CINXE.COM
Search results for: alkaline treatment
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: alkaline treatment</title> <meta name="description" content="Search results for: alkaline treatment"> <meta name="keywords" content="alkaline treatment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="alkaline treatment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="alkaline treatment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8584</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: alkaline treatment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8584</span> Dynamic Mechanical Thermal Properties of Arenga pinnata Fibre Reinforced Epoxy Composite: Effects of Alkaline Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hakim%20Abdullah">Abdul Hakim Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Syafiq%20Abdul%20Khadir"> Mohamad Syafiq Abdul Khadir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present investigations, thermal behaviours of Arenga pinnata fibres prior and after alkaline treatment were studied. The alkaline treatments were applied on the Arenga pinnata fibres by immersing in the alkaline solution, 6% sodium hydroxide (NaOH). Using hand lay-out technique, composites were fabricated at 20% and 40% by Arenga pinnata fibres weight contents. The thermal behaviours of both untreated and treated composites were determined by employing Dynamic Mechanical Analysis (DMA). The results show that the TAP owned better results of Storage Modulus (E’), Loss Modulus (E”) and Tan Delta temperatures ranges from 0°C to 60°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=Arenga%20pinnata%20fibre" title=" Arenga pinnata fibre"> Arenga pinnata fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment" title=" alkaline treatment"> alkaline treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20properties" title=" dynamic mechanical properties"> dynamic mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/5074/dynamic-mechanical-thermal-properties-of-arenga-pinnata-fibre-reinforced-epoxy-composite-effects-of-alkaline-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8583</span> Effect of Different Levels of Dried Citrus Sinensis Peel on Blood Parameters of Broilers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Ebrahimi">Abbas Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohreh%20Pourhossein"> Zohreh Pourhossein</a>, <a href="https://publications.waset.org/abstracts/search?q=Nariman%20Miraalami"> Nariman Miraalami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment was conducted to evaluate the effects of different levels of dried citrus sinensis peel (DCSP) on the blood parameters of broilers. Four hundred Ross 308 strain day old broiler in a completely randomized design with five treatments (four replicates per treatment and each replicate had 20 chicks) were categorized. Each treatment used either regulatory diet including 1.5% and 3% DCSP in the base diet and in two periods of 1st to 21st day and 1st to 42nd day and base diet without any additive for six weeks. Data analysis was performed using SAS software and mean comparison was conducted by Duncan method. The results determined that using different level of DCSP has significant effects on blood plasma parameters (P<0.05). Cholesterol, glucose, triglyceride, low density lipoprotein (LDL) at the rearing period was significantly influenced by experimental treatments (P<0.05). However, uric acid, alkaline phosphatase and high density lipoprotein (HDL) was not affected by experimental treatments (P>0.05). The lowest rate of blood cholesterol was concerned to the treatment which was used 3% DCSP 1st to 42nd day and the highest mean of blood cholesterol were concerned to the control treatment. The lowest rate of blood triglyceride was concerned to the treatment which was used 3% DCSP 1st to 42nd day and the highest mean of blood triglyceride were concerned to the control treatment. The lowest rate of blood alkaline phosphatase was concerned to the treatment which was used 3% DCSP 1st to 42nd day and the highest mean of blood alkaline phosphatase were concerned to the treatment which was used 3% DCSP 1st to 21st day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20parameters" title="blood parameters">blood parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=broilers" title=" broilers"> broilers</a>, <a href="https://publications.waset.org/abstracts/search?q=dried%20citrus%20sinensis%20peel" title=" dried citrus sinensis peel"> dried citrus sinensis peel</a>, <a href="https://publications.waset.org/abstracts/search?q=regulatory%20diet" title=" regulatory diet "> regulatory diet </a> </p> <a href="https://publications.waset.org/abstracts/10083/effect-of-different-levels-of-dried-citrus-sinensis-peel-on-blood-parameters-of-broilers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8582</span> One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Samiee">Leila Samiee</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Yadegari"> Amir Yadegari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Tasharrofi"> Saeedeh Tasharrofi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20fuel%20cell" title="alkaline fuel cell">alkaline fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-free%20catalyst" title=" metal-free catalyst"> metal-free catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=paraphenylen%20diamine" title=" paraphenylen diamine"> paraphenylen diamine</a> </p> <a href="https://publications.waset.org/abstracts/36398/one-pot-facile-synthesis-of-n-doped-graphene-synthesized-from-paraphenylenediamine-as-metal-free-catalysts-for-the-oxygen-reduction-used-for-alkaline-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8581</span> An Investigation of Passivation Technology in Stainless Steel Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng-Tsai%20Weng">Feng-Tsai Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rick%20Wang"> Rick Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Cong%20Liao"> Yan-Cong Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passivation is a kind of surface treatment for material to reinforce the corrosion resistance specially the stainless alloy. Passive film, is to getting more potential compared to their status before passivation. An oxidation film can be formed on the surface of stainless steel, which has a strong corrosion resistance ability after passivation treatment. In this research, a new passivation technology is proposed for a special stainless alloy which contains a 12-14% Chromium. This method includes the A-A-A (alkaline-acid-alkaline) process basically, which was developed by Carpenter that can neutralize trapped acid. Besides, a corrosion resistant coating layer was obtained by immersing the parts in a water bath of mineral oil at high temperature. Salt spray test ASTM B368 was conducted to investigated performance of corrosion resistant of the passivated stainless steel alloy parts. Results show much better corrosion resistant that followed a coating process after A-A-A Passivation process, than only using A-A-A process. The passivation time is with more than 380 hours of salt spray test ASTM B368, which is equal to 3000 hours of Salt spray test ASTM B117. Proposed passivation method of stainless steel can be completed in about 3 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passivation" title="passivation">passivation</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline-acid-alkaline" title=" alkaline-acid-alkaline"> alkaline-acid-alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20spray%20test" title=" salt spray test"> salt spray test</a> </p> <a href="https://publications.waset.org/abstracts/73718/an-investigation-of-passivation-technology-in-stainless-steel-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8580</span> Experimental Assessment of Alkaline Leaching of Lepidolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B3nio%20Fi%C3%BAza">António Fiúza</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurora%20Futuro"> Aurora Futuro</a>, <a href="https://publications.waset.org/abstracts/search?q=Joana%20Monteiro"> Joana Monteiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Joaquim%20G%C3%B3is"> Joaquim Góis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, which is necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques minimize the laboratory effort required by conventional approaches and allow phenomenological comprehension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20leaching" title="alkaline leaching">alkaline leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium" title=" lithium"> lithium</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20design" title=" research design"> research design</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20interpretation" title=" statistical interpretation"> statistical interpretation</a> </p> <a href="https://publications.waset.org/abstracts/158712/experimental-assessment-of-alkaline-leaching-of-lepidolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8579</span> The Effect of Alkaline Treatment on Tensile Strength and Morphological Properties of Kenaf Fibres for Yarn Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Khalina">A. Khalina</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shaharuddin"> K. Shaharuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Wahab"> M. S. Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Saiman"> M. P. Saiman</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Aisyah"> H. A. Aisyah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effect of alkali treatment and mechanical properties of kenaf (<em>Hibiscus cannabinus</em>) fibre for the development of yarn. Two different fibre sources are used for the yarn production. Kenaf fibres were treated with sodium hydroxide (NaOH) in the concentration of 3, 6, 9, and 12% prior to fibre opening process and tested for their tensile strength and Young’s modulus. Then, the selected fibres were introduced to fibre opener at three different opening processing parameters; namely, speed of roller feeder, small drum, and big drum. The diameter size, surface morphology, and fibre durability towards machine of the fibres were characterized. The results show that concentrations of NaOH used have greater effects on fibre mechanical properties. From this study, the tensile and modulus properties of the treated fibres for both types have improved significantly as compared to untreated fibres, especially at the optimum level of 6% NaOH. It is also interesting to highlight that 6% NaOH is the optimum concentration for the alkaline treatment. The untreated and treated fibres at 6% NaOH were then introduced to fibre opener, and it was found that the treated fibre produced higher fibre diameter with better surface morphology compared to the untreated fibre. Higher speed parameter during opening was found to produce higher yield of opened-kenaf fibres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment" title="alkaline treatment">alkaline treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20fibre" title=" kenaf fibre"> kenaf fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20production" title=" yarn production"> yarn production</a> </p> <a href="https://publications.waset.org/abstracts/69554/the-effect-of-alkaline-treatment-on-tensile-strength-and-morphological-properties-of-kenaf-fibres-for-yarn-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8578</span> The Impact of Alkaline Water Supplemented with Sodium Ascorbate on Glucose and Cortisol Levels in the Blood Serum During Acute Hyperthermic Exposure of White Laboratory Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valdrina%20Ajeti">Valdrina Ajeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Icko%20Gjorgoski"> Icko Gjorgoski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress can be a reason for some physiological and biological disorders in the body. The antioxidative defense system is necessary for the maintenance of redox homeostasis in organisms. Because of its antioxidant effect, alkaline water (AW) is the focus of scientific interest. Adding AW and co-treatment with sodium ascorbate (SA) is expected for the organism to act preventively to hyperthermic stress. To investigate the effect of AW and SA on glucose and cortisol levels during acute hyperthermic stress, white female Wistar laboratory rats, divided into three groups of 10 individuals, were exposed to heat for 80 min, for 21 days. Acute hyperthermic exposure at 41˚C was a cause for oxidative stress. The first group is the control group, the second group is treated with AW, and the third group with AW and SA. Plasma glucose levels were determined by colorimetric method and cortisol was measured using the enzyme-linked immunosorbent assay method. The comparison of the means was made using the Tukey test. Differences were considered significant at a level of p < 0.05. Our results show that levels of glucose and cortisol have been increased in the group treated with AW on the 21st day after treatment (p < 0.0001), but not on the 7th and 14th day as compared to the control group. Also, co-treatment of animals with AW and SA significantly increased the levels of glucose and cortisol on the 21st day after treatment showing a synergistic effect. The individual action of AW, as well as synergism with SA, caused a high protective effect on oxidative damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20water" title="alkaline water">alkaline water</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20ascorbate" title=" sodium ascorbate"> sodium ascorbate</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermic%20stress" title=" hyperthermic stress"> hyperthermic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=cortisol" title=" cortisol"> cortisol</a> </p> <a href="https://publications.waset.org/abstracts/138360/the-impact-of-alkaline-water-supplemented-with-sodium-ascorbate-on-glucose-and-cortisol-levels-in-the-blood-serum-during-acute-hyperthermic-exposure-of-white-laboratory-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8577</span> Water Absorption Studies on Natural Fiber Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Devnani">G. L. Devnani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Sinha"> Shishir Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment" title="alkaline treatment">alkaline treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption" title=" water absorption "> water absorption </a> </p> <a href="https://publications.waset.org/abstracts/77179/water-absorption-studies-on-natural-fiber-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8576</span> Compressive Strength and Microstructure of Hybrid Alkaline Cements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdollahnejad">Z. Abdollahnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Torgal"> P. Torgal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Barroso%20Aguiar"> J. Barroso Aguiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Publications on the field of alkali-activated binders, state that this new material is likely to have high potential to become an alternative to Portland cement. Classical alkali-activated cements could be made more eco-efficient if the use of sodium silicate is avoided. Besides, most alkali-activated cements suffer from severe efflorescence originated by the fact that alkaline and/or soluble silicates that are added during processing cannot be totally consumed. This paper presents experimental results on hybrid alkaline cements. Compressive strength results and efflorescence’s observations show that the new mixes already analyzed are promising. SEM results show that no traditional porous ITZ was detected in these binders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20alkaline%20cements" title="hybrid alkaline cements">hybrid alkaline cements</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=efflorescence" title=" efflorescence"> efflorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ITZ" title=" ITZ"> ITZ</a> </p> <a href="https://publications.waset.org/abstracts/5468/compressive-strength-and-microstructure-of-hybrid-alkaline-cements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8575</span> Studies of Carbohydrate, Antioxidant, Nutrient and Genomic DNA Characterization of Fresh Olive Treated with Alkaline and Acidic Solvent: An Innovation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20M.%20S.%20Hossain">A. B. M. S. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdelgadir"> A. Abdelgadir</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Ibrahim"> N. A. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh ripen olive cannot be consumed immediately after harvest due to the excessive bitterness having polyphenol as antioxidant. Industrial processing needs to be edible the fruit. The laboratory processing technique has been used to make it edible by using acid (vinegar, 5% acetic acid) and alkaline solvent (NaOH). Based on the treatment and consequence, innovative data have been found in this regard. The experiment was conducted to investigate biochemical content, nutritional and DNA characterization of olive fruit treated with alkaline (Sodium chloride anhydrous) and acidic solvent (5% acetic acid, vinegar). The treatments were used as control (no water), water control, 10% sodium chloride anhydrous (NaOH), vinegar (5% acetic acid), vinegar + NaOH and vinegar + NaOH + hot water treatment. Our results showed that inverted sugar and glucose content were higher in the vinegar and NaOH treated olive than in other treatments. Fructose content was the highest in vinegar + NaOH treated fruit. Nutrient contents NO3 K, Ca and Na were found higher in the treated fruit than the control fruit. Moreover, maximum K content was observed in the case of all treatments compared to the other nutrient content. The highest acidic (lower pH) condition (sour) was found in treated fruit. DNA yield was found higher in water control than acid and alkaline treated olives. DNA band was wider in the olive treated water control compared to the NaOH, vinegar, vinegar + NaOH and vinegar + NaOH + Hot water treatment. Finally, results suggest that vinegar + NaOH treated olive fruit was the best for fresh olive homemade processing after harvesting for edible purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive" title="olive">olive</a>, <a href="https://publications.waset.org/abstracts/search?q=vinegar" title=" vinegar"> vinegar</a>, <a href="https://publications.waset.org/abstracts/search?q=sugars" title=" sugars"> sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20band" title=" DNA band"> DNA band</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprocess%20biotechnology" title=" bioprocess biotechnology"> bioprocess biotechnology</a> </p> <a href="https://publications.waset.org/abstracts/70745/studies-of-carbohydrate-antioxidant-nutrient-and-genomic-dna-characterization-of-fresh-olive-treated-with-alkaline-and-acidic-solvent-an-innovation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8574</span> Biochemical Changes in the Liver of Mice after Exposure to Different Doses of Diclofenac Sodium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Mohan">Deepak Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Sharma"> Sushma Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are a group of widely used drugs for the treatment of rheumatoid diseases and to relieve pain and inflammation due to their analgesic anti-pyretic and anti-inflammatory properties. The therapeutic and many of the toxic effects of NSAIDs result from reversible inhibition of enzymes in the cyclooxygenase (COX) group. In the present investigation the effect of the drug on the concentration of lipids, and on the activity of the enzymes i.e. acid and alkaline phosphatase, GOT, GPT and lipid peroxidase were studied. There was a significant enhancement in the activities of both acid and alkaline phosphatase after 21 days of treatment. Proportionate increase in the MDA contents was observed after different days of diclofenac treatment. Cellular damage in the liver resulted in decrease in the activity of both GOT (Glutamate oxaloacetate transaminase) and GPT (Glutamate pyruvate transaminase) in both low and high dose groups. Significant decrease in the liver contents was also observed in both dose groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title="anti-inflammatory">anti-inflammatory</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclooxygenase" title=" cyclooxygenase"> cyclooxygenase</a>, <a href="https://publications.waset.org/abstracts/search?q=glutamate%20oxaloacetate%20transaminase" title=" glutamate oxaloacetate transaminase"> glutamate oxaloacetate transaminase</a>, <a href="https://publications.waset.org/abstracts/search?q=malondialdehyde" title=" malondialdehyde"> malondialdehyde</a> </p> <a href="https://publications.waset.org/abstracts/62653/biochemical-changes-in-the-liver-of-mice-after-exposure-to-different-doses-of-diclofenac-sodium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8573</span> Ultrasound Assisted Alkaline Potassium Permanganate Pre-Treatment of Spent Coffee Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Ravindran">Rajeev Ravindran</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20K.%20Jaiswal"> Amit K. Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignocellulose is the largest reservoir of inexpensive, renewable source of carbon. It is composed of lignin, cellulose and hemicellulose. Cellulose and hemicellulose is composed of reducing sugars glucose, xylose and several other monosaccharides which can be metabolised by microorganisms to produce several value added products such as biofuels, enzymes, aminoacids etc. Enzymatic treatment of lignocellulose leads to the release of monosaccharides such as glucose and xylose. However, factors such as the presence of lignin, crystalline cellulose, acetyl groups, pectin etc. contributes to recalcitrance restricting the effective enzymatic hydrolysis of cellulose and hemicellulose. In order to overcome these problems, pre-treatment of lignocellulose is generally carried out which essentially facilitate better degradation of lignocellulose. A range of pre-treatment strategy is commonly employed based on its mode of action viz. physical, chemical, biological and physico-chemical. However, existing pretreatment strategies result in lower sugar yield and formation of inhibitory compounds. In order to overcome these problems, we proposes a novel pre-treatment, which utilises the superior oxidising capacity of alkaline potassium permanganate assisted by ultra-sonication to break the covalent bonds in spent coffee waste to remove recalcitrant compounds such as lignin. The pre-treatment was conducted for 30 minutes using 2% (w/v) potassium permanganate at room temperature with solid to liquid ratio of 1:10. The pre-treated spent coffee waste (SCW) was subjected to enzymatic hydrolysis using enzymes cellulase and hemicellulase. Shake flask experiments were conducted with a working volume of 50mL buffer containing 1% substrate. The results showed that the novel pre-treatment strategy yielded 7 g/L of reducing sugar as compared to 3.71 g/L obtained from biomass that had undergone dilute acid hydrolysis after 24 hours. From the results obtained it is fairly certain that ultrasonication assists the oxidation of recalcitrant components in lignocellulose by potassium permanganate. Enzyme hydrolysis studies suggest that ultrasound assisted alkaline potassium permanganate pre-treatment is far superior over treatment by dilute acid. Furthermore, SEM, XRD and FTIR were carried out to analyse the effect of the new pre-treatment strategy on structure and crystallinity of pre-treated spent coffee wastes. This novel one-step pre-treatment strategy was implemented under mild conditions and exhibited high efficiency in the enzymatic hydrolysis of spent coffee waste. Further study and scale up is in progress in order to realise future industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20coffee%20waste" title="spent coffee waste">spent coffee waste</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20potassium%20permanganate" title=" alkaline potassium permanganate"> alkaline potassium permanganate</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-sonication" title=" ultra-sonication"> ultra-sonication</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20characterisation" title=" physical characterisation"> physical characterisation</a> </p> <a href="https://publications.waset.org/abstracts/36947/ultrasound-assisted-alkaline-potassium-permanganate-pre-treatment-of-spent-coffee-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8572</span> Effect of Deer Antler Extract on Osteogenic Gene Expression and Longitudinal Bone Growth of Adolescent Male Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyun%20Leem">Kang-Hyun Leem</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gyou%20Kim"> Myung-Gyou Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Kyung%20Kim"> Hye Kyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deer antler, traditionally used as a tonic and valuable drug in oriental medicine, has been considered to possess bone-strengthening activity. The upper section, mid section, and base of the antler has been known to exhibit different biological properties. Present study was performed to examine the effects of different parts of deer antler extract (DH) on osteogenic gene expressions in MG-63 cells and longitudinal bone growth in