CINXE.COM
Search results for: redox gradients
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: redox gradients</title> <meta name="description" content="Search results for: redox gradients"> <meta name="keywords" content="redox gradients"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="redox gradients" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="redox gradients"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 344</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: redox gradients</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Transformation of Iopromide Due to Redox Gradients in Sediments of the Hyporheic Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niranjan%20Mukherjee">Niranjan Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Burga%20Braun"> Burga Braun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrich%20Szewzyk"> Ulrich Szewzyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recalcitrant pharmaceuticals are increasingly found in urban water systems forced by demographic changes. The groundwater-surface water interface, or the hyporheic zone, is known for its impressive self-purification capacity of water bodies. Redox gradients present in this zone provide a wide range of electron acceptors and harbour diverse microbial communities. Biotic transformations of pharmaceuticals in this zone have been demonstrated, but not much information is available on the kind of communities bringing about these transformations. Therefore, bioreactors using sediment from the hyporheic zone of a river in Berlin were set up and fed with iopromide, a recalcitrant iodinated X-ray contrast medium. Iopromide, who’s many oxic and anoxic transformation products have been characterized, was shown to be transformed in such a bioreactor as it passes along the gradient. Many deiodinated transformation products of iopromide could be identified at the outlet of the reactor. In our experiments, it was seen that at the same depths of the column, the transformation of iopromide increased over time. This could be an indication of the microbial communities in the sediment adapting to iopromide. The hyporheic zone, with its varying redox conditions, mainly due to the upwelling and downwelling of surface and groundwater levels, could potentially provide microorganisms with conditions for the complete transformation of recalcitrant pharmaceuticals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iopromide" title="iopromide">iopromide</a>, <a href="https://publications.waset.org/abstracts/search?q=hyporheic%20zone" title=" hyporheic zone"> hyporheic zone</a>, <a href="https://publications.waset.org/abstracts/search?q=recalcitrant%20pharmaceutical" title=" recalcitrant pharmaceutical"> recalcitrant pharmaceutical</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20gradients" title=" redox gradients"> redox gradients</a> </p> <a href="https://publications.waset.org/abstracts/114009/transformation-of-iopromide-due-to-redox-gradients-in-sediments-of-the-hyporheic-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> High-Performance Non-aqueous Organic Redox Flow Battery in Ambient Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Mohapatra">S. K. Mohapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ramanujam"> K. Ramanujam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sankararaman"> S. Sankararaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Redox flow battery (RFB) is a preferred energy storage option for grid stabilisation and energy arbitrage as it offers energy and power decoupling. In contrast to aqueous RFBs (ARFBs), nonaqueous RFBs (NARFBs) could offer high energy densities due to the wider electrochemical window of the solvents used, which could handle high and low voltage organic redox couples without undergoing electrolysis. In this study, a RFB based on benzyl viologen hexafluorophosphate [BV(PF6)2] as anolyte and N-hexyl phenothiazine [HPT] as catholyte demonstrated. A cell operated with mixed electrolyte (1:1) containing 0.2 M [BV(PF₆)₂] and 0.2 M [HPT] delivered a coulombic efficiency (CE) of 95.3 % and energy efficiency (EE) 53%, with nearly 68.9% material utilisation at 40 mA cm-2 current density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-aqueous%20redox%20flow%20battery" title="non-aqueous redox flow battery">non-aqueous redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=benzyl%20viologen" title=" benzyl viologen"> benzyl viologen</a>, <a href="https://publications.waset.org/abstracts/search?q=N-hexyl%20phenothiazine" title=" N-hexyl phenothiazine"> N-hexyl phenothiazine</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20electrolyte" title=" mixed electrolyte"> mixed electrolyte</a> </p> <a href="https://publications.waset.org/abstracts/165857/high-performance-non-aqueous-organic-redox-flow-battery-in-ambient-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Khor">A. C. Khor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Mohamed"> M. R. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Sulaiman"> M. H. Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Daud"> M. R. Daud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20flow%20battery" title=" redox flow battery"> redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium" title=" vanadium"> vanadium</a> </p> <a href="https://publications.waset.org/abstracts/10696/packaging-improvement-for-unit-cell-vanadium-redox-flow-battery-v-rfb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> Unraveling Biostimulation of Decolorized Mediators for Microbial Fuel Cell-Aided Textile Dye Decontamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei-Lin%20Yueh">Pei-Lin Yueh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bor-Yann%20Chen"> Bor-Yann Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuan-Chung%20Hsueh"> Chuan-Chung Hsueh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This first-attempt study revealed that decolorized intermediates of azo dyes could act as redox mediators to assist wastewater (WW) decolorization due to enhancement of electron-transport phenomena. Electrochemical impedance spectra indicated that hydroxyl and amino-substituent(s) were functional group(s) as redox-mediator(s). As azo dyes are usually multiple benzene rings structured, their derived decolorized intermediates are likely to play roles of electron shuttles due to lower barrier of energy gap for electron shuttling. According to cyclic voltammetric profiles, redox-mediating characteristics of decolorized intermediates of azo dyes (e.g., RBu171, RR198, RR141, and RBk5) were clearly disclosed. With supplementation of biodecolorized