoir pressure effect</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20injection%20rate%20effect" title=" gas injection rate effect"> gas injection rate effect</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20injection%20pressure" title=" gas injection pressure"> gas injection pressure</a> </p> <a href="https://publications.waset.org/abstracts/46454/gas-lift-optimization-to-improve-well-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4757</span> Pressure Regulator Optimization in LPG Fuel Injection Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Akif%20Ceviz">M. Akif Ceviz</a>, <a href="https://publications.waset.org/abstracts/search?q=Alir%C4%B1za%20Kaleli"> Alirıza Kaleli</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdo%C4%9Fan%20G%C3%BCner"> Erdoğan Güner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature" title="temperature">temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20regulator" title=" pressure regulator"> pressure regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=LPG" title=" LPG"> LPG</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a> </p> <a href="https://publications.waset.org/abstracts/21944/pressure-regulator-optimization-in-lpg-fuel-injection-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4756</span> Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kamil">Mohammed Kamil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20A.%20Bakar"> Rosli A. Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modeling of hydrogen fueled engine (H<sub>2</sub>ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH<sub>2</sub>ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH<sub>2</sub>ICE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20rail" title="common rail">common rail</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20engine" title=" hydrogen engine"> hydrogen engine</a>, <a href="https://publications.waset.org/abstracts/search?q=port%20injection" title=" port injection"> port injection</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title=" wave propagation"> wave propagation</a> </p> <a href="https://publications.waset.org/abstracts/50304/development-of-a-complete-single-jet-common-rail-injection-system-gas-dynamic-model-for-hydrogen-fueled-engine-with-port-injection-feeding-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4755</span> Molding Properties of Cobalt-Chrome-Based Feedstocks Used in Low-Pressure Powder Injection Molding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Gholami">Ehsan Gholami</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Demers"> Vincent Demers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-pressure powder injection molding is an emerging technology for cost-effectively producing complex shape metallic parts with the proper dimensional tolerances, either in high or in low production volumes. In this study, the molding properties of cobalt-chrome-based feedstocks were evaluated for use in a low-pressure powder injection molding process. The rheological properties of feedstock formulations were obtained by mixing metallic powder with a proprietary wax-based binder system. Rheological parameters such as reference viscosity, shear rate sensitivity index, and activation energy for viscous flow, were extracted from the viscosity profiles and introduced into the Weir model to calculate the moldability index. Feedstocks were experimentally injected into a spiral mold cavity to validate the injection performance calculated with the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binder" title="binder">binder</a>, <a href="https://publications.waset.org/abstracts/search?q=feedstock" title=" feedstock"> feedstock</a>, <a href="https://publications.waset.org/abstracts/search?q=moldability" title=" moldability"> moldability</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20injection%20molding" title=" powder injection molding"> powder injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/93003/molding-properties-of-cobalt-chrome-based-feedstocks-used-in-low-pressure-powder-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4754</span> Pressure Drop Study in Moving and Stationary Beds with Lateral Gas Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinci%20Mojamdar">Vinci Mojamdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Govind%20S.%20Gupta"> Govind S. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moving beds in the presence of gas flow are widely used in metallurgical and chemical industries like blast furnaces, catalyst reforming, drying, etc. Pressure drop studies in co- and counter – current conditions have been done by a few researchers. However, to the best of authours knowledge, proper pressure drop study with lateral gas injection lacks especially in the presence of cavity and nozzle protrusion inside the packed bed. The latter study is more useful for metallurgical industries for the processes such as blast furnaces, shaft reduction and, COREX. In this experimental work, a two dimensional cold model with slot type nozzle for lateral gas injection along with the plastic beads as packing material and dry air as gas have been used. The variation of pressure drop is recorded at various horizontal and vertical directions in the presence of cavity and nozzle protrusion. The study has been performed in both moving and stationary beds. Also, the experiments have been carried out in both increasing as well as decreasing gas flow conditions. Experiments have been performed at various gas flow rates and packed