CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 181 results for author: <span class="mathjax">McClure-Griffiths, N M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="McClure-Griffiths, N M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=McClure-Griffiths%2C+N+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="McClure-Griffiths, N M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17118">arXiv:2411.17118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17118">pdf</a>, <a href="https://arxiv.org/format/2411.17118">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ascom.2024.100901">10.1016/j.ascom.2024.100901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Processing of GASKAP-HI pilot survey data using a commercial supercomputer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kemp%2C+I+P">Ian P. Kemp</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Worth%2C+R">Rowan Worth</a>, <a href="/search/?searchtype=author&amp;query=Wake%2C+J">Justin Wake</a>, <a href="/search/?searchtype=author&amp;query=Mitchell%2C+D+A">Daniel A. Mitchell</a>, <a href="/search/?searchtype=author&amp;query=Midgely%2C+S+D">Stuart D. Midgely</a>, <a href="/search/?searchtype=author&amp;query=Tingay%2C+S+J">Steven J. Tingay</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">James Dempsey</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">Helga D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S+J">Steven J. Gibson</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K+E">Kate E. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Yik Ki Ma</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">Sne啪ana Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17118v2-abstract-short" style="display: inline;"> Modern radio telescopes generate large amounts of data, with the next generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA) expected to feed up to 292 GB of visibilities per second to the science data processor (SDP). However, the continued exponential growth in the power of the world&#39;s largest supercomputers suggests that for the foreseeable future there will be sufficient capa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17118v2-abstract-full').style.display = 'inline'; document.getElementById('2411.17118v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17118v2-abstract-full" style="display: none;"> Modern radio telescopes generate large amounts of data, with the next generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA) expected to feed up to 292 GB of visibilities per second to the science data processor (SDP). However, the continued exponential growth in the power of the world&#39;s largest supercomputers suggests that for the foreseeable future there will be sufficient capacity available to provide for astronomers&#39; needs in processing &#39;science ready&#39; products from the new generation of telescopes, with commercial platforms becoming an option for overflow capacity. The purpose of the current work is to trial the use of commercial high performance computing (HPC) for a large scale processing task in astronomy, in this case processing data from the GASKAP-HI pilot surveys. We delineate a four-step process which can be followed by other researchers wishing to port an existing workflow from a public facility to a commercial provider. We used the process to provide reference images for an ongoing upgrade to ASKAPSoft (the ASKAP SDP software), and to provide science images for the GASKAP collaboration, using the joint deconvolution capability of WSClean. We document the approach to optimising the pipeline to minimise cost and elapsed time at the commercial provider, and give a resource estimate for processing future full survey data. Finally we document advantages, disadvantages, and lessons learned from the project, which will aid other researchers aiming to use commercial supercomputing for radio astronomy imaging. We found the key advantage to be immediate access and high availability, and the main disadvantage to be the need for improved HPC knowledge to take best advantage of the facility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17118v2-abstract-full').style.display = 'none'; document.getElementById('2411.17118v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astronomy and Computing, 2024, 51, 100901 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13325">arXiv:2411.13325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13325">pdf</a>, <a href="https://arxiv.org/format/2411.13325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.14183481">10.5281/zenodo.14183481 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TPCNet: Representation learning for HI mapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Nguyen%2C+H">Hiep Nguyen</a>, <a href="/search/?searchtype=author&amp;query=Tang%2C+H">Haiyang Tang</a>, <a href="/search/?searchtype=author&amp;query=Alger%2C+M">Matthew Alger</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=Muller%2C+E+G+M">Eric G. M. Muller</a>, <a href="/search/?searchtype=author&amp;query=Ong%2C+C+S">Cheng Soon Ong</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13325v1-abstract-short" style="display: inline;"> We introduce TPCNet, a neural network predictor that combines Convolutional and Transformer architectures with Positional encodings, for neutral atomic hydrogen (HI) spectral analysis. Trained on synthetic datasets, our models predict cold neutral gas fraction ($f_\text{CNM}$) and HI opacity correction factor ($R_\text{HI}$) from emission spectra based on the learned relationships between the desi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13325v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13325v1-abstract-full" style="display: none;"> We introduce TPCNet, a neural network predictor that combines Convolutional and Transformer architectures with Positional encodings, for neutral atomic hydrogen (HI) spectral analysis. Trained on synthetic datasets, our models predict cold neutral gas fraction ($f_\text{CNM}$) and HI opacity correction factor ($R_\text{HI}$) from emission spectra based on the learned relationships between the desired output parameters and observables (optically-thin column density and peak brightness). As a follow-up to Murray et al. (2020)&#39;s shallow Convolutional Neural Network (CNN), we construct deep CNN models and compare them to TPCNet models. TPCNet outperforms deep CNNs, achieving a 10% average increase in testing accuracy, algorithmic (training) stability, and convergence speed. Our findings highlight the robustness of the proposed model with sinusoidal positional encoding applied directly to the spectral input, addressing perturbations in training dataset shuffling and convolutional network weight initializations. Higher spectral resolutions with increased spectral channels offer advantages, albeit with increased training time. Diverse synthetic datasets enhance model performance and generalization, as demonstrated by producing $f_\text{CNM}$ and $R_\text{HI}$ values consistent with evaluation ground truths. Applications of TPCNet to observed emission data reveal strong agreement between the predictions and Gaussian decomposition-based estimates (from emission and absorption surveys), emphasizing its potential in HI spectral analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13325v1-abstract-full').style.display = 'none'; document.getElementById('2411.13325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has 27 pages, 27 figures and two tables. The work has been accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02222">arXiv:2410.02222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02222">pdf</a>, <a href="https://arxiv.org/format/2410.02222">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The spatially resolved relation between dust, gas, and metal abundance with the TYPHOON survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Park%2C+H">Hye-Jin Park</a>, <a href="/search/?searchtype=author&amp;query=Battisti%2C+A+J">Andrew J. Battisti</a>, <a href="/search/?searchtype=author&amp;query=Wisnioski%2C+E">Emily Wisnioski</a>, <a href="/search/?searchtype=author&amp;query=Cortese%2C+L">Luca Cortese</a>, <a href="/search/?searchtype=author&amp;query=Seibert%2C+M">Mark Seibert</a>, <a href="/search/?searchtype=author&amp;query=Grasha%2C+K">Kathryn Grasha</a>, <a href="/search/?searchtype=author&amp;query=Madore%2C+B+F">Barry F. Madore</a>, <a href="/search/?searchtype=author&amp;query=Groves%2C+B">Brent Groves</a>, <a href="/search/?searchtype=author&amp;query=Rich%2C+J+A">Jeff A. Rich</a>, <a href="/search/?searchtype=author&amp;query=Beaton%2C+R+L">Rachael L. Beaton</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Q">Qian-Hui Chen</a>, <a href="/search/?searchtype=author&amp;query=Mun%2C+M">Marcie Mun</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=de+Blok%2C+W+J+G">W. J. G. de Blok</a>, <a href="/search/?searchtype=author&amp;query=Kewley%2C+L+J">Lisa J. Kewley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02222v1-abstract-short" style="display: inline;"> We present the spatially resolved relationship between the dust-to-gas mass ratio (DGR) and gas-phase metallicity (Zgas or 12+log(O/H)) (i.e., DGR-Zgas relation) of 11 nearby galaxies with a large metallicity range (1.5 dex of 12+log(O/H)) at (sub-)kpc scales. We used the large field-of-view (&gt; 3&#39;) optical pseudo-Integral Field Spectroscopy data taken by the TYPHOON/PrISM survey, covering the opti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02222v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02222v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02222v1-abstract-full" style="display: none;"> We present the spatially resolved relationship between the dust-to-gas mass ratio (DGR) and gas-phase metallicity (Zgas or 12+log(O/H)) (i.e., DGR-Zgas relation) of 11 nearby galaxies with a large metallicity range (1.5 dex of 12+log(O/H)) at (sub-)kpc scales. We used the large field-of-view (&gt; 3&#39;) optical pseudo-Integral Field Spectroscopy data taken by the TYPHOON/PrISM survey, covering the optical size of galaxies, combining them with multi-wavelength data (far-UV to far-IR, CO, and HI 21 cm radio). A large scatter of DGR in the intermediate metallicity galaxies (8.0 &lt; 12+log(O/H) &lt; 8.3) is found, which is in line with dust evolution models, where grain growth begins to dominate the mechanism of dust mass accumulation. In the lowest metallicity galaxy of our sample, Sextans A (12+log(O/H) &lt; 7.6), the star-forming regions have significantly higher DGR values (by 0.5-2 dex) than the global estimates from literature at the same metallicity but aligns with the DGR values from metal depletion method from Damped Lyman Alpha systems and high hydrogen gas density regions of Sextans A. Using dust evolution models with a Bayesian MCMC approach suggests: 1) a high SN dust yield and 2) a negligible amount of photofragmentation by UV radiation, although we note that our sample in the low-metallicity regime is limited to Sextans A. On the other hand, it is also possible that while metallicity influences DGR, gas density also plays a role, indicating an early onset of dust grain growth in the dust mass build-up process despite its low metallicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02222v1-abstract-full').style.display = 'none'; document.getElementById('2410.02222v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, 7 tables, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20311">arXiv:2409.20311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20311">pdf</a>, <a href="https://arxiv.org/format/2409.20311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Local HI Absorption towards the Magellanic Cloud foreground using ASKAP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Nguyen%2C+H">Hiep Nguyen</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">James Dempsey</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Min-Young Lee</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a>, <a href="/search/?searchtype=author&amp;query=Murray%2C+C+E">Claire E. Murray</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">Sne啪ana Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M+P">Michael P. Busch</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Dawson%2C+J+R">J. R. Dawson</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">Helga D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S">Steven Gibson</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K">Katherine Jameson</a>, <a href="/search/?searchtype=author&amp;query=Joncas%2C+G">Gilles Joncas</a>, <a href="/search/?searchtype=author&amp;query=Kemp%2C+I">Ian Kemp</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">Denis Leahy</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Yik Ki Ma</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=Miville-Desch%C3%AAnes%2C+M">Marc-Antoine Miville-Desch锚nes</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Seta%2C+A">Amit Seta</a>, <a href="/search/?searchtype=author&amp;query=Soler%2C+J+D">Juan D. Soler</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20311v1-abstract-short" style="display: inline;"> We present the largest Galactic neutral hydrogen HI absorption survey to date, utilizing the Australian SKA Pathfinder Telescope at an unprecedented spatial resolution of 30&#39;&#39;. This survey, GASKAP-HI, unbiasedly targets 2,714 continuum background sources over 250 square degrees in the direction of the Magellanic Clouds, a significant increase compared to a total of 373 sources observed by previous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20311v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20311v1-abstract-full" style="display: none;"> We present the largest Galactic neutral hydrogen HI absorption survey to date, utilizing the Australian SKA Pathfinder Telescope at an unprecedented spatial resolution of 30&#39;&#39;. This survey, GASKAP-HI, unbiasedly targets 2,714 continuum background sources over 250 square degrees in the direction of the Magellanic Clouds, a significant increase compared to a total of 373 sources observed by previous Galactic absorption surveys across the entire Milky Way. We aim to investigate the physical properties of cold (CNM) and warm (WNM) neutral atomic gas in the Milky Way foreground, characterized by two prominent filaments at high Galactic latitudes (between $-45^{\circ}$ and $-25^{\circ}$). We detected strong HI absorption along 462 lines of sight above the 3$蟽$ threshold, achieving an absorption detection rate of 17%. GASKAP-HI&#39;s unprecedented angular resolution allows for simultaneous absorption and emission measurements to sample almost the same gas clouds along a line of sight. A joint Gaussian decomposition is then applied to absorption-emission spectra to provide direct estimates of HI optical depths, temperatures, and column densities for the CNM and WNM components. The thermal properties of CNM components are consistent with those previously observed along a wide range of Solar neighborhood environments, indicating that cold HI properties are widely prevalent throughout the local interstellar medium. Across our region of interest, CNM accounts for ~30% of the total HI gas, with the CNM fraction increasing with column density toward the two filaments. Our analysis reveals an anti-correlation between CNM temperature and its optical depth, which implies that CNM with lower optical depth leads to a higher temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20311v1-abstract-full').style.display = 'none'; document.getElementById('2409.20311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Largest Galactic HI Absorption Survey To Date (GASKAP-HI): Cold Atomic Gas in the Magellanic Cloud foreground using Australian SKA Pathfinder. This paper has 19 pages, 17 figures. This paper has been accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17666">arXiv:2409.17666</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17666">pdf</a>, <a href="https://arxiv.org/format/2409.17666">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Magnetised HI superbubbles in the Small Magellanic Cloud revealed by the POSSUM pilot survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jung%2C+S+L">Seoyoung Lyla Jung</a>, <a href="/search/?searchtype=author&amp;query=Seta%2C+A">A. Seta</a>, <a href="/search/?searchtype=author&amp;query=Price%2C+J+M">J. M. Price</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+D">J. D. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Y. K. Ma</a>, <a href="/search/?searchtype=author&amp;query=Tahani%2C+M">M. Tahani</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+C+S">C. S. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">C. Federrath</a>, <a href="/search/?searchtype=author&amp;query=Van+Eck%2C+C+L">C. L. Van Eck</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=O%27Sullivan%2C+S+P">S. P. O&#39;Sullivan</a>, <a href="/search/?searchtype=author&amp;query=West%2C+J">J. West</a>, <a href="/search/?searchtype=author&amp;query=Heald%2C+G">G. Heald</a>, <a href="/search/?searchtype=author&amp;query=Akahori%2C+T">T. Akahori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17666v1-abstract-short" style="display: inline;"> Neutral hydrogen (HI) bubbles and shells are common in the interstellar medium (ISM). Studying their properties provides insight into the characteristics of the local ISM as well as the galaxy in which the bubbles reside. We report the detection of magnetic fields associated with superbubbles in the nearby irregular galaxy, the Small Magellanic Cloud (SMC). Using the Polarisation Sky Survey of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17666v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17666v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17666v1-abstract-full" style="display: none;"> Neutral hydrogen (HI) bubbles and shells are common in the interstellar medium (ISM). Studying their properties provides insight into the characteristics of the local ISM as well as the galaxy in which the bubbles reside. We report the detection of magnetic fields associated with superbubbles in the nearby irregular galaxy, the Small Magellanic Cloud (SMC). Using the Polarisation Sky Survey of the Universe&#39;s Magnetism (POSSUM) pilot survey, we obtain a high-density grid ($\approx 25 \,\rm sources\,deg^{-2}$) of Faraday rotation measure (RM) from polarized sources behind the SMC. This provides a sufficiently large number of RM measurements to study the magnetic properties of three of the largest HI shells previously identified in the SMC. The RM profiles as a function of distance from the shell centre show characteristic patterns at angular scales comparable to the shell size. We demonstrate that this can be explained by magneto-hydrodynamic simulation models of bubbles expanding in magnetised environments. From the observations, we estimate the line-of-sight magnetic field strength at the edges of the shells is enhanced by $\sim1\,\rm 渭G$ with respect to their centres. This is an order of magnitude larger than the field strength in the ambient medium ($\sim 0.1\,\rm 渭G$) estimated based on the expansion velocity of the shells. This paper highlights the power of densely mapped RM grids in studying the magnetic properties of galactic substructures beyond the Milky Way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17666v1-abstract-full').style.display = 'none'; document.getElementById('2409.17666v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures, Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06626">arXiv:2408.06626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06626">pdf</a>, <a href="https://arxiv.org/format/2408.06626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The First Large Absorption Survey in HI (FLASH): II. Pilot Survey data release and first results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yoon%2C+H">Hyein Yoon</a>, <a href="/search/?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/?searchtype=author&amp;query=Mahony%2C+E+K">Elizabeth K. Mahony</a>, <a href="/search/?searchtype=author&amp;query=Aditya%2C+J+N+H+S">J. N. H. S. Aditya</a>, <a href="/search/?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/?searchtype=author&amp;query=Glowacki%2C+M">Marcin Glowacki</a>, <a href="/search/?searchtype=author&amp;query=Kerrison%2C+E+F">Emily F. Kerrison</a>, <a href="/search/?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/?searchtype=author&amp;query=Su%2C+R">Renzhi Su</a>, <a href="/search/?searchtype=author&amp;query=Weng%2C+S">Simon Weng</a>, <a href="/search/?searchtype=author&amp;query=Whiting%2C+M">Matthew Whiting</a>, <a href="/search/?searchtype=author&amp;query=Wong%2C+O+I">O. Ivy Wong</a>, <a href="/search/?searchtype=author&amp;query=Callingham%2C+J+R">Joseph R. Callingham</a>, <a href="/search/?searchtype=author&amp;query=Curran%2C+S+J">Stephen J. Curran</a>, <a href="/search/?searchtype=author&amp;query=Darling%2C+J">Jeremy Darling</a>, <a href="/search/?searchtype=author&amp;query=Edge%2C+A+C">Alastair C. Edge</a>, <a href="/search/?searchtype=author&amp;query=Ellison%2C+S+L">Sara L. Ellison</a>, <a href="/search/?searchtype=author&amp;query=Emig%2C+K+L">Kimberly L. Emig</a>, <a href="/search/?searchtype=author&amp;query=Garratt-Smithson%2C+L">Lilian Garratt-Smithson</a>, <a href="/search/?searchtype=author&amp;query=German%2C+G">Gordon German</a>, <a href="/search/?searchtype=author&amp;query=Grasha%2C+K">Kathryn Grasha</a>, <a href="/search/?searchtype=author&amp;query=Koribalski%2C+B+S">Baerbel S. Koribalski</a>, <a href="/search/?searchtype=author&amp;query=Morganti%2C+R">Raffaella Morganti</a>, <a href="/search/?searchtype=author&amp;query=Oosterloo%2C+T">Tom Oosterloo</a>, <a href="/search/?searchtype=author&amp;query=P%C3%A9roux%2C+C">C茅line P茅roux</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06626v1-abstract-short" style="display: inline;"> The First Large Absorption Survey in HI (FLASH) is a large-area radio survey for neutral hydrogen in the redshift range 0.4&lt;z&lt;1.0, using the 21cm HI absorption line as a probe of cold neutral gas. FLASH uses the ASKAP radio telescope and is the first large 21cm absorption survey to be carried out without any optical preselection of targets. We use an automated Bayesian line-finding tool to search&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06626v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06626v1-abstract-full" style="display: none;"> The First Large Absorption Survey in HI (FLASH) is a large-area radio survey for neutral hydrogen in the redshift range 0.4&lt;z&lt;1.0, using the 21cm HI absorption line as a probe of cold neutral gas. FLASH uses the ASKAP radio telescope and is the first large 21cm absorption survey to be carried out without any optical preselection of targets. We use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. The survey aims to explore the neutral gas content of galaxies at a cosmic epoch where almost no HI data are currently available, and to investigate the role of neutral gas in AGN fuelling and feedback. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are available online. Here, we describe the FLASH spectral-line and continuum data and discuss the quality of the HI spectra and the completeness of our automated line search. Finally, we present a set of 30 new HI absorption lines that were robustly detected in the Pilot Surveys. These lines span a wide range in HI optical depth, including three lines with a peak optical depth $蟿&gt;1$, and appear to be a mixture of intervening and associated systems. The overall detection rate for HI absorption lines in the Pilot Surveys (0.3 to 0.5 lines per ASKAP field) is a factor of two below the expected value. There are several possible reasons for this, but one likely factor is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper will discuss the host galaxies of the HI absorption systems identified here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06626v1-abstract-full').style.display = 'none'; document.getElementById('2408.06626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 25 figures, 10 tables. Submitted to PASA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20325">arXiv:2407.20325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20325">pdf</a>, <a href="https://arxiv.org/format/2407.20325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Probing the Magnetised Gas Distribution in Galaxy Groups and the Cosmic Web with POSSUM Faraday Rotation Measures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Anderson%2C+C+S">Craig S. Anderson</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Rudnick%2C+L">L. Rudnick</a>, <a href="/search/?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/?searchtype=author&amp;query=O%27Sullivan%2C+S+P">S. P. O&#39;Sullivan</a>, <a href="/search/?searchtype=author&amp;query=Bradbury%2C+S">S. Bradbury</a>, <a href="/search/?searchtype=author&amp;query=Akahori%2C+T">T. Akahori</a>, <a href="/search/?searchtype=author&amp;query=Baidoo%2C+L">L. Baidoo</a>, <a href="/search/?searchtype=author&amp;query=Bruggen%2C+M">M. Bruggen</a>, <a href="/search/?searchtype=author&amp;query=Carretti%2C+E">E. Carretti</a>, <a href="/search/?searchtype=author&amp;query=Duchesne%2C+S">S. Duchesne</a>, <a href="/search/?searchtype=author&amp;query=Heald%2C+G">G. Heald</a>, <a href="/search/?searchtype=author&amp;query=Jung%2C+S+L">S. L. Jung</a>, <a href="/search/?searchtype=author&amp;query=Kaczmarek%2C+J">J. Kaczmarek</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Loi%2C+F">F. Loi</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Y. K. Ma</a>, <a href="/search/?searchtype=author&amp;query=Osinga%2C+E">E. Osinga</a>, <a href="/search/?searchtype=author&amp;query=Seta%2C+A">A. Seta</a>, <a href="/search/?searchtype=author&amp;query=Stuardi%2C+C">C. Stuardi</a>, <a href="/search/?searchtype=author&amp;query=Thomson%2C+A+J+M">A. J. M. Thomson</a>, <a href="/search/?searchtype=author&amp;query=Van+Eck%2C+C">C. Van Eck</a>, <a href="/search/?searchtype=author&amp;query=Vernstrom%2C+T">T. Vernstrom</a>, <a href="/search/?searchtype=author&amp;query=West%2C+J">J. West</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20325v1-abstract-short" style="display: inline;"> We present initial results from the Polarisation Sky Survey of the Universe&#39;s Magnetism (POSSUM), analysing 22,817 Faraday Rotation Measures (RMs) with median uncertainties of 1.2 rad m^-2 across 1,520 square degrees to study magnetised gas associated with 55 nearby galaxy groups (z less than 0.025) with halo masses between 10^12.5 and 10^14.0 M_sun. We identify two distinct gas phases: the Intrag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20325v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20325v1-abstract-full" style="display: none;"> We present initial results from the Polarisation Sky Survey of the Universe&#39;s Magnetism (POSSUM), analysing 22,817 Faraday Rotation Measures (RMs) with median uncertainties of 1.2 rad m^-2 across 1,520 square degrees to study magnetised gas associated with 55 nearby galaxy groups (z less than 0.025) with halo masses between 10^12.5 and 10^14.0 M_sun. We identify two distinct gas phases: the Intragroup Medium (IGrM) within 0-2 splashback radii and the Warm-Hot Intergalactic Medium (WHIM) extending from 2 to 7 splashback radii. These phases enhance the standard deviation of residual (i.e., Galactic foreground RM-subtracted) RMs by 6.9 +/- 1.8 rad m^-2 and 4.2 +/- 1.2 rad m^-2, respectively. Estimated magnetic field strengths are several microGauss within the IGrM and 0.1-1 microGauss in the WHIM. We estimate the plasma beta in both phases and show that magnetic pressure might be more dynamically important than in the ICM of more massive clusters or sparse cosmic web filaments. Our findings indicate that &#34;missing baryons&#34; in the WHIM likely extend beyond the gravitational radii of group-mass halos to Mpc scales, consistent with large-scale, outflow-driven &#34;magnetised bubbles&#34; seen in cosmological simulations. We demonstrate that RM grids are an effective method for detecting magnetised thermal gas at galaxy group interfaces and within the cosmic web. This approach complements X-ray and Sunyaev-Zel&#39;dovich effect methods, and when combined with Fast Radio Burst Dispersion Measures, data from the full POSSUM survey, comprising approximately a million RMs, will allow direct magnetic field measurements to further our understanding of baryon circulation in these environments and the magnetised universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20325v1-abstract-full').style.display = 'none'; document.getElementById('2407.20325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures, 3 tables. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11546">arXiv:2405.11546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11546">pdf</a>, <a href="https://arxiv.org/format/2405.11546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Low-frequency absorption and radio recombination line features of the Galactic Center Lobe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hurley-Walker%2C+N">Natasha Hurley-Walker</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+L+D">L. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Luisi%2C+M">M. Luisi</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Benjamin%2C+R+A">Robert A. Benjamin</a>, <a href="/search/?searchtype=author&amp;query=Kuhn%2C+M+A">Michael A. Kuhn</a>, <a href="/search/?searchtype=author&amp;query=Linville%2C+D+J">Dylan J. Linville</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+B">B. Liu</a>, <a href="/search/?searchtype=author&amp;query=Zucker%2C+C">Catherine Zucker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11546v1-abstract-short" style="display: inline;"> The Galactic center lobe (GCL) is a $\sim 1^\circ$ object located north of the Galactic center. In the mid-infrared (MIR), the GCL appears as two 8.0-micron filaments that roughly define an ellipse. There is strong 24-micron and radio continuum emission in the interior of the ellipse. Due to its morphology and location in the sky, previous authors have argued that the GCL is created by outflows fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11546v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11546v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11546v1-abstract-full" style="display: none;"> The Galactic center lobe (GCL) is a $\sim 1^\circ$ object located north of the Galactic center. In the mid-infrared (MIR), the GCL appears as two 8.0-micron filaments that roughly define an ellipse. There is strong 24-micron and radio continuum emission in the interior of the ellipse. Due to its morphology and location in the sky, previous authors have argued that the GCL is created by outflows from star formation in the central molecular zone or by activity of the central black hole Sgr~A$^*$. We present images of the GCL from the GaLactic and Extragalactic All-sky Murchison Widefield Array survey in radio continuum that show thermal absorption against the Galactic center, incompatible with an interpretation of synchrotron self-absorption. Estimates of the cosmic ray emissivity in this direction allow us to place a distance constraint on the GCL. To be consistent with standard emissivity assumptions, the GCL would be located 2kpc away. At a distance of 8kpc, the synchrotron background emissivity is enhanced by $\sim75$% in the direction of the GCL. We also present radio recombination line data from the Green Bank Telescope that constrains the electron temperature and line widths in this region, which are also more explicable if the GCL lies relatively close. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11546v1-abstract-full').style.display = 'none'; document.getElementById('2405.11546v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures, accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11054">arXiv:2405.11054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11054">pdf</a>, <a href="https://arxiv.org/format/2405.11054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Galactic Center Lobe as an HII Region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Anderson%2C+L+D">L. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Luisi%2C+M">Matteo Luisi</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+B">B. Liu</a>, <a href="/search/?searchtype=author&amp;query=Linville%2C+D+J">Dylan J. Linville</a>, <a href="/search/?searchtype=author&amp;query=Benjamin%2C+R+A">Robert A. Benjamin</a>, <a href="/search/?searchtype=author&amp;query=Hurley-Walker%2C+N">Natasha Hurley-Walker</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Zucker%2C+C">Catherine Zucker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11054v1-abstract-short" style="display: inline;"> The Galactic center lobe (GCL) is an object ~1掳 across that is located north of the Galactic center. In the mid-infrared (MIR) the GCL appears as two 8.0$渭$m filaments between which is strong 24$渭$m and radio continuum emission. Due to its morphology and location in the sky, previous authors have argued that the GCL is located in the Galactic center region, created by outflows from star formation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11054v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11054v1-abstract-full" style="display: none;"> The Galactic center lobe (GCL) is an object ~1掳 across that is located north of the Galactic center. In the mid-infrared (MIR) the GCL appears as two 8.0$渭$m filaments between which is strong 24$渭$m and radio continuum emission. Due to its morphology and location in the sky, previous authors have argued that the GCL is located in the Galactic center region, created by outflows from star formation or by activity of the central black hole Sagittarius A*. In an associated paper (Hurley-Walker et al., 2024, in press), low-frequency radio emission indicates that the GCL must instead lie foreground to the Galactic center. If the GCL is foreground to the Galactic center, it is likely to be a type of object common throughout the Galactic disk; we here investigate whether its properties are similar to those of Galactic HII regions. We find that the GCL&#39;s MIR morphology, MIR flux densities, dust temperatures, and radio recombination line (RRL) properties as traced by the GBT Diffuse Ionized Gas Survey (GDIGS) are consistent with those of known Galactic HII regions, although the derived electron temperature is low. We search for the ionizing source(s) of the possible HII region and identify a stellar cluster candidate (Camargo #1092/Ryu &amp; Lee #532) and a cluster of young stellar objects (SPICY G359.3+0.3) whose members have Gaia parallaxes distances of 1.7${\pm}$0.4kpc. Taken together, the results of our companion paper and those shown here suggest that the GCL has properties consistent with those of an HII region located ~2kpc from the Sun. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11054v1-abstract-full').style.display = 'none'; document.getElementById('2405.11054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18349">arXiv:2404.18349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18349">pdf</a>, <a href="https://arxiv.org/format/2404.18349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Turbulence statistics of HI clouds entrained in the Milky Way&#39;s nuclear wind </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gerrard%2C+I+A">Isabella A. Gerrard</a>, <a href="/search/?searchtype=author&amp;query=Noon%2C+K+A">Karlie A. Noon</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18349v1-abstract-short" style="display: inline;"> The interstellar medium (ISM) is ubiquitously turbulent across many physically distinct environments within the Galaxy. Turbulence is key in controlling the structure and dynamics of the ISM, regulating star formation, and transporting metals within the Galaxy. We present the first observational measurements of turbulence in neutral hydrogen entrained in the hot nuclear wind of the Milky Way. Usin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18349v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18349v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18349v1-abstract-full" style="display: none;"> The interstellar medium (ISM) is ubiquitously turbulent across many physically distinct environments within the Galaxy. Turbulence is key in controlling the structure and dynamics of the ISM, regulating star formation, and transporting metals within the Galaxy. We present the first observational measurements of turbulence in neutral hydrogen entrained in the hot nuclear wind of the Milky Way. Using recent MeerKAT observations of two extra-planar HI clouds above (gal. lat.$\,\sim7.0^{\circ}$) and below (gal. lat.$\,\sim-3.9^{\circ}$) the Galactic disc, we analyse centroid velocity and column density maps to estimate the velocity dispersion ($蟽_{v,\mathrm{3D}}$), the turbulent sonic Mach number ($\mathcal{M}$), the volume density dispersion ($蟽_{蟻/蟻_0}$), and the turbulence driving parameter ($b$). We also present a new prescription for estimating the spatial temperature variations of HI in the presence of related molecular gas. We measure these turbulence quantities on the global scale of each cloud, but also spatially map their variation across the plane-of-sky extent of each cloud by using a roving kernel method. We find that the two clouds share very similar characteristics of their internal turbulence, despite their varying latitudes. Both clouds are in the sub-to-trans-sonic Mach regime, and have primarily compressively-driven ($b\sim1$) turbulence. Given that there is no known active star-formation present in these clouds, this may be indicative of the way the cloud-wind interaction injects energy into the entrained atomic material on parsec scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18349v1-abstract-full').style.display = 'none'; document.getElementById('2404.18349v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to MNRAS, 15 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15668">arXiv:2403.15668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15668">pdf</a>, <a href="https://arxiv.org/format/2403.15668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Prototype Faraday rotation measure catalogs from the Polarisation Sky Survey of the Universe&#39;s Magnetism (POSSUM) pilot observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vanderwoude%2C+S">S. Vanderwoude</a>, <a href="/search/?searchtype=author&amp;query=West%2C+J+L">J. L. West</a>, <a href="/search/?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/?searchtype=author&amp;query=Rudnick%2C+L">L. Rudnick</a>, <a href="/search/?searchtype=author&amp;query=Van+Eck%2C+C+L">C. L. Van Eck</a>, <a href="/search/?searchtype=author&amp;query=Thomson%2C+A+J+M">A. J. M. Thomson</a>, <a href="/search/?searchtype=author&amp;query=Andernach%2C+H">H. Andernach</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+C+S">C. S. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Carretti%2C+E">E. Carretti</a>, <a href="/search/?searchtype=author&amp;query=Heald%2C+G+H">G. H. Heald</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+J+P">J. P. Leahy</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=O%27Sullivan%2C+S+P">S. P. O&#39;Sullivan</a>, <a href="/search/?searchtype=author&amp;query=Tahani%2C+M">M. Tahani</a>, <a href="/search/?searchtype=author&amp;query=Willis%2C+A+G">A. G. Willis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15668v1-abstract-short" style="display: inline;"> The Polarisation Sky Survey of the Universe&#39;s Magnetism (POSSUM) will conduct a sensitive $\sim$1 GHz radio polarization survey covering 20 000 square degrees of the Southern sky with the Australian Square Kilometre Array Pathfinder (ASKAP). In anticipation of the full survey, we analyze pilot observations of low-band (800-1087 MHz), mid-band (1316-1439 MHz), and combined-band observations for an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15668v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15668v1-abstract-full" style="display: none;"> The Polarisation Sky Survey of the Universe&#39;s Magnetism (POSSUM) will conduct a sensitive $\sim$1 GHz radio polarization survey covering 20 000 square degrees of the Southern sky with the Australian Square Kilometre Array Pathfinder (ASKAP). In anticipation of the full survey, we analyze pilot observations of low-band (800-1087 MHz), mid-band (1316-1439 MHz), and combined-band observations for an extragalactic field and a Galactic-plane field (low-band only). Using the POSSUM processing pipeline, we produce prototype RM catalogs that are filtered to construct prototype RM grids. We assess typical RM grid densities and RM uncertainties and their dependence on frequency, bandwidth, and Galactic latitude. We present a median filter method for separating foreground diffuse emission from background components, and find that after application of the filter, 99.5% of measured RMs of simulated sources are within 3$蟽$ of their true RM, with a typical loss of polarized intensity of 5% $\pm$ 5%. We find RM grid densities of 35.1, 30.6, 37.2, and 13.5 RMs per square degree and median uncertainties on RM measurements of 1.55, 12.82, 1.06, and 1.89 rad m$^{-2}$ for the median-filtered low-band, mid-band, combined-band, and Galactic observations, respectively. We estimate that the full POSSUM survey will produce an RM catalog of $\sim$775 000 RMs with median-filtered low-band observations and $\sim$877 000 RMs with median-filtered combined-band observations. We construct a structure function from the Galactic RM catalog, which shows a break at $0.7^{\circ}$, corresponding to a physical scale of 12-24 pc for the nearest spiral arm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15668v1-abstract-full').style.display = 'none'; document.getElementById('2403.15668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">51 pages, 19 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07750">arXiv:2312.07750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07750">pdf</a>, <a href="https://arxiv.org/format/2312.07750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> A Galactic Eclipse: The Small Magellanic Cloud is Forming Stars in Two, Superimposed Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Murray%2C+C+E">Claire E. Murray</a>, <a href="/search/?searchtype=author&amp;query=Hasselquist%2C+S">Sten Hasselquist</a>, <a href="/search/?searchtype=author&amp;query=Peek%2C+J+E+G">Joshua E. G. Peek</a>, <a href="/search/?searchtype=author&amp;query=Lindberg%2C+C+W">Christina Willecke Lindberg</a>, <a href="/search/?searchtype=author&amp;query=Almeida%2C+A">Andres Almeida</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+Y">Yumi Choi</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+J+E+M">Jessica E. M. Craig</a>, <a href="/search/?searchtype=author&amp;query=Denes%2C+H">Helga Denes</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/?searchtype=author&amp;query=Gerrard%2C+I+A">Isabella A. Gerrard</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S+J">Steven J. Gibson</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">Denis Leahy</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Min-Young Lee</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Yik Ki Ma</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Nidever%2C+D">David Nidever</a>, <a href="/search/?searchtype=author&amp;query=Nguyen%2C+H">Hiep Nguyen</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Tarantino%2C+E">Elizabeth Tarantino</a>, <a href="/search/?searchtype=author&amp;query=Uscanga%2C+L">Lucero Uscanga</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07750v1-abstract-short" style="display: inline;"> The structure and dynamics of the star-forming disk of the Small Magellanic Cloud (SMC) have long confounded us. The SMC is widely used as a prototype for galactic physics at low metallicity, and yet we fundamentally lack an understanding of the structure of its interstellar medium (ISM). In this work, we present a new model for the SMC by comparing the kinematics of young, massive stars with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07750v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07750v1-abstract-full" style="display: none;"> The structure and dynamics of the star-forming disk of the Small Magellanic Cloud (SMC) have long confounded us. The SMC is widely used as a prototype for galactic physics at low metallicity, and yet we fundamentally lack an understanding of the structure of its interstellar medium (ISM). In this work, we present a new model for the SMC by comparing the kinematics of young, massive stars with the structure of the ISM traced by high-resolution observations of neutral atomic hydrogen (HI) from the Galactic Australian Square Kilometer Array Pathfinder survey (GASKAP-HI). Specifically, we identify thousands of young, massive stars with precise radial velocity constraints from the Gaia and APOGEE surveys and match these stars to the ISM structures in which they likely formed. By comparing the average dust extinction towards these stars, we find evidence that the SMC is composed of two structures with distinct stellar and gaseous chemical compositions. We construct a simple model that successfully reproduces the observations and shows that the ISM of the SMC is arranged into two, superimposed, star-forming systems with similar gas mass separated by ~5 kpc along the line of sight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07750v1-abstract-full').style.display = 'none'; document.getElementById('2312.07750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ accepted. 