metabolites of RR141 and 198, decolorization performance of could be evidently augmented. This study also suggested the optimal modes of microbial fuel cell (MFC)-assisted WW decolorization would be plug-flow or batch mode of operation with no mix. Single chamber-MFCs would be more favourable than double chamber MFCs due to non-mixing contacting reactor scheme for operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redox%20mediators" title="redox mediators">redox mediators</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20decolorization" title=" dye decolorization"> dye decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity%20generation" title=" bioelectricity generation"> bioelectricity generation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cells" title=" microbial fuel cells"> microbial fuel cells</a> </p> <a href="https://publications.waset.org/abstracts/39399/unraveling-biostimulation-of-decolorized-mediators-for-microbial-fuel-cell-aided-textile-dye-decontamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Dimensionally Stable Anode as a Bipolar Plate for Vanadium Redox Flow Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaejin%20Han">Jaejin Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsub%20Choi"> Jinsub Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vanadium redox flow battery (VRFB) is a type of redox flow battery which uses vanadium ionic solution as electrolyte. Inside the VRFB, 2.5mm thickness of graphite is generally used as bipolar plate for anti-corrosion of current collector. In this research, thick graphite bipolar plate was substituted by 0.126mm thickness of dimensionally stable anode which was coated with IrO2 on an anodic nanotubular TiO2 substrate. It can provide dimensional advantage over the conventional graphite when the VRFB is used as multi-stack. Ir was coated by using spray coating method in order to enhance electric conductivity. In this study, various electrochemical characterizations were carried out. Cyclic voltammetry data showed activation of Ir in the positive electrode of VRFB. In addition, polarization measurements showed Ir-coated DSA had low overpotential in the positive electrode of VRFB. In cell test results, the DSA-used VRFB showed better efficiency than graphite-used VRFB in voltage and overall efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bipolar%20plate" title="bipolar plate">bipolar plate</a>, <a href="https://publications.waset.org/abstracts/search?q=DSA%20%28dimensionally%20stable%20anode%29" title=" DSA (dimensionally stable anode)"> DSA (dimensionally stable anode)</a>, <a href="https://publications.waset.org/abstracts/search?q=iridium%20oxide%20coating" title=" iridium oxide coating"> iridium oxide coating</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanotubes" title=" TiO2 nanotubes"> TiO2 nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=VRFB%20%28vanadium%20redox%20flow%20battery%29" title=" VRFB (vanadium redox flow battery)"> VRFB (vanadium redox flow battery)</a> </p> <a href="https://publications.waset.org/abstracts/36558/dimensionally-stable-anode-as-a-bipolar-plate-for-vanadium-redox-flow-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barun%20Chakrabarti">Barun Chakrabarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Nir"> Dan Nir</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Yufit"> Vladimir Yufit</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Aravind"> P. V. Aravind</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20Brandon"> Nigel Brandon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-vanadium%20redox%20flow%20batteries" title="all-vanadium redox flow batteries">all-vanadium redox flow batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20paper%20electrodes" title=" carbon paper electrodes"> carbon paper electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoretic%20deposition" title=" electrophoretic deposition"> electrophoretic deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a> </p> <a href="https://publications.waset.org/abstracts/71118/enhanced-performance-of-an-all-vanadium-redox-flow-battery-employing-graphene-modified-carbon-paper-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kafi">A. K. M. Kafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Nina"> S. N. Nina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20M.%20Yusoff"> Mashitah M. Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redox%20enzyme" title="redox enzyme">redox enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensors" title=" biosensors"> biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20communication" title=" electrical communication"> electrical communication</a> </p> <a href="https://publications.waset.org/abstracts/24276/direct-electrical-communication-of-redox-enzyme-based-on-3-dimensional-cross-linked-redox-enzymenanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kafi">A. K. M. Kafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Nina"> S. N. Nina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20M.%20Yusoff"> Mashitah M. Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20enzyme" title=" redox enzyme"> redox enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=thiol-modified%20Au%20surface" title=" thiol-modified Au surface"> thiol-modified Au surface</a> </p> <a href="https://publications.waset.org/abstracts/16147/direct-electrical-communication-of-redox-enzyme-based-on-3-dimensional-crosslinked-redox-enzymecarbon-nanotube-on-a-thiol-modified-au-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Modification of Polyolefin Membrane Using Supercritical Carbon Dioxide for Redox Flow Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vadim%20V.%20Zefirov">Vadim V. Zefirov</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20E.%20Sizov"> Victor E. Sizov</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20A.%20Pigaleva"> Marina A. Pigaleva</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20V.%20Elmanovich"> Igor V. Elmanovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20S.%20Kondratenko"> Mikhail S. Kondratenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Marat%20O.