bed heights. Some interesting results have been reported such as there is no pressure variation in the moving bed for both the increasing and decreasing gas flow condition that is different from the stationary bed. Pressure hysteresis loop has been observed in a stationary bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20gas%20injection" title="lateral gas injection">lateral gas injection</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed" title=" moving bed"> moving bed</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20hysteresis" title=" pressure hysteresis"> pressure hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20bed" title=" stationary bed"> stationary bed</a> </p> <a href="https://publications.waset.org/abstracts/78931/pressure-drop-study-in-moving-and-stationary-beds-with-lateral-gas-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4753</span> Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mashud">Mohammad Mashud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Nahid%20Hasan"> S. M. Nahid Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airfoil" title="airfoil">airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum%20injection" title=" momentum injection"> momentum injection</a>, <a href="https://publications.waset.org/abstracts/search?q=flap" title=" flap"> flap</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20distribution" title=" pressure distribution"> pressure distribution</a> </p> <a href="https://publications.waset.org/abstracts/106872/surface-pressure-distribution-of-a-flapped-airfoil-for-different-momentum-injection-at-the-leading-edge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4752</span> Numerical Analysis of Engine Performance and Emission of a 2-Stroke Opposed Piston Hydrogen Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahamin%20Bazooyar">Bahamin Bazooyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyan%20Wang"> Xinyan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Zhao"> Hua Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a zero-carbon fuel, hydrogen can be used in combustion engines to avoid carbon emissions. This paper numerically investigates the engine performance of a two-stroke opposed piston hydrogen engine by using three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations. The engine displacement is 12.2 cm, and the compression ratio of 39. RANS simulations with the k-ε turbulence model and coupled chemistry combustion models are performed at an engine speed of 4500 rpm and hydrogen flow rate of up to 100 gr/s. In order to model the hydrogen injection process, the hydrogen nozzle was meshed with refined mesh, and injection pressure varied between 100 and 200 bars. In order to optimize the hydrogen combustion process, the injection timing was optimized between 15 before the top dead center and 10. The results showed that the combustion efficiency was mostly influenced by the injection pressures due to its impact on the fuel/air mixing and charge inhomogeneity. Nitrogen oxide (NOₓ) emissions are well correlated with engine peak temperatures, demonstrating that the thermal NO mechanism is dominant under engine conditions. Through the optimization of hydrogen injection timing and pressure, the peak thermal efficiency of 45 and NOx emission of 15 ppm/kWh can be achieved at an injection timing of 350 CA and pressure of 160 bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine" title="engine">engine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stroke" title=" two-stroke"> two-stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=opposed-piston" title=" opposed-piston"> opposed-piston</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonisation" title=" decarbonisation"> decarbonisation</a> </p> <a href="https://publications.waset.org/abstracts/194593/numerical-analysis-of-engine-performance-and-emission-of-a-2-stroke-opposed-piston-hydrogen-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4751</span> Uniqueness and Repeatability Analysis for Slim Tube Determined Minimum Miscibility Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqar%20Ahmad%20Butt">Waqar Ahmad Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Vakili%20Nezhaad"> Gholamreza Vakili Nezhaad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Soud%20Al%20Bemani"> Ali Soud Al Bemani</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Al%20Wahaibi"> Yahya Al Wahaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Miscible gas injection processes as secondary recovery methods can be applied to a huge number of mature reservoirs to improve the trapped oil displacement. Successful miscible gas injection processes require an accurate estimation of the minimum miscibility pressure (MMP) to make injection process feasible, economical, and effective. There are several methods of MMP determination like slim tube approach, vanishing interfacial tension and rising bubble apparatus but slim tube is the deployed experimental technique in this study. Slim tube method is assumed to be non-standardized for MMP determination with respect to both operating procedure and design. Therefore, 25 slim tube runs were being conducted with three different coil lengths (12, 18 and 24 m) of constant diameter using three different injection rates (0.08, 0.1 and 0.15 cc/min) to evaluate uniqueness and repeatability of determined MMP. A trend of decrease in MMP with increase in coil length was found. No unique trend was found between MMP and injection rate. Lowest MMP and highest recovery were