CINXE.COM

Search results for: supercapacitor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: supercapacitor</title> <meta name="description" content="Search results for: supercapacitor"> <meta name="keywords" content="supercapacitor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="supercapacitor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="supercapacitor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 28</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: supercapacitor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Electrochemical Performance of Carbon Nanotube Based Supercapacitor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Khan%20Kasi">Jafar Khan Kasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajab%20Khan%20Kasi"> Ajab Khan Kasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzamil%20Bokhari"> Muzamil Bokhari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=charge" title=" charge"> charge</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry "> cyclic voltammetry </a> </p> <a href="https://publications.waset.org/abstracts/20355/electrochemical-performance-of-carbon-nanotube-based-supercapacitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feridun%20Demir">Feridun Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Okdem"> Pelin Okdem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title="polypyrrole">polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotube%20%28MWCNT%29" title=" multi-walled carbon nanotube (MWCNT)"> multi-walled carbon nanotube (MWCNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxidative%20polymerization" title=" chemical oxidative polymerization"> chemical oxidative polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/191231/investigation-of-supercapacitor-properties-of-nanocomposites-obtained-from-acid-and-base-functionalized-multi-walled-carbon-nanotube-mwcnt-and-polypyrrole-ppy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Enhanced Performance of Supercapacitor Based on Boric Acid Doped Polyvinyl Alcohol-H₂SO₄ Gel Polymer Electrolyte System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamide%20Aydin">Hamide Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Banu%20Karaman"> Banu Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayhan%20Bozkurt"> Ayhan Bozkurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Umran%20Kurtan"> Umran Kurtan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, Proton Conducting Gel Polymer Electrolytes (GPEs) have drawn much attention in supercapacitor applications due to their physical and electrochemical characteristics and stability conditions for low temperatures. In this research, PVA-H2SO4-H3BO3 GPE has been used for electric-double layer capacitor (EDLCs) application, in which electrospun free-standing carbon nanofibers are used as electrodes. Introduced PVA-H2SO4-H3BO3 GPE behaves as both separator and the electrolyte in the supercapacitor. Symmetric Swagelok cells including GPEs were assembled via using two electrode arrangements and the electrochemical properties were searched. Electrochemical performance studies demonstrated that PVA-H2SO4-H3BO3 GPE had a maximum specific capacitance (Cs) of 134 F g-1 and showed great capacitance retention (%100) after 1000 charge/discharge cycles. Furthermore, PVA-H2SO4-H3BO3 GPE yielded an energy density of 67 Wh kg-1 with a corresponding power density of 1000 W kg-1 at a current density of 1 A g-1. PVA-H2SO4 based polymer electrolyte was produced according to following procedure; Firstly, 1 g of commercial PVA was dissolved in distilled water at 90°C and stirred until getting transparent solution. This was followed by addition of the diluted H2SO4 (1 g of H2SO4 in a distilled water) to the solution to obtain PVA-H2SO4. PVA-H2SO4-H3BO3 based polymer electrolyte was produced by dissolving H3BO3 in hot distilled water and then inserted into the PVA-H2SO4 solution. The mole fraction was arranged to ¼ of the PVA repeating unit. After the stirring 2 h at RT, gel polymer electrolytes were obtained. The final electrolytes for supercapacitor testing included 20% of water in weight. Several blending combinations of PVA/H2SO4 and H3BO3 were studied to observe the optimized combination in terms of conductivity as well as electrolyte stability. As the amount of boric acid increased in the matrix, excess sulfuric acid was excluded due to cross linking, especially at lower solvent content. This resulted in the reduction of proton conductivity. Therefore, the mole fraction of H3BO3 was chosen as ¼ of PVA repeating unit. Within this optimized limits, the polymer electrolytes showed better conductivities as well as stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20double%20layer%20capacitor" title="electrical double layer capacitor">electrical double layer capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20density" title=" energy density"> energy density</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20polymer%20electrolyte" title=" gel polymer electrolyte"> gel polymer electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=ultracapacitor" title=" ultracapacitor"> ultracapacitor</a> </p> <a href="https://publications.waset.org/abstracts/96096/enhanced-performance-of-supercapacitor-based-on-boric-acid-doped-polyvinyl-alcohol-h2so4-gel-polymer-electrolyte-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Flexible Laser Reduced Graphene Oxide/MnO2 Electrode for Supercapacitor Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ingy%20N.%20Bkrey">Ingy N. Bkrey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Moniem"> Ahmed A. Moniem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50 μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrode%20deposition" title="electrode deposition">electrode deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible" title=" flexible"> flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20power%20CO2%20Laser" title=" high power CO2 Laser"> high power CO2 Laser</a>, <a href="https://publications.waset.org/abstracts/search?q=MnO2" title=" MnO2"> MnO2</a> </p> <a href="https://publications.waset.org/abstracts/12964/flexible-laser-reduced-graphene-oxidemno2-electrode-for-supercapacitor-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Hierarchical Manganese and Nickel Selenide based Ultra-efficient Electrode Material for All-Solid-State Asymmetric Supercapacitors with Extended Energy Efficacy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddhant%20Srivastav">Siddhant Srivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumyaranjan%20Mishra"> Soumyaranjan Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumanta%20Kumar%20Meher"> Sumanta Kumar Meher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers are attempting to develop extremely efficient electrochemical energy storage technologies as a result of the phenomenal advancement of portable electronic devices. Because of their improved electrical conductivity and narrower band gap, transition metal selenide-based nanostructures have piqued the interest of many researchers in this field. Based on this concept, we present a simple anion exchange