CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 101 results for author: <span class="mathjax">Ghosh, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/nlin" aria-role="search"> Searching in archive <strong>nlin</strong>. <a href="/search/?searchtype=author&amp;query=Ghosh%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ghosh, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ghosh%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ghosh, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ghosh%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ghosh%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ghosh%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ghosh%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17336">arXiv:2411.17336</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17336">pdf</a>, <a href="https://arxiv.org/format/2411.17336">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> On forced swarmalators that move in higher-dimensional spaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=O%27Keeffe%2C+K">Kevin O&#39;Keeffe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17336v1-abstract-short" style="display: inline;"> We study the collective dynamics of swarmalators subjected to periodic (sinusoidal) forcing. Although previous research focused on the simplified case of motion in a one-dimensional (1D) periodic domain, we extend this analysis to the more realistic scenario of motion in two and three spatial dimensions with periodic boundary conditions. In doing so, we identify analogues of the 1D states and char&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17336v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17336v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17336v1-abstract-full" style="display: none;"> We study the collective dynamics of swarmalators subjected to periodic (sinusoidal) forcing. Although previous research focused on the simplified case of motion in a one-dimensional (1D) periodic domain, we extend this analysis to the more realistic scenario of motion in two and three spatial dimensions with periodic boundary conditions. In doing so, we identify analogues of the 1D states and characterize their dynamics and stability boundaries analytically. Additionally, we investigate the forced swarmalators model with power-law interaction kernels, finding that the analytically tractable model with periodic boundary conditions can reproduce the observed dynamic behaviors of this more complex model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17336v1-abstract-full').style.display = 'none'; document.getElementById('2411.17336v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14851">arXiv:2411.14851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14851">pdf</a>, <a href="https://arxiv.org/format/2411.14851">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Effects of coupling range on the dynamics of swarmalators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=O%27Keeffe%2C+K">Kevin O&#39;Keeffe</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14851v1-abstract-short" style="display: inline;"> We study a variant of the one-dimensional swarmalator model where the units&#39; interactions have a controllable length scale or range. We tune the model from the long-range regime, which is well studied, into the short-range regime, which is understudied, and find diverse collective states: sync dots, where the swarmalators arrange themselves into k&gt;1 delta points of perfect synchrony, q-waves, wher&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14851v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14851v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14851v1-abstract-full" style="display: none;"> We study a variant of the one-dimensional swarmalator model where the units&#39; interactions have a controllable length scale or range. We tune the model from the long-range regime, which is well studied, into the short-range regime, which is understudied, and find diverse collective states: sync dots, where the swarmalators arrange themselves into k&gt;1 delta points of perfect synchrony, q-waves, where the swarmalators form spatiotemporal waves with winding number q&gt;1, and an active state where unsteady oscillations are found. We present the phase diagram and derive most of the threshold boundaries analytically. These states may be observable in real-world swarmalator systems with low-range coupling such as biological microswimmers or active colloids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14851v1-abstract-full').style.display = 'none'; document.getElementById('2411.14851v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06755">arXiv:2411.06755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06755">pdf</a>, <a href="https://arxiv.org/format/2411.06755">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Complexity measure of extreme events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Das%2C+D">Dhiman Das</a>, <a href="/search/nlin?searchtype=author&amp;query=Ray%2C+A">Arnob Ray</a>, <a href="/search/nlin?searchtype=author&amp;query=Hens%2C+C">Chittaranjan Hens</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Hassan%2C+M+K">Md. Kamrul Hassan</a>, <a href="/search/nlin?searchtype=author&amp;query=Dabrowski%2C+A">Artur Dabrowski</a>, <a href="/search/nlin?searchtype=author&amp;query=Kapitaniak%2C+T">Tomasz Kapitaniak</a>, <a href="/search/nlin?searchtype=author&amp;query=Dana%2C+S+K">Syamal K. Dana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06755v1-abstract-short" style="display: inline;"> Complexity is an important metric for appropriate characterization of different classes of irregular signals, observed in the laboratory or in nature. The literature is already rich in the description of such measures using a variety of entropy and disequilibrium measures, separately or in combination. Chaotic signal was given prime importance in such studies while no such measure was proposed so&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06755v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06755v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06755v1-abstract-full" style="display: none;"> Complexity is an important metric for appropriate characterization of different classes of irregular signals, observed in the laboratory or in nature. The literature is already rich in the description of such measures using a variety of entropy and disequilibrium measures, separately or in combination. Chaotic signal was given prime importance in such studies while no such measure was proposed so far, how complex were the extreme events when compared to non-extreme chaos. We address here this question of complexity in extreme events and investigate if we can distinguish them from non-extreme chaotic signal. The normalized Shannon entropy in combination with disequlibrium is used for our study and it is able to distinguish between extreme chaos and non-extreme chaos and moreover, it depicts the transition points