adolescent male rats. The expressions of osteogenic genes, collagen, alkaline phosphatase, osteocalcin, and osteopontin, were measured by quantitative real-time PCR. Longitudinal bone growth was measured in 3-week-old male Sprague-Dawley rats using fluorescence microscopy. To examine the effects on the growth plate metabolism, the total height of growth plate and bone morphogenetic protein-2 (BMP-2) were measured. Collagen and osteocalcin mRNA expressions were increased by all three parts of the DH treatment while osteopontin gene expression was not affected by any of the DH treatment. Alkaline phosphatase gene expression was increased by upper and mid part of DH while base part of DH fails to affect alkaline phosphatase gene expression. The upper and mid parts of the DH treatment enhanced longitudinal bone growth and total height of growth plate. The induction of BMP-2 protein expression in growth plate assessed by immunostaining was also promoted by upper and mid parts of the DH treatment. These results suggest that DH, especially upper and mid parts, stimulate osteogenic gene expressions and have the effect on bone growth in adolescent rats and might be used for the growth delayed adolescent and inherent growth failure patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20morphogenetic%20protein-2" title="bone morphogenetic protein-2">bone morphogenetic protein-2</a>, <a href="https://publications.waset.org/abstracts/search?q=deer%20antler" title=" deer antler"> deer antler</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20bone%20growth" title=" longitudinal bone growth"> longitudinal bone growth</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenic%20genes" title=" osteogenic genes"> osteogenic genes</a> </p> <a href="https://publications.waset.org/abstracts/24281/effect-of-deer-antler-extract-on-osteogenic-gene-expression-and-longitudinal-bone-growth-of-adolescent-male-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8571</span> Preparation of Water Hyacinth and Oil Palm Fiber for Plastic Waste Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pattamaphorn%20Phuangngamphan">Pattamaphorn Phuangngamphan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rewadee%20Anuwattana"> Rewadee Anuwattana</a>, <a href="https://publications.waset.org/abstracts/search?q=Narumon%20Soparatana"> Narumon Soparatana</a>, <a href="https://publications.waset.org/abstracts/search?q=Nestchanok%20Yongpraderm"> Nestchanok Yongpraderm</a>, <a href="https://publications.waset.org/abstracts/search?q=Atiporn%20Jinpayoon"> Atiporn Jinpayoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Supinya%20Sutthima"> Supinya Sutthima</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Klangkongsub"> Saroj Klangkongsub</a>, <a href="https://publications.waset.org/abstracts/search?q=Worapong%20Pattayawan"> Worapong Pattayawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to utilize the agricultural waste and plastic waste in Thailand in a study of the optimum conditions for preparing composite materials from water hyacinth and oil palm fiber and plastic waste in landfills. The water hyacinth and oil palm fiber were prepared by alkaline treatment with NaOH (5, 15 wt%) at 25-60 °C for 1 h. The treated fiber (5 and 10 phr) was applied to plastic waste composite. The composite was prepared by using a screw extrusion process from 185 °C to 200 °C with a screw speed of 60 rpm. The result confirmed that alkaline treatment can remove lignin, hemicellulose and other impurities on the fiber surface and also increase the cellulose content. The optimum condition of composite material is 10 phr of fiber coupling with 3 wt% PE-g-MA as compatibilizer. The composite of plastic waste and oil palm fiber has good adhesion between fiber and plastic matrix. The PE-g-MA has improved fiber-plastic interaction. The results suggested that the composite material from plastic waste and agricultural waste has the potential to be used as value-added products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20utilization" title=" waste utilization"> waste utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20fiber" title=" cellulose fiber"> cellulose fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a> </p> <a href="https://publications.waset.org/abstracts/141733/preparation-of-water-hyacinth-and-oil-palm-fiber-for-plastic-waste-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8570</span> Regulating Hydrogen Energy Evaluation During Aluminium Hydrolysis in Alkaline Solutions Containing Different Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Deyab">Mohamed A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20A.%20A.%20El-Shamy"> Omnia A. A. El-Shamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to reveal on the systematic evaluation of hydrogen production by aluminum hydrolysis in alkaline solutions containing different surfactants using hydrogen evolution measurements and supplemented by scan electron microscope (SEM) and energy dispersive X-ray analysis (EDX). It has been demonstrated that when alkaline concentration and solution temperature rise, the rate of H2 generation and, consequently, aluminum hydrolysis also rises. The addition of nonionic and cationic surfactants solution retards the rate of H2 production. The work is a promising option for carbon-free hydrogen production from renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a> </p> <a href="https://publications.waset.org/abstracts/161815/regulating-hydrogen-energy-evaluation-during-aluminium-hydrolysis-in-alkaline-solutions-containing-different-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8569</span> Lentil Protein Fortification in Cranberry Squash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandhya%20Devi%20A">Sandhya Devi A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The protein content of the cranberry squash (protein: 0g) may be increased by extracting protein from the lentils (9 g), which is particularly linked to a lower risk of developing heart disease. Using the technique of alkaline extraction from the lentils flour, protein may be extracted. Alkaline extraction of protein from lentil flour was optimized utilizing response surface approach in order to maximize both protein content and yield. Cranberry squash may be taken if a protein fortification syrup is prepared and processed into the squash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20extraction" title="alkaline extraction">alkaline extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=cranberry%20squash" title=" cranberry squash"> cranberry squash</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20fortification" title=" protein fortification"> protein fortification</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/153178/lentil-protein-fortification-in-cranberry-squash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8568</span> Effect of 17α-Methyltestosterone Hormone on Haematological Profiles of the Sex Reversed, Sarotherodon Melanotheron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoola">Ayoola</a>, <a href="https://publications.waset.org/abstracts/search?q=Simeon%20Oluwatoyin"> Simeon Oluwatoyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Omogoriola%20Hannah%20Omoloye"> Omogoriola Hannah Omoloye </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of 17α-Methyltestosterone Hormone on blood composition of the Sex Reversed Sarotherodon melanotheron were investigated. S. melanotheron fry were reared in six (6) plastic tanks for three (3) months, of which three (3) tanks served as treatment tanks while the other three (3) served as the control. The fry were fed with 17α-methyl testosterone enzyme, which functions as a sex reversal hormone. The fry were administered this hormone for 30 days, to ensure complete sex reversal. All the S. melanotheron fry were reared to table size for duration of three (3) months, after which, blood samples were taken from both the control and treatment fishes. The blood parameters showed no significant differences with the same values of White Blood Cell count (WBC) and Total plasma protein for the control and experimental fishes. A total protein value for sex reversed specimens was 3.99g/dL, while urea and creatinine values were 0.2g/dL. Alkaline Phosphatase, Aspartate transaminase and Alanine transaminase for the treatment specimen were 183nm/mg protein/min, 98nm/mg protein/min and 105nm/mg protein/min respectively. A total protein value for control specimens was 2.81g/dL, while urea and creatinine values were 