20 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15122">arXiv:2311.15122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.15122">pdf</a>, <a href="https://arxiv.org/format/2311.15122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Mapping a lower limit on the mass fraction of the cold neutral medium using Fourier transformed HI 21cm emission line spectra: Application to the DRAO Deep Field from DHIGLS and the HI4PI survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=Martin%2C+P+G">Peter G. Martin</a>, <a href="/search/?searchtype=author&amp;query=Miville-Desch%C3%AAnes%2C+M">Marc-Antoine Miville-Desch锚nes</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a>, <a href="/search/?searchtype=author&amp;query=Bracco%2C+A">Andrea Bracco</a>, <a href="/search/?searchtype=author&amp;query=Vujeva%2C+L">Luka Vujeva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15122v1-abstract-short" style="display: inline;"> We develop a new method for spatially mapping a lower limit on the mass fraction of the cold neutral medium by analyzing the amplitude structure of $\hat T_b(k_v)$, the Fourier transform of $T_b(v)$, the spectrum of the brightness temperature of HI 21cm line emission with respect to the radial velocity $v$. This advances a broader effort exploiting 21cm emission line data alone (without absorption&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15122v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15122v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15122v1-abstract-full" style="display: none;"> We develop a new method for spatially mapping a lower limit on the mass fraction of the cold neutral medium by analyzing the amplitude structure of $\hat T_b(k_v)$, the Fourier transform of $T_b(v)$, the spectrum of the brightness temperature of HI 21cm line emission with respect to the radial velocity $v$. This advances a broader effort exploiting 21cm emission line data alone (without absorption line data, $蟿$) to extract integrated properties of the multiphase structure of the HI gas and to map each phase separately. Using toy models, we illustrate the origin of interference patterns seen in $\hat T_b(k_v)$. Building on this, a lower limit on the cold gas mass fraction is obtained from the amplitude of $\hat T_b$ at high $k_v$. Tested on a numerical simulation of thermally bi-stable turbulence, the lower limit from this method has a strong linear correlation with the &#34;true&#34; cold gas mass fraction from the simulation for relatively low cold gas mass fraction. At higher mass fraction, our lower limit is lower than the &#34;true&#34; value, because of a combination of interference and opacity effects. Comparison with absorption surveys shows a similar behavior, with a departure from linear correlation at $N_{\rm HI}\gtrsim 3-5\times10^{20}$ cm$^{-2}$. Application to the DRAO Deep Field (DF) from DHIGLS reveals a complex network of cold filaments in the Spider, an important structural property of the thermal condensation of the HI gas. Application to the HI4PI survey in the velocity range $-90 &lt; v &lt; 90$ km/s produces a full sky map of a lower limit on the mass fraction of the cold neutral medium at 16&#39;.2 resolution. Our new method has the ability to extract a lower limit on the cold gas mass fraction for massive amounts of emission line data alone with low computing time and memory, pointing the way to new approaches suitable for the new generation of radio interferometers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15122v1-abstract-full').style.display = 'none'; document.getElementById('2311.15122v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 35 figures, Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09377">arXiv:2311.09377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09377">pdf</a>, <a href="https://arxiv.org/format/2311.09377">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Metallicities of Five Small High-Velocity Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ashley%2C+T">Trisha Ashley</a>, <a href="/search/?searchtype=author&amp;query=Fox%2C+A+J">Andrew J. Fox</a>, <a href="/search/?searchtype=author&amp;query=Lockman%2C+F+J">Felix J. Lockman</a>, <a href="/search/?searchtype=author&amp;query=Wakker%2C+B+P">Bart P. Wakker</a>, <a href="/search/?searchtype=author&amp;query=Richter%2C+P">Philipp Richter</a>, <a href="/search/?searchtype=author&amp;query=French%2C+D+M">David M. French</a>, <a href="/search/?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09377v1-abstract-short" style="display: inline;"> High-velocity clouds (HVCs) are multi-phase gas structures whose velocities (|v_LSR|&gt;100 km/s) are too high to be explained by Galactic disk rotation. While large HVCs are well characterized, compact and small HVCs (with HI angular sizes of a few degrees) are poorly understood. Possible origins for such small clouds include Milky Way halo gas or fragments of the Magellanic System, but neither thei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09377v1-abstract-full').style.display = 'inline'; document.getElementById('2311.09377v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09377v1-abstract-full" style="display: none;"> High-velocity clouds (HVCs) are multi-phase gas structures whose velocities (|v_LSR|&gt;100 km/s) are too high to be explained by Galactic disk rotation. While large HVCs are well characterized, compact and small HVCs (with HI angular sizes of a few degrees) are poorly understood. Possible origins for such small clouds include Milky Way halo gas or fragments of the Magellanic System, but neither their origin nor their connection to the Milky Way halo has been confirmed. We use new Hubble Space Telescope/Cosmic Origins Spectrograph UV spectra and Green Bank Telescope HI spectra to measure the metallicities of five small HVCs in the southern Galactic sky projected near the Magellanic System. We build a set of distance-dependent Cloudy photoionization models for each cloud and calculate their ionization-corrected metallicities. All five small HVCs have oxygen metallicities &lt;0.17 Z_sun, indicating they do not originate in the disk of the Milky Way. Two of the five have metallicities of 0.16-0.17 Z_sun, similar to the Magellanic Stream, suggesting these clouds are fragments of the Magellanic System. The remaining three clouds have much lower metallicities of 0.02-0.04 Z_sun. While the origin of these low-metallicity clouds is unclear, they could be gaseous mini-halos or gas stripped from dwarf galaxies by ram pressure or tidal interactions. These results suggest that small HVCs do not all reside in the inner Milky Way halo or the Magellanic System, but instead can trace more distant structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09377v1-abstract-full').style.display = 'none'; document.getElementById('2311.09377v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10755">arXiv:2309.10755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.10755">pdf</a>, <a href="https://arxiv.org/format/2309.10755">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2718">10.1093/mnras/stad2718 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new method for spatially resolving the turbulence driving mixture in the ISM with application to the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gerrard%2C+I+A">Isabella A. Gerrard</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=Joncas%2C+G">Gilles Joncas</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">Sne啪ana Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Min-Young Lee</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J">John Dickey</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">Helga D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Yik Ki Ma</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">James Dempsey</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10755v1-abstract-short" style="display: inline;"> Turbulence plays a crucial role in shaping the structure of the interstellar medium. The ratio of the three-dimensional density contrast ($蟽_{蟻/蟻_0}$) to the turbulent sonic Mach number ($\mathcal{M}$) of an isothermal, compressible gas describes the ratio of solenoidal to compressive modes in the turbulent acceleration field of the gas, and is parameterised by the turbulence driving parameter:&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10755v1-abstract-full').style.display = 'inline'; document.getElementById('2309.10755v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10755v1-abstract-full" style="display: none;"> Turbulence plays a crucial role in shaping the structure of the interstellar medium. The ratio of the three-dimensional density contrast ($蟽_{蟻/蟻_0}$) to the turbulent sonic Mach number ($\mathcal{M}$) of an isothermal, compressible gas describes the ratio of solenoidal to compressive modes in the turbulent acceleration field of the gas, and is parameterised by the turbulence driving parameter: $b=蟽_{蟻/蟻_0}/\mathcal{M}$. The turbulence driving parameter ranges from $b=1/3$ (purely solenoidal) to $b=1$ (purely compressive), with $b=0.38$ characterising the natural mixture (1/3~compressive, 2/3~solenoidal) of the two driving modes. Here we present a new method for recovering $蟽_{蟻/蟻_0}$, $\mathcal{M}$, and $b$, from observations on galactic scales, using a roving kernel to produce maps of these quantities from column density and centroid velocity maps. We apply our method to high-resolution HI emission observations of the Small Magellanic Cloud (SMC) from the GASKAP-HI survey. We find that the turbulence driving parameter varies between $b\sim 0.3$ and $b\sim 1.0$ within the main body of the SMC, but the median value converges to $b\sim0.51$, suggesting that the turbulence is overall driven more compressively ($b&gt;0.38$). We observe no correlation between the $b$ parameter and HI or H$伪$ intensity, indicating that compressive driving of HI turbulence cannot be determined solely by observing HI or H$伪$ emission density, and that velocity information must also be considered. Further investigation is required to link our findings to potential driving mechanisms such as star-formation feedback, gravitational collapse, or cloud-cloud collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10755v1-abstract-full').style.display = 'none'; document.getElementById('2309.10755v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 16 figures, accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08464">arXiv:2307.08464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.08464">pdf</a>, <a href="https://arxiv.org/format/2307.08464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Atomic Hydrogen in the Milky Way: A Stepping Stone in the Evolution of Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovic%2C+S">Snezana Stanimirovic</a>, <a href="/search/?searchtype=author&amp;query=Rybarczyk%2C+D+R">Daniel R. Rybarczyk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08464v1-abstract-short" style="display: inline;"> Atomic hydrogen (HI) is a critical stepping stone in the gas evolution cycle of the interstellar medium (ISM) of the Milky Way. Hi traces both the cold, premolecular state before star formation and the warm, diffuse ISM before and after star formation. This review describes new, sensitive HI absorption and emission surveys, which, together with high angular and spectral resolution Hi emission data&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08464v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08464v1-abstract-full" style="display: none;"> Atomic hydrogen (HI) is a critical stepping stone in the gas evolution cycle of the interstellar medium (ISM) of the Milky Way. Hi traces both the cold, premolecular state before star formation and the warm, diffuse ISM before and after star formation. This review describes new, sensitive HI absorption and emission surveys, which, together with high angular and spectral resolution Hi emission data, have revealed the physical properties of HI, its structure, and its association with magnetic fields. We give an overview of the HI phases and discuss how Hi properties depend on the environment and what its structure can tell us about feedback in the ISM. Key findings include the following: - The mass fraction of the cold neutral medium is $\lesssim 40$\% on average, increasing with $A_V$ due to the increase of mean gas density. - The cold disk extends to at least $R\sim 25$ kpc. - Approximately 40% of the HI is warm, with structural characteristics that derive from feedback events. - Cold HI is highly filamentary, whereas warm HI is more smoothly distributed. We summarize future observational and simulation opportunities that can be used to unravel the 3D structure of the atomic ISM and the effects of heating and cooling on HI properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08464v1-abstract-full').style.display = 'none'; document.getElementById('2307.08464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript (48 pages, 11 figures) accepted to Annual Reviews of Astronomy and Astrophysics for publication in Volume 61. This is the authors&#39; own version. The final version, and associated supplementary material, will become available from: https://doi.org/10.1146/annurev-astro-052920-104851</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05808">arXiv:2307.05808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05808">pdf</a>, <a href="https://arxiv.org/format/2307.05808">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Sampling the Faraday rotation sky of TNG50: Imprint of the magnetised circumgalactic medium around Milky Way-like galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jung%2C+S+L">Seoyoung Lyla Jung</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Pakmor%2C+R">Ruediger Pakmor</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Yik Ki Ma</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+A+S">Alex S. Hill</a>, <a href="/search/?searchtype=author&amp;query=Van+Eck%2C+C+L">Cameron L. Van Eck</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+C+S">Craig S. Anderson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05808v2-abstract-short" style="display: inline;"> Faraday rotation measure (RM) is arguably the most practical observational tracer of magnetic fields in the diffuse circumgalactic medium (CGM). We sample synthetic Faraday rotation skies of Milky Way-like galaxies in TNG50 of the IllustrisTNG project by placing an observer inside the galaxies at a solar circle-like position. Our synthetic RM grids emulate specifications of current and upcoming su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05808v2-abstract-full').style.display = 'inline'; document.getElementById('2307.05808v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05808v2-abstract-full" style="display: none;"> Faraday rotation measure (RM) is arguably the most practical observational tracer of magnetic fields in the diffuse circumgalactic medium (CGM). We sample synthetic Faraday rotation skies of Milky Way-like galaxies in TNG50 of the IllustrisTNG project by placing an observer inside the galaxies at a solar circle-like position. Our synthetic RM grids emulate specifications of current and upcoming surveys; the NRAO VLA Sky Survey (NVSS), the Polarisation Sky Survey of the Universe&#39;s Magnetism (POSSUM), and a future Square Kilometre Array (SKA1-mid) polarisation survey. It has been suggested that magnetic fields regulate the survival of high-velocity clouds. However, there is only a small number of observational detections of magnetised clouds thus far. In the first part of the paper, we test conditions for the detection of magnetised circumgalactic clouds. Based on the synthetic RM samplings of clouds in the simulations, we predict upcoming polarimetric surveys will open opportunities for the detection of even low-mass and distant clouds. In the second part of the paper, we investigate the imprint of the CGM in the all-sky RM distribution. We test whether the RM variation produced by the CGM is correlated with global galaxy properties, such as distance to a satellite, specific star formation rate, neutral hydrogen covering fraction, and accretion rate to the supermassive black hole. We argue that the observed fluctuation in the RM measurements on scales less than 1 degree, which has been considered an indication of intergalactic magnetic fields, might in fact incorporate a significant contribution of the Milky Way CGM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05808v2-abstract-full').style.display = 'none'; document.getElementById('2307.05808v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, Accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16607">arXiv:2305.16607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.16607">pdf</a>, <a href="https://arxiv.org/format/2305.16607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acda24">10.3847/1538-4365/acda24 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RMTable2023 and PolSpectra2023: standards for reporting polarization and Faraday rotation measurements of radio sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Van+Eck%2C+C+L">C. L. Van Eck</a>, <a href="/search/?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/?searchtype=author&amp;query=Hutschenreuter%2C+S">S. Hutschenreuter</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J">J. Livingston</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Y. K. Ma</a>, <a href="/search/?searchtype=author&amp;query=Riseley%2C+C+J">C. J. Riseley</a>, <a href="/search/?searchtype=author&amp;query=Thomson%2C+A+J+M">A. J. M. Thomson</a>, <a href="/search/?searchtype=author&amp;query=Adebahr%2C+B">B. Adebahr</a>, <a href="/search/?searchtype=author&amp;query=Basu%2C+A">A. Basu</a>, <a href="/search/?searchtype=author&amp;query=Birkinshaw%2C+M">M. Birkinshaw</a>, <a href="/search/?searchtype=author&amp;query=Ensslin%2C+T+A">T. A. Ensslin</a>, <a href="/search/?searchtype=author&amp;query=Heald%2C+G">G. Heald</a>, <a href="/search/?searchtype=author&amp;query=Mao%2C+S+A">S. A. Mao</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16607v1-abstract-short" style="display: inline;"> Faraday rotation measures (RMs) have been used for many studies of cosmic magnetism, and in most cases having more RMs is beneficial for those studies. This has lead to development of RM surveys that have produced large catalogs, as well as meta-catalogs collecting RMs from many different publications. However, it has been difficult to take full advantage of all these RMs as the individual catalog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16607v1-abstract-full').style.display = 'inline'; document.getElementById('2305.16607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16607v1-abstract-full" style="display: none;"> Faraday rotation measures (RMs) have been used for many studies of cosmic magnetism, and in most cases having more RMs is beneficial for those studies. This has lead to development of RM surveys that have produced large catalogs, as well as meta-catalogs collecting RMs from many different publications. However, it has been difficult to take full advantage of all these RMs as the individual catalogs have been published in many different places, and in many different formats. In addition, the polarization spectra used to determine these RMs are rarely published, limiting the ability to re-analyze data as new methods or additional observations become available. We propose a standard convention for RM catalogs, RMTable2023, and a standard for source-integrated polarized spectra of radio sources, PolSpectra2023. These standards are intended to maximize the value and utility of these data for researchers and to make them easier to access. To demonstrate the use of the RMTable2023 standard, we have produced a consolidated catalog of 55 819 RMs collected from 42 published catalogs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16607v1-abstract-full').style.display = 'none'; document.getElementById('2305.16607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 5 figures, accepted by ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06356">arXiv:2304.06356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06356">pdf</a>, <a href="https://arxiv.org/format/2304.06356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1890">10.1093/mnras/stad1890 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observations of the atomic-molecular phase transition in the Milky Way&#39;s nuclear wind </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Noon%2C+K+A">Karlie A. Noon</a>, <a href="/search/?searchtype=author&amp;query=Krumholz%2C+M+R">Mark R. Krumholz</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Lockman%2C+F+J">Felix J. Lockman</a>, <a href="/search/?searchtype=author&amp;query=Armillotta%2C+L">Lucia Armillotta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06356v2-abstract-short" style="display: inline;"> Hundreds of high-velocity atomic gas clouds exist above and below the Galactic Centre, with some containing a molecular