%20Gallyamov"> Marat O. Gallyamov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a novel method for treating porous hydrophobic polyolefin membranes using supercritical carbon dioxide that allows usage of the modified membrane in redox flow batteries with an aqueous electrolyte. Polyolefin membranes are well known and widely used, however, they cannot be used as separators in redox flow batteries with an aqueous electrolyte since they have insufficient wettability, and therefore do not provide sufficient proton conductivity. The main aim of the presented work was the development of hydrophilic composites based on cheap membranes and precursors. Supercritical fluid was used as a medium for the deposition of the hydrophilic phase on the hydrophobic surface of the membrane. Due to the absence of negative capillary effects in a supercritical medium, a homogeneous composite is obtained as a result of synthesis. The in-situ synthesized silicon oxide nanoparticles and the chitosan polymer layer act as the hydrophilic phase and not only increase the affinity of the membrane towards the electrolyte, but also reduce the pore size of the polymer matrix, which positively affects the ion selectivity of the membrane. The composite material obtained as a result of synthesis has enhanced hydrophilic properties and is capable of providing proton conductivity in redox flow batteries. The morphology of the obtained composites was characterized by electron microscopy. To analyze the phase composition, infrared spectroscopy was used. The hydrophilic properties were studied by water contact angle measurements. In addition, the proton conductivity and ion selectivity of the obtained samples were studied, and tests in real redox flow batteries were performed. As a result, modified membrane was characterised in detail and moreover it was shown that modified cheap polyolefin membranes have pronounced proton conductivity and high ion selectivity, so their performance in a real redox flow battery approaches expensive commercial analogues, reaching 70% of energy efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20membrane" title=" polymer membrane"> polymer membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20flow%20batteries" title=" redox flow batteries"> redox flow batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticles" title=" silica nanoparticles"> silica nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluid" title=" supercritical fluid "> supercritical fluid </a> </p> <a href="https://publications.waset.org/abstracts/122125/modification-of-polyolefin-membrane-using-supercritical-carbon-dioxide-for-redox-flow-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Electrochemical Behavior of Iron (III) Complexes with Catechol at Different pH </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Salim%20Reza">K. M. Salim Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hafiz%20Mia"> M. Hafiz Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Aziz"> M. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Motin"> M. A. Motin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasem"> M. A. Hasem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The redox behavior of Fe (III) in presence of Catechol (Cc) has been carried out in buffer solution of different pH, scan rate, variation of Fe (III) concentration and Cc concentration. Uncoordinated Fe(III) or Cc has been found to undergo reversible electrode reaction whereas coordinated Fe-Cc is irreversible. The peak positions of the voltammogram of Fe- Cc shifted with respect to that of free Fe (III) or Cc and also developed a new peak at 0.12 V. The peak current of Fe-Cc decreases significantly compared with that of free Fe(III) or Cc in the same experimental conditions. These behaviors ascribed the formation of complex of Fe with Cc. The complex was formed either by the addition of Cc into Fe(III) or by the addition of Fe(III) into Cc. The effect of pH of Fe-Cc complex was studied by varying pH from 2 to 8.5. The electro chemical oxidation of Fe-Cc is facilitated in lower pH media. The slope of the plots of anodic peak current, Ep against pH of Fe-Cc complexe is 30 mV, indicates that the oxidation of Fe-Cc complexes proceeded via the 2e−/2H+ processes. The proportionality of the anodic and cathodic peak currents with square root of scan rate of suggests that the peak current of the different complexes at each redox reaction is controlled by diffusion process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title="cyclic voltammetry">cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-Cc%20Complex" title=" Fe-Cc Complex"> Fe-Cc Complex</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20effect" title=" pH effect"> pH effect</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20interaction" title=" redox interaction"> redox interaction</a> </p> <a href="https://publications.waset.org/abstracts/19175/electrochemical-behavior-of-iron-iii-complexes-with-catechol-at-different-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Preparation and Performance of Polyphenylene Oxide-Based Anion Exchange Membrane for Vanadium Redox Flow Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mi-Jung%20Park">Mi-Jung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Hwa%20Lim"> Min-Hwa Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Young%20Jung"> Ho-Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A polyphenylene oxide (PPO)-based anion exchange membrane based on the functionalization of bromomethylated PPO using 1-methylimdazole was fabricated for vanadium redox flow application. The imidazolium-bromomethylated PPO (Im-bPPO) showed lower permeability VO2+ ions (2.9×10⁻¹⁴ m²/sec), compared to Nafion 212 (2.3×10⁻¹² m²/sec) and FAP-450 (7.9×10⁻¹⁴ m²/sec). Even though the Im-bPPO membrane has higher permeability, the energy efficiency of the VRFB with the Im-bPPO membrane was slightly lower than that of Nafion and FAP-450. The Im-bPPO membrane exhibits good voltage efficiency compared to FAP-450 and Nafion 212 because of its better ion conductivity. The Im-bPPo membrane showed up good performance, but a decline in performance at later cycles was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anion%20exchange%20membranes" title="anion exchange membranes">anion exchange membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium%20redox%20flow%20battery" title=" vanadium redox flow battery"> vanadium redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenylene%20oxide" title=" polyphenylene oxide"> polyphenylene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency%20%28EE%29" title=" energy efficiency (EE)"> energy efficiency (EE)</a> </p> <a href="https://publications.waset.org/abstracts/49988/preparation-and-performance-of-polyphenylene-oxide-based-anion-exchange-membrane-for-vanadium-redox-flow-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Non–Geometric Sensitivities Using the Adjoint Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Hayashi">Marcelo Hayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Lima"> João Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Chieregatti"> Bruno Chieregatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernani%20Volpe"> Ernani Volpe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adjoint method has been used as a successful tool to obtain sensitivity gradients in aerodynamic design and optimisation for many years. This work presents an alternative approach to the continuous adjoint formulation that enables one to compute gradients of a given measure of merit with respect to control parameters other than those pertaining to geometry. The procedure is then applied to the steady 2–D compressible Euler and incompressible Navier–Stokes flow equations. Finally, the results are compared with sensitivities obtained by finite differences and theoretical values for validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjoint%20method" title="adjoint method">adjoint method</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20theory" title=" sensitivity theory"> sensitivity theory</a>, <a href="https://publications.waset.org/abstracts/search?q=non-geometric%20sensitivities" title=" non-geometric sensitivities"> non-geometric sensitivities</a> </p> <a href="https://publications.waset.org/abstracts/42509/non-geometric-sensitivities-using-the-adjoint-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Reduction of Chlordecone Rates in Bioelectrochemicals Systems from Water and Sediment Swamp Mangrove in Absence of a Redox Mediator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malory%20Beaujolais">Malory Beaujolais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chlordecone is an organochlorine pesticide with a bishomocubane structure which led to high stability in organic matter. Microbial fuel cell is a type of electrochemical system that can convert organic matters into electricity thanks to electroactive bacteria. This technique has been used with mangrove swamp from Martinique to try to reduce chlordecone rates. Those experiments led to characterize the behavior of the electroactive biofilm formed at the cathode, without added redox mediator. The designed bioelectrochemical system seems to provide the necessary conditions for chlordecone degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioelectrochemistry" title="bioelectrochemistry">bioelectrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=chlordecone" title=" chlordecone"> chlordecone</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20swamp" title=" mangrove swamp"> mangrove swamp</a> </p> <a href="https://publications.waset.org/abstracts/186572/reduction-of-chlordecone-rates-in-bioelectrochemicals-systems-from-water-and-sediment-swamp-mangrove-in-absence-of-a-redox-mediator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Chemical Stability and Characterization of Ion Exchange Membranes for Vanadium Redox Flow Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Hwa%20Lim">Min-Hwa Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Jeong%20Park"> Mi-Jeong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Young%20Jung"> Ho-Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Imidazolium-brominated polyphenylene oxide (Im-bPPO) is based on the functionalization of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) using 1-Methylimdazole. For the purpose of long cycle life of vanadium redox battery (VRB), the chemical stability of Im-bPPO, sPPO (sulfonated 2,6-dimethyl-1,4-phenylene oxide) and Fumatech membranes were evaluated firstly in the 0.1M vanadium (V) solution dissolved in 3M sulfuric acid (H2SO4) for 72h, and UV analyses of the degradation products proved that ether bond in PPO backbone was vulnerable to be attacked by vanadium (V) ion. It was found that the membranes had slightly weight loss after soaking in 2 ml distilled water included in STS pressure vessel for 1 day at 200◦C. ATR-FT-IR data indicated before and after the degradation of the membranes. Further evaluation on the degradation mechanism of the menbranes were carried out in Fenton’s reagent solution for 72 h at 50 ◦C and analyses of the membranes before and after degradation confirmed the weight loss of the membranes. The Fumatech membranes exhibited better performance than AEM and CEM, but Nafion 212 still suffers chemical degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vanadium%20redox%20flow%20battery" title="vanadium redox flow battery">vanadium redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange%20membrane" title=" ion exchange membrane"> ion exchange membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20stability" title=" chemical stability"> chemical stability</a> </p> <a href="https://publications.waset.org/abstracts/44968/chemical-stability-and-characterization-of-ion-exchange-membranes-for-vanadium-redox-flow-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saumya%20Srivastava">Saumya Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Rina%20Maiti"> Rina Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gradient" title="gradient">gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20detection" title=" vehicle detection"> vehicle detection</a>, <a href="https://publications.waset.org/abstracts/search?q=histograms%20of%20oriented%20gradients" title=" histograms of oriented gradients"> histograms of oriented gradients</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/156497/multi-vehicle-detection-using-histogram-of-oriented-gradients-features-and-adaptive-sliding-window-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Heteroatom Doped Binary Metal Oxide Modified Carbon as a Bifunctional Electrocatalysts for all Vanadium Redox Flow Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anteneh%20Wodaje%20Bayeh">Anteneh Wodaje Bayeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Manaye%20Kabtamu"> Daniel Manaye Kabtamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Hao%20Wang"> Chen-Hao Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of the most promising electrochemical energy storage systems, vanadium redox flow batteries (VRFBs) have received increasing attention owing to their attractive features for largescale storage applications. However, their high production cost and relatively low energy efficiency still limit their feasibility. For practical implementation, it is of great interest to improve their efficiency and reduce their cost. One of the key components of VRFBs that can greatly influence the efficiency and final cost is the electrode, which provide the reactions sites for redox couples (VO²⁺/VO₂ + and V²⁺/V³⁺). Carbon-based materials are considered to be the most feasible electrode materials in the VRFB because of their excellent potential in terms of