from periodic to extremes via Pomeau-Manneville intermittency and, from small amplitude to large amplitude chaos and its transition to extremes via interior crisis. We report a general trend of complexity against a system parameter that increases during a transition to extreme events, reaches a maximum, and then starts decreasing. We employ three models, a nonautonomous Lienard system, 2-dimensional Ikeda map and a 6-dimensional coupled Hindmarh-Rose system to validate our proposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06755v1-abstract-full').style.display = 'none'; document.getElementById('2411.06755v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, Accepted for publication in Chaos: An Interdisciplinary Journal of Nonlinear Science (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15855">arXiv:2409.15855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15855">pdf</a>, <a href="https://arxiv.org/format/2409.15855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Extreme events in two-coupled chaotic oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Sudharsan%2C+S">S. Sudharsan</a>, <a href="/search/nlin?searchtype=author&amp;query=Pal%2C+T+K">Tapas Kumar Pal</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Kurths%2C+J">J眉rgen Kurths</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15855v1-abstract-short" style="display: inline;"> Since 1970, the R枚ssler system has remained as a considerably simpler and minimal dimensional chaos serving system. Unveiling the dynamics of a system of two coupled chaotic oscillators that leads to the emergence of extreme events in the system is an engrossing and crucial scientific research area. Our present study focuses on the emergence of extreme events in a system of diffusively and bidirec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15855v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15855v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15855v1-abstract-full" style="display: none;"> Since 1970, the R枚ssler system has remained as a considerably simpler and minimal dimensional chaos serving system. Unveiling the dynamics of a system of two coupled chaotic oscillators that leads to the emergence of extreme events in the system is an engrossing and crucial scientific research area. Our present study focuses on the emergence of extreme events in a system of diffusively and bidirectionally two coupled R枚ssler oscillators and unraveling the mechanism behind the genesis of extreme events. We find the appearance of extreme events in three different observables: average velocity, synchronization error, and one transverse directional variable to the synchronization manifold. The emergence of extreme events in average velocity variables happens due to the occasional in-phase synchronization. The on-off intermittency plays for the crucial role in the genesis of extreme events in the synchronization error dynamics and in the transverse directional variable to the synchronization manifold. The bubble transition of the chaotic attractor due to the on-off intermittency is illustrated for the transverse directional variable. We use generalized extreme value theory to study the statistics of extremes. The extreme events data sets concerning the average velocity variable follow generalized extreme value distribution. The inter-event intervals of the extreme events in the average velocity variable spread well exponentially. The upshot of the interplay between the coupling strength and the frequency mismatch between the system oscillators in the genesis of extreme events in the coupled system is depicted numerically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15855v1-abstract-full').style.display = 'none'; document.getElementById('2409.15855v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05342">arXiv:2409.05342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05342">pdf</a>, <a href="https://arxiv.org/format/2409.05342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> The forced one-dimensional swarmalator model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=O%27Keeffe%2C+K">Kevin O&#39;Keeffe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05342v1-abstract-short" style="display: inline;"> We study a simple model of swarmalators subject to periodic forcing and confined to move around a one-dimensional ring. This is a toy model for physical systems with a mix of sync, swarming, and forcing such as colloidal micromotors. We find several emergent macrostates and characterize the phase boundaries between them analytically. The most novel state is a swarmalator chimera, where the populat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05342v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05342v1-abstract-full" style="display: none;"> We study a simple model of swarmalators subject to periodic forcing and confined to move around a one-dimensional ring. This is a toy model for physical systems with a mix of sync, swarming, and forcing such as colloidal micromotors. We find several emergent macrostates and characterize the phase boundaries between them analytically. The most novel state is a swarmalator chimera, where the population splits into two sync dots, which enclose a `train&#39; of swarmalators that run around a peanut-shaped loop. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05342v1-abstract-full').style.display = 'none'; document.getElementById('2409.05342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12235">arXiv:2408.12235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12235">pdf</a>, <a href="https://arxiv.org/format/2408.12235">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Synchronization in adaptive higher-order networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Jenifer%2C+S+N">S. Nirmala Jenifer</a>, <a href="/search/nlin?searchtype=author&amp;query=Muruganandam%2C+P">Paulsamy Muruganandam</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Carletti%2C+T">Timoteo Carletti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12235v1-abstract-short" style="display: inline;"> Many natural and human-made complex systems feature group interactions that adapt over time in response to their dynamic states. However, most of the existing adaptive network models fall short of capturing these group dynamics, as they focus solely on pairwise interactions. In this study, we employ adaptive higher-order networks to describe these systems by proposing a general framework incorpora&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12235v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12235v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12235v1-abstract-full" style="display: none;"> Many natural and human-made complex systems feature group interactions that adapt over time in response to their dynamic states. However, most of the existing adaptive network models fall short of capturing these group dynamics, as they focus solely on pairwise interactions. In this study, we employ adaptive higher-order networks