observed with highest coil length and lowest injection rate. It shows that slim tube measured MMP does not depend solely on interacting fluids characteristics but also affected by used coil selection and injection rate choice. Therefore, both slim tube design and procedure need to be standardized. It is recommended to use lowest possible injection rate and estimated coil length depending upon the distance between injections and producing wells for accurate and reliable MMP determination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coil%20length" title="coil length">coil length</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20rate" title=" injection rate"> injection rate</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20miscibility%20pressure" title=" minimum miscibility pressure"> minimum miscibility pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20contacts%20miscibility" title=" multiple contacts miscibility"> multiple contacts miscibility</a> </p> <a href="https://publications.waset.org/abstracts/50436/uniqueness-and-repeatability-analysis-for-slim-tube-determined-minimum-miscibility-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4750</span> Water Injection in One of the Southern Iranian Oil Field, a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hooman%20Fallah">Hooman Fallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seawater injection and produced water re-injection are presently the most commonly used approach to enhanced recovery. The dominant factors for total oil recovery are the reservoir temperature, reservoir pressure, crude oil and water composition. In this study, the production under water injection in Soroosh, one of the southern Iranian heavy oil field has been simulated (the fluid properties are focused). In order to reveal the dominant factors in this production process, the sensitivity analysis has been done for the following effective factors, fluid viscosity, initial water saturation, gravity force and injection well strategy. It is crystal clear that the study of the dominant factors in production processes will help the engineers to design the best production mechanisms in our numerous hydrocarbon reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20injection" title="water injection">water injection</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20water%20saturation" title=" initial water saturation"> initial water saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20viscosity" title=" oil viscosity"> oil viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20force" title=" gravity force"> gravity force</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20well%20strategy" title=" injection well strategy"> injection well strategy</a> </p> <a href="https://publications.waset.org/abstracts/27169/water-injection-in-one-of-the-southern-iranian-oil-field-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4749</span> Study on the Thermal Mixing of Steam and Coolant in the Hybrid Safety Injection Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Uk%20Ryu">Sung Uk Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung%20Gook%20Jeon"> Byoung Gook Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Jae%20Yi"> Sung-Jae Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Euh"> Dong-Jin Euh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In such passive safety injection systems in the nuclear power plant as Core Makeup Tank (CMT) and Hybrid Safety Injection Tank, various thermal-hydraulic phenomena including the direct contact condensation of steam and the thermal stratification of coolant occur. These phenomena are also closely related to the performance of the system. Depending on the condensation rate of the steam injected to the tank, the injection of the coolant and pressure equalizing timings of the tank are decided. The steam injected to the tank from the upper nozzle penetrates the coolant and induces a direct contact condensation. In the present study, the direct contact condensation of steam and the thermal mixing between the steam and coolant were examined by using the Particle Image Velocimetry (PIV) technique. Especially, by altering the size of the nozzle from which the steam is injected, the influence of steam injection velocity on the thermal mixing with coolant and condensation shall be comprehended, while also investigating the influence of condensation on the pressure variation inside the tank. Even though the amounts of steam inserted were the same in three different nozzle size conditions, it was found that the velocity of pressure rise becomes lower as the steam injection area decreases. Also, as the steam injection area increases, the thickness of the zone within which the coolant’s temperature decreases. Thereby, the amount of steam condensed by the direct contact condensation also decreases. The results derived from the present study can be utilized for the detailed design of a passive safety injection system, as well as for modeling the direct contact condensation triggered by the steam jet’s penetration into the coolant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20safety%20injection%20systems" title="passive safety injection systems">passive safety injection systems</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20penetration" title=" steam penetration"> steam penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20contact%20condensation" title=" direct contact condensation"> direct contact condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a> </p> <a href="https://publications.waset.org/abstracts/62498/study-on-the-thermal-mixing-of-steam-and-coolant-in-the-hybrid-safety-injection-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4748</span> Effect of Injection Moulding Process Parameter on Tensile Strength of Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjeet%20Singh">Gurjeet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Pradhan"> M. K. Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Verma"> Ajay Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. So to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Here Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20moulding" title="injection moulding">injection moulding</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-propylene" title=" poly-propylene"> poly-propylene</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi" title=" Taguchi"> Taguchi</a> </p> <a href="https://publications.waset.org/abstracts/39417/effect-of-injection-moulding-process-parameter-on-tensile-strength-of-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4747</span> Oil Recovery Study by Low Temperature Carbon Dioxide Injection in High-Pressure High-Temperature Micromodels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Hamdi">Zakaria Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariyamni%20Awang"> Mariyamni Awang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the past decades, CO<sub>2</sub> flooding has been used as a successful method for enhanced oil recovery (EOR). However, high mobility ratio and fingering effect are considered as important drawbacka of this process. Low temperature injection of CO<sub>2</sub> into high temperature reservoirs may improve the oil recovery, but simulating multiphase flow in the non-isothermal medium is difficult, and commercial simulators are very unstable in these conditions. Furthermore, to best of authors’ knowledge, no experimental work was done to verify the results of the simulations and to understand the pore-scale process. In this paper, we present results of investigations on injection of low temperature CO<sub>2</sub> into a high-pressure high-temperature micromodel with injection temperature range from 34 to 75 °F. Effect of temperature and saturation changes of different fluids are measured in each case. The results prove the proposed method. The injection of CO<sub>2</sub> at low temperatures increased the oil recovery in high temperature reservoirs significantly. Also, CO<sub>2</sub> rich phases available in the high temperature system can affect the oil recovery through the better sweep of the oil which is initially caused by penetration of LCO<sub>2</sub> inside the system. Furthermore, no unfavorable effect was detected using this method. Low temperature CO<sub>2</sub> is proposed to be used as early as secondary recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title="enhanced oil recovery">enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20flooding" title=" CO₂ flooding"> CO₂ flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=micromodel%20studies" title=" micromodel studies"> micromodel studies</a>, <a href="https://publications.waset.org/abstracts/search?q=miscible%20flooding" title=" miscible flooding"> miscible flooding</a> </p> <a href="https://publications.waset.org/abstracts/71727/oil-recovery-study-by-low-temperature-carbon-dioxide-injection-in-high-pressure-high-temperature-micromodels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4746</span> Effect of Injection Strategy on the Performance and Emission of E85 in a Heavy-Duty Engine under Partially Premixed Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Aziz">Amir Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Tuner"> Martin Tuner</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Verhelst"> Sebastian Verhelst</a>, <a href="https://publications.waset.org/abstracts/search?q=Oivind%20Andersson"> Oivind Andersson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partially Premixed Combustion (PPC) is a combustion concept which aims to simultaneously achieve high efficiency and low engine-out emissions. Extending the ignition delay to promote the premixing, has been recognized as one of the key factor to achieve PPC. Fuels with high octane number have been proven to be a good candidates to extend the ignition delay. In this work, E85 (85% ethanol) has been used as a PPC fuel. The aim of this work was to investigate a suitable injection strategy for PPC combustion fueled with E85 in a single-cylinder heavy-duty engine. Single and double injection strategy were applied with different injection timing and the ratio between different injection pulses was varied. The performance and emission were investigated at low load. The results show that the double injection strategy should be preferred for PPC fueled with E85 due to low emissions and high efficiency, while keeping the pressure raise rate at very low levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E85" title="E85">E85</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20premixed%20combustion" title=" partially premixed combustion"> partially premixed combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20strategy" title=" injection strategy"> injection strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20emission" title=" performance and emission"> performance and emission</a> </p> <a