operation range, good permeability, large surface area, and reasonable cost. However, owing to limited electrochemical activity and reversibility and poor wettability due to its hydrophobic properties, the performance of the cell employing carbon-based electrodes remained limited. To address the challenges, we synthesized heteroatom-doped bimetallic oxide grown on the surface of carbon through the one-step approach. When applied to VRFBs, the prepared electrode exhibits significant electrocatalytic effect toward the VO²⁺/VO₂ + and V³⁺/V²⁺ redox reaction compared with that of pristine carbon. It is found that the presence of heteroatom on metal oxide promotes the absorption of vanadium ions. The controlled morphology of bimetallic metal oxide also exposes more active sites for the redox reaction of vanadium ions. Hence, the prepared electrode displays the best electrochemical performance with energy and voltage efficiencies of 74.8% and 78.9%, respectively, which is much higher than those of 59.8% and 63.2% obtained from the pristine carbon at high current density. Moreover, the electrode exhibit durability and stability in an acidic electrolyte during long-term operation for 1000 cycles at the higher current density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VRFB" title="VRFB">VRFB</a>, <a href="https://publications.waset.org/abstracts/search?q=VO%C2%B2%E2%81%BA%2FVO%E2%82%82%20%2B%20and%20V%C2%B3%E2%81%BA%2FV%C2%B2%E2%81%BA%20redox%20couples" title=" VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples"> VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20felt" title=" graphite felt"> graphite felt</a>, <a href="https://publications.waset.org/abstracts/search?q=heteroatom-doping" title=" heteroatom-doping"> heteroatom-doping</a> </p> <a href="https://publications.waset.org/abstracts/162449/heteroatom-doped-binary-metal-oxide-modified-carbon-as-a-bifunctional-electrocatalysts-for-all-vanadium-redox-flow-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Interaction of Histone H1 with Chromatin-associated Protein HMGB1 Studied by Microscale Thermophoresis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20%C5%A0tros">Michal Štros</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Polansk%C3%A1"> Eva Polanská</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%A0%C3%A1rka%20Posp%C3%AD%C5%A1ilov%C3%A1"> Šárka Pospíšilová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. MALDI-TOF analysis revealed that mild oxidization of HMGB1 resulted in a conformational change of the protein due to formation of an intramolecular disulphide bond by opposing Cys23 and Cys45 residues. We have demonstrated that redox state of HMGB1 could significantly modulate the ability of the protein to bind and bend DNA. We have also shown that reduced HMGB1 could easily displace histone H1 from DNA, while oxidized HMGB1 had limited capacity for H1 displacement. Using microscale thermophoresis (MST) we have further studied mechanism of HMGB1 interaction with histone H1 in free solution or when histone H1 was bound to DNA. Our MST analysis indicated that reduced HMGB1 exhibited in free solution > 1000 higher affinity of for H1 (KD ~ 4.5 nM) than oxidized HMGB1 (KD <10 M). Finally, we present a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HMGB1" title="HMGB1">HMGB1</a>, <a href="https://publications.waset.org/abstracts/search?q=histone%20H1" title=" histone H1"> histone H1</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20state" title=" redox state"> redox state</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title=" cross-linking"> cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20bending" title=" DNA bending"> DNA bending</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20end-joining" title=" DNA end-joining"> DNA end-joining</a>, <a href="https://publications.waset.org/abstracts/search?q=microscale%20thermophoresis" title=" microscale thermophoresis"> microscale thermophoresis</a> </p> <a href="https://publications.waset.org/abstracts/17609/interaction-of-histone-h1-with-chromatin-associated-protein-hmgb1-studied-by-microscale-thermophoresis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Effect of Gel Concentration on Physical Properties of an Electrochromic Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharan%20K.%20Indrakar">Sharan K. Indrakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20B.%20Prasad"> Aakash B. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Takshi"> Arash Takshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sesha%20Srinivasan"> Sesha Srinivasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20K.%20Stefanakos"> Elias K. Stefanakos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochromic" title="electrochromic">electrochromic</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20electrolyte" title=" gel electrolyte"> gel electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a> </p> <a href="https://publications.waset.org/abstracts/136080/effect-of-gel-concentration-on-physical-properties-of-an-electrochromic-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> High-performance Supercapacitors Enabled by Highly-porous Date Stone-derived Activated Carbon and Organic Redox Gel Electrolyte</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Dahiru%20Shuaibu">Abubakar Dahiru Shuaibu</a>, <a href="https://publications.waset.org/abstracts/search?q=Atif%20Saeed%20Alzahrani"> Atif Saeed Alzahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Abdul%20Aziz"> Md. Abdul Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction of eco-benign, cost effective, and high-performance supercapacitors with improved electrolytes and hierarchical porous electrodes is necessary for effective energy storage. In this study, a gel type organic redox electrolyte made of polyvinyl alcohol (PVA)-H2SO4 and an organic redox molecule, anthraquinone (PVA-H2SO4-AQ), was prepared by simple solution casting method and was used to construct a symmetric supercapacitor (SSC) with a high BET surface area (1612 m²/g) using activated carbon made from date stones (DSAC). The DSAC was synthesized by simple carbonization method followed by activation with potassium hydroxide. The SSC exhibit a high specific capacitance of 126.5 F/g at 0.5 A/g, as well as a high energy density of 17.5 Wh/kg at a power density of 250 W/kg with high capacitance retention (87%) after 1000 GCD cycles. The present research suggests that adding anthraquinone to a PVA-H2SO4 gel electrolyte improves the performance of the fabricated device significantly as compared to using pristine PVA-H₂SO₄ or 1M H₂SO₄ electrolytes. The research also presents