hydrothermal synthesis method for synthesizing manganese and nickel based selenide (Mn/NiSe2) nanostructure for use in all-solid-state asymmetric supercapacitors. According to the comprehensive physicochemical characterizations, the material has lowly crystalline properties, a distinct porous microstructure, and a significant bonding contact between the metal and the selenium. The electrochemical investigations of the Mn/NiSe2 electrode material revealed supercapacitive charge discharge properties, excellent electro-kinetic reversibility, and minimal charge transfer resistance (Rct). Furthermore, the all-solid-state asymmetric supercapacitor device assembled using Mn/NiSe2 as positive electrode, nitrogen doped reduced graphene oxide (N-rGO) as negative electrode, and PVA-KOH gel as electrolyte/separator exhibit good redox behaviour, excellent charge-discharge properties with negligible voltage (IR) drop, and lower impedance characteristics. The solid state asymmetric supercapacitor device (Mn/NiSe2||N-rGO) demonstrated the power density of ultra-capacitors and the energy density of rechargeable batteries. Conclusively, the Mn/NiSe2 has been proposed as a potential outstanding electrode material for the next generation of all-solid-state asymmetric supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anion%20exchange" title="anion exchange">anion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20supercapacitor" title=" asymmetric supercapacitor"> asymmetric supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitive%20charge-discharge" title=" supercapacitive charge-discharge"> supercapacitive charge-discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20drop" title=" voltage drop"> voltage drop</a> </p> <a href="https://publications.waset.org/abstracts/168493/hierarchical-manganese-and-nickel-selenide-based-ultra-efficient-electrode-material-for-all-solid-state-asymmetric-supercapacitors-with-extended-energy-efficacy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Zinc Oxide Nanorods Decorated Nanofibers Based Flexible Electrodes for Capacitive Energy Storage Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Kamran%20Sami">Syed Kamran Sami</a>, <a href="https://publications.waset.org/abstracts/search?q=Saqib%20Siddiqui"> Saqib Siddiqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times, flexible supercapacitors retaining high electrochemical performance and steadiness along with mechanical endurance has developed as a spring of attraction due to the exponential progress and innovations in energy storage devices. To meet the rampant increasing demand of energy storage device with the small form factor, a unique, low cost and high-performance supercapacitor with considerably higher capacitance and mechanical robustness is required to recognize their real-life applications. Here in this report, synthesis route of electrode materials with low rigidity and high charge storage performance is reported using 1D-1D hybrid structure of zinc oxide (ZnO) nanorods, and conductive polymer smeared polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) electrospun nanofibers. The ZnO nanorods were uniformly grown on poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) coated P(VDF-TrFE) nanofibers using hydrothermal growth to manufacture light weight, permeable electrodes for supercapacitor. The PEDOT: PSS coated P(VDF-TrFE) porous web of nanofibers act as framework with high surface area. The incorporation of ZnO nanorods further boost the specific capacitance by 59%. The symmetric device using the fabricated 1D-1D hybrid electrodes reveals fairly high areal capacitance of 1.22mF/cm² at a current density of 0.1 mA/cm² with a power density of more than 1600 W/Kg. Moreover, the fabricated electrodes show exceptional flexibility and high endurance with 90% and 76% specific capacitance retention after 1000 and 5000 cycles respectively signifying the astonishing mechanical durability and long-term stability. All the properties exhibited by the fabricated electrode make it convenient for making flexible energy storage devices with the low form factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanorods" title="ZnO nanorods">ZnO nanorods</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20endurance" title=" mechanical endurance"> mechanical endurance</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20supercapacitor" title=" flexible supercapacitor"> flexible supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/100794/zinc-oxide-nanorods-decorated-nanofibers-based-flexible-electrodes-for-capacitive-energy-storage-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Mesoporous Carbon Sphere/Nickel Cobalt Sulfide Core-Shell Microspheres for Supercapacitor Electrode Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charmaine%20Lamiel">Charmaine Lamiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Hoa%20Nguyen"> Van Hoa Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjorie%20Baynosa"> Marjorie Baynosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Jin%20Shim"> Jae-Jin Shim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The depletion of non-renewable sources had led to the continuous development of various energy storage systems in order to cope with the world’s demand in energy. Supercapacitors have attracted considerable attention because they can store more energy than conventional capacitors and have higher power density than batteries. The combination of carbon-based material and metal chalcogenides are now being considered in response to the search for active electrode materials exhibiting high electrochemical performance. In this study, a hierarchical mesoporous carbon sphere@nickel cobalt sulfide (CS@Ni-Co-S) core-shell was synthesized using a simple hydrothermal method. The CS@Ni-Co-S core-shell microstructures exhibited a high capacitance of 724.4 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. Good specific retention of 86.1% and high Coulombic efficiency of 97.9% was obtained after 2000 charge-discharge cycles. The electrode exhibited a high energy density of 58.0 Wh kg−1 (1440 W kg−1) and high power density of 7200 W kg−1 (34.2 Wh kg−1). The reaction involved green synthesis without further sulfurization or post-heat treatment. Through this study, a cost-effective and facile synthesis of CS@Ni-Co-S as an active electrode showed favorable electrochemical performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20sphere" title="carbon sphere">carbon sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20cobalt%20sulfide" title=" nickel cobalt sulfide"> nickel cobalt sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/42922/mesoporous-carbon-spherenickel-cobalt-sulfide-core-shell-microspheres-for-supercapacitor-electrode-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Influence of Deposition Temperature on Supercapacitive Properties of Reduced Graphene Oxide on Carbon Cloth: New Generation of Wearable Energy Storage Electrode Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Snehal%20L.%20Kadam">Snehal L. Kadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Shriniwas%20B.%20Kulkarni"> Shriniwas B. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible electrode material with high surface area and good electrochemical properties is the current trend captivating the researchers across globe for application in the next generation energy storage field. In the present work, crumpled sheet like reduced graphene oxide grown on carbon cloth by the hydrothermal method with a series of different deposition temperatures at fixed time. The influence of the deposition temperature on the structural, morphological, optical and supercapacitive properties of the electrode material was investigated by XRD, RAMAN, XPS, TEM, FE-SEM, UV-VISIBLE and electrochemical characterization techniques.The results show that the hydrothermally synthesized reduced graphene oxide on carbon cloth has sheet like mesoporous structure. The reduced graphene oxide material at 160°C exhibits the best supercapacitor performance, with a specific capacitance of 443 F/g at scan rate 5mV/sec. Moreover, stability studies show 97% capacitance retention over 1000 CV cycles. This result shows that hydrothermally synthesized RGO on carbon cloth is the potential electrode material and would be used in the next-generation wearable energy storage systems. The detailed analysis and results will be presented at the conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title="graphene oxide">graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20cloth" title=" carbon cloth"> carbon cloth</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition%20temperature" title=" deposition temperature"> deposition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/79313/influence-of-deposition-temperature-on-supercapacitive-properties-of-reduced-graphene-oxide-on-carbon-cloth-new-generation-of-wearable-energy-storage-electrode-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Smart Energy Storage: W₁₈O₄₉ NW/Ti₃C₂Tₓ Composite-Enabled All Solid State Flexible Electrochromic Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hassan">Muhammad Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Celebi"> Kemal Celebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing a highly efficient electrochromic energy storage device with sufficient color fluctuation and significant electrochemical performance is highly desirable for practical energy-saving applications. Here, to achieve a highly stable material with a large electrochemical storage capacity, a W₁₈O₄₉ NW/Ti₃C₂Tₓ composite has been fabricated and deposited on a pre-assembled Ag and W₁₈O₄₉ NW conductive network by Langmuir-Blodgett technique. The resulting hybrid electrode composed of 15 layers of W₁₈O₄₉ NW/Ti₃C₂Tₓ exhibits an areal capacitance of 125 mF/cm², with a fast and reversible switching response. An optical modulation of 98.2% can be maintained at a current density of 5 mAcm⁻². Using this electrode, we fabricated a bifunctional symmetric electrochromic supercapacitor device having an energy density of 10.26 μWh/cm² and a power density of 0.605 mW/cm², with high capacity retention and full columbic efficiency over 4000 charge-discharge cycles. Meanwhile, the device displays remarkable electrochromic characteristics, including fast switching time (5 s for coloring and 7 s for bleaching) and a significant coloration efficiency of 116 cm²/C with good optical modulation stability. In addition, the device exhibits remarkable mechanical flexibility and fast switching while being stable over 100 bending cycles, which is promising for real-world applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MXene" title="MXene">MXene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20diffusion" title=" ion diffusion"> ion diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochromic" title=" electrochromic"> electrochromic</a>, <a href="https://publications.waset.org/abstracts/search?q=coloration%20efficiency" title=" coloration efficiency"> coloration efficiency</a> </p> <a href="https://publications.waset.org/abstracts/184337/smart-energy-storage-w18o49-nwti3c2t-composite-enabled-all-solid-state-flexible-electrochromic-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anukul%20K.%20Thakur">Anukul K. Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Bilash%20Choudhary"> Ram Bilash Choudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandira%20Majumder"> Mandira Majumder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title="supercapacitor">supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20transition-metal%20dichalcogenide" title=" layered transition-metal dichalcogenide"> layered transition-metal dichalcogenide</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary" title=" ternary"> ternary</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/62253/polymeric-composites-with-synergetic-carbon-and-layered-metallic-compounds-for-supercapacitor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Hydrothermal Synthesis of V₂O₅-Carbon Nanotube Composite for Supercapacitor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamta%20Bulla">Mamta Bulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Kumar"> Vinay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transition to renewable energy sources is essential due to the finite limitations of conventional fossil fuels, which contribute significantly to environmental pollution and greenhouse gas emissions. Traditional energy storage solutions, such as batteries and capacitors, are also hindered by limitations, particularly in capacity, cycle life, and energy density. Conventional supercapacitors, while able to deliver high power, often suffer from low energy density, limiting their efficiency in storing and providing renewable energy consistently. Renewable energy sources, such as solar and wind, produce power intermittently, so efficient energy storage solutions are required to manage this variability. Advanced materials, particularly those with high capacity and long cycle life, are critical to developing supercapacitors capable of effectively storing renewable energy. Among various electrode materials, vanadium pentoxide (V₂O₅) offers high theoretical capacitance, but its poor conductivity and cycling stability limit practical applications. This study explores the hydrothermal synthesis of a V₂O₅-carbon nanotube (CNT) composite to overcome these drawbacks, combining the high capacitance of V₂O₅ with the exceptional conductivity and mechanical stability of CNTs. The resulting V₂O₅-CNT composite demonstrates enhanced electrochemical performance, showing high specific capacitance of 890 F g⁻¹ at 0.1 A g⁻¹ current density, excellent rate capability, and improved cycling stability, making it a promising candidate for next-generation supercapacitors, with significant improvements in energy storage efficiency and durability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclability" title="cyclability">cyclability</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20density" title=" energy density"> energy density</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/193471/hydrothermal-synthesis-of-v2o5-carbon-nanotube-composite-for-supercapacitor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Fabrication