href="https://publications.waset.org/abstracts/85102/effect-of-injection-strategy-on-the-performance-and-emission-of-e85-in-a-heavy-duty-engine-under-partially-premixed-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4745</span> Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Banholzer">Matthias Banholzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hagen%20M%C3%BCller"> Hagen Müller</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Pfitzner"> Michael Pfitzner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20gas%20injection" title="high pressure gas injection">high pressure gas injection</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20solver" title=" hybrid solver"> hybrid solver</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20injection" title=" hydrogen injection"> hydrogen injection</a>, <a href="https://publications.waset.org/abstracts/search?q=needle%20opening%20process" title=" needle opening process"> needle opening process</a>, <a href="https://publications.waset.org/abstracts/search?q=real-gas%20thermodynamics" title=" real-gas thermodynamics"> real-gas thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/70970/numerical-investigation-of-the-needle-opening-process-in-a-high-pressure-gas-injector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4744</span> Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Najipour">Armin Najipour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Fattahi"> A. M. Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a> </p> <a href="https://publications.waset.org/abstracts/39189/experimental-study-on-hardness-and-impact-strength-of-polyethylenecarbon-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4743</span> Effect pH on Chemical and Physical Properties of Iranian Fetta Cheese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dezyani">M. Dezyani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ezzati"> R. Ezzati</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mirzaei"> H. Mirzaei </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this study were to determine the effect of pH on chemical, structural, and functional properties of Fetta cheese, and to relate changes in structure to changes in cheese unctionality. Fetta cheese was obtained from a cheese-production facility and stored at 4°C. Ten days after manufacture, the cheese was cut into blocks that were vacuum-packaged and stored for 4 d at 4°C. Cheese blocks were then high-pressure injected one, three, or five times with a 20% (wt/wt) glucono-δ-lactone solution. Successive injections were performed 24 h apart. Cheese blocks were then analyzed after 40 d of storage at 4°C. Acidulant injection decreased cheese pH from 5.3 in the uninjected cheese to 4.7 after five injections. Decreased pH increased the content of soluble calcium and slightly decreased the total calcium content of cheese. At the highest level, injection of acidulant promoted syneresis. Thus, after five injections, the moisture content of cheese decreased from 34 to 31%, which esulted in decreased cheese weight. Lowered cheese pH, 4.7 compared with 5.3, also resulted in contraction of the protein matrix. Acidulant injection decreased cheese hardness and cohesiveness, and the cheese became more crumbly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium" title="calcium">calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=high-pressure%20injection" title=" high-pressure injection"> high-pressure injection</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20matrix" title=" protein matrix"> protein matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=syneresis" title=" syneresis"> syneresis</a> </p> <a href="https://publications.waset.org/abstracts/26293/effect-ph-on-chemical-and-physical-properties-of-iranian-fetta-cheese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4742</span> Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheraz%20Ahmad">Sheraz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Yiming"> Li Yiming</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20XiangFang"> Li XiangFang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xia%20Wei"> Xia Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeen%20Chen"> Zeen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20hydrates" title="CO₂ hydrates">CO₂ hydrates</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20injection" title=" CO₂ injection"> CO₂ injection</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20Phase%20transition" title=" CO₂ Phase transition"> CO₂ Phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20sequestration" title=" CO₂ sequestration"> CO₂ sequestration</a> </p> <a href="https://publications.waset.org/abstracts/107741/numerical-analysis-of-co2-storage-as-clathrates-in-depleted-natural-gas-hydrate-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4741</span> Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen">Joseph C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Karthik%20Jakka"> Venkata Karthik Jakka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding%20processes" title="injection molding processes">injection molding processes</a>, <a href="https://publications.waset.org/abstracts/search?q=taguchi%20parameter%20design" title=" taguchi parameter design"> taguchi parameter design</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=high-density%20polyethylene%28HDPE%29" title=" high-density polyethylene(HDPE)"> high-density polyethylene(HDPE)</a> </p> <a href="https://publications.waset.org/abstracts/91601/optimization-of-two-quality-characteristics-in-injection-molding-processes-via-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4740</span> Study