0.2g/dL. Alkaline Phosphatase, Aspartate transaminase and Alanine transaminase for the control species were 174nm/mg protein/min, 93nm/mg protein/min and 106nm/mg protein/min respectively. The safety of MT on S. melanotheron is therefore proved since there is no adverse effect on the fish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=17%CE%B1-Methyltestosterone" title="17α-Methyltestosterone">17α-Methyltestosterone</a>, <a href="https://publications.waset.org/abstracts/search?q=haematology" title=" haematology"> haematology</a>, <a href="https://publications.waset.org/abstracts/search?q=sex%20reversal" title=" sex reversal"> sex reversal</a>, <a href="https://publications.waset.org/abstracts/search?q=sarotherodon%20melanotheron" title=" sarotherodon melanotheron "> sarotherodon melanotheron </a> </p> <a href="https://publications.waset.org/abstracts/29481/effect-of-17a-methyltestosterone-hormone-on-haematological-profiles-of-the-sex-reversed-sarotherodon-melanotheron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8567</span> Current Characteristic of Water Electrolysis to Produce Hydrogen, Alkaline, and Acid Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekki%20Kurniawan">Ekki Kurniawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Nur%20Jayanto"> Yusuf Nur Jayanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Erna%20Sugesti"> Erna Sugesti</a>, <a href="https://publications.waset.org/abstracts/search?q=Efri%20Suhartono"> Efri Suhartono</a>, <a href="https://publications.waset.org/abstracts/search?q=Agus%20Ganda%20Permana"> Agus Ganda Permana</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaspar%20Hasudungan"> Jaspar Hasudungan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jangkung%20Raharjo"> Jangkung Raharjo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rintis%20Manfaati"> Rintis Manfaati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to study the current characteristic of the electrolysis of mineral water to produce hydrogen, alkaline water, and acid water. Alkaline and hydrogen water are believed to have health benefits. Alkaline water containing hydrogen can be an anti-oxidant that captures free radicals, which will increase the immune system. In Indonesia, there are two existing types of alkaline water producing equipment, but the installation is complicated, and the price is relatively expensive. The electrolysis process is slow (6-8 hours) since they are locally made using 311 VDC full bridge rectifier power supply. This paper intends to discuss how to make hydrogen and alkaline water by a simple portable mineral water ionizer. This is an electrolysis device that is easy to carry and able to separate ions of mineral water into acidic and alkaline water. With an electric field, positive ions will be attracted to the cathode, while negative ions will be attracted to the anode. The circuit equivalent can be depicted as RLC transient ciruit. The diode component ensures that the electrolytic current is direct current. Switch S divides the switching times t1, t2, and t3. In the first stage up to t1, the electrolytic current increases exponentially, as does the inductor charging current (L). The molecules in drinking water experience magnetic properties. The direction of the dipole ions, which are random in origin, will regularly flare with the direction of the electric field. In the second stage up to t2, the electrolytic current decreases exponentially, just like the charging current of a capacitor (C). In the 3rd stage, start t3 until it tends to be constant, as is the case with the current flowing through the resistor (R). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=current%20electrolysis" title="current electrolysis">current electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20water" title=" mineral water"> mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=ions" title=" ions"> ions</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20and%20acid%20waters" title=" alkaline and acid waters"> alkaline and acid waters</a>, <a href="https://publications.waset.org/abstracts/search?q=inductor" title=" inductor"> inductor</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor" title=" capacitor"> capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=resistor" title=" resistor"> resistor</a> </p> <a href="https://publications.waset.org/abstracts/160529/current-characteristic-of-water-electrolysis-to-produce-hydrogen-alkaline-and-acid-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8566</span> Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Kassim">M. A. Kassim</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Potumarthi"> R. Potumarthi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tanksale"> A. Tanksale</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Srivatsa"> S. C. Srivatsa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhattacharya"> S. Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass" title="microalgal biomass">microalgal biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20saccharification" title=" enzymatic saccharification"> enzymatic saccharification</a>, <a href="https://publications.waset.org/abstracts/search?q=biobutanol" title=" biobutanol"> biobutanol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/12717/enzymatic-saccharification-of-dilute-alkaline-pre-treated-microalgal-tetraselmis-suecica-biomass-for-biobutanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8565</span> Saccharification and Bioethanol Production from Banana Pseudostem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elias%20L.%20Souza">Elias L. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Noeli%20Sellin"> Noeli Sellin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cintia%20Marangoni"> Cintia Marangoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozair%20Souza"> Ozair Souza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the different forms of reuse and recovery of agro-residual waste is the production of biofuels. The production of second-generation ethanol has been evaluated and proposed as one of the technically viable alternatives for this purpose. This research work employed the banana pseudostem as biomass. Two different chemical pre-treatment methods (acid hydrolisis with H2SO4 2% w/w and alkaline hydrolysis with NaOH 3% w/w) of dry and milled biomass (70 g/L of dry matter, ms) were assessed, and the corresponding reducing sugars yield, AR, (YAR), after enzymatic saccharification, were determined. The effect on YAR by increasing the dry matter (ms) from 70 to 100 g/L, in dry and milled biomass and also fresh, were analyzed. Changes in cellulose crystallinity and in biomass surface morphology due to the different chemical pre-treatments were analyzed by X-ray diffraction and scanning electron microscopy. The acid pre-treatment resulted in higher YAR values, whether related to the cellulose content under saccharification (RAR = 79,48) or to the biomass concentration employed (YAR/ms = 32,8%). In a comparison between alkaline and acid pre-treatments, the latter led to an increase in the cellulose content of the reaction mixture from 52,8 to 59,8%; also, to a reduction of the cellulose crystallinity index from 51,19 to 33,34% and increases in RAR (43,1%) and YAR/ms (39,5%). The increase of dry matter (ms) bran from 70 to 100 g/L in the acid pre-treatment, resulted in a decrease of average yields in RAR (43,1%) and YAR/ms (18,2%). Using the pseudostem fresh with broth removed, whether for 70 g/L concentration or 100 g/L in dry matter (ms), similarly to the alkaline pre-treatment, has led to lower average values in RAR (67,2% and 42,2%) and in YAR/ms (28,4% e 17,8%), respectively. The acid pre-treated and saccharificated biomass broth was detoxificated with different activated carbon contents (1,2 and 4% w/v), concentrated up to AR = 100 g/L and fermented by Saccharomyces cerevisiae. The yield values (YP/AR) and productivity (QP) in ethanol were determined and compared to those values obtained from the fermentation of non-concentrated/non-detoxificated broth (AR = 18 g/L) and concentrated/non-detoxificated broth (AR = 100 g/L). The highest average value for YP/AR (0,46 g/g) was obtained from the fermentation of non-concentrated broth. This value did not present a significant difference (p<0,05) when compared to the YP/RS related to the broth concentrated and detoxificated by activated carbon 1% w/v (YP/AR = 0,41 g/g). However, a higher ethanol productivity (QP = 1,44 g/L.h) was achieved through broth detoxification. This value was 75% higher than the average QP determined using concentrated and non-detoxificated broth (QP = 0,82 g/L.h), and 22% higher than the QP found in the non-concentrated broth (QP = 1,18 g/L.h). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuels" title="biofuels">biofuels</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharification" title=" saccharification"> saccharification</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a> </p> <a href="https://publications.waset.org/abstracts/50528/saccharification-and-bioethanol-production-from-banana-pseudostem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8564</span> A Simple Chemical Approach to Regenerating Strength of Thermally Recycled Glass Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sairah%20Bashir">Sairah Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Yang"> Liu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Liggat"> John Liggat</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Thomason"> James Thomason</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass fibre is currently used as reinforcement in over 90% of all fibre-reinforced composites produced. The high rigidity and chemical resistance of these composites are required for optimum performance but unfortunately results in poor recyclability; when such materials are no longer fit for purpose, they are frequently deposited in landfill sites. Recycling technologies, for example, thermal treatment, can be employed to address this issue; temperatures typically between 450 and 600 °C are required to allow degradation of the rigid polymeric matrix and subsequent extraction of fibrous reinforcement. However, due to the severe thermal conditions utilised in the recycling procedure, glass fibres become too weak for reprocessing in second-life composite materials. In addition, more stringent legislation is being put in place regarding disposal of composite waste, and so it is becoming increasingly important to develop long-term recycling solutions for such materials. In particular, the development of a cost-effective method to regenerate strength of thermally recycled glass fibres will have a positive environmental effect as a reduced volume of composite material will be destined for landfill. This research study has demonstrated the positive impact of sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution, prepared at relatively mild temperatures and at concentrations of 1.5 M and above, on the strength of heat-treated glass fibres. As a result, alkaline treatments can potentially be implemented to glass fibres that are recycled from composite waste to allow their reuse in second-life materials. The optimisation of the strength recovery process is being conducted by varying certain reaction parameters such as molarity of alkaline solution and treatment time. It is believed that deep V-shaped surface flaws exist commonly on severely damaged fibre surfaces and are effectively removed to form smooth, U-shaped structures following alkaline treatment. Although these surface flaws are believed to be present on glass fibres they have not in fact been observed, however, they have recently been discovered in this research investigation through analytical techniques such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Reaction conditions such as molarity of alkaline solution affect the degree of etching of the glass fibre surface, and therefore the extent to which fibre strength is recovered. A novel method in determining the etching rate of glass fibres after alkaline treatment has been developed, and the data acquired can be correlated with strength. By varying reaction conditions such as alkaline solution temperature and molarity, the activation energy of the glass etching process and the reaction order can be calculated respectively. The promising results obtained from NaOH and KOH treatments have opened an exciting route to strength regeneration of thermally recycled glass fibres, and the optimisation of the alkaline treatment process is being continued in order to produce recycled fibres with properties that match original glass fibre products. The reuse of such glass filaments indicates that closed-loop recycling of glass fibre reinforced composite (GFRC) waste can be achieved. In fact, the development of a closed-loop recycling process for GFRC waste is already underway in this research study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20fibers" title="glass fibers">glass fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20strengthening" title=" glass strengthening"> glass strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20structure%20and%20properties" title=" glass structure and properties"> glass structure and properties</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20reactions%20and%20corrosion" title=" surface reactions and corrosion"> surface reactions and corrosion</a> </p> <a href="https://publications.waset.org/abstracts/72974/a-simple-chemical-approach-to-regenerating-strength-of-thermally-recycled-glass-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8563</span> Egg Yolk Peptide Stimulated Osteogenic Gene Expression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye%20Kyung%20Kim">Hye Kyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gyou%20Kim"> Myung-Gyou Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyun%20Leem"> Kang-Hyun Leem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postmenopausal osteoporosis is characterized by low bone density which leads to increased bone fragility and greater susceptibility to fracture. Current treatments for osteoporosis are dominated by drugs that inhibit bone resorption although they also suppress bone formation that may contribute to pathogenesis of osteonecrosis. To restore the extensive bone loss, there is a great need for anabolic treatments that induce osteoblasts to build new bone. Pre-osteoblastic cells produce proteins of the extra-cellular matrix, including type I collagen at first, and then to successively produce alkaline phosphatase (ALP) and osteocalcin during differentiation to osteoblasts. Finally, osteoblasts deposit calcium. Present study investigated the effects of egg yolk peptide (EYP) on osteogenic activities and bone matrix gene expressions in human osteoblastic MG-63 cells. The effects of EYP on cell proliferation, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization were measured. The expression of osteogenic genes including COL1A1 (collagen, type I, alpha 1), ALP, BGLAP (osteocalcin), and SPP1 (secreted phosphoprotein 1, osteopontin) were measured by quantitative realtime PCR. EYP dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. Furthermore, COL1A1, ALP, and SPP1 gene expressions were increased by EYP treatment. Present study suggested that EYP treatment enhanced osteogenic activities and increased bone matrix osteogenicgenes. These results could provide a mechanistic explanation for the bone-strengthening effects of EYP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg%20yolk%20peptide" title="egg yolk peptide">egg yolk peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblastic%20MG-63%20cells" title=" osteoblastic MG-63 cells"> osteoblastic MG-63 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20phosphatase" title=" alkaline phosphatase"> alkaline phosphatase</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen%20synthesis" title=" collagen synthesis"> collagen synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenic%20genes" title=" osteogenic genes"> osteogenic genes</a>, <a href="https://publications.waset.org/abstracts/search?q=COL1A1" title=" COL1A1"> COL1A1</a>, <a href="https://publications.waset.org/abstracts/search?q=osteocalcin" title=" osteocalcin"> osteocalcin</a>, <a href="https://publications.waset.org/abstracts/search?q=osteopontin" title=" osteopontin"> osteopontin</a> </p> <a href="https://publications.waset.org/abstracts/11286/egg-yolk-peptide-stimulated-osteogenic-gene-expression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8562</span> Preventive Effect of Zinc on Nickel Hepatotoxicity and Nephrotoxicity in Albino (Wistar) Rats </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zine%20Kechrid">Zine Kechrid</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Bouhalit"> Samira Bouhalit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: We studied the effect of intraperitonial zinc treatment on nickel sulphate-induced hepatotoxicity and nephrotoxicity in Wistar strain male albino