of 2D Nanostructured Hybrid Material-Based Devices for High-Performance Supercapacitor Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar">Sunil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Kumar"> Vinay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamta%20Bulla"> Mamta Bulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Dahiya"> Rita Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supercapacitors have emerged as a leading energy storage technology, gaining popularity in applications like digital telecommunications, memory backup, and hybrid electric vehicles. Their appeal lies in a long cycle life, high power density, and rapid recharge capabilities. These exceptional traits attract researchers aiming to develop advanced, cost-effective, and high-energy-density electrode materials for next-generation energy storage solutions. Two-dimensional (2D) nanostructures are highly attractive for fabricating nanodevices due to their high surface-to-volume ratio and good compatibility with device design. In the current study, a composite was synthesized by combining MoS2 with reduced graphene oxide (rGO) under optimal conditions and characterized using various techniques, including XRD, FTIR, SEM and XPS. The electrochemical properties of the composite material were assessed through cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The supercapacitor device demonstrated a specific capacitance of 153 F g-1 at a current density of 1 Ag-1, achieving an excellent energy density of 30.5 Wh kg-1 and a power density of 600 W kg-1. Additionally, it maintained excellent cyclic stability over 5000 cycles, establishing it as a promising candidate for efficient and durable energy storage solutions. These findings highlight the dynamic relationship between electrode materials and offer valuable insights for the development and enhancement of high-performance symmetric devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20material" title="2D material">2D material</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20density" title=" energy density"> energy density</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanostatic%20charge-discharge" title=" galvanostatic charge-discharge"> galvanostatic charge-discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20reactor" title=" hydrothermal reactor"> hydrothermal reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20capacitance" title=" specific capacitance"> specific capacitance</a> </p> <a href="https://publications.waset.org/abstracts/193469/fabrication-of-2d-nanostructured-hybrid-material-based-devices-for-high-performance-supercapacitor-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Battery/Supercapacitor Emulator for Chargers Functionality Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Farag">S. Farag</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kuperman"> A. Kuperman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, design of solid-state battery/super capacitor emulator based on dc-dc boost converter is described. The emulator mimics charging behavior of any storage device based on a predefined behavior set by the user. The device is operated by a two-level control structure: high-level emulating controller and low-level input voltage controller. Simulation and experimental results are shown to demonstrate the emulator operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery" title="battery">battery</a>, <a href="https://publications.waset.org/abstracts/search?q=charger" title=" charger"> charger</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20capacitor" title=" super capacitor"> super capacitor</a> </p> <a href="https://publications.waset.org/abstracts/13042/batterysupercapacitor-emulator-for-chargers-functionality-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Exploring the Potential of Reduced Graphene Oxide/Polyaniline (rGo/PANI) Nanocomposites for High-Performance Supercapacitor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Umar">Ahmad Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Ibrahim"> Ahmed A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20A.%20Alhamami"> Mohsen A. Alhamami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces a facile synthesis method for synthesizing reduced graphene oxide (rGO) nanosheets with surface decoration of polyaniline (PANI). The resultant rGO@PANI nanocomposite (NC) exhibit substantial potential as advanced electrode materials for high-performance supercapacitors. The strategic integration of PANI onto the rGO surface serves dual purposes, effectively mitigating the agglomeration of rGO films and augmenting their utility in supercapacitor applications. The PANI coating manifests a highly porous and nanosized morphology, fostering increased surface area and optimized mass transport by reducing diffusion kinetics. The nanosized structure of PANI contributes to the maximization of active sites, thereby bolstering the efficacy of the nanocomposites for diverse applications. The inherent conductive nature of the rGO surface significantly expedites electron transport, thereby amplifying the overall electrochemical performance of the nanocomposites. To systematically evaluate the influence of PANI concentration on the electrode performance, varying concentrations of PANI were incorporated. Notably, an elevated PANI concentration was found to enhance the response owing to the unique morphology of PANI. Remarkably, the 5% rGO@PANI NC emerged as the most promising candidate, demonstrating exceptional response characteristics with a specific capacitance of 314.2 F/g at a current density of 1 A/g. Furthermore, this catalyst exhibits outstanding long-term stability, retaining approximately 92% of its capacitance even after enduring 4000 cycles. This research underscores the significance of the synergistic integration of rGO and PANI in the design of high-performance supercapacitors. The elucidation of the underlying mechanisms governing the improved electrochemical properties contributes to the fundamental understanding of nanocomposite behavior, thereby paving the way for the rational design of next-generation energy storage materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title="reduced graphene oxide">reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a> </p> <a href="https://publications.waset.org/abstracts/179986/exploring-the-potential-of-reduced-graphene-oxidepolyaniline-rgopani-nanocomposites-for-high-performance-supercapacitor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Facile Wick and Oil Flame Synthesis of High-Quality Hydrophilic Carbon Nano Onions for Flexible Binder-Free Supercapacitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debananda%20Mohapatra">Debananda Mohapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Subramanya%20Badrayyana"> Subramanya Badrayyana</a>, <a href="https://publications.waset.org/abstracts/search?q=Smrutiranjan%20Parida"> Smrutiranjan Parida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nano-onions (CNOs) are the spherical graphitic nanostructures composed of concentric shells of graphitic