component. However, the origin of these clouds in the Milky Way&#39;s wind is unclear. This paper presents new high-resolution MeerKAT observations of three atomic gas clouds and studies the relationship between the atomic and molecular phases at $\sim 1$ pc scales. The clouds&#39; atomi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06356v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06356v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06356v2-abstract-full" style="display: none;"> Hundreds of high-velocity atomic gas clouds exist above and below the Galactic Centre, with some containing a molecular component. However, the origin of these clouds in the Milky Way&#39;s wind is unclear. This paper presents new high-resolution MeerKAT observations of three atomic gas clouds and studies the relationship between the atomic and molecular phases at $\sim 1$ pc scales. The clouds&#39; atomic hydrogen column densities, $N_{\mathrm{HI}}$, are less than a $\mbox{few}\times 10^{20}$ cm$^{-2}$, but the two clouds closest to the Galactic Centre nonetheless have detectable CO emission. This implies the presence of H$_{2}$ at levels of $N_{\mathrm{HI}}$ at least a factor of ten lower than in the typical Galactic interstellar medium. For the cloud closest to the Galactic Centre, there is little correlation between the $N_{\mathrm{HI}}$ and the probability that it will harbour detectable CO emissions. In contrast, for the intermediate cloud, detectable CO is heavily biased toward the highest values of $N_{\mathrm{HI}}$. The cloud most distant from the Galactic Centre has no detectable CO at similar $N_{\mathrm{HI}}$ values. Moreover, we find that the two clouds with detectable CO are too molecule-rich to be in chemical equilibrium, given the depths of their atomic shielding layers, which suggests a scenario whereby these clouds consist of pre-existing molecular gas from the disc that the Galactic wind has swept up, and that is dissociating into atomic hydrogen as it flows away from the Galaxy. We estimate that entrained molecular material of this type has a $\sim \mathrm{few}-10$ Myr lifetime before photodissociating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06356v2-abstract-full').style.display = 'none'; document.getElementById('2304.06356v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, 2 tables. Accepted for publication in MNRAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Volume 524, Issue 1, 2023, Pages 1258 - 1268 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04880">arXiv:2302.04880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04880">pdf</a>, <a href="https://arxiv.org/format/2302.04880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad462">10.1093/mnras/stad462 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HI filaments as potential compass needles? Comparing the magnetic field structure of the Small Magellanic Cloud to the orientation of GASKAP-HI filaments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Y. K. Ma</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S+J">S. J. Gibson</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Soler%2C+J+D">J. D. Soler</a>, <a href="/search/?searchtype=author&amp;query=Putman%2C+M+E">M. E. Putman</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M+-">M. -Y. Lee</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K+E">K. E. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Uscanga%2C+L">L. Uscanga</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">J. Dempsey</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">C. Lynn</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">N. M. Pingel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04880v1-abstract-short" style="display: inline;"> High-spatial-resolution HI observations have led to the realisation that the nearby (within few hundreds of parsecs) Galactic atomic filamentary structures are aligned with the ambient magnetic field. Enabled by the high quality data from the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope for the Galactic ASKAP HI (GASKAP-HI) survey, we investigate the potential magnetic alig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04880v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04880v1-abstract-full" style="display: none;"> High-spatial-resolution HI observations have led to the realisation that the nearby (within few hundreds of parsecs) Galactic atomic filamentary structures are aligned with the ambient magnetic field. Enabled by the high quality data from the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope for the Galactic ASKAP HI (GASKAP-HI) survey, we investigate the potential magnetic alignment of the $\gtrsim 10\,{\rm pc}$-scale HI filaments in the Small Magellanic Cloud (SMC). Using the Rolling Hough Transform (RHT) technique that automatically identifies filamentary structures, combined with our newly devised ray-tracing algorithm that compares the HI and starlight polarisation data, we find that the HI filaments in the northeastern end of the SMC main body (&#34;Bar&#34; region) and the transition area between the main body and the tidal feature (&#34;Wing&#34; region) appear preferentially aligned with the magnetic field traced by starlight polarisation. Meanwhile, the remaining SMC volume lacks starlight polarisation data of sufficient quality to draw any conclusions. This suggests for the first time that filamentary HI structures can be magnetically aligned across a large spatial volume ($\gtrsim\,{\rm kpc}$) outside of the Milky Way. In addition, we generate maps of the preferred orientation of HI filaments throughout the entire SMC, revealing the highly complex gaseous structures of the galaxy likely shaped by a combination of the intrinsic internal gas dynamics, tidal interactions, and star formation feedback processes. These maps can further be compared with future measurements of the magnetic structures in other regions of the SMC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04880v1-abstract-full').style.display = 'none'; document.getElementById('2302.04880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, MNRAS accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.13798">arXiv:2206.13798</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.13798">pdf</a>, <a href="https://arxiv.org/format/2206.13798">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2972">10.1093/mnras/stac2972 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rotation measure structure functions with higher-order stencils as a probe of small-scale magnetic fluctuations and its application to the Small and Large Magellanic Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Seta%2C+A">Amit Seta</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+D">Jack D. Livingston</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.13798v2-abstract-short" style="display: inline;"> Magnetic fields and turbulence are important components of the interstellar medium (ISM) of star-forming galaxies. It is challenging to measure the properties of the small-scale ISM magnetic fields (magnetic fields at scales smaller than the turbulence driving scale). Using numerical simulations, we demonstrate how the second-order rotation measure (RM, which depends on thermal electron density,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.13798v2-abstract-full').style.display = 'inline'; document.getElementById('2206.13798v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.13798v2-abstract-full" style="display: none;"> Magnetic fields and turbulence are important components of the interstellar medium (ISM) of star-forming galaxies. It is challenging to measure the properties of the small-scale ISM magnetic fields (magnetic fields at scales smaller than the turbulence driving scale). Using numerical simulations, we demonstrate how the second-order rotation measure (RM, which depends on thermal electron density, $n_{\rm e}$, and magnetic field, $b$) structure function can probe the properties of small-scale $b$. We then apply our results to observations of the Small and Large Magellanic Clouds (SMC and LMC). First, using Gaussian random $b$, we show that the characteristic scale where the RM structure function flattens is approximately equal to the correlation length of $b$. We also show that computing the RM structure function with a higher-order stencil (more than the commonly-used two-point stencil) is necessary to accurately estimate the slope of the structure function. Then, using Gaussian random $b$ and lognormal $n_{\rm e}$ with known power spectra, we derive an empirical relationship between the slope of the power spectrum of $b$, $n_{\rm e}$, and RM. We apply these results to the SMC and LMC and estimate the following properties of small-scale $b$: correlation length ($160~\pm 21~{\rm pc}$ for the SMC and $87~\pm~17~{\rm pc}$ for the LMC), strength ($14~\pm 2~渭{\rm G}$ for the SMC and $15~\pm 3~渭{\rm G}$ for the LMC), and slope of the magnetic power spectrum ($-1.3~\pm~0.4$ for the SMC and $-1.6~\pm~0.1$ for the LMC). We also find that $n_{\rm e}$ is practically constant over the estimated $b$ correlation scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.13798v2-abstract-full').style.display = 'none'; document.getElementById('2206.13798v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages (including 6 appendices), 29 figures (16 in the main text and 13 in the appendices), and 4 tables (2 in the main text and 2 in the appendices); MNRAS accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10426">arXiv:2205.10426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.10426">pdf</a>, <a href="https://arxiv.org/format/2205.10426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243334">10.1051/0004-6361/202243334 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Galactic dynamics revealed by the filamentary structure in atomic hydrogen emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Soler%2C+J+D">Juan D. Soler</a>, <a href="/search/?searchtype=author&amp;query=Miville-Desch%C3%AAnes%2C+M">Marc-Antoine Miville-Desch锚nes</a>, <a href="/search/?searchtype=author&amp;query=Molinari%2C+S">Sergio Molinari</a>, <a href="/search/?searchtype=author&amp;query=Klessen%2C+R+S">Ralf S. Klessen</a>, <a href="/search/?searchtype=author&amp;query=Hennebelle%2C+P">Patrick Hennebelle</a>, <a href="/search/?searchtype=author&amp;query=Testi%2C+L">Leonardo Testi</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/?searchtype=author&amp;query=Elia%2C+D">Davide Elia</a>, <a href="/search/?searchtype=author&amp;query=Schisano%2C+E">Eugenio Schisano</a>, <a href="/search/?searchtype=author&amp;query=Traficante%2C+A">Alessio Traficante</a>, <a href="/search/?searchtype=author&amp;query=Girichidis%2C+P">Philipp Girichidis</a>, <a href="/search/?searchtype=author&amp;query=Glover%2C+S+C+O">Simon C. O. Glover</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+R+J">Rowan J. Smith</a>, <a href="/search/?searchtype=author&amp;query=Sormani%2C+M">Mattia Sormani</a>, <a href="/search/?searchtype=author&amp;query=Tre%C3%9F%2C+R">Robin Tre脽</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10426v1-abstract-short" style="display: inline;"> We present a study of the filamentary structure in the atomic hydrogen (HI) emission at the 21 cm wavelength toward the Galactic plane using the observations in the HI4PI survey. Using the Hessian matrix method across radial velocity channels, we identified the filamentary structures and quantified their orientations using circular statistics. We found that the regions of the Milky Way&#39;s disk beyo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10426v1-abstract-full').style.display = 'inline'; document.getElementById('2205.10426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10426v1-abstract-full" style="display: none;"> We present a study of the filamentary structure in the atomic hydrogen (HI) emission at the 21 cm wavelength toward the Galactic plane using the observations in the HI4PI survey. Using the Hessian matrix method across radial velocity channels, we identified the filamentary structures and quantified their orientations using circular statistics. We found that the regions of the Milky Way&#39;s disk beyond 10 kpc and up to roughly 18 kpc from the Galactic center display HI filamentary structures predominantly parallel to the Galactic plane. For regions at lower Galactocentric radii, we found that the HI filaments are mostly perpendicular or do not have a preferred orientation with respect to the Galactic plane. We interpret these results as the imprint of supernova feedback in the inner Galaxy and Galactic rotation in the outer Milky Way. We found that the HI filamentary structures follow the Galactic warp and that they highlight some of the variations interpreted as the effect of the gravitational interaction with satellite galaxies. In addition, the mean scale height of the filamentary structures is lower than that sampled by the bulk of the HI emission, thus indicating that the cold and warm atomic hydrogen phases have different scale heights in the outer galaxy. Finally, we found that the fraction of the column density in HI filaments is almost constant up to approximately 18 kpc from the Galactic center. This is possibly a result of the roughly constant ratio between the cold and warm atomic hydrogen phases inferred from the HI absorption studies. Our results indicate that the HI filamentary structures provide insight into the dynamical processes shaping the Galactic disk. Their orientations record how and where the stellar energy input, the Galactic fountain process, the cosmic ray diffusion, and the gas accretion have molded the diffuse interstellar medium in the Galactic plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10426v1-abstract-full').style.display = 'none'; document.getElementById('2205.10426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages. 39 figures. Accepted for publication in Astronomy &amp; Astrophysics (06MAY2022)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> AA/2022/43334 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 662, A96 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.06285">arXiv:2204.06285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.06285">pdf</a>, <a href="https://arxiv.org/format/2204.06285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2022.18">10.1017/pasa.2022.18 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GASKAP-HI Pilot Survey Science III: An unbiased view of cold gas in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">James Dempsey</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Murray%2C+C">Claire Murray</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K">Katherine Jameson</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">Helga D茅nes</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Min-Young Lee</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">S. Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=Breen%2C+S">Shari Breen</a>, <a href="/search/?searchtype=author&amp;query=Buckland-Willis%2C+F">Frances Buckland-Willis</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S+J">Steven J. Gibson</a>, <a href="/search/?searchtype=author&amp;query=Imai%2C+H">Hiroshi Imai</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a>, <a href="/search/?searchtype=author&amp;query=Tremblay%2C+C+D">C. D. Tremblay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.06285v1-abstract-short" style="display: inline;"> We present the first unbiased survey of neutral hydrogen (HI) absorption in the Small Magellanic Cloud (SMC). The survey utilises pilot HI observations with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope as part of the Galactic ASKAP HI (GASKAP-HI) project whose dataset has been processed with the GASKAP-HI absorption pipeline, also described here. This dataset provides absorpt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06285v1-abstract-full').style.display = 'inline'; document.getElementById('2204.06285v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.06285v1-abstract-full" style="display: none;"> We present the first unbiased survey of neutral hydrogen (HI) absorption in the Small Magellanic Cloud (SMC). The survey utilises pilot HI observations with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope as part of the Galactic ASKAP HI (GASKAP-HI) project whose dataset has been processed with the GASKAP-HI absorption pipeline, also described here. This dataset provides absorption spectra towards 229 continuum sources, a 275% increase in the number of continuum sources previously published in the SMC region, as well as an improvement in the quality of absorption spectra over previous surveys of the SMC. Our unbiased view, combined with the closely matched beam size between emission and absorption, reveals a lower cold gas faction (11%) than the 2019 ATCA survey of the SMC and is more representative of the SMC as a whole. We also find that the optical depth varies greatly between the SMC&#39;s bar and wing regions. In the bar we find that the optical depth is generally low (correction factor to the optically thin column density assumption of $\mathcal{R}_{\rm HI} \sim 1.04$) but increases linearly with column density. In the wing however, there is a wide scatter in optical depth despite a tighter range of column densities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06285v1-abstract-full').style.display = 'none'; document.getElementById('2204.06285v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PASA, 19 pages, 17 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05131">arXiv:2203.05131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05131">pdf</a>, <a href="https://arxiv.org/format/2203.05131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac636">10.1093/mnras/stac636 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SPLASH: The Southern Parkes Large-Area Survey in Hydroxyl -- Data Description &amp; Release </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dawson%2C+J+R">J. R. Dawson</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+P+A">P. A. Jones</a>, <a href="/search/?searchtype=author&amp;query=Purcell%2C+C">C. Purcell</a>, <a href="/search/?searchtype=author&amp;query=Walsh%2C+A+J">A. J. Walsh</a>, <a href="/search/?searchtype=author&amp;query=Breen%2C+S+L">S. L. Breen</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+C">C. Brown</a>, <a href="/search/?searchtype=author&amp;query=Carretti%2C+E">E. Carretti</a>, <a href="/search/?searchtype=author&amp;query=Cunningham%2C+M+R">M. R. Cunningham</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Ellingsen%2C+S+P">S. P. Ellingsen</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S+J">S. J. Gibson</a>, <a href="/search/?searchtype=author&amp;query=Gomez%2C+J+F">J. F. Gomez</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+J+A">J. A. Green</a>, <a href="/search/?searchtype=author&amp;query=Imai%2C+H">H. Imai</a>, <a href="/search/?searchtype=author&amp;query=Krishnan%2C+V">V. Krishnan</a>, <a href="/search/?searchtype=author&amp;query=Lo%2C+N">N. Lo</a>, <a href="/search/?searchtype=author&amp;query=Lowe%2C+V">V. Lowe</a>, <a href="/search/?searchtype=author&amp;query=Marquarding%2C+M">M. Marquarding</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=."> .</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05131v1-abstract-short" style="display: inline;"> We present the full data release for the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH), a sensitive, unbiased single-dish survey of the Southern Galactic Plane in all four ground-state transitions of the OH radical at 1612, 1665, 1667 and 1720 MHz. The survey covers the inner Galactic Plane, Central Molecular Zone and Galactic Centre over the range $|b|&lt;$ 2$^{\circ}$, 332$^{\circ}$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05131v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05131v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05131v1-abstract-full" style="display: none;"> We present the full data release for the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH), a sensitive, unbiased single-dish survey of the Southern Galactic Plane in all four ground-state transitions of the OH radical at 1612, 1665, 1667 and 1720 MHz. The survey covers the inner Galactic Plane, Central Molecular Zone and Galactic Centre over the range $|b|&lt;$ 2$^{\circ}$, 332$^{\circ}$ $&lt; l &lt;$ 10$^{\circ}$, with a small extension between 2$^{\circ}$ $&lt; b &lt;$ 6$^{\circ}$, 358$^{\circ}$ $&lt; l &lt;$ 4$^{\circ}$. SPLASH is the most sensitive large-scale survey of OH to-date, reaching a characteristic root-mean-square sensitivity of $\sim15$ mK for an effective velocity resolution of $\sim0.9$ km/s. The spectral line datacubes are optimised for the analysis of extended, quasi-thermal OH, but also contain numerous maser sources, which have been confirmed interferometrically and published elsewhere. We also present radio continuum images at 1612, 1666 and 1720 MHz. Based on initial comparisons with $^{12}$CO(J=1-0), we find that OH rarely extends outside CO cloud boundaries in our data, but suggest that large variations in CO-to-OH brightness temperature ratios may reflect differences in the total gas column density traced by each. Column density estimation in the complex, continuum-bright Inner Galaxy is a challenge, and we demonstrate how failure to appropriately model sub-beam structure and the line-of-sight source distribution can lead to order-of-magnitude errors. Anomalous excitation of the 1612 and 1720 MHz satellite lines is ubiquitous in the inner Galaxy, but is disabled by line overlap in and around the Central Molecular Zone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05131v1-abstract-full').style.display = 'none'; document.getElementById('2203.05131v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper: 22 pages, 15 figures. Online-only material (appended to ArXiv PDF): 11 pages, 3 figure sets. Accepted to MNRAS. Survey data is available from: https://docs.datacentral.org.au/splash/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04044">arXiv:2112.04044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04044">pdf</a>, <a href="https://arxiv.org/format/2112.04044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3375">10.1093/mnras/stab3375 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Radio Polarisation Study of Magnetic Fields in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+D">J. D. Livingston</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Mao%2C+S+A">S. A. Mao</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Y. K. Ma</a>, <a href="/search/?