rats. Materials and Methods: Liver and kidney dysfunction parameters represented by aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), blood glucose, serum total protein, serum urea, serum creatinine, and serum belurebin were estimated. Liver glutathione level, catalase and GPx activities were also determined in liver as indicators of oxidative damage. Result: Nickel treatment led to high serum glucose concentration and produced hepatotoxicity and nephrotoxicity characterized by increasing GPT, GOT and alkaline phosphatase activities, serum total protein, serum urea, serum creatinine and serum belurebin concentrations. In addition, liver glutathione level, catalase and GSH-Px activities diminished due to high lipid peroxidation. The simultaneous administration of zinc with nickel sulphate resulted in a remarkable improvement of the previous parameters compared with rats treated with nickel alone. Conclusion: In conclusion, nickel sulphate led to liver and kidney dysfunctions and hepatic lipid peroxidation in animals, but simultaneous treatment with zinc offers a relative protection against nickel induced hepatotoxicity, nephrotoxicity and lipid peroxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nickel" title="nickel">nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a>, <a href="https://publications.waset.org/abstracts/search?q=GOT" title=" GOT"> GOT</a>, <a href="https://publications.waset.org/abstracts/search?q=GPT" title=" GPT"> GPT</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrotoxicity" title=" nephrotoxicity"> nephrotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatotoxicity" title=" hepatotoxicity"> hepatotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/10044/preventive-effect-of-zinc-on-nickel-hepatotoxicity-and-nephrotoxicity-in-albino-wistar-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8561</span> Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Farahat">Mohsen Farahat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Hirajima"> Tsuyoshi Hirajima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20megaterium" title="Bacillus megaterium">Bacillus megaterium</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=dolomite" title=" dolomite"> dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion%20energy" title=" adhesion energy"> adhesion energy</a> </p> <a href="https://publications.waset.org/abstracts/36669/surface-characteristics-of-bacillus-megaterium-and-its-adsorption-behavior-onto-dolomite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8560</span> Sema4D/Plexin-B1 Signaling Regulates Osteo/Odontogenic Differentiation of Dental Pulp Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting%20Zou">Ting Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chengfei%20Zhang"> Chengfei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The purpose of this study was to investigate the role of Semaphorin 4D (Sema4D)/Plexin-B1 signaling on osteo/odontogenic differentiation of human dental pulp stem cells (DPSCs) and uncover its molecular mechanism. Methods: DPSCs were cultured in osteo/odontogenic medium. After treatment with Sema4D (10μg/mL), osteo/odontogenic differentiation and mineralization was evaluated by measuring alkaline phosphatase (ALP) activity and alizarin red S staining respectively. The expression of osteo/odontogenic genes (ALP, Col1A1, BSP, and Runx2) was determined by real-time polymerase chain reaction. p-Plexin-B1, Plexin-B1, Col1A1, RhoA, and ErbB2 were analyzed by western. Results: ALP activity and mineralization formation of DPSCs were significantly decreased after treatment with Sema4D (P<0.05). Sema4D significantly down-regulated osteo/odontogenic-related genes expression (ALP, Col1A1, BSP, and Runx2). p-Plexin-B1, Plexin-B1 and RhoA protein expression levels increased after stimulated with Sema4D, while the expression of Col1A1 decreased. Pretreatment with Plexin-B1 antibody blocked Sema4D induced p-Plexin-B1 expression. Conclusion: Sema4D suppressed osteo/odontogenic differentiation of DPSCs via RhoA-mediated pathways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sema4D%2FPlexin-B1" title="Sema4D/Plexin-B1">Sema4D/Plexin-B1</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20pulp%20stem%20cells" title=" dental pulp stem cells"> dental pulp stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=osteo%2Fodontogenic%20differentiation" title=" osteo/odontogenic differentiation"> osteo/odontogenic differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20phosphatase%20%28ALP%29" title=" alkaline phosphatase (ALP)"> alkaline phosphatase (ALP)</a> </p> <a href="https://publications.waset.org/abstracts/46872/sema4dplexin-b1-signaling-regulates-osteoodontogenic-differentiation-of-dental-pulp-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8559</span> Geopolymerization Methods for Clay Soils Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baba%20Hassane%20Ahmed%20Hisseini">Baba Hassane Ahmed Hisseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20Bennabi"> Abdelkrim Bennabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Hamzaoui"> Rabah Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamis%20Makki"> Lamis Makki</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaetan%20Blanck"> Gaetan Blanck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the clay soils are known as problematic soils due to their water content, which varies greatly over time. It is observed that they are used to be subject to shrinkage and swelling, thus causing a problem of stability on the structures of civil engineering construction work. They are often excavated and placed in a storage area giving rise to the opening of new quarries. This method has become obsolete today because to protect the environment, we are leading to think differently and opening the way to new research for the improvement of the performance of this type of clay soils to reuse them in the construction field. The solidification and stabilization technique is used to improve the properties of poor quality soils to transform them into materials with a suitable performance for a new use in the civil engineering field rather than to excavate them and store them in the discharge area. In our case, the polymerization method is used for bad clay soils classified as high plasticity soil class A4 according to the French standard NF P11-300, where classical treatment methods with cement or lime are not efficient. Our work concerns clay soil treatment study using raw materials as additives for solidification and stabilization. The geopolymers are synthesized by aluminosilicates materials like fly ash, metakaolin, or blast furnace slag and activated by alkaline solution based on sodium hydroxide (NaOH), sodium silicate (Na2SiO3) or a mixture of both of them. In this study, we present the mechanical properties of the soil clay (A4 type) evolution with geopolymerisation methods treatment. Various mix design of aluminosilicates materials and alkaline solutions were carried at different percentages and different curing times of 1, 7, and 28 days. The compressive strength of the untreated clayey soil could be increased from simple to triple. It is observed that the improvement of compressive strength is associated with a geopolymerization mechanism. The highest compressive strength was found with metakaolin at 28 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=treatment%20and%20valorization%20of%20clay-soil" title="treatment and valorization of clay-soil">treatment and valorization of clay-soil</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification%20and%20stabilization" title=" solidification and stabilization"> solidification and stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali-activation%20of%20co-product" title=" alkali-activation of co-product"> alkali-activation of co-product</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymerization" title=" geopolymerization"> geopolymerization</a> </p> <a href="https://publications.waset.org/abstracts/112401/geopolymerization-methods-for-clay-soils-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8558</span> Effect on Nutritional and Antioxidant Properties of Yellow Alkaline Noodles Substituted with Different Levels of Mangosteen (Garcinia Mangostana) Pericarp Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mardiana%20Ahamad%20Zabidi">Mardiana Ahamad Zabidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurain%20Abdul%20Karim"> Nurain Abdul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Shazrinna%20Sazali"> Nur