carbon can be hypothesized as the intermediate state between fullerenes and graphite. These are very important members in fullerene family also known as the multi-shelled fullerenes can be envisioned as promising supercapacitor electrode with high energy & power density as they provide easy access to ions at electrode-electrolyte interface due to their curvature. There is still very sparse report concerning on CNOs as electrode despite having an excellent electrodechemical performance record due to their unavailability and lack of convenient methods for their high yield preparation and purification. Keeping all these current pressing issues in mind, we present a facile scalable and straightforward flame synthesis method of pure and highly dispersible CNOs without contaminated by any other forms of carbon; hence, a post processing purification procedure is not necessary. To the best of our knowledge, this is the very first time; we developed an extremely simple, light weight, novel inexpensive, flexible free standing pristine CNOs electrode without using any binder element. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by ‘dipping and drying’ process providing outstanding stretchability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102 F/g, energy density 3.5 Wh/kg and power density 1224 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge –discharge cycles. Furthermore, this unique method not only affords binder free - freestanding electrode but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium-ion batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binder-free" title="binder-free">binder-free</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20synthesis" title=" flame synthesis"> flame synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible" title=" flexible"> flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nano%20onion" title=" carbon nano onion"> carbon nano onion</a> </p> <a href="https://publications.waset.org/abstracts/56501/facile-wick-and-oil-flame-synthesis-of-high-quality-hydrophilic-carbon-nano-onions-for-flexible-binder-free-supercapacitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Chromia-Carbon Nanocomposite Materials for Energy Storage Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Nadeem">Muhammad A. Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaheed%20Ullah"> Shaheed Ullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article reports the synthesis of Cr2O3/C nanocomposites obtained by the direct carbonization of PFA/MIL-101(Cr) bulk composite. The nanocomposites were characterized by various instrumental techniques like powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and the surface characterized were investigated via N2 adsorption/desorption analysis. TEM and SAED analysis shows that turbostatic graphitic carbon was obtained with high crystallinity. The nanocomposites were tested for electrochemical supercapacitor and the faradic and non-Faradic processes were checked through cyclic voltammetry (CV). The maximum specific capacitance calculated for Cr2O3/C 900 sample from CV measurement is 301 F g-1 at 2 mV s-1 due to its maximum charge storing capacity as confirm by frequency response analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscopy" title=" transmission electron microscopy"> transmission electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=non-faradic%20process" title=" non-faradic process"> non-faradic process</a> </p> <a href="https://publications.waset.org/abstracts/14190/chromia-carbon-nanocomposite-materials-for-energy-storage-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Flexible Polyaniline-Based Composite Films for High-Performance Super Capacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Khosrozadeh">A. Khosrozadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Darabi"> M. A. Darabi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Xing"> M. Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Wang"> Q. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabrication of a high-performance supercapacitor (SC) using a flexible cellulose-based composite film of polyaniline (PANI), reduced graphene oxide (RGO), and silver nanowires (AgNWs) is reported. The flexibility, high capacitive behaviour, and cyclic stability of the entire device make it a good candidate for wearable SCs. The results show that a capacitance as high as 73.4 F/g (1.6 F/cm2) at a discharge rate of 1.1 A/g is achieved by the device. In addition, the SC demonstrates a power density up to 468.8 W/kg and an energy density up to 5.1 wh/kg. The flexibility of the composite film is attributed to the binding effect of cellulose fibers as well as reinforcing effect of AgNWs. The excellent electrochemical performance of the device is found to be owing to the synergistic effect between PANI/RGO/AgNWs ternary in a cushiony cellulose matrix and porous structure of the composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20capacitor" title=" super capacitor"> super capacitor</a> </p> <a href="https://publications.waset.org/abstracts/33817/flexible-polyaniline-based-composite-films-for-high-performance-super-capacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Nanoporous Activated Carbons for Fuel Cells and Supercapacitors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Volperts">A. Volperts</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Dobele"> G. Dobele</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zhurinsh"> A. Zhurinsh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Kruusenberg"> I. Kruusenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Plavniece"> A. Plavniece</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Locs"> J. Locs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbons" title="activated carbons">activated carbons</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20fuel%20cells" title=" low-temperature fuel cells"> low-temperature fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20doping" title=" nitrogen doping"> nitrogen doping</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structure" title=" porous structure"> porous structure</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a> </p> <a href="https://publications.waset.org/abstracts/102750/nanoporous-activated-carbons-for-fuel-cells-and-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Unique NiO Based 1 D Core/Shell Nano-Heterostructure Electrodes for High-Performance Supercapacitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gobinda%20Gopal%20Khan">Gobinda Gopal Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20K.