on Inverse Solution from Remote Displacements to Reservoir Process during Flow Injection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumei%20Cai">Sumei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li"> Hong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Either during water or gas injection into reservoir, in order to understand the areal flow pressure distribution underground, associated bounding deformation is prevalently monitored by ground or downhole tiltmeters. In this paper, an inverse solution to elastic response of far field displacements induced by reservoir pressure change due to flow injection was studied. Furthermore, the fundamental theory on inverse solution to elastic problem as well as its spatial smoothing approach is presented. Taking advantage of source code development based on Boundary Element Method, numerical analysis on the monitoring data of ground surface displacements to further understand the behavior of reservoir process was developed. Numerical examples were also conducted to verify the effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20displacement" title="remote displacement">remote displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title=" boundary element method"> boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=BEM" title=" BEM"> BEM</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20process" title=" reservoir process"> reservoir process</a> </p> <a href="https://publications.waset.org/abstracts/99769/study-on-inverse-solution-from-remote-displacements-to-reservoir-process-during-flow-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4739</span> Gas Flotation Unit in Kuwait Oil Company Operations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homoud%20Bourisli">Homoud Bourisli</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitham%20Safar"> Haitham Safar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil is one of main resources of energy in the world. As conventional oil is drying out, oil recovery is crucial to maintain the same level of oil production. Since water injection is one of the commonly used methods to increase and maintain pressure in oil wells, oil-water separation processes of the water associated with oil production for water injection oil recovery is very essential. Therefore, Gas Flotation Units are used for oil-water separation to be able to re-inject the treated water back into the wells to increase pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuwait%20oil%20company" title="Kuwait oil company">Kuwait oil company</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20gas%20flotation%20unit" title=" dissolved gas flotation unit"> dissolved gas flotation unit</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20gas%20flotation%20unit" title=" induced gas flotation unit"> induced gas flotation unit</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-water%20separation" title=" oil-water separation"> oil-water separation</a> </p> <a href="https://publications.waset.org/abstracts/29539/gas-flotation-unit-in-kuwait-oil-company-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4738</span> Development of Swing Valve for Gasoline Turbocharger Using Hybrid Metal Injection Molding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20So">B. S. So</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Yoon"> Y. H. Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Jung"> J. O. Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Bae"> K. S. Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal Injection Molding (MIM) is a technology that combines powder metallurgy and injection molding. Particularly, it is widely applied to the manufacture of precision mobile parts and automobile turbocharger parts because compact precision parts with complicated three-dimensional shapes that are difficult to machining are formed into a large number of finished products. The swing valve is a valve that adjusts the boost pressure of the turbocharger. Since the head portion is exposed to the harsh temperature condition of about 900 degrees in the gasoline GDI engine, it is necessary to use Inconel material with excellent heat resistance and abrasion resistance, resulting in high manufacturing cost. In this study, we developed a swing valve using a metal powder injection molding based hybrid material (Inconel 713C material with heat resistance is applied to the head part, and HK30 material with low price is applied to the rest of the body part). For this purpose, the process conditions of the metal injection molding were optimized to minimize the internal defects, and the effectiveness was confirmed by the fracture strength and fatigue test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20metal%20injection%20molding" title="hybrid metal injection molding">hybrid metal injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=swing%20valve" title=" swing valve"> swing valve</a>, <a href="https://publications.waset.org/abstracts/search?q=turbocharger" title=" turbocharger"> turbocharger</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20injection" title=" double injection"> double injection</a> </p> <a href="https://publications.waset.org/abstracts/95552/development-of-swing-valve-for-gasoline-turbocharger-using-hybrid-metal-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4737</span> Effect of Injection Pressure and Fuel Injection Timing on Emission and Performance Characteristics of Karanja Biodiesel and its Blends in CI Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohan%20H.">Mohan H.