Shazrinna Sazali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mangosteen (Garcinia mangostana) pericarp is considered as agricultural waste and not fully utilized in food products. It is widely reported that mangosteen pericarp contains high antioxidant properties. The objective of this study is to develop novel yellow alkaline noodle (YAN) substituted with different levels of mangosteen pericarp powder (MPP). YAN formulation was substituted with different levels of MPP (0%, 5%, 10% and 15%). The effect on nutritional and antioxidant properties were evaluated. Higher substitution levels of MPP resulted in significant increase (p < 0.05) of ash, fibre, specific mineral elements, and antioxidant properties (total phenolic, total flavonoid, anthocyanin and DPPH) than control sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20properties" title="antioxidant properties">antioxidant properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangosteen%20pericarp" title=" Mangosteen pericarp"> Mangosteen pericarp</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20alkaline%20noodle" title=" yellow alkaline noodle"> yellow alkaline noodle</a> </p> <a href="https://publications.waset.org/abstracts/25244/effect-on-nutritional-and-antioxidant-properties-of-yellow-alkaline-noodles-substituted-with-different-levels-of-mangosteen-garcinia-mangostana-pericarp-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8557</span> Experimental Study on Stabilisation of a Soft Soil by Alkaline Activation of Industrial By-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadjavad%20Yaghoubi">Mohammadjavad Yaghoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arul%20Arulrajah"> Arul Arulrajah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20M.%20Disfani"> Mahdi M. Disfani</a>, <a href="https://publications.waset.org/abstracts/search?q=Suksun%20Horpibulsuk"> Suksun Horpibulsuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Myint%20W.%20Bo"> Myint W. Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20P.%20Darmawan"> Stephen P. Darmawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilising waste materials, such as fly ash (FA) and slag (S) stockpiled in landfills, has drawn the attention of researchers and engineers in the recent years. There is a great potential for usage of these wastes in ground improvement projects, especially where deep deposits of soft compressible soils exist. This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activated FA and S, termed as geopolymer binder, to use in deep soil mixing technology. The strength improvement and the changes in the microstructure of the mixtures have been studied. The results show that using FA and S-based geopolymers can increases the strength significantly. Furthermore, utilising FA and S in ground improvement projects, where large amounts of binders are required, can be a solution to the disposal of these wastes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20activation" title="alkaline activation">alkaline activation</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20development" title=" strength development"> strength development</a> </p> <a href="https://publications.waset.org/abstracts/74598/experimental-study-on-stabilisation-of-a-soft-soil-by-alkaline-activation-of-industrial-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8556</span> Bone Strengthening Effects of Deer Antler Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye%20Kyung%20Kim">Hye Kyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gyou%20Kim"> Myung-Gyou Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyun%20Leem"> Kang-Hyun Leem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been reported that deer antler extract has bone-strengthening activity and effectively used in bone diseases therapy. However, little is known about the cellular and molecular mechanism of this effect. The upper section, mid section, and base of the antler has been known to exhibit different biological properties. Present study investigated the effects of these three parts of deer antler extracts on bone formation and resorption. The effects of deer antler extracts (DH) on bone formation were determined by cell proliferation, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization in human osteoblastic MG-63 cells. The effect on bone resorption was determined by osteoclastogenesis from bone marrow-derived precursor cells driven by RANKL. Ethanol extracts of DH (50 ~ 100 µg/ml) dose-dependently increased cell proliferation, and upper part increased the cell proliferation by 118.4% while mid and base parts increased proliferation by 107.8% and 102.3%, respectively. ALP activity was significantly increased by upper part of the DH treatment. After enhancement of ALP activity, significant augmentation of collagen synthesis and calcification assessed by Sirus red and Alzarin red staining, respectively, was observed in upper part of the DH treatment. The effect of DH on bone resorption was not observed in all three parts of the DH. These results could provide a mechanistic explanation for the bone-strengthening effects of DH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20phosphatase" title="alkaline phosphatase">alkaline phosphatase</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen%20synthesis" title=" collagen synthesis"> collagen synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=deer%20antler" title=" deer antler"> deer antler</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblastic%20MG-63%20cells" title=" osteoblastic MG-63 cells"> osteoblastic MG-63 cells</a> </p> <a href="https://publications.waset.org/abstracts/24280/bone-strengthening-effects-of-deer-antler-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8555</span> Candida antarctica Lipase-B Catalyzed Alkaline-Hydrolysis of Some Aryl-Alkyl Acetate in Non-Aqueous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Merabet-Khelassi">M. Merabet-Khelassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Houiene"> Z. Houiene</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Aribi-Zouioueche"> L. Aribi-Zouioueche</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Riant"> O. Riant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipases (EC.3.1.1.3) are efficient biotools widely used for their remarkable chemo-, regio- and enantio-selectivity, especially, in kinetic resolution of racemates. They offer access to a large panel of enantiopure building blocks, such as secondary benzylic alcohols, commonly used as synthetic intermediates in pharmaceutical and agrochemical industries. Due to the stability of lipases in both water and organic solvents poor in water, they are able to catalyze both transesterifications of arylalkylcarbinols and hydrolysis of their corresponding acetates. The use of enzymatic hydrolysis in aqueous media still limited. In this presentation, we expose a practical methodology for the preparation of optically enriched acetates using a Candida antarctica lipase B-catalyzed hydrolysis in non-aqueous media in the presence of alkaline carbonate salts. The influence of several parameters which can intervene on the enzymatic efficiency such as the impact of the introduction of the carbonates salts, its amount and the nature of the alkaline earth metal are discussed. The obtained results show that the use of sodium carbonate with CAL-B enhances drastically both reactivity and selectivity of this immobilized lipase. In all cases, the resulting alcohols and remaining acetates are obtained in high ee values (up to > 99 %), and the selectivities reach (E > 500). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline-hydrolysis" title="alkaline-hydrolysis">alkaline-hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution" title=" enzymatic kinetic resolution"> enzymatic kinetic resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=lipases" title=" lipases"> lipases</a>, <a href="https://publications.waset.org/abstracts/search?q=arylalkylcarbinol" title=" arylalkylcarbinol"> arylalkylcarbinol</a>, <a href="https://publications.waset.org/abstracts/search?q=non-aqueous%20media" title=" non-aqueous media"> non-aqueous media</a> </p> <a href="https://publications.waset.org/abstracts/75965/candida-antarctica-lipase-b-catalyzed-alkaline-hydrolysis-of-some-aryl-alkyl-acetate-in-non-aqueous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=286">286</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=287">287</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>