%20Singh"> Ashutosh K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Debasish%20Sarkar"> Debasish Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unique one-dimensional (1D) Ni-NiO and Co-Ni/Co3O4-NiO core/shell nano-heterostructures are fabricated by combining the electrochemical deposition and annealing. The high-performance pseudo-capacitor electrode based on the Ni-NiO and Co-Ni/Co3O4-NiO core/shell nano-heterostructures is designed and demonstrated. The Co-Ni/Co3O4-NiO core/shell nano-heterostructures exhibit high specific capacitance (2013 Fg-1 at 2.5 Ag-1), high energy and power density (23 Wh kg-1 and 5.5 kW kg-1, at the discharge current density of 20.8 A g-1.), good capacitance retention, and long cyclicality. The remarkable electrochemical property of the large surface area nano-heterostructures is demonstrated based on the novel nano-architectural design of the electrode with the coexistence of the two highly redox active materials at the surface supported by highly conducting metal alloy channel at the core for faster charge transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-heterostructures" title="nano-heterostructures">nano-heterostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20deposition" title=" electrochemical deposition"> electrochemical deposition</a> </p> <a href="https://publications.waset.org/abstracts/15453/unique-nio-based-1-d-coreshell-nano-heterostructure-electrodes-for-high-performance-supercapacitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Mesoporous RGO@(Co,Mn)3O4 Nanocomposite Prepared by Microwave Method and Its Electrochemical Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charmaine%20Lamiel">Charmaine Lamiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Hoa%20Nguyen"> Van Hoa Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Jin%20Shim"> Jae-Jin Shim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supercapacitors are energy storage devices capable of storing more energy than conventional capacitors and have higher power density than batteries. The advantages of this method include the non-use of reducing agents and acidic medium, and no further use of a post-heat treatment unlike the conventional processes, in which calcination is generally employed after obtaining the initial product. Furthermore, it also offers a shorter reaction time at low temperatures and low power requirements, which allows low fabrication and energy cost. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an electrode material. The as-prepared electrode exhibited a high capacitance of 953 F•g^−1 at 1 A•g^−1 in a 6 M KOH electrolyte solution. Moreover, the electrode exhibited a high energy density of 76.2 Wh•kg^−1 at a power density of 720 W•kg^−1, and a high power density of 7200 W•kg^−1 at an energy density of 38 Wh•kg^−1. The successful methodology was considered to be efficient and cost-effective, thereby providing an active electrode material with very promising electrochemical performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt-manganese%20oxide" title="cobalt-manganese oxide">cobalt-manganese oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/42664/mesoporous-rgo-at-comn3o4-nanocomposite-prepared-by-microwave-method-and-its-electrochemical-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> BaFe12O19/Polythiophene Nanocomposite as Electrochemical Supercapacitor Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Farokhi">H. Farokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahadoran"> A. Bahadoran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on the absorbance and magnetic properties of a novel nanocomposite based on conducting polymer, carbon black and barium hexaferrite in epoxy resin on the E-glass fibre substrate. The highly conductive nanocomposite was provided by in-situ polymerization of aniline in the presence of carbon black (C) and barium hexaferrite (BaFe12O19) as electromagnetic absorbance material. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). SEM images showed the uniformly coated PAni on the surface of carbon black and barium hexaferrite. XRD peaks also verified the presence of carbon black and barium hexaferrite in the nanocomposite. The microwave characteristics determined from the magnetic and dielectric properties of the elastomeric composites obtained from scattering data by fitting the samples in a waveguide, where measured in the frequency in X-band frequency range, the range of 8 to 12 GHz. The reflection losses were evaluated to be less than −5dB over the whole X-band frequency (8–12 GHz) for the thickness of 1.4mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20polymer" title="conductive polymer">conductive polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title=" magnetic materials"> magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitance" title="capacitance">capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20cell" title=" electrochemical cell"> electrochemical cell</a> </p> <a href="https://publications.waset.org/abstracts/44855/bafe12o19polythiophene-nanocomposite-as-electrochemical-supercapacitor-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> High Electrochemical Performance of Electrode Material Based On Mesoporous RGO@(Co,Mn)3O4 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charmaine%20Lamiel">Charmaine Lamiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Hoa%20Nguyen"> Van Hoa Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Deivasigamani%20Ranjith%20Kumar"> Deivasigamani Ranjith Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Jin%20Shim"> Jae-Jin Shim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quest for alternative sources of energy storage had led to the exploration on supercapacitors. Hybrid supercapacitors, a combination of carbon-based material and transition metals, had yielded long and improved cycle life as well as high energy and power densities. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an active electrode material. The advantages of this method include the non-use of reducing agents and acidic medium, and no further post-heat treatment. Additionally, it offers shorter reaction time at low temperature and low power requirement, which allows low fabrication and energy cost. The as-prepared electrode material demonstrated a high capacitance of 953 F•g−1 at 1 A•g−1 in a 6 M KOH electrolyte. Furthermore, the electrode exhibited a high energy density of 76.2 Wh•kg−1 (power density of 720 W•kg−1) and a high power density of 7200 W•kg−1 (energy density of 38 Wh•kg−1). The successful synthesis was considered to be efficient and cost-effective, with very promising electrochemical performance that can be used as an active material in supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20manganese%20oxide" title="cobalt manganese oxide">cobalt manganese oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/42939/high-electrochemical-performance-of-electrode-material-based-on-mesoporous-rgo-at-comn3o4-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> A Creative Strategy to Functionalize TiN/CNC Composites as Cathode for High-Energy Zinc Ion Capacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ye%20Ling">Ye Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Yuting"> Jiang Yuting</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Haihui"> Ruan Haihui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc ion capacitors (ZICs) have garnered tremendous interest recently from researchers due to the perfect integration of batteries and supercapacitors (SC). However, ZICs are currently still facing two major challenges, one is low specific capacitance because of the