</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Elajchet%20Senni"> C. Elajchet Senni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present of high energy consumption in every sphere of life, renewable energy sources are emerging as alternative to conventional fuels for energy security, mitigating green house gas emission and climate change. There has been a world wide interest in searching for alternatives to petroleum derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar, injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But, high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar ,Injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Various performance, combustion and emission characteristics such as thermal efficiency, and brake specific fuel consumption, maximum cylinder pressure, instantaneous heat release, cumulative heat release with respect to crank angle, ignition lag, combustion duration, HC, NOx, CO, exhaust temperature and smoke intensity were measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=karanja%20oil" title="karanja oil">karanja oil</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20pressure" title=" injection pressure"> injection pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20timing" title=" injection timing"> injection timing</a>, <a href="https://publications.waset.org/abstracts/search?q=karanja%20oil%20methyl%20ester" title=" karanja oil methyl ester"> karanja oil methyl ester</a> </p> <a href="https://publications.waset.org/abstracts/27143/effect-of-injection-pressure-and-fuel-injection-timing-on-emission-and-performance-characteristics-of-karanja-biodiesel-and-its-blends-in-ci-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4736</span> Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antoaneta%20Stefanova">Antoaneta Stefanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Rositsa%20Gencheva"> Rositsa Gencheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavlin%20Groudev"> Pavlin Groudev </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late ‘in-vessel’ phase. The purpose of the analysis is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. For this purpose has been simulated an SBO scenario with injection of cold water by a high pressure pump (HPP) in cold leg at different stages of core degradation. The times for HPP injection were chosen based on previously performed investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VVER" title="VVER">VVER</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20action%20validation" title=" operator action validation"> operator action validation</a>, <a href="https://publications.waset.org/abstracts/search?q=reflooding%20of%20overheated%20reactor%20core" title=" reflooding of overheated reactor core"> reflooding of overheated reactor core</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTEC%20computer%20code" title=" ASTEC computer code"> ASTEC computer code</a> </p> <a href="https://publications.waset.org/abstracts/36002/study-of-the-late-phase-of-core-degradation-during-reflooding-by-safety-injection-system-for-vver1000-with-astecv2-computer-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4735</span> Gas Injection Transport Mechanism for Shale Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinedu%20Ejike">Chinedu Ejike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The United States is now energy self-sufficient due to the production of shale oil reserves. With more than half of it being tapped daily in the United States, these unconventional reserves are massive and provide immense potential for future energy demands. Drilling horizontal wells and fracking are the primary methods for developing these reserves. Regrettably, recovery efficiency is rarely greater than 10%. As a result, optimizing recuperation offers a significant benefit. Huff and puff gas flooding and cyclic gas injection have all been demonstrated to be more successful than tapping the remaining oil in place. Methane, nitrogen, and carbon (IV) oxide, among other high-pressure gases, can be injected. Operators use Darcy's law to assess a reservoir's productive capacity, but they are unaware that the law may not apply to shale oil reserves. This is due to the fact that, unlike pressure differences alone, diffusion, concentration, and gas selection all play a role in the flow of gas injected into the wellbore. The reservoir drainage and oil sweep efficiency rates are determined by the transport method. This research assesses the parameters that influence the gas injection transport mechanism. Understanding the process causing these factors could accelerate recovery by two to three times, according to peer-reviewed studies and effective field testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title="enhanced oil recovery">enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20injection" title=" gas injection"> gas injection</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20oil" title=" shale oil"> shale oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20mechanism" title=" transport mechanism"> transport mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20reserve" title=" unconventional reserve"> unconventional reserve</a> </p> <a href="https://publications.waset.org/abstracts/141626/gas-injection-transport-mechanism-for-shale-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=injection%20pressure&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>