a promising approach for the development of sustainable and eco-benign materials for energy storage applications. The use of date stone waste as a precursor material for activated carbon electrodes presents an opportunity for cost-effective and sustainable energy storage. Overall, the findings of this research have important implications for the future design and fabrication of high-performance and cost-effective supercapacitors <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=date%20stone" title="date stone">date stone</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=anthraquinone" title=" anthraquinone"> anthraquinone</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20gel-electrolyte" title=" redox gel-electrolyte"> redox gel-electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/164506/high-performance-supercapacitors-enabled-by-highly-porous-date-stone-derived-activated-carbon-and-organic-redox-gel-electrolyte" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Energy-Dense and High-Power Li-Cl₂/I₂ Batteries by Reversible Chemical Bonds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei%20Li">Pei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunyi%20Zhi"> Chunyi Zhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conversion-type lithium-ion batteries show great potential as high-energy-density, low-cost and sustainable alternatives to current transition-metal-based intercalation cells. Li-Cl₂/Li⁻I₂ conversion batteries, based on anionic redox reactions of Cl⁻/Cl⁰ or I⁻/I⁰, are highly attractive due to their superior voltage and capacity. However, a redox-active and reversible chlorine cathode has not been developed in organic electrolytes. And thermodynamic instability and shuttling issues of iodine cathodes have plagued the active iodine loading, capacity retention and cyclability. By reversible chemical bonds, we develop reversible chlorine redox reactions in organic electrolytes with interhalogen bonds between I and Cl for Li-I₂ batteries and develop a highly thermally stable I/I₃--bonded organic salts with iodine content up to 80% as cathode materials for the rechargeable Li-I₂ batteries. The demonstration of reversible chemical bonds enabled rechargeable Li-halogen batteries opens a new avenue to develop halogen compound cathodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conversion-type" title="conversion-type">conversion-type</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorine" title=" chlorine"> chlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=halogen%20cathode" title=" halogen cathode"> halogen cathode</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20energy%20density" title=" high energy density"> high energy density</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine" title=" iodine"> iodine</a>, <a href="https://publications.waset.org/abstracts/search?q=interhalogen%20bond" title=" interhalogen bond"> interhalogen bond</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20batteries" title=" lithium-ion batteries"> lithium-ion batteries</a> </p> <a href="https://publications.waset.org/abstracts/167223/energy-dense-and-high-power-li-cl2i2-batteries-by-reversible-chemical-bonds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Copper Oxide Doped Carbon Catalyst for Anodic Half-Cell of Vanadium Redox Flow Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irshad%20U.%20Khan">Irshad U. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanmay%20Paul"> Tanmay Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Murali%20Mohan%20Seepana"> Murali Mohan Seepana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on synthesizing and characterizing a Copper oxide doped Carbon (CuO-C) electrocatalyst for the negative half-cell reactions of Vanadium Redox Flow Battery (VRFB). The CuO was synthesized using a microreactor. The electrocatalyst was characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (SEM). The electrochemical performance was assessed by linear sweep voltammetry (LSV). The findings suggest that the synthesized CuO exhibited favorable crystallinity, morphology, and surface area, which reflects improved cell performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECSA" title="ECSA">ECSA</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title=" electrocatalyst"> electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=Tafel" title=" Tafel"> Tafel</a> </p> <a href="https://publications.waset.org/abstracts/167257/copper-oxide-doped-carbon-catalyst-for-anodic-half-cell-of-vanadium-redox-flow-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahui%20Song">Jiahui Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanosecond" title="nanosecond">nanosecond</a>, <a href="https://publications.waset.org/abstracts/search?q=electroporation" title=" electroporation"> electroporation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20effects" title=" thermal effects"> thermal effects</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/165041/model-evaluation-of-thermal-effects-created-by-cell-membrane-electroporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishant%20Parashar">Nishant Parashar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawan%20S.%20Sinha"> Sawan S. Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Balaji%20Srinivasan"> Balaji Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressible%20turbulence" title="compressible turbulence">compressible turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20gradient%20tensor" title=" velocity gradient tensor"> velocity gradient tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation" title=" direct numerical simulation"> direct numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/101552/data-driven-analysis-of-velocity-gradient-dynamics-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Coumestrol Induced Apoptosis in Breast Cancer MCF-7 Cells via Redox Cycling of Copper and ROS Generation: Implications of Copper Chelation Strategy in Cancer Treatment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atif%20Zafar%20Khan">Atif Zafar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Swarnendra%20Singh"> Swarnendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Imrana%20Naseem"> Imrana Naseem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is one of the most frequent malignancies in women worldwide and a leading cause of cancer-related deaths among women. Therefore, there is a need to identify new chemotherapeutic strategies for cancer treatment. Unlike normal cells, cancer cells contain elevated copper levels which play an integral role in angiogenesis. Copper is an important