limited capacity of capacitive cathode materials. In this work, TiN/CNC composites were obtained by a creative method composed of simple mixing and calcination treatment of tetrabutyl titanate (TBOT) and ZIF-8. The formed TiN particles are of ultra-small size and distributed uniformly on the nanoporous carbon matrix, which enhances the conductivity of the composites and the micropores caused by the evaporation of zinc during the calcination process and can serve as the reservoir of electrolytes; both are beneficial to zinc ion storage. When it was used as a cathode with zinc metal and 2M ZnSO₄ as the anode and electrolyte, respectively, in a ZIC device, the assembled device delivered a maximum energy density as high as 153 Wh kg-¹ at a power density of 269.4 W kg-¹, which is superior to many ZICs as reported. Also, it can maintain an energy density of 83.7 Wh kg-¹ at a peak power density of 8.6 kW kg-¹, exhibiting good rate performance. Moreover, when it was charged/discharged for 5000 cycles at a current density of 5 A g-¹, it remained at 85.8% of the initial capacity with a Coulombic efficiency (CE) of nearly 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20ion%20capacitor" title="zinc ion capacitor">zinc ion capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nitride" title=" metal nitride"> metal nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=zif-8" title=" zif-8"> zif-8</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/186407/a-creative-strategy-to-functionalize-tincnc-composites-as-cathode-for-high-energy-zinc-ion-capacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Hydrothermal Synthesis of Carbon Sphere/Nickel Cobalt Sulfide Core/Shell Microstructure and Its Electrochemical Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charmaine%20Lamiel">Charmaine Lamiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Hoa%20Nguyen"> Van Hoa Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjorie%20Baynosa"> Marjorie Baynosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Jin%20Shim"> Jae-Jin Shim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrochemical supercapacitors have attracted considerable attention because of their high potential as an efficient energy storage system. The combination of carbon-based material and transition metal oxides/sulfides are studied because they have long and improved cycle life as well as high energy and power densities. In this study, a hierarchical mesoporous carbon sphere/nickel cobalt sulfide (CS/Ni-Co-S) core/shell structure was synthesized using a facile hydrothermal method without any further sulfurization or post-heat treatment. The CS/Ni-Co-S core/shell microstructures exhibited a high capacitance of 724 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. After 2000 charge-discharge cycles, it retained 86.1% of its original capacitance, with high Coulombic efficiency of 97.9%. The electrode exhibited a high energy density of 58.0 Wh kg−1 at an energy density of 1440 W kg−1, and high power density of 7200 W kg−1 at an energy density of 34.2 Wh kg−1. The successful synthesis was considered to be simple and cost-effective which supports the viability of this composite as an alternative activated material for high performance supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20sphere" title="carbon sphere">carbon sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20cobalt%20sulfide" title=" nickel cobalt sulfide"> nickel cobalt sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/42938/hydrothermal-synthesis-of-carbon-spherenickel-cobalt-sulfide-coreshell-microstructure-and-its-electrochemical-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Engineering of Stable and Improved Electrochemical Activities of Redox Dominating Charge Storage Electrode Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Girish%20Sambhaji%20Gund">Girish Sambhaji Gund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The controlled nanostructure growth and its strong coupling with the current collector are key factors to achieve good electrochemical performance of faradaic-dominant electroactive materials. We employed binder-less and additive-free hydrothermal and physical vapor doping methods for the synthesis of nickel (Ni) and cobalt (Co) based compounds nanostructures (NiO, NiCo2O4, NiCo2S4) deposited on different conductive substrates such as carbon nanotube (CNT) on stainless steel, and reduced graphene oxide (rGO) and N-doped rGO on nickel foam (NF). The size and density of Ni- and Co-based compound nanostructures are controlled through the strong coupling with carbon allotropes on stainless steel and NF substrates. This controlled nanostructure of Ni- and Co-based compounds with carbon allotropes leads to stable faradaic electrochemical reactions at the material/current collector interface and within the electrode, which is consequence of strong coupling of nanostructure with functionalized carbon surface as a buffer layer. Thus, it is believed that the results provide the synergistic approaches to stabilize electrode materials physically and chemically, and hence overall electrochemical activity of faradaic dominating battery-type electrode materials through buffer layer engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20compounds" title="metal compounds">metal compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20allotropes" title=" carbon allotropes"> carbon allotropes</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemicstry" title=" electrochemicstry"> electrochemicstry</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20supercapacitor" title=" hybrid supercapacitor"> hybrid supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/171622/engineering-of-stable-and-improved-electrochemical-activities-of-redox-dominating-charge-storage-electrode-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Effects of Commonly-Used Inorganic Salts on the Morphology and Electrochemical Performance of Carboxylated Cellulose Nanocrystals Doped Polypyrrole Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuxinsun">Zuxinsun</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Eyley"> Samuel Eyley</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongjian%20Guo"> Yongjian Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Reeta%20Salminen"> Reeta Salminen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wim%20Thielemans"> Wim Thielemans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polypyrrole(PPy), as one of the most promising pseudocapacitor electrode materials, has attracted large research interest due to its low cost, high electrical conductivity and easy fabrication, limited capacitance, and cycling stability of PPy films hinder their practical applications. In this study, through adding different amounts of KCl into the pyrrole and CNC-COO⁻ system, three-dimensional, porous, and reticular PPy films were electropolymerized at last without the assistance of any template or substrate. Replacing KCl with NaCl, KBr, and NaClO4, the porous PPy films were still obtained rather than relatively dense PPy films which were deposited with pyrrole and CNC-COO⁻ or pyrrole and KCl. The nucleation and growth mechanisms of PPy films were studied in the deposited electrolyte with or without salts to illustrate the evolution of morphology from relatively dense to porous structure. The capacitance of PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 films increased from 160.6 to 183.4 F g⁻¹ at 0.2 A g⁻¹. More importantly, at a high current density of 2.0 A g⁻¹ (20 mA cm⁻²), the PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 films exhibited an excellent capacitance of 125.0 F g⁻¹ (1.19 F cm⁻²), increasing about 203.7 % over PPy/CNC-COO- films. 