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/?searchtype=author&amp;query=Heald%2C+G">G. Heald</a>, <a href="/search/?searchtype=author&amp;query=Seta%2C+A">A. Seta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04044v1-abstract-short" style="display: inline;"> Observing the magnetic fields of low-mass interacting galaxies tells us how they have evolved over cosmic time and their importance in galaxy evolution. We have measured the Faraday rotation of 80 extra-galactic radio sources behind the Small Magellanic Cloud (SMC) using the CSIRO Australia Telescope Compact Array (ATCA) with a frequency range of 1.4 -- 3.0 GHz. Both the sensitivity of our observa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04044v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04044v1-abstract-full" style="display: none;"> Observing the magnetic fields of low-mass interacting galaxies tells us how they have evolved over cosmic time and their importance in galaxy evolution. We have measured the Faraday rotation of 80 extra-galactic radio sources behind the Small Magellanic Cloud (SMC) using the CSIRO Australia Telescope Compact Array (ATCA) with a frequency range of 1.4 -- 3.0 GHz. Both the sensitivity of our observations and the source density are an order of magnitude improvement on previous Faraday rotation measurements of this galaxy. The SMC generally produces negative rotation measures (RMs) after accounting for the Milky Way foreground contribution, indicating that it has a mean coherent line-of-sight magnetic field strength of $-0.3\pm0.1渭$G, consistent with previous findings. We detect signatures of magnetic fields extending from the north and south of the Bar of the SMC. The random component of the SMC magnetic field has a strength of $\sim 5渭$G with a characteristic size-scale of magneto-ionic turbulence $&lt; 250$ pc, making the SMC like other low-mass interacting galaxies. The magnetic fields of the SMC and Magellanic Bridge appear similar in direction and strength, hinting at a connection between the two fields as part of the hypothesised `pan-Magellanic&#39; magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04044v1-abstract-full').style.display = 'none'; document.getElementById('2112.04044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05339">arXiv:2111.05339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05339">pdf</a>, <a href="https://arxiv.org/format/2111.05339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2021.59">10.1017/pasa.2021.59 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GASKAP-HI Pilot Survey Science I: ASKAP Zoom Observations of HI Emission in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">N. M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">J. Dempsey</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K+E">K. E. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Arce%2C+H">H. Arce</a>, <a href="/search/?searchtype=author&amp;query=Anglada%2C+G">G. Anglada</a>, <a href="/search/?searchtype=author&amp;query=Bland-Hawthorn%2C+J">J. Bland-Hawthorn</a>, <a href="/search/?searchtype=author&amp;query=Breen%2C+S+L">S. L. Breen</a>, <a href="/search/?searchtype=author&amp;query=Buckland-Willis%2C+F">F. Buckland-Willis</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Dawson%2C+J+R">J. R. Dawson</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=For%2C+B+-">B. -Q. For</a>, <a href="/search/?searchtype=author&amp;query=Foster%2C+T+J">Tyler J. Foster</a>, <a href="/search/?searchtype=author&amp;query=G%C3%B3mez%2C+J+F">J. F. G贸mez</a>, <a href="/search/?searchtype=author&amp;query=Imai%2C+H">H. Imai</a>, <a href="/search/?searchtype=author&amp;query=Joncas%2C+G">G. Joncas</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+C+-">C. -G. Kim</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M+-">M. -Y. Lee</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">C. Lynn</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Y. K. Ma</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">A. Marchal</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05339v2-abstract-short" style="display: inline;"> We present the most sensitive and detailed view of the neutral hydrogen (HI) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05339v2-abstract-full').style.display = 'inline'; document.getElementById('2111.05339v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05339v2-abstract-full" style="display: none;"> We present the most sensitive and detailed view of the neutral hydrogen (HI) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal HI in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (1.6 mJy/beam) per 0.98 km s$^{-1}$ spectral channel with an angular resolution of 30$&#39;&#39;$ ($\sim$10 pc). We discuss the calibration scheme and the custom imaging pipeline that utilizes a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire $\sim$25 deg$^2$ field-of-view. We provide an overview of the data products and characterize several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power-law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high velocity cloud with previous ASKAP+Parkes HI test observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05339v2-abstract-full').style.display = 'none'; document.getElementById('2111.05339v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PASA, 34 pages, 18 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.04545">arXiv:2111.04545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.04545">pdf</a>, <a href="https://arxiv.org/format/2111.04545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac3a89">10.3847/1538-4357/ac3a89 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GASKAP Pilot Survey Science II: ASKAP Zoom Observations of Galactic 21-cm Absorption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J+M">J. M. Dempsey</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">N. M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K">K. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Dawson%2C+J+R">J. R. Dawson</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Joncas%2C+G">G. Joncas</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Min-Young Lee</a>, <a href="/search/?searchtype=author&amp;query=Miville-Desch%C3%AAnes%2C+M+-">M. -A. Miville-Desch锚nes</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">S. Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=Tremblay%2C+C+D">C. D. Tremblay</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.04545v2-abstract-short" style="display: inline;"> Using the Australian Square Kilometre Array Pathfinder to measure 21-cm absorption spectra toward continuum background sources, we study the cool phase of the neutral atomic gas in the far outer disk, and in the inner Galaxy near the end of the Galactic bar at longitude 340 degrees. In the inner Galaxy the cool atomic gas has a smaller scale height than in the solar neighborhood, similar to the mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04545v2-abstract-full').style.display = 'inline'; document.getElementById('2111.04545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.04545v2-abstract-full" style="display: none;"> Using the Australian Square Kilometre Array Pathfinder to measure 21-cm absorption spectra toward continuum background sources, we study the cool phase of the neutral atomic gas in the far outer disk, and in the inner Galaxy near the end of the Galactic bar at longitude 340 degrees. In the inner Galaxy the cool atomic gas has a smaller scale height than in the solar neighborhood, similar to the molecular gas and the superthin stellar population in the bar. In the outer Galaxy the cool atomic gas is mixed with the warm, neutral medium, with the cool fraction staying roughly constant with Galactic radius. The mean spin temperature, i.e. the ratio of the emission brightness temperature to the absorption, is roughly constant for velocities corresponding to Galactic radius greater than about twice the solar circle radius. The ratio has a value of about 300 K, but this does not correspond to a physical temperature in the gas. If the gas causing the absorption has kinetic temperature of about 100 K, as in the solar neighborhood, then the value 300 K indicates that the fraction of the gas mass in this phase is one-third of the total HI mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04545v2-abstract-full').style.display = 'none'; document.getElementById('2111.04545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 12 figures, submitted to Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.14037">arXiv:2109.14037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.14037">pdf</a>, <a href="https://arxiv.org/format/2109.14037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2773">10.1093/mnras/stab2773 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distant probes of RM structure -- Where is the Faraday Rotation towards the Magellanic Leading Arm? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jung%2C+S+L">Seoyoung Lyla Jung</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+A+S">Alex S. Hill</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.14037v1-abstract-short" style="display: inline;"> Faraday Rotation Measures (RM) should be interpreted with caution because there could be multiple magneto-ionized medium components that contribute to the net Faraday rotation along sight-lines. We introduce a simple test using Galactic diffuse polarised emission that evaluates whether structures evident in RM observations are associated with distant circumgalactic medium (CGM) or foreground inter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14037v1-abstract-full').style.display = 'inline'; document.getElementById('2109.14037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.14037v1-abstract-full" style="display: none;"> Faraday Rotation Measures (RM) should be interpreted with caution because there could be multiple magneto-ionized medium components that contribute to the net Faraday rotation along sight-lines. We introduce a simple test using Galactic diffuse polarised emission that evaluates whether structures evident in RM observations are associated with distant circumgalactic medium (CGM) or foreground interstellar medium (ISM). We focus on the Magellanic Leading Arm region where a clear excess of RM was previously reported. There are two gaseous objects standing out in this direction: the distant Magellanic Leading Arm and the nearby Antlia supernova remnant (SNR). We recognized narrow depolarised filaments in the $2.3\,\rm GHz$ S-band Polarization All Sky Survey (S-PASS) image that overlaps with the reported RM excess. We suggest that there is a steep gradient in Faraday rotation in a foreground screen arising from the Antlia SNR. The estimated strength of the line-of-sight component of the magnetic field is $B_{\parallel}\sim 5\,\rm渭G$, assuming that the excess of RM is entirely an outcome of the magnetized supernova shell. Our analysis indicates that the overlap between the RM excess and the Magellanic Leading Arm is only a remarkable coincidence. We suggest for future RM grid studies that checking Galactic diffuse polarisation maps is a convenient way to identify local Faraday screens. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14037v1-abstract-full').style.display = 'none'; document.getElementById('2109.14037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, Accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.06039">arXiv:2108.06039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.06039">pdf</a>, <a href="https://arxiv.org/format/2108.06039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2021.44">10.1017/pasa.2021.44 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The ASKAP Variables and Slow Transients (VAST) Pilot Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Murphy%2C+T">Tara Murphy</a>, <a href="/search/?searchtype=author&amp;query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/?searchtype=author&amp;query=Stewart%2C+A+J">Adam J. Stewart</a>, <a href="/search/?searchtype=author&amp;query=O%27Brien%2C+A">Andrew O&#39;Brien</a>, <a href="/search/?searchtype=author&amp;query=Lenc%2C+E">Emil Lenc</a>, <a href="/search/?searchtype=author&amp;query=Pintaldi%2C+S">Sergio Pintaldi</a>, <a href="/search/?searchtype=author&amp;query=Pritchard%2C+J">Joshua Pritchard</a>, <a href="/search/?searchtype=author&amp;query=Dobie%2C+D">Dougal Dobie</a>, <a href="/search/?searchtype=author&amp;query=Fox%2C+A">Archibald Fox</a>, <a href="/search/?searchtype=author&amp;query=Leung%2C+J+K">James K. Leung</a>, <a href="/search/?searchtype=author&amp;query=An%2C+T">Tao An</a>, <a href="/search/?searchtype=author&amp;query=Bell%2C+M+E">Martin E. Bell</a>, <a href="/search/?searchtype=author&amp;query=Broderick%2C+J+W">Jess W. Broderick</a>, <a href="/search/?searchtype=author&amp;query=Chatterjee%2C+S">Shami Chatterjee</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">Shi Dai</a>, <a href="/search/?searchtype=author&amp;query=d%27Antonio%2C+D">Daniele d&#39;Antonio</a>, <a href="/search/?searchtype=author&amp;query=Doyle%2C+J+G">J. Gerry Doyle</a>, <a href="/search/?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/?searchtype=author&amp;query=Heald%2C+G">George Heald</a>, <a href="/search/?searchtype=author&amp;query=Horesh%2C+A">Assaf Horesh</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+M+L">Megan L. Jones</a>, <a href="/search/?searchtype=author&amp;query=McConnell%2C+D">David McConnell</a>, <a href="/search/?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/?searchtype=author&amp;query=Raja%2C+W">Wasim Raja</a>, <a href="/search/?searchtype=author&amp;query=Ramsay%2C+G">Gavin Ramsay</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.06039v1-abstract-short" style="display: inline;"> The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 seconds to $\sim 5$ years. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim 162$ hours of o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06039v1-abstract-full').style.display = 'inline'; document.getElementById('2108.06039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.06039v1-abstract-full" style="display: none;"> The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 seconds to $\sim 5$ years. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim 162$ hours of observations conducted at a central frequency of 888~MHz between 2019 August and 2020 August, with a typical rms sensitivity of 0.24~mJy~beam$^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, \red{each of which was observed for 12 minutes integration time}, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5\,131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1\,646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039--5617. Another seven are stars, four of which have no previously reported radio detection (SCR~J0533--4257, LEHPM~2-783, UCAC3~89--412162 and 2MASS J22414436--6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multiwavelength counterparts and are yet to be identified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06039v1-abstract-full').style.display = 'none'; document.getElementById('2108.06039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15614">arXiv:2106.15614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.15614">pdf</a>, <a href="https://arxiv.org/format/2106.15614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac0f0b">10.3847/1538-4365/ac0f0b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The MACH HI absorption survey I: Physical conditions of cold atomic gas outside of the Galactic plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Murray%2C+C+E">Claire E. Murray</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">Sne啪ana Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=Heiles%2C+C">Carl Heiles</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M+-">M. -Y. Lee</a>, <a href="/search/?searchtype=author&amp;query=Goss%2C+W+M">W. M. Goss</a>, <a href="/search/?searchtype=author&amp;query=Killerby-Smith%2C+N">Nicholas Killerby-Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15614v1-abstract-short" style="display: inline;"> Tracing the transition between the diffuse atomic interstellar medium (ISM) and cold, dense gas is crucial for deciphering the star formation cycle in galaxies. Here we present MACH, a new survey of cold neutral hydrogen (HI) absorption at $21\rm\,cm$ by the Karl G. Jansky Very Large Array. We target 42 bright background sources with $60&lt;l&lt;110^{\circ}$, $30&lt;b&lt;62^{\circ}$, significantly expanding t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15614v1-abstract-full').style.display = 'inline'; document.getElementById('2106.15614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15614v1-abstract-full" style="display: none;"> Tracing the transition between the diffuse atomic interstellar medium (ISM) and cold, dense gas is crucial for deciphering the star formation cycle in galaxies. Here we present MACH, a new survey of cold neutral hydrogen (HI) absorption at $21\rm\,cm$ by the Karl G. Jansky Very Large Array. We target 42 bright background sources with $60&lt;l&lt;110^{\circ}$, $30&lt;b&lt;62^{\circ}$, significantly expanding the sample of publicly-available, sensitive $21\rm\,cm$ absorption outside the Galactic plane. With matching $21\rm\,cm$ emission data from the EBHIS survey, we measure the total column density and cold HI fraction, and quantify the properties of individual HI structures along each sightline via autonomous Gaussian decomposition. Combining the MACH sample with results from recent HI absorption surveys, we produce a robust characterization of the cool atomic medium at high and intermediate Galactic latitudes. We find that MACH HI has significantly smaller column density relative to samples at similar latitudes, and the detected cold HI structures have smaller line widths, temperatures and turbulent Mach numbers, suggesting that MACH probes a particularly quiescent region. Using all available observations, we compute the cumulative covering fraction ($c$) of cold HI at local velocities outside the disk: structures with $蟿&gt;0.001$ are ubiquitous ($c\sim100\%$), whereas high optical depths ($蟿&gt;1$) are extremely rare ($c\sim0\%$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15614v1-abstract-full').style.display = 'none'; document.getElementById('2106.15614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 16 figures. Accepted for publication in ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12595">arXiv:2106.12595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.12595">pdf</a>, <a href="https://arxiv.org/format/2106.12595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1805">10.1093/mnras/stab1805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Global Magneto-Ionic Medium Survey (GMIMS): The brightest polarized region in the Southern sky at 75cm and its implications for Radio Loop II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Thomson%2C+A+J+M">Alec J. M. Thomson</a>, <a href="/search/?searchtype=author&amp;query=Landecker%2C+T+L">T. L. Landecker</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Campbell%2C+J+L">J. L. Campbell</a>, <a href="/search/?searchtype=author&amp;query=Carretti%2C+E">Ettore Carretti</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+J+L">J. L. Han</a>, <a href="/search/?searchtype=author&amp;query=Haverkorn%2C+M">Marijke Haverkorn</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+A+S">Alex. S. Hill</a>, <a href="/search/?searchtype=author&amp;query=Mao%2C+S+A">S. A. Mao</a>, <a href="/search/?searchtype=author&amp;query=Ordog%2C+A">Anna Ordog</a>, <a href="/search/?searchtype=author&amp;query=Pratley%2C+L">Luke Pratley</a>, <a href="/search/?searchtype=author&amp;query=Reich%2C+W">Wolfgang Reich</a>, <a href="/search/?searchtype=author&amp;query=Van+Eck%2C+C+L">Cameron L. Van Eck</a>, <a href="/search/?searchtype=author&amp;query=West%2C+J+L">J. L. West</a>, <a href="/search/?searchtype=author&amp;query=Wolleben%2C+M">M. Wolleben</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12595v1-abstract-short" style="display: inline;"> Using the Global Magneto-Ionic Medium Survey (GMIMS) Low-Band South (LBS) southern sky polarization survey, covering 300 to 480 MHz at 81 arcmin resolution, we reveal the brightest region in the Southern polarized sky at these frequencies. The region, G150-50, covers nearly 20deg$^2$, near (l,b)~(150 deg,-50 deg). Using GMIMS-LBS and complementary data at higher frequencies (~0.6--30 GHz), we appl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12595v1-abstract-full').style.display = 'inline'; document.getElementById('2106.12595v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12595v1-abstract-full" style="display: none;"> Using the Global Magneto-Ionic Medium Survey (GMIMS) Low-Band South (LBS) southern sky polarization survey, covering 300 to 480 MHz at 81 arcmin resolution, we reveal the brightest region in the Southern polarized sky at these frequencies. The region, G150-50, covers nearly 20deg$^2$, near (l,b)~(150 deg,-50 deg). Using GMIMS-LBS and complementary data at higher frequencies (~0.6--30 GHz), we apply Faraday tomography and Stokes QU-fitting techniques. We find that the magnetic field associated with G150-50 is both coherent and primarily in the plane of the sky, and indications that the region is associated with Radio Loop II. The Faraday depth spectra across G150-50 are broad and contain a large-scale spatial gradient. We model the magnetic field in the region as an expanding shell, and we can reproduce both the observed Faraday rotation and the synchrotron emission in the GMIMS-LBS band. Using QU-fitting, we find that the Faraday spectra are produced by several Faraday dispersive sources along the line-of-sight. Alternatively, polarization horizon effects that we cannot model are adding complexity to the high-frequency polarized spectra. The magnetic field structure of Loop II dominates a large fraction of the sky, and studies of the large-scale polarized sky will need to account for this object. Studies of G150-50 with high angular resolution could mitigate polarization horizon effects, and clarify the nature of G150-50. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12595v1-abstract-full').style.display = 'none'; document.getElementById('2106.12595v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 14 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12199">arXiv:2103.12199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.12199">pdf</a>, <a href="https://arxiv.org/format/2103.12199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abf4d4">10.3847/1538-4365/abf4d4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Southern HII Region Discovery Survey. II. The Full Catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wenger%2C+T+V">Trey V. Wenger</a>, <a href="/search/?searchtype=author&amp;query=Dawson%2C+J+R">J. R. Dawson</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Jordan%2C+C+H">C. H. Jordan</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+L+D">L. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Armentrout%2C+W+P">W. P. Armentrout</a>, <a href="/search/?searchtype=author&amp;query=Balser%2C+D+S">Dana S. Balser</a>, <a href="/search/?searchtype=author&amp;query=Bania%2C+T+M">T. M. Bania</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12199v1-abstract-short" style="display: inline;"> The Southern HII Region Discovery Survey (SHRDS) is a 900 hour Australia Telescope Compact Array 4-10 GHz radio continuum and radio recombination line (RRL) survey of Galactic HII regions and infrared-identified HII region candidates in the southern sky. For this data release, we reprocess all previously published SHRDS data and include an additional ~450 hours of observations. The search for new&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12199v1-abstract-full').style.display = 'inline'; document.getElementById('2103.12199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12199v1-abstract-full" style="display: none;"> The Southern HII Region Discovery Survey (SHRDS) is a 900 hour Australia Telescope Compact Array 4-10 GHz radio continuum and radio recombination line (RRL) survey of Galactic HII regions and infrared-identified HII region candidates in the southern sky. For this data release, we reprocess all previously published SHRDS data and include an additional ~450 hours of observations. The search for new HII regions is now complete over the range 259 deg &lt; Galactic longitude &lt; 346 deg, |Galactic latitude| &lt; 4 deg for HII region candidates with predicted 6 GHz continuum peak brightnesses &gt;30 mJy/beam. We detect radio continuum emission toward 730 targets altogether including previously known nebulae and HII region candidates. By averaging ~18 RRL transitions, we detect RRL emission toward 206 previously known HII regions and 436 HII region candidates. Including the northern sky surveys, over the last decade the HII Region Discovery Surveys have more than doubled the number of known Galactic HII regions. The census of HII regions in the WISE Catalog of Galactic HII Regions is now complete for nebulae with 9 GHz continuum flux densities &gt; 250 mJy. We compare the RRL properties of the newly discovered SHRDS nebulae with those of all previously known HII regions. The median RRL full-width at half-maximum line width of the entire WISE Catalog HII region population is 23.9 km/s and is consistent between Galactic quadrants. The observed Galactic longitude-velocity asymmetry in the population of HII regions probably reflects underlying spiral structure in the Milky Way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12199v1-abstract-full').style.display = 'none'; document.getElementById('2103.12199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 10 figures, 11 tables (full tables in machine readable format available in the online journal), 1 appendix. Survey website: https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/shrds/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.10903">arXiv:2102.10903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.10903">pdf</a>, <a href="https://arxiv.org/format/2102.10903">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2021.10">10.1017/pasa.2021.10 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interpretable Faraday Complexity Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alger%2C+M+J">M. J. Alger</a>, <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+D">J. D. Livingston</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Nabaglo%2C+J+L">J. L. Nabaglo</a>, <a href="/search/?searchtype=author&amp;query=Wong%2C+O+I">O. I. Wong</a>, <a href="/search/?searchtype=author&amp;query=Ong%2C+C+S">C. S. Ong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.10903v1-abstract-short" style="display: inline;"> Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining the Faraday complexity of a spectropolarimetric observation is important for processing large, polarised radio surveys. Finding simple sources lets us build rotation measure grids, and finding complex sources lets us follow these sources up with slower analysis techn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.10903v1-abstract-full').style.display = 'inline'; document.getElementById('2102.10903v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.10903v1-abstract-full" style="display: none;"> Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining the Faraday complexity of a spectropolarimetric observation is important for processing large, polarised radio surveys. Finding simple sources lets us build rotation measure grids, and finding complex sources lets us follow these sources up with slower analysis techniques or further observations. We introduce five features that can be used to train simple, interpretable machine learning classifiers for estimating Faraday complexity. We train logistic regression and extreme gradient boosted tree classifiers on simulated polarised spectra using our features, analyse their behaviour, and demonstrate our features are effective for both simulated and real data. This is the first application of machine learning methods to real spectropolarimetry data. With 95 per cent accuracy on simulated ASKAP data and 90 per cent accuracy on simulated ATCA data, our method performs comparably to state-of-the-art convolutional neural networks while being simpler and easier to interpret. Logistic regression trained with our features behaves sensibly on real data and its outputs are useful for sorting polarised sources by apparent Faraday complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.10903v1-abstract-full').style.display = 'none'; document.getElementById('2102.10903v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PASA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Publ. Astron. Soc. Aust. 38 (2021) e022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01870">arXiv:2102.01870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.01870">pdf</a>, <a href="https://arxiv.org/format/2102.01870">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2021.1">10.1017/pasa.2021.1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Australian Square Kilometre Array Pathfinder: I. System Description </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hotan%2C+A+W">A. W. Hotan</a>, <a href="/search/?searchtype=author&amp;query=Bunton%2C+J+D">J. D. Bunton</a>, <a href="/search/?searchtype=author&amp;query=Chippendale%2C+A+P">A. P. Chippendale</a>, <a href="/search/?searchtype=author&amp;query=Whiting%2C+M">M. Whiting</a>, <a href="/search/?searchtype=author&amp;query=Tuthill%2C+J">J. Tuthill</a>, <a href="/search/?searchtype=author&amp;query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/?searchtype=author&amp;query=McConnell%2C+D">D. McConnell</a>, <a href="/search/?searchtype=author&amp;query=Amy%2C+S+W">S. W. Amy</a>, <a href="/search/?searchtype=author&amp;query=Huynh%2C+M+T">M. T. Huynh</a>, <a href="/search/?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+C+S">C. S. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Bannister%2C+K+W">K. W. Bannister</a>, <a href="/search/?searchtype=author&amp;query=Bastholm%2C+E">E. Bastholm</a>, <a href="/search/?searchtype=author&amp;query=Beresford%2C+R">R. Beresford</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+D+C+-">D. C. -J. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolton%2C+R">R. Bolton</a>, <a href="/search/?searchtype=author&amp;query=Chapman%2C+J+M">J. M. Chapman</a>, <a href="/search/?searchtype=author&amp;query=Chow%2C+K">K. Chow</a>, <a href="/search/?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/?searchtype=author&amp;query=Cooray%2C+F+R">F. R. Cooray</a>, <a href="/search/?searchtype=author&amp;query=Cornwell%2C+T+J">T. J. Cornwell</a>, <a href="/search/?searchtype=author&amp;query=Diamond%2C+P+J">P. J. Diamond</a>, <a href="/search/?searchtype=author&amp;query=Edwards%2C+P+G">P. G. Edwards</a>, <a href="/search/?searchtype=author&amp;query=Feain%2C+I+J">I. J. Feain</a>, <a href="/search/?searchtype=author&amp;query=Franzen%2C+T+M+O">T. M. O. Franzen</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01870v1-abstract-short" style="display: inline;"> In this paper we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers 31 square degrees&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01870v1-abstract-full').style.display = 'inline'; document.getElementById('2102.01870v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01870v1-abstract-full" style="display: none;"> In this paper we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers 31 square degrees at 800 MHz. As a two-dimensional array of 36x12m antennas, with baselines ranging from 22m to 6km, ASKAP also has excellent snapshot imaging capability and 10 arcsecond resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 MHz and 1800 MHz and is expected to facilitate great advances in our understanding of galaxy formation, cosmology and radio transients while opening new parameter space for discovery of the unknown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01870v1-abstract-full').style.display = 'none'; document.getElementById('2102.01870v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 24 figures, accepted for publication in PASA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Publ. Astron. Soc. Aust. 38 (2021) e009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01702">arXiv:2102.01702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.01702">pdf</a>, <a href="https://arxiv.org/format/2102.01702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2021.4">10.1017/pasa.2021.4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Early Science from POSSUM: Shocks, turbulence, and a massive new reservoir of ionised gas in the Fornax cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Anderson%2C+C+S">C. S. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Heald%2C+G+H">G. H. Heald</a>, <a href="/search/?searchtype=author&amp;query=Eilek%2C+J+A">J. A. Eilek</a>, <a href="/search/?searchtype=author&amp;query=Lenc%2C+E">E. Lenc</a>, <a href="/search/?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/?searchtype=author&amp;query=Rudnick%2C+L">Lawrence Rudnick</a>, <a href="/search/?searchtype=author&amp;query=Van+Eck%2C+C+L">C. L. Van Eck</a>, <a href="/search/?searchtype=author&amp;query=O%27Sullivan%2C+S+P">S. P. O&#39;Sullivan</a>, <a href="/search/?searchtype=author&amp;query=Stil%2C+J+M">J. M. Stil</a>, <a href="/search/?searchtype=author&amp;query=Chippendale%2C+A">A. Chippendale</a>, <a href="/search/?searchtype=author&amp;query=Riseley%2C+C+J">C. J. Riseley</a>, <a href="/search/?searchtype=author&amp;query=Carretti%2C+E">E. Carretti</a>, <a href="/search/?searchtype=author&amp;query=West%2C+J">J. West</a>, <a href="/search/?searchtype=author&amp;query=Farnes%2C+J">J. Farnes</a>, <a href="/search/?searchtype=author&amp;query=Harvey-Smith%2C+L">L. Harvey-Smith</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+D+C+J">Douglas C. J. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bunton%2C+J+D">J. D. Bunton</a>, <a href="/search/?searchtype=author&amp;query=Koribalski%2C+B">B. Koribalski</a>, <a href="/search/?searchtype=author&amp;query=Tremblay%2C+C+D">C. D. Tremblay</a>, <a href="/search/?searchtype=author&amp;query=Voronkov%2C+M+A">M. A. Voronkov</a>, <a href="/search/?searchtype=author&amp;query=Warhurst%2C+K">K. Warhurst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01702v1-abstract-short" style="display: inline;"> We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster -- the Fornax cluster -- which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe&#39;s Magnetism (POSSUM) covering a $\sim34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01702v1-abstract-full').style.display = 'inline'; document.getElementById('2102.01702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01702v1-abstract-full" style="display: none;"> We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster -- the Fornax cluster -- which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe&#39;s Magnetism (POSSUM) covering a $\sim34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid density of $\sim25$ RMs per square degree from a 280 MHz band centred at 887 MHz, which is similar to expectations for forthcoming GHz-frequency all-sky surveys. We thereby probe the extended magnetoionic structure of the cluster in unprecedented detail. We find that the scatter in the Faraday RM of confirmed background sources is increased by $16.8\pm2.4$ rad m$^{-2}$ within 1 degree (360 kpc) projected distance to the cluster centre, which is 2--4 times more extended than the presently-detectable X-ray-emitting intracluster medium (ICM). The Faraday-active plasma is more massive than the X-ray-emitting ICM, with an average density that broadly matches expectations for the Warm-Hot Intergalactic Medium. The morphology of the Faraday depth enhancement exhibits the classic morphology of an astrophysical bow shock on the southwest side of the main Fornax cluster, and an extended, swept-back wake on the northeastern side. Our favoured explanation is an ongoing merger between the main cluster and a sub-cluster to the southwest. The shock&#39;s Mach angle and stand-off distance lead to a self-consistent transonic merger speed with Mach 1.06. The region hosting the Faraday depth enhancement shows a decrement in both total and polarised intensity. We fail to identify a satisfactory explanation for this; further observations are warranted. Generally, our study illustrates the scientific returns that can be expected from all-sky grids of discrete sources generated by forthcoming all-sky radio surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01702v1-abstract-full').style.display = 'none'; document.getElementById('2102.01702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PASA. 27 pages, 14 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01139">arXiv:2102.01139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.01139">pdf</a>, <a href="https://arxiv.org/format/2102.01139">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab253">10.1093/mnras/stab253 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heightened Faraday Complexity in the inner 1 kpc of the Galactic Centre </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Livingston%2C+J+D">J. D. Livingston</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/?searchtype=author&amp;query=Seta%2C+A">A. Seta</a>, <a href="/search/?searchtype=author&amp;query=Alger%2C+M+J">M. J. Alger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01139v1-abstract-short" style="display: inline;"> We have measured the Faraday rotation of 62 extra-galactic background sources in 58 fields using the CSIRO Australia Telescope Compact Array (ATCA) with a frequency range of 1.1 - 3.1 GHz with 2048 channels. Our sources cover a region $\sim 12\, \mathrm{deg}\, \times 12\,\mathrm{deg}$ ($\sim 1 $kpc) around the Galactic Centre region. We show that the Galactic Plane for $|l| &lt; 10^\circ$ exhibits la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01139v1-abstract-full').style.display = 'inline'; document.getElementById('2102.01139v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01139v1-abstract-full" style="display: none;"> We have measured the Faraday rotation of 62 extra-galactic background sources in 58 fields using the CSIRO Australia Telescope Compact Array (ATCA) with a frequency range of 1.1 - 3.1 GHz with 2048 channels. Our sources cover a region $\sim 12\, \mathrm{deg}\, \times 12\,\mathrm{deg}$ ($\sim 1 $kpc) around the Galactic Centre region. We show that the Galactic Plane for $|l| &lt; 10^\circ$ exhibits large Rotation Measures (RMs) with a maximum |RM| of $1691.2 \pm 4.9\, \mathrm{rad}\,\mathrm{m}^{-2}$ and a mean $|\mathrm{RM}| = 219 \pm 42\,\mathrm{rad}\,\mathrm{m}^{-2}$. The RMs decrease in magnitude with increasing projected distance from the Galactic Plane, broadly consistent with previous findings. We find an unusually high fraction (95\%) of the sources show Faraday complexity consistent with multiple Faraday components. We attribute the presences of multiple Faraday rotating screens with widely separated Faraday depths to small-scale turbulent RM structure in the Galactic Centre region. The second order structure function of the RM in the Galactic Centre displays a line with a gradient of zero for angular separations spanning $0.83^\circ - 11^\circ$ ($\sim 120 - 1500$ pc), which is expected for scales larger than the outer scale (or driving scale) of magneto-ionic turbulence. We place an upper limit on any break in the SF gradient of 66&#39;&#39;, corresponding to an inferred upper limit to the outer scale of turbulence in the inner 1 kpc of the Galactic Centre of $3$ pc. We propose stellar feedback as the probable driver of this small-scale turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01139v1-abstract-full').style.display = 'none'; document.getElementById('2102.01139v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15+66 pages, 11+65 figures, 3 tables. In press with MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.00747">arXiv:2012.00747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.00747">pdf</a>, <a href="https://arxiv.org/format/2012.00747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2020.41">10.1017/pasa.2020.41 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Rapid ASKAP Continuum Survey I: Design and First Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=McConnell%2C+D">D. McConnell</a>, <a href="/search/?searchtype=author&amp;query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/?searchtype=author&amp;query=Lenc%2C+E">E. Lenc</a>, <a href="/search/?searchtype=author&amp;query=Banfield%2C+J+K">J. K. Banfield</a>, <a href="/search/?searchtype=author&amp;query=Heald%2C+G">George Heald</a>, <a href="/search/?searchtype=author&amp;query=Hotan%2C+A+W">A. W. Hotan</a>, <a href="/search/?searchtype=author&amp;query=Leung%2C+J+K">James K. Leung</a>, <a href="/search/?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/?searchtype=author&amp;query=Murphy%2C+T">Tara Murphy</a>, <a href="/search/?searchtype=author&amp;query=O%27Brien%2C+A">Andrew O&#39;Brien</a>, <a href="/search/?searchtype=author&amp;query=Pritchard%2C+J">Joshua Pritchard</a>, <a href="/search/?searchtype=author&amp;query=Raja%2C+W">Wasim Raja</a>, <a href="/search/?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/?searchtype=author&amp;query=Stewart%2C+A">Adam Stewart</a>, <a href="/search/?searchtype=author&amp;query=Thomson%2C+A+J+M">Alec J. M. Thomson</a>, <a href="/search/?searchtype=author&amp;query=Whiting%2C+M">M. Whiting</a>, <a href="/search/?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/?searchtype=author&amp;query=Amy%2C+S+W">S. W. Amy</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+C">C. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Ball%2C+L">Lewis Ball</a>, <a href="/search/?searchtype=author&amp;query=Bannister%2C+K+W">Keith W. Bannister</a>, <a href="/search/?searchtype=author&amp;query=Bell%2C+M">Martin Bell</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+D+C+-">Douglas C. -J. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolton%2C+R">Russ Bolton</a>, <a href="/search/?searchtype=author&amp;query=Bunton%2C+J+D">J. D. Bunton</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.00747v1-abstract-short" style="display: inline;"> The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP ban&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00747v1-abstract-full').style.display = 'inline'; document.getElementById('2012.00747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.00747v1-abstract-full" style="display: none;"> The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP band of $700-1800$ MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey (NVSS) and Sydney University Molonglo Sky Survey (SUMSS) radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim 15$ arcsecond resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288 MHz band centred at 887.5 MHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00747v1-abstract-full').style.display = 'none'; document.getElementById('2012.00747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 17 figures, 4 tables. For associated data see https://data.csiro.au/collections/domain/casdaObservation/results/PRAS110%20-%20The%20Rapid%20ASKAP%20Continuum</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Publications of the Astronomical Society of Australia, 37, 2020, E048 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09121">arXiv:2008.09121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09121">pdf</a>, <a href="https://arxiv.org/format/2008.09121">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-020-2595-z">10.1038/s41586-020-2595-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cold gas in the Milky Way&#39;s nuclear wind </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Lockman%2C+F+J">Felix J. Lockman</a>, <a href="/search/?searchtype=author&amp;query=Armillotta%2C+L">Lucia Armillotta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09121v1-abstract-short" style="display: inline;"> The centre of the Milky Way is the site of several high-energy processes that have strongly impacted the inner regions of our Galaxy. Activity from the super-massive black hole, Sgr A*, and/or stellar feedback from the inner molecular ring expel matter and energy from the disc in the form of a galactic wind. Multiphase gas has been observed within this outflow, from hot highly-ionized, to warm ion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09121v1-abstract-full').style.display = 'inline'; document.getElementById('2008.09121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09121v1-abstract-full" style="display: none;"> The centre of the Milky Way is the site of several high-energy processes that have strongly impacted the inner regions of our Galaxy. Activity from the super-massive black hole, Sgr A*, and/or stellar feedback from the inner molecular ring expel matter and energy from the disc in the form of a galactic wind. Multiphase gas has been observed within this outflow, from hot highly-ionized, to warm ionized and cool atomic gas. To date, however, there has been no evidence of the cold and dense molecular phase. Here we report the first detection of molecular gas outflowing from the centre of our Galaxy. This cold material is associated with atomic hydrogen clouds travelling in the nuclear wind. The morphology and the kinematics of the molecular gas, resolved on ~1 pc scale, indicate that these clouds are mixing with the warmer medium and are possibly being disrupted. The data also suggest that the mass of molecular gas driven out is not negligible and could impact the rate of star formation in the central regions. The presence of this cold, dense, high-velocity gas is puzzling, as neither Sgr A* at its current level of activity, nor star formation in the inner Galaxy seem viable sources for this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09121v1-abstract-full').style.display = 'none'; document.getElementById('2008.09121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in the August 19 issue of Nature. This is the authors&#39; version before final edits. Published version is available at http://www.nature.com/articles/s41586-020-2595-z</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature, 2020, vol. 584, pp. 364-367 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07285">arXiv:2007.07285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07285">pdf</a>, <a href="https://arxiv.org/format/2007.07285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202038882">10.1051/0004-6361/202038882 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The history of dynamics and stellar feedback revealed by the HI filamentary structure in the disk of the Milky Way </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Soler%2C+J+D">J. D. Soler</a>, <a href="/search/?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/?searchtype=author&amp;query=Syed%2C+J">J. Syed</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+L+D">L. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Glover%2C+S+C+O">S. C. O. Glover</a>, <a href="/search/?searchtype=author&amp;query=Hennebelle%2C+P">P. Hennebelle</a>, <a href="/search/?searchtype=author&amp;query=Heyer%2C+M">M. Heyer</a>, <a href="/search/?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/?searchtype=author&amp;query=Izquierdo%2C+A+F">A. F. Izquierdo</a>, <a href="/search/?searchtype=author&amp;query=Klessen%2C+R+S">R. S. Klessen</a>, <a href="/search/?searchtype=author&amp;query=Linz%2C+H">H. Linz</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Ott%2C+J">J. Ott</a>, <a href="/search/?searchtype=author&amp;query=Ragan%2C+S+E">S. E. Ragan</a>, <a href="/search/?searchtype=author&amp;query=Rugel%2C+M">M. Rugel</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+N">N. Schneider</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+R+J">R. J. Smith</a>, <a href="/search/?searchtype=author&amp;query=Sormani%2C+M+C">M. C. Sormani</a>, <a href="/search/?searchtype=author&amp;query=Stil%2C+J+M">J. M. Stil</a>, <a href="/search/?searchtype=author&amp;query=Tre%C3%9F%2C+R">R. Tre脽</a>, <a href="/search/?searchtype=author&amp;query=Urquhart%2C+J+S">J. S. Urquhart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07285v2-abstract-short" style="display: inline;"> We present a study of the filamentary structure in the emission from the neutral atomic hydrogen (HI) at 21 cm across velocity channels in the 40&#39;&#39; and 1.5-km/s resolution position-position-velocity cube resulting from the combination of the single-dish and interferometric observations in The HI/OH/Recombination (THOR) line survey. Using the Hessian matrix method in combination with tools from cir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07285v2-abstract-full').style.display = 'inline'; document.getElementById('2007.07285v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07285v2-abstract-full" style="display: none;"> We present a study of the filamentary structure in the emission from the neutral atomic hydrogen (HI) at 21 cm across velocity channels in the 40&#39;&#39; and 1.5-km/s resolution position-position-velocity cube resulting from the combination of the single-dish and interferometric observations in The HI/OH/Recombination (THOR) line survey. Using the Hessian matrix method in combination with tools from circular statistics, we find that the majority of the filamentary structures in the HI emission are aligned with the Galactic plane. Part of this trend can be assigned to long filamentary structures that are coherent across several velocity channels. However, we also find ranges of Galactic longitude and radial velocity where the HI filamentary structures are preferentially oriented perpendicular to the Galactic plane. These are located (i) around the tangent point of the Scutum spiral arm, $l \approx 28^{\circ}$ and $v_{\rm LSR}\approx 100$ km/s, (ii) toward $l \approx 45^{\circ}$ and $v_{\rm LSR}\approx 50$ km/s, (iii) around the Riegel-Crutcher cloud, and (iv) toward the terminal velocities. Comparison with numerical simulations indicates that the prevalence of horizontal filamentary structures is most likely the result of the large-scale dynamics and that vertical structures identified in (i) and (ii) may arise from the combined effect of supernova (SN) feedback and strong magnetic fields. The vertical filamentary structures in (iv) can be related to the presence of clouds from extra-planar HI gas falling back into the Galactic plane after being expelled by SNe. Our results indicate that a systematic characterization of the emission morphology toward the Galactic plane provides an unexplored link between the observations and the dynamical behaviour of the interstellar medium, from the effect of large-scale Galactic dynamics to the Galactic fountains driven by SNe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07285v2-abstract-full').style.display = 'none'; document.getElementById('2007.07285v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages. 37 figures. Accepted for publication in Astronomy &amp; Astrophysics (09SEP2020)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> AA/2020/38882 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 642, A163 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.01971">arXiv:2006.01971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.01971">pdf</a>, <a href="https://arxiv.org/format/2006.01971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa1602">10.1093/mnras/staa1602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cold HI ejected into the Magellanic Stream </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">J. Dempsey</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K">K. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Buckland-Willis%2C+F">F. Buckland-Willis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.01971v1-abstract-short" style="display: inline;"> We report the direct detection of cold HI gas in a cloud ejected from the Small Magellanic Cloud (SMC) towards the Magellanic Stream. The cloud is part of a fragmented shell of HI gas on the outskirts of the SMC. This is the second direct detection of cold HI associated with the Magellanic Stream using absorption. The cold gas was detected using 21-cm HI absorption-line observations with the Austr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01971v1-abstract-full').style.display = 'inline'; document.getElementById('2006.01971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.01971v1-abstract-full" style="display: none;"> We report the direct detection of cold HI gas in a cloud ejected from the Small Magellanic Cloud (SMC) towards the Magellanic Stream. The cloud is part of a fragmented shell of HI gas on the outskirts of the SMC. This is the second direct detection of cold HI associated with the Magellanic Stream using absorption. The cold gas was detected using 21-cm HI absorption-line observations with the Australia Telescope Compact Array (ATCA) towards the extra-galactic source PMN J0029$-$7228. We find a spin (excitation) temperature for the gas of $68 \pm 20$ K. We suggest that breaking super shells from the Magellanic Clouds may be a source of cold gas to supply the rest of the Magellanic Stream. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01971v1-abstract-full').style.display = 'none'; document.getElementById('2006.01971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.06180">arXiv:2001.06180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.06180">pdf</a>, <a href="https://arxiv.org/format/2001.06180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa167">10.1093/mnras/staa167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MAGMO: Polarimetry of 1720-MHz OH Masers towards Southern Star Forming Regions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ogbodo%2C+C+S">C. S. Ogbodo</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+J+A">J. A. Green</a>, <a href="/search/?searchtype=author&amp;query=Dawson%2C+J+R">J. R. Dawson</a>, <a href="/search/?searchtype=author&amp;query=Breen%2C+S+L">S. L. Breen</a>, <a href="/search/?searchtype=author&amp;query=Mao%2C+S+A">S. A. Mao</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Robishaw%2C+T">T. Robishaw</a>, <a href="/search/?searchtype=author&amp;query=Harvey-Smith%2C+L">L. Harvey-Smith</a>, <a href="/search/?searchtype=author&amp;query=."> .</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.06180v1-abstract-short" style="display: inline;"> From targeted observations of ground-state OH masers towards 702 Multibeam (MMB) survey 6.7-GHz methanol masers, between Galactic longitudes 186$^{\circ}$ through the Galactic centre to 20$^{\circ}$, made as part of the `MAGMO&#39; project, we present the physical and polarisation properties of the 1720-MHz OH maser transition, including the identification of Zeeman pairs. We present 10 new and 23 pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06180v1-abstract-full').style.display = 'inline'; document.getElementById('2001.06180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.06180v1-abstract-full" style="display: none;"> From targeted observations of ground-state OH masers towards 702 Multibeam (MMB) survey 6.7-GHz methanol masers, between Galactic longitudes 186$^{\circ}$ through the Galactic centre to 20$^{\circ}$, made as part of the `MAGMO&#39; project, we present the physical and polarisation properties of the 1720-MHz OH maser transition, including the identification of Zeeman pairs. We present 10 new and 23 previously catalogued 1720-MHz OH maser sources detected towards star formation regions. In addition, we also detected 16 1720-MHz OH masers associated with supernova remnants and two sites of diffuse OH emission. Towards the 33 star formation masers, we identify 44 Zeeman pairs, implying magnetic field strengths ranging from $-$11.4 to $+$13.2 mG, and a median magnetic field strength of $|B_{LOS}|$ $\sim$ 6 mG. With limited statistics, we present the in-situ magnetic field orientation of the masers and the Galactic magnetic field distribution revealed by the 1720-MHz transition. We also examine the association statistics of 1720-MHz OH SFR masers with other ground-state OH masers, excited-state OH masers, class I and class II methanol masers and water masers, and compare maser positions with mid-infrared images of the parent star forming regions. Of the 33 1720-MHz star formation masers, ten are offset from their central exciting sources, and appear to be associated with outflow activity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06180v1-abstract-full').style.display = 'none'; document.getElementById('2001.06180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.00953">arXiv:2001.00953</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.00953">pdf</a>, <a href="https://arxiv.org/format/2001.00953">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201935866">10.1051/0004-6361/201935866 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cloud formation in the atomic and molecular phase: HI self absorption (HISA) towards a Giant Molecular Filament </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/?searchtype=author&amp;query=Bihr%2C+S">S. Bihr</a>, <a href="/search/?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/?searchtype=author&amp;query=Rugel%2C+M+R">M. R. Rugel</a>, <a href="/search/?searchtype=author&amp;query=Soler%2C+J+D">J. D. Soler</a>, <a href="/search/?searchtype=author&amp;query=Ott%2C+J">J. Ott</a>, <a href="/search/?searchtype=author&amp;query=Kainulainen%2C+J">J. Kainulainen</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+N">N. Schneider</a>, <a href="/search/?searchtype=author&amp;query=Klessen%2C+R+S">R. S. Klessen</a>, <a href="/search/?searchtype=author&amp;query=Glover%2C+S+C+O">S. C. O. Glover</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Goldsmith%2C+P+F">P. F. Goldsmith</a>, <a href="/search/?searchtype=author&amp;query=Johnston%2C+K+G">K. G. Johnston</a>, <a href="/search/?searchtype=author&amp;query=Menten%2C+K+M">K. M. Menten</a>, <a href="/search/?searchtype=author&amp;query=Ragan%2C+S">S. Ragan</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+L+D">L. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Urquhart%2C+J+S">J. S. Urquhart</a>, <a href="/search/?searchtype=author&amp;query=Linz%2C+H">H. Linz</a>, <a href="/search/?searchtype=author&amp;query=Roy%2C+N">N. Roy</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+R+J">R. J. Smith</a>, <a href="/search/?searchtype=author&amp;query=Bigiel%2C+F">F. Bigiel</a>, <a href="/search/?searchtype=author&amp;query=Henning%2C+T">T. Henning</a>, <a href="/search/?searchtype=author&amp;query=Longmore%2C+S+N">S. N. Longmore</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.00953v1-abstract-short" style="display: inline;"> Molecular clouds form from the atomic phase of the interstellar medium. However, characterizing the transition between the atomic and the molecular interstellar medium (ISM) is a difficult observational task. Here we address cloud formation processes by combining HSIA with molecular line data. One scenario proposed by numerical simulations is that the column density probability density functions (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00953v1-abstract-full').style.display = 'inline'; document.getElementById('2001.00953v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.00953v1-abstract-full" style="display: none;"> Molecular clouds form from the atomic phase of the interstellar medium. However, characterizing the transition between the atomic and the molecular interstellar medium (ISM) is a difficult observational task. Here we address cloud formation processes by combining HSIA with molecular line data. One scenario proposed by numerical simulations is that the column density probability density functions (N-PDF) evolves from a log-normal shape at early times to a power-law-like shape at later times. In this paper, we study the cold atomic component of the giant molecular filament GMF38a (d=3.4 kpc, length$\sim230$ pc). We identify an extended HISA feature, which is partly correlated with the 13CO emission. The peak velocities of the HISA and 13CO observations agree well on the eastern side of the filament, whereas a velocity offset of approximately 4 km s$^{-1}$ is found on the western side. The sonic Mach number we derive from the linewidth measurements shows that a large fraction of the HISA, which is ascribed to the cold neutral medium (CNM), is at subsonic and transonic velocities. The column density of the CNM is on the order of 10$^{20}$ to 10$^{21}$ cm$^{-2}$. The column density of molecular hydrogen is an order of magnitude higher. The N-PDFs from HISA (CNM), HI emission (WNM+CNM), and 13CO (molecular component) are well described by log-normal functions, which is in agreement with turbulent motions being the main driver of cloud dynamics. The N-PDF of the molecular component also shows a power law in the high column-density region, indicating self-gravity. We suggest that we are witnessing two different evolutionary stages within the filament. The eastern subregion seems to be forming a molecular cloud out of the atomic gas, whereas the western subregion already shows high column density peaks, active star formation and evidence of related feedback processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00953v1-abstract-full').style.display = 'none'; document.getElementById('2001.00953v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 25 figures, accepted for publication by A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 634, A139 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.08223">arXiv:1912.08223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.08223">pdf</a>, <a href="https://arxiv.org/format/1912.08223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201937095">10.1051/0004-6361/201937095 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The HI/OH/Recombination line survey of the inner Milky Way (THOR): data release 2 and HI overview </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/?searchtype=author&amp;query=Rugel%2C+M+R">M. R. Rugel</a>, <a href="/search/?searchtype=author&amp;query=Soler%2C+J+D">J. D. Soler</a>, <a href="/search/?searchtype=author&amp;query=Stil%2C+J+M">J. M. Stil</a>, <a href="/search/?searchtype=author&amp;query=Ott%2C+J">J. Ott</a>, <a href="/search/?searchtype=author&amp;query=Bihr%2C+S">S. Bihr</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+L+D">L. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Klessen%2C+R+S">R. S. Klessen</a>, <a href="/search/?searchtype=author&amp;query=Goldsmith%2C+P+F">P. F. Goldsmith</a>, <a href="/search/?searchtype=author&amp;query=Roy%2C+N">N. Roy</a>, <a href="/search/?searchtype=author&amp;query=Glover%2C+S+C+O">S. C. O. Glover</a>, <a href="/search/?searchtype=author&amp;query=Urquhart%2C+J+S">J. S. Urquhart</a>, <a href="/search/?searchtype=author&amp;query=Heyer%2C+M">M. Heyer</a>, <a href="/search/?searchtype=author&amp;query=Linz%2C+H">H. Linz</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+R+J">R. J. Smith</a>, <a href="/search/?searchtype=author&amp;query=Bigiel%2C+F">F. Bigiel</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">J. Dempsey</a>, <a href="/search/?searchtype=author&amp;query=Henning%2C+T">T. Henning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.08223v2-abstract-short" style="display: inline;"> With the $Karl~G.~Jansky$ Very Large Array (VLA) in C-configuration, we observed a large portion of the first Galactic quadrant ($l=14.0-67.4^\circ $ and $\lvert b \rvert \leq 1.25^\circ $) achieving an angular resolution of $\leq 40^{\prime\prime}$. At $L$ Band, the WIDAR correlator at the VLA was set to cover the 21~cm HI line, four OH transitions, a series of H$n伪$ radio recombination lines (RR&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08223v2-abstract-full').style.display = 'inline'; document.getElementById('1912.08223v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.08223v2-abstract-full" style="display: none;"> With the $Karl~G.~Jansky$ Very Large Array (VLA) in C-configuration, we observed a large portion of the first Galactic quadrant ($l=14.0-67.4^\circ $ and $\lvert b \rvert \leq 1.25^\circ $) achieving an angular resolution of $\leq 40^{\prime\prime}$. At $L$ Band, the WIDAR correlator at the VLA was set to cover the 21~cm HI line, four OH transitions, a series of H$n伪$ radio recombination lines (RRLs; $n=151$ to 186), and eight 128~MHz wide continuum spectral windows (SPWs) simultaneously. The HI emission shows clear filamentary substructures at negative velocities with low velocity crowding. The emission at positive velocities is more smeared-out likely due to higher spatial and velocity crowding of structures at the positive velocities. Comparing to the spiral arm model of the Milky Way, the atomic gas follows the Sagittarius and Perseus Arm well but with significant material in the inter-arm regions. With the C-configuration-only HI+continuum data, we produced a HI optical depth map of the THOR areal coverage from 228 absorption spectra with the nearest-neighbor method. With this $蟿$ map, we corrected the HI emission for optical depth and the derived column density is 38% higher than the column density with optically thin assumption. The total HI mass with optical depth correction in the survey region is 4.7$\times10^8~M_\odot$, 31% more than the mass derived assuming the emission is optically thin. If we apply this 31% correction to the whole Milky Way, the total atomic gas mass would be 9.4-10.5$\times 10^9~M_\odot$. Comparing the HI with existing CO data, we find a significant increase in the atomic-to-molecular gas ratio from the spiral arms to the inter-arm regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08223v2-abstract-full').style.display = 'none'; document.getElementById('1912.08223v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 13 figures, accepted to be published in Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 634, A83 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.08536">arXiv:1911.08536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.08536">pdf</a>, <a href="https://arxiv.org/format/1911.08536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab58d4">10.3847/2041-8213/ab58d4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong excess Faraday rotation on the Inside of the Sagittarius spiral arm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shanahan%2C+R">R. Shanahan</a>, <a href="/search/?searchtype=author&amp;query=Lemmer%2C+S+J">S. J. Lemmer</a>, <a href="/search/?searchtype=author&amp;query=Stil%2C+J+M">J. M. Stil</a>, <a href="/search/?