metal ion associated with the chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as effective anticancer strategy. Keeping in view these facts, we evaluated the anticancer activity and copper-dependent cytotoxic effect of coumestrol (phytoestrogen in soybean products) in breast cancer MCF-7 cells. Coumestrol inhibited proliferation and induced apoptosis in MCF-7 cells, which was prevented by copper chelator neocuproine and ROS scavengers. Coumestrol treatment induced ROS generation coupled to DNA fragmentation, up-regulation of p53/p21, cell cycle arrest at G1/S phase, mitochondrial membrane depolarization and caspases 9/3 activation. All these effects were suppressed by ROS scavengers and neocuproine. These results suggest that coumestrol targets elevated copper for redox cycling to generate ROS leading to DNA fragmentation. DNA damage leads to p53 up-regulation which directs the cell cycle arrest at G1/S phase and promotes caspase-dependent apoptosis of MCF-7 cells. In conclusion, coumestrol induces pro-oxidant cell death by chelating cellular copper to produce copper-coumestrol complexes that engages in redox cycling in breast cancer cells. Thus, targeting elevated copper levels might be a potential therapeutic strategy for selective cytotoxic action against malignant cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20chelation" title=" copper chelation"> copper chelation</a>, <a href="https://publications.waset.org/abstracts/search?q=coumestrol" title=" coumestrol"> coumestrol</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygens%20species" title=" reactive oxygens species"> reactive oxygens species</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20cycling" title=" redox cycling"> redox cycling</a> </p> <a href="https://publications.waset.org/abstracts/58177/coumestrol-induced-apoptosis-in-breast-cancer-mcf-7-cells-via-redox-cycling-of-copper-and-ros-generation-implications-of-copper-chelation-strategy-in-cancer-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bastien%20Batardi%C3%A8re">Bastien Batardière</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon%20Kwon"> Joon Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convex%20optimization" title="convex optimization">convex optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20reduction" title=" variance reduction"> variance reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20algorithms" title=" adaptive algorithms"> adaptive algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=loopless" title=" loopless"> loopless</a> </p> <a href="https://publications.waset.org/abstracts/182407/finite-sum-optimization-adaptivity-to-smoothness-and-loopless-variance-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ila%20Thakur">Ila Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Srivastava"> Atul Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyamprasad%20Karagadde"> Shyamprasad Karagadde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20diffusive%20layers" title="double diffusive layers">double diffusive layers</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20number" title=" Rayleigh number"> Rayleigh number</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20gradients" title=" thermal gradients"> thermal gradients</a>, <a href="https://publications.waset.org/abstracts/search?q=compositional%20gradients" title=" compositional gradients"> compositional gradients</a> </p> <a href="https://publications.waset.org/abstracts/151589/evolution-and-merging-of-double-diffusive-layers-in-a-vertically-stable-compositional-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziad%20Abdallah">Ziad Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Oueidat"> Mohamad Oueidat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20El-Zaart"> Ali El-Zaart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval%20system" title=" information retrieval system"> information retrieval system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-label" title=" multi-label"> multi-label</a>, <a href="https://publications.waset.org/abstracts/search?q=problem%20transformation" title=" problem transformation"> problem transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=histogram%20of%20gradients" title=" histogram of gradients"> histogram of gradients</a> </p> <a href="https://publications.waset.org/abstracts/66645/an-improvement-of-multi-label-image-classification-method-based-on-histogram-of-oriented-gradient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> BiVO₄‑Decorated Graphite Felt as Highly Efficient Negative Electrode for All-Vanadium Redox Flow Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Manaye%20Kabtamu">Daniel Manaye Kabtamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Anteneh%20Wodaje%20Bayeh"> Anteneh Wodaje Bayeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development and utilization of new energy technology, people’s demand for large-scale energy storage system has become increasingly urgent. Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of numerous attractive features, such as long cycle life, high safety, and flexible design. However, the relatively low energy efficiency and high production cost of the VRFB still limit its practical implementations. It is of great attention to enhance its energy efficiency and reduce its cost. One of the main components of VRFB that can impressively impact the efficiency and final cost is the electrode materials, which provide the reactions sites for redox couples (V₂₊/V³⁺ and VO²⁺/VO₂⁺). Graphite felt (GF) is a typical carbon-based material commonly employed as electrode for VRFB due to low-cost, good chemical and mechanical stability. However, pristine GF exhibits insufficient wettability, low specific surface area, and poor kinetics reversibility, leading to low energy efficiency of the battery. Therefore, it is crucial to further modify the GF electrode to improve its electrochemical performance towards VRFB by employing active electrocatalysts, such as less expensive metal oxides. This study successfully fabricates low-cost plate-like bismuth vanadate (BiVO₄) material through a simple one-step hydrothermal route, employed as an electrocatalyst to adorn the GF for use as the negative electrode in VRFB. The experimental results show that BiVO₄-3h exhibits the optimal electrocatalytic activity and reversibility for the vanadium redox couples among all samples. The energy efficiency of the VRFB cell assembled with BiVO₄-decorated GF as the negative electrode is found to be 75.42% at 100 mA cm−2, which is about 10.24% more efficient than that of the cell assembled with heat-treated graphite