103.3 % of its initial capacitance was retained after 5000 cycles at 2 A g⁻¹ (20 mA cm⁻²) for the PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 supercapacitor. The analyses reveal that the porous and reticular PPy/CNC-COO⁻-salts films open up more active reaction areas to store charges. The stiff and ribbonlike CNC-COO⁻ as the permanent dopants improve strength and stability of PPy/CNC-COO⁻-salts films. Our demonstration provides a simple and practical way to deposit PPy-based supercapacitors with high capacitance and cycling ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title="polypyrrole">polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanocrystals" title=" cellulose nanocrystals"> cellulose nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20and%20reticular%20structure" title=" porous and reticular structure"> porous and reticular structure</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20salts" title=" inorganic salts"> inorganic salts</a> </p> <a href="https://publications.waset.org/abstracts/144677/effects-of-commonly-used-inorganic-salts-on-the-morphology-and-electrochemical-performance-of-carboxylated-cellulose-nanocrystals-doped-polypyrrole-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Polyvinylidene Fluoride-Polyaniline Films for Improved Dielectric Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjana%20Jain">Anjana Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Jayanth%20Kumar"> S. Jayanth Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyvinylidene fluoride (PVDF) is a well-known material for remarkable mechanical properties, resistance to chemicals and superior ferroelectric performances. This endows PVDF the potential for application in supercapacitor devices. The dielectric properties of PVDF, however, are not very high. To improve the dielectric properties of Polyvinylidene fluoride (PVDF), Piezoelectric polymer nanocomposites are prepared without affecting the other useful properties of PVDF. Polyaniline (PANI) was chosen as a filler material to prepare the nanocomposites. PVDF-PANI nanocomposite films were prepared using solvent cast method with different volume fractions of PANI varying from 0.04% to 0.048% of PANI content. The films are characterized for structural, mechanical, and surface morphological properties using X-ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The X-ray diffraction analysis shows that, prepared films were in β-phase. The DSC scans indicated that the degree of crystallinity in PVDF-PANI is improved. Raman and Infrared spectrum further confirm the presence of β-phase of PVDF-PANI film. Tensile properties of PVDF-PANI films were in good agreement with those reported in literature. The surface feature shows that PANI is uniformly distributed in PVDF and also results in disappearance of spherulites. The influence of volume fraction of PANI in PVDF on dielectric properties was analyzed. The results showed that the dielectric permittivity of PVDF-PANI (120) was much higher than that of PVDF (12). The sensitivity of these films was studied on application of a pressure and a constant output voltage was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20Properties" title="dielectric Properties">dielectric Properties</a>, <a href="https://publications.waset.org/abstracts/search?q=PANI" title=" PANI"> PANI</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20materials" title=" smart materials "> smart materials </a> </p> <a href="https://publications.waset.org/abstracts/24863/polyvinylidene-fluoride-polyaniline-films-for-improved-dielectric-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Design and Synthesis of Fully Benzoxazine-Based Porous Organic Polymer Through Sonogashira Coupling Reaction for CO₂ Capture and Energy Storage Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Ejaz">Mohsin Ejaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiao-Wei%20Kuo"> Shiao-Wei Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing production and exploitation of fossil fuels have placed human society in serious environmental issues. As a result, it's critical to design efficient and eco-friendly energy production and storage techniques. Porous organic polymers (POPs) are multi-dimensional porous network materials developed through the formation of covalent bonds between different organic building blocks that possess distinct geometries and topologies. POPs have tunable porosities and high surface area making them a good candidate for an effective electrode material in energy storage applications. Herein, we prepared a fully benzoxazine-based porous organic polymers (TPA–DHTP–BZ POP) through sonogashira coupling of dihydroxyterephthalaldehyde (DHPT) and triphenylamine (TPA) containing benzoxazine (BZ) monomers. Firstly, both BZ monomers (TPA-BZ-Br and DHTP-BZ-Ea) were synthesized by three steps, including Schiff base, reduction, and mannich condensation reaction. Finally, the TPA–DHTP–BZ POP was prepared through the sonogashira coupling reaction of brominated monomer (TPA-BZ-Br) and ethynyl monomer (DHTP-BZ-Ea). Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the successful synthesis of monomers as well as POP. The porosity of TPA–DHTP–BZ POP was investigated by the N₂ absorption technique and showed a Brunauer–Emmett–Teller (BET) surface area of 196 m² g−¹, pore size 2.13 nm and pore volume of 0.54 cm³ g−¹, respectively. The TPA–DHTP–BZ POP experienced thermal ring-opening polymerization, resulting in poly (TPA–DHTP–BZ) POP having strong inter and intramolecular hydrogen bonds formed by phenolic groups and Mannich bridges, thereby enhancing CO₂ capture and supercapacitive performance. The poly(TPA–DHTP–BZ) POP demonstrated a remarkable CO₂ capture of 3.28 mmol g−¹ and a specific capacitance of 67 F g−¹ at 0.5 A g−¹. Thus, poly(TPA–DHTP–BZ) POP could potentially be used for energy storage and CO₂ capture applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20organic%20polymer" title="porous organic polymer">porous organic polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=benzoxazine" title=" benzoxazine"> benzoxazine</a>, <a href="https://publications.waset.org/abstracts/search?q=sonogashira%20coupling" title=" sonogashira coupling"> sonogashira coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title=" CO₂"> CO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/179133/design-and-synthesis-of-fully-benzoxazine-based-porous-organic-polymer-through-sonogashira-coupling-reaction-for-co2-capture-and-energy-storage-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10