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/?searchtype=author&amp;query=Soler%2C+J">J. Soler</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+L+D">L. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Bigiel%2C+F">F. Bigiel</a>, <a href="/search/?searchtype=author&amp;query=Glover%2C+S+C+O">S. C. O. Glover</a>, <a href="/search/?searchtype=author&amp;query=Goldsmith%2C+P">P. Goldsmith</a>, <a href="/search/?searchtype=author&amp;query=Klessen%2C+R+S">R. S. Klessen</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Reissl%2C+S">S. Reissl</a>, <a href="/search/?searchtype=author&amp;query=Rugel%2C+M">M. Rugel</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+R+J">R. J. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.08536v1-abstract-short" style="display: inline;"> We present first results for Faraday rotation of compact polarized sources (1 to 2 GHz continuum) in The HI/OH/Recombination line (THOR) survey of the inner Galaxy. In the Galactic longitude range 39 degr &lt; l &lt; 52 degr, we find rotation measures in the range -310 rad/m2 &lt; RM &lt; +4219 rad/m2, with the highest values concentrated within a degree of l = 48 degrees at the Sagittarius arm tangent. Most&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08536v1-abstract-full').style.display = 'inline'; document.getElementById('1911.08536v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.08536v1-abstract-full" style="display: none;"> We present first results for Faraday rotation of compact polarized sources (1 to 2 GHz continuum) in The HI/OH/Recombination line (THOR) survey of the inner Galaxy. In the Galactic longitude range 39 degr &lt; l &lt; 52 degr, we find rotation measures in the range -310 rad/m2 &lt; RM &lt; +4219 rad/m2, with the highest values concentrated within a degree of l = 48 degrees at the Sagittarius arm tangent. Most of the high RMs arise in diffuse plasma, along lines of sight that do not intersect HII regions. For l &gt; 49 degr, RM drops off rapidly, while at l &lt; 47 degr, the mean RM is higher with a larger standard deviation than at l &gt; 49 degr. We attribute the RM structure to the compressed diffuse Warm Ionized Medium in the spiral arm, upstream of the major star formation regions. The Sagittarius arm acts as a significant Faraday screen inside the Galaxy. This has implications for models of the Galactic magnetic field and the expected amount of Faraday rotation of Fast Radio Bursts from their host galaxies. We emphasize the importance of sensitivity to high Faraday depth in future polarization surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08536v1-abstract-full').style.display = 'none'; document.getElementById('1911.08536v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astrophysical Journal Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06864">arXiv:1911.06864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.06864">pdf</a>, <a href="https://arxiv.org/format/1911.06864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab55d8">10.3847/1538-4357/ab55d8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Acceleration of HI Clouds Within the Fermi Bubbles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lockman%2C+F+J">Felix J. Lockman</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06864v1-abstract-short" style="display: inline;"> The ~200 HI clouds observed to be entrained in the Fermi Bubble wind show a trend of increasing maximum |VLSR| with Galactic latitude. We analyze previous observations and present new data from the Green Bank Telescope that rule out systematic effects as the source of this phenomenon. Instead, it is likely evidence for acceleration of the clouds. The data suggest that clouds in the lower 2 kpc of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06864v1-abstract-full').style.display = 'inline'; document.getElementById('1911.06864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06864v1-abstract-full" style="display: none;"> The ~200 HI clouds observed to be entrained in the Fermi Bubble wind show a trend of increasing maximum |VLSR| with Galactic latitude. We analyze previous observations and present new data from the Green Bank Telescope that rule out systematic effects as the source of this phenomenon. Instead, it is likely evidence for acceleration of the clouds. The data suggest that clouds in the lower 2 kpc of the Fermi Bubbles, within the Bubble boundaries established from X-ray studies, have an outflow velocity that rises from ~150 - 200 km/s close to the Galactic Center and reaches ~330 km/s at a distance of 2.5 - 3.5 kpc. These parameters are also consistent with the kinematics of UV absorption lines from highly ionized species observed against two targets behind the Fermi Bubbles at $b = -6.6^{\circ}$, and $b = +11.2^{\circ}$. The implied neutral cloud lifetime is 4 - 10 Myr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06864v1-abstract-full').style.display = 'none'; document.getElementById('1911.06864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04370">arXiv:1911.04370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.04370">pdf</a>, <a href="https://arxiv.org/format/1911.04370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab53df">10.3847/1538-4357/ab53df <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mapping Spatial Variations of HI Turbulent Properties in the Small and Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Szotkowski%2C+S">Samuel Szotkowski</a>, <a href="/search/?searchtype=author&amp;query=Yoder%2C+D">Delano Yoder</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">Sne啪ana Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=Babler%2C+B">Brian Babler</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">Helga D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Bolatto%2C+A">Alberto Bolatto</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K">Katherine Jameson</a>, <a href="/search/?searchtype=author&amp;query=Staveley-Smith%2C+L">Lister Staveley-Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04370v1-abstract-short" style="display: inline;"> We developed methods for mapping spatial variations of the spatial power spectrum (SPS) and structure function (SF) slopes, with a goal of connecting neutral hydrogen (HI) statistical properties with the turbulent drivers. The new methods were applied on the HI observations of the Small and Large Magellanic Clouds (SMC and LMC). In the case of the SMC, we find highly uniform turbulent properties o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04370v1-abstract-full').style.display = 'inline'; document.getElementById('1911.04370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04370v1-abstract-full" style="display: none;"> We developed methods for mapping spatial variations of the spatial power spectrum (SPS) and structure function (SF) slopes, with a goal of connecting neutral hydrogen (HI) statistical properties with the turbulent drivers. The new methods were applied on the HI observations of the Small and Large Magellanic Clouds (SMC and LMC). In the case of the SMC, we find highly uniform turbulent properties of HI, with no evidence for local enhancements of turbulence due to stellar feedback. Such properties could be caused by a significant turbulent driving on large-scales. Alternatively, a significant line-of-sight depth of the SMC could be masking out localized regions with a steeper SPS slope caused by stellar feedback. In contrast to the SMC, the LMC HI shows a large diversity in terms of its turbulent properties. Across most of the LMC, the small-scale SPS slope is steeper than the large-scale slope due to the presence of the HI disk. On small spatial scales, we find several areas of localized steepening of the SPS slope around major HII regions, with the 30 Doradus region being the most prominent. This is in agreement with predictions from numerical simulations which suggest steepening of the SPS slope due to stellar feedback eroding and destroying interstellar clouds. We also find localized steepening of the large-scale SPS slope in the outskirts of the LMC. This is likely caused by the flaring of the HI disk, or alternatively ram-pressure stripping of the LMC disk due to the interactions with the surrounding halo gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04370v1-abstract-full').style.display = 'none'; document.getElementById('1911.04370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures, accepted to the ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.11283">arXiv:1910.11283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.11283">pdf</a>, <a href="https://arxiv.org/format/1910.11283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab510f">10.3847/1538-4357/ab510f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The 3D Kinematics of Gas in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Murray%2C+C+E">Claire E. Murray</a>, <a href="/search/?searchtype=author&amp;query=Peek%2C+J+E+G">J. E. G. Peek</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Denes%2C+H">Helga Denes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.11283v1-abstract-short" style="display: inline;"> We investigate the kinematics of neutral gas in the Small Magellanic Cloud (SMC) and test the hypothesis that it is rotating in a disk. To trace the 3D motions of the neutral gas distribution, we identify a sample of young, massive stars embedded within it. These are stars with radial velocity measurements from spectroscopic surveys and proper motion measurements from Gaia, whose radial velocities&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11283v1-abstract-full').style.display = 'inline'; document.getElementById('1910.11283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.11283v1-abstract-full" style="display: none;"> We investigate the kinematics of neutral gas in the Small Magellanic Cloud (SMC) and test the hypothesis that it is rotating in a disk. To trace the 3D motions of the neutral gas distribution, we identify a sample of young, massive stars embedded within it. These are stars with radial velocity measurements from spectroscopic surveys and proper motion measurements from Gaia, whose radial velocities match with dominant HI components. We compare the observed radial and tangential velocities of these stars with predictions from the state-of-the-art rotating disk model based on high-resolution 21 cm observations of the SMC from the Australian Square Kilometer Array Pathfinder telescope. We find that the observed kinematics of gas-tracing stars are inconsistent with disk rotation. We conclude that the kinematics of gas in the SMC are more complex than can be inferred from the integrated radial velocity field. As a result of violent tidal interactions with the LMC, non-rotational motions are prevalent throughout the SMC, and it is likely composed of distinct sub-structures overlapping along the line of sight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11283v1-abstract-full').style.display = 'none'; document.getElementById('1910.11283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 1 Appendix; ApJ accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.10718">arXiv:1910.10718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.10718">pdf</a>, <a href="https://arxiv.org/format/1910.10718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab4fe9">10.3847/2041-8213/ab4fe9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular gas in the outflow of the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=De+Breuck%2C+C">C. De Breuck</a>, <a href="/search/?searchtype=author&amp;query=Armillotta%2C+L">L. Armillotta</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">N. M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K+E">K. E. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Rubio%2C+M">M. Rubio</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovic%2C+S">S. Stanimirovic</a>, <a href="/search/?searchtype=author&amp;query=Staveley-Smith%2C+L">L. Staveley-Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.10718v1-abstract-short" style="display: inline;"> We report the first evidence of molecular gas in two atomic hydrogen (HI) clouds associated with gas outflowing from the Small Magellanic Cloud (SMC). We used the Atacama Pathfinder Experiment (APEX) to detect and spatially resolve individual clumps of CO(2-1) emission in both clouds. CO clumps are compact (~ 10 pc) and dynamically cold (linewidths &lt; 1 km/s). Most CO emission appears to be offset&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10718v1-abstract-full').style.display = 'inline'; document.getElementById('1910.10718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.10718v1-abstract-full" style="display: none;"> We report the first evidence of molecular gas in two atomic hydrogen (HI) clouds associated with gas outflowing from the Small Magellanic Cloud (SMC). We used the Atacama Pathfinder Experiment (APEX) to detect and spatially resolve individual clumps of CO(2-1) emission in both clouds. CO clumps are compact (~ 10 pc) and dynamically cold (linewidths &lt; 1 km/s). Most CO emission appears to be offset from the peaks of the HI emission, some molecular gas lies in regions without a clear HI counterpart. We estimate a total molecular gas mass of 10^3-10^4 Msun in each cloud and molecular gas fractions up to 30% of the total cold gas mass (molecular + neutral). Under the assumption that this gas is escaping the galaxy, we calculated a cold gas outflow rate of 0.3-1.8 Msun/yr and mass loading factors of 3 -12 at a distance larger than 1 kpc. These results show that relatively weak star-formation-driven winds in dwarf galaxies like the SMC are able to accelerate significant amounts of cold and dense matter and inject it into the surrounding environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10718v1-abstract-full').style.display = 'none'; document.getElementById('1910.10718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.11476">arXiv:1906.11476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.11476">pdf</a>, <a href="https://arxiv.org/format/1906.11476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaw5903">10.1126/science.aaw5903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A single fast radio burst localized to a massive galaxy at cosmological distance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bannister%2C+K+W">K. W. Bannister</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+A+T">A. T. Deller</a>, <a href="/search/?searchtype=author&amp;query=Phillips%2C+C">C. Phillips</a>, <a href="/search/?searchtype=author&amp;query=Macquart%2C+J+-">J. -P. Macquart</a>, <a href="/search/?searchtype=author&amp;query=Prochaska%2C+J+X">J. X. Prochaska</a>, <a href="/search/?searchtype=author&amp;query=Tejos%2C+N">N. Tejos</a>, <a href="/search/?searchtype=author&amp;query=Ryder%2C+S+D">S. D. Ryder</a>, <a href="/search/?searchtype=author&amp;query=Sadler%2C+E+M">E. M. Sadler</a>, <a href="/search/?searchtype=author&amp;query=Shannon%2C+R+M">R. M. Shannon</a>, <a href="/search/?searchtype=author&amp;query=Simha%2C+S">S. Simha</a>, <a href="/search/?searchtype=author&amp;query=Day%2C+C+K">C. K. Day</a>, <a href="/search/?searchtype=author&amp;query=McQuinn%2C+M">M. McQuinn</a>, <a href="/search/?searchtype=author&amp;query=North-Hickey%2C+F+O">F. O. North-Hickey</a>, <a href="/search/?searchtype=author&amp;query=Bhandari%2C+S">S. Bhandari</a>, <a href="/search/?searchtype=author&amp;query=Arcus%2C+W+R">W. R. Arcus</a>, <a href="/search/?searchtype=author&amp;query=Bennert%2C+V+N">V. N. Bennert</a>, <a href="/search/?searchtype=author&amp;query=Burchett%2C+J">J. Burchett</a>, <a href="/search/?searchtype=author&amp;query=Bouwhuis%2C+M">M. Bouwhuis</a>, <a href="/search/?searchtype=author&amp;query=Dodson%2C+R">R. Dodson</a>, <a href="/search/?searchtype=author&amp;query=Ekers%2C+R+D">R. D. Ekers</a>, <a href="/search/?searchtype=author&amp;query=Farah%2C+W">W. Farah</a>, <a href="/search/?searchtype=author&amp;query=Flynn%2C+C">C. Flynn</a>, <a href="/search/?searchtype=author&amp;query=James%2C+C+W">C. W. James</a>, <a href="/search/?searchtype=author&amp;query=Kerr%2C+M">M. Kerr</a>, <a href="/search/?searchtype=author&amp;query=Lenc%2C+E">E. Lenc</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.11476v1-abstract-short" style="display: inline;"> Fast Radio Bursts (FRBs) are brief radio emissions from distant astronomical sources. Some are known to repeat, but most are single bursts. Non-repeating FRB observations have had insufficient positional accuracy to localize them to an individual host galaxy. We report the interferometric localization of the single pulse FRB 180924 to a position 4 kpc from the center of a luminous galaxy at redshi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11476v1-abstract-full').style.display = 'inline'; document.getElementById('1906.11476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.11476v1-abstract-full" style="display: none;"> Fast Radio Bursts (FRBs) are brief radio emissions from distant astronomical sources. Some are known to repeat, but most are single bursts. Non-repeating FRB observations have had insufficient positional accuracy to localize them to an individual host galaxy. We report the interferometric localization of the single pulse FRB 180924 to a position 4 kpc from the center of a luminous galaxy at redshift 0.3214. The burst has not been observed to repeat. The properties of the burst and its host are markedly different from the only other accurately localized FRB source. The integrated electron column density along the line of sight closely matches models of the intergalactic medium, indicating that some FRBs are clean probes of the baryonic component of the cosmic web. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11476v1-abstract-full').style.display = 'none'; document.getElementById('1906.11476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published online in Science 27 June 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.12685">arXiv:1905.12685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.12685">pdf</a>, <a href="https://arxiv.org/format/1905.12685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab22b0">10.3847/1538-3881/ab22b0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Global Magneto-Ionic Medium Survey: Polarimetry of the Southern Sky from 300 to 480 MHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wolleben%2C+M">M. Wolleben</a>, <a href="/search/?searchtype=author&amp;query=Landecker%2C+T+L">T. L. Landecker</a>, <a href="/search/?searchtype=author&amp;query=Carretti%2C+E">E. Carretti</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Fletcher%2C+A">A. Fletcher</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=McConnell%2C+D">D. McConnell</a>, <a href="/search/?searchtype=author&amp;query=Thomson%2C+A+J+M">A. J. M. Thomson</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+A+S">A. S. Hill</a>, <a href="/search/?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+J+-">J. -L. Han</a>, <a href="/search/?searchtype=author&amp;query=Haverkorn%2C+M">M. Haverkorn</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+J+P">J. P. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Reich%2C+W">W. Reich</a>, <a href="/search/?searchtype=author&amp;query=Taylor%2C+A+R">A. R. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.12685v2-abstract-short" style="display: inline;"> Much data on the Galactic polarized radio emission has been gathered in the last five decades. All-sky surveys have been made, but only in narrow, widely spaced frequency bands, and the data are inadequate for the characterization of Faraday rotation, the main determinant of the appearance of the polarized radio sky at decimetre wavelengths. We describe a survey of the polarized radio emission fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12685v2-abstract-full').style.display = 'inline'; document.getElementById('1905.12685v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.12685v2-abstract-full" style="display: none;"> Much data on the Galactic polarized radio emission has been gathered in the last five decades. All-sky surveys have been made, but only in narrow, widely spaced frequency bands, and the data are inadequate for the characterization of Faraday rotation, the main determinant of the appearance of the polarized radio sky at decimetre wavelengths. We describe a survey of the polarized radio emission from the Southern sky, aiming to characterize the magneto-ionic medium, particularly the strength and configuration of the magnetic field. This work is part of the Global Magneto-Ionic Medium Survey (GMIMS). We have designed and built a feed and receiver covering the band 300 to 900 MHz for the CSIRO Parkes 64-m Telescope. We have surveyed the entire sky between declinations -90 and +20 degrees. We present data covering 300 to 480 MHz with angular resolution 81&#39; to 45&#39;. The survey intensity scale is absolutely calibrated, based on measurements of resistors at known temperatures and on an assumed flux density and spectral index for Taurus A. Data are presented as brightness temperatures. We have applied Rotation Measure Synthesis to the data to obtain a Faraday depth cube of resolution 5.9 radians per metre squared, sensitivity of 60 mK of polarized intensity, and angular resolution 1.35 degrees. The data presented in this paper are available at the Canadian Astronomy Data Centre. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12685v2-abstract-full').style.display = 'none'; document.getElementById('1905.12685v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astronomical Journal Modified 29th June 2019 to replace outdated doi: for access to data</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10