felt (HT-GF) electrode. The possible reasons for the activity enhancement can be ascribed to the existence of oxygen vacancies in the BiVO₄ lattice structure and the relatively high surface area of BiVO₄, which provide more active sites for facilitating the vanadium redox reactions. Furthermore, the BiVO₄-GF electrode obstructs the competitive irreversible hydrogen evolution reaction on the negative side of the cell, and it also has better wettability. Impressively, BiVO₄-GF as the negative electrode shows good stability over 100 cycles. Thus, BiVO₄-GF is a promising negative electrode candidate for practical VRFB applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BiVO%E2%82%84%20electrocatalyst" title="BiVO₄ electrocatalyst">BiVO₄ electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20energy%20storage" title=" electrochemical energy storage"> electrochemical energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20felt" title=" graphite felt"> graphite felt</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium%20redox%20flow%20battery" title=" vanadium redox flow battery"> vanadium redox flow battery</a> </p> <a href="https://publications.waset.org/abstracts/168036/bivo4decorated-graphite-felt-as-highly-efficient-negative-electrode-for-all-vanadium-redox-flow-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Engineered Reactor Components for Durable Iron Flow Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Ivanovskaya">Anna Ivanovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20E.%20L.%20Overland"> Alexandra E. L. Overland</a>, <a href="https://publications.waset.org/abstracts/search?q=Swetha%20Chandrasekaran"> Swetha Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Buddhinie%20S.%20Jayathilake"> Buddhinie S. Jayathilake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron-based redox flow batteries (IRFB) are promising for grid-scale storage because of their low-cost and environmental safety. Earth-abundant iron can enable affordable grid-storage to meet DOE’s target material cost <$20/kWh and levelized cost for storage $0.05/kWh. In conventional redox flow batteries, energy is stored in external electrolyte tanks and electrolytes are circulated through the cell units to achieve electrochemical energy conversions. However, IRFBs are hybrid battery systems where metallic iron deposition at the negative side of the battery controls the storage capacity. This adds complexity to the design of a porous structure of 3D-electrodes to achieve a desired high storage capacity. In addition, there is a need to control parasitic hydrogen evolution reaction which accompanies the metal deposition process, increases the pH, lowers the energy efficiency, and limits the durability. To achieve sustainable operation of IRFBs, electrolyte pH, which affects the solubility of reactants and the rate of parasitic reactions, needs to be dynamically readjusted. In the present study we explore the impact of complexing agents on maintaining solubility of the reactants and find the optimal electrolyte conditions and battery operating regime, which are specific for IRFBs with additives, and demonstrate the robust operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20battery" title="flow battery">flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=iron-based%20redox%20flow%20battery" title=" iron-based redox flow battery"> iron-based redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=IRFB" title=" IRFB"> IRFB</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a> </p> <a href="https://publications.waset.org/abstracts/168063/engineered-reactor-components-for-durable-iron-flow-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Electro-oxidation of Catechol in the Presence of Nicotinamide at Different pH</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Motin">M. A. Motin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Aziz"> M. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hafiz%20Mia"> M. Hafiz Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasem"> M. A. Hasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The redox behavior of catechol in the presence of nicotinamide as nucleophiles has been studied in aqueous solution with various pH values and different concentration of nicotinamide using cyclic voltammetry and differential pulse voltammetry. Cyclic voltammetry of catechol in buffer solution (3.00 < pH < 9.00) shows one anodic and corresponding cathodic peak which relates to the transformation of catechol to corresponding o-benzoquinone and vice versa within a quasi reversible two electron transfer process. Cyclic voltammogram of catechol in the presence of nicotinamide in buffer solution of pH 7, show one anodic peak in the first cycle of potential and on the reverse scan the corresponding cathodic peak slowly decreases and new peak is observed at less positive potential. In the second cycle of potential a new anodic peak is observed at less positive potential. This indicates that nicotinamide attached with catechol and formed adduct after first cycle of oxidation. The effect of pH of catechol in presence of nicotinamide was studied by varying pH from 3 to 11. The substitution reaction of catechol with nicotimamide is facilitated at pH 7. In buffer solution of higher pH (>9), the CV shows different pattern. The effect of concentration of nicotinamide was studied by 2mM to 100 mM. The maximum substitution reaction has been found for 50 mM of nicotinamide and of pH 7. The proportionality of the first scan anodic and cathodic peak currents with square root of scan rate suggests that the peak current of the species at each redox reaction is controlled by diffusion process. The current functions (1/v-1/2) of the anodic peak decreased with the increasing of scan rate demonstrated that the behavior of the substitution reaction is of ECE type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redox%20interaction" title="redox interaction">redox interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=catechol" title=" catechol"> catechol</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotinamide" title=" nicotinamide"> nicotinamide</a>, <a href="https://publications.waset.org/abstracts/search?q=substituion%20reaction" title=" substituion reaction"> substituion reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20effect" title=" pH effect "> pH effect </a> </p> <a href="https://publications.waset.org/abstracts/19185/electro-oxidation-of-catechol-in-the-presence-of-nicotinamide-at-different-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20gradients&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>