to describe these systems by proposing a general framework incorporating both adaptivity and group interactions. We demonstrate that global synchronization can exist in those complex structures, and we provide the necessary conditions for the emergence of a stable synchronous state. Additionally, we analyzed some relevant settings, and we showed that the necessary condition is strongly related to the master stability equation, allowing to separate the dynamical and structural properties. We illustrate our theoretical findings through examples involving adaptive higher-order networks of coupled generalized Kuramoto oscillators with phase lag. We also show that the interplay of group interactions and adaptive connectivity results in the formation of stability regions that can induce transitions between synchronization and desynchronization <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12235v1-abstract-full').style.display = 'none'; document.getElementById('2408.12235v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06805">arXiv:2408.06805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06805">pdf</a>, <a href="https://arxiv.org/format/2408.06805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Extreme events in locally coupled bursting neurons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Sree%2C+A+R">Ardhanareeswaran R Sree</a>, <a href="/search/nlin?searchtype=author&amp;query=S%2C+S">Sudharsan S</a>, <a href="/search/nlin?searchtype=author&amp;query=M%2C+S">Senthilvelan M</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06805v1-abstract-short" style="display: inline;"> We report a new mechanism through which extreme events with a dragon king-like distribution emerge in a network of locally coupled Hindmarsh-Rose bursting neurons. We establish and substantiate the fact that depending on the choice of initial conditions, the neurons in the network are divided into clusters and whenever these clusters are phase synchronized intermittently, extreme events originate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06805v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06805v1-abstract-full" style="display: none;"> We report a new mechanism through which extreme events with a dragon king-like distribution emerge in a network of locally coupled Hindmarsh-Rose bursting neurons. We establish and substantiate the fact that depending on the choice of initial conditions, the neurons in the network are divided into clusters and whenever these clusters are phase synchronized intermittently, extreme events originate in the collective observable. This mechanism, which we name as intermittent cluster synchronization is proposed as the new precursor for the generation of extreme events in this system. These results are also true for electrical diffusive coupling. The distribution of the local maxima shows long tailed non-Gaussian while the interevent interval follows the Weibull distribution. The goodness of fit are corroborated using probability-probability plot and quantile-quantile plot. These extreme events become rarer and rarer with the increase in the number of different initial conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06805v1-abstract-full').style.display = 'none'; document.getElementById('2408.06805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14149">arXiv:2407.14149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14149">pdf</a>, <a href="https://arxiv.org/format/2407.14149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Discrete Mathematics">cs.DM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.dam.2024.04.024">10.1016/j.dam.2024.04.024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coprime networks of the composite numbers: pseudo-randomness and synchronizability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Miraj%2C+M+R">Md Rahil Miraj</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Hens%2C+C">Chittaranjan Hens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14149v1-abstract-short" style="display: inline;"> In this paper, we propose a network whose nodes are labeled by the composite numbers and two nodes are connected by an undirected link if they are relatively prime to each other. As the size of the network increases, the network will be connected whenever the largest possible node index $n\geq 49$. To investigate how the nodes are connected, we analytically describe that the link density saturates&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14149v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14149v1-abstract-full" style="display: none;"> In this paper, we propose a network whose nodes are labeled by the composite numbers and two nodes are connected by an undirected link if they are relatively prime to each other. As the size of the network increases, the network will be connected whenever the largest possible node index $n\geq 49$. To investigate how the nodes are connected, we analytically describe that the link density saturates to $6/蟺^2$, whereas the average degree increases linearly with slope $6/蟺^2$ with the size of the network. To investigate how the neighbors of the nodes are connected to each other, we find the shortest path length will be at most 3 for $49\leq n\leq 288$ and it is at most 2 for $n\geq 289$. We also derive an analytic expression for the local clustering coefficients of the nodes, which quantifies how close the neighbors of a node to form a triangle. We also provide an expression for the number of $r$-length labeled cycles, which indicates the existence of a cycle of length at most $O(\log n)$. Finally, we show that this graph sequence is actually a sequence of weakly pseudo-random graphs. We numerically verify our observed analytical results. As a possible application, we have observed less synchronizability (the ratio of the largest and smallest positive eigenvalue of the Laplacian matrix is high) as compared to Erd艖s-R茅nyi random network and Barab谩si-Albert network. This unusual observation is consistent with the prolonged transient behaviors of ecological and predator-prey networks which can easily avoid the global synchronization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14149v1-abstract-full').style.display = 'none'; document.getElementById('2407.14149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Discrete Applied Mathematics, 355(2024)96 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02260">arXiv:2407.02260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02260">pdf</a>, <a href="https://arxiv.org/format/2407.02260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2024.06.003">10.1016/j.physrep.2024.06.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical robustness of network of oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Majhi%2C+S">Soumen Majhi</a>, <a href="/search/nlin?searchtype=author&amp;query=Rakshit%2C+B">Biswambhar Rakshit</a>, <a href="/search/nlin?searchtype=author&amp;query=Sharma%2C+A">Amit Sharma</a>, <a href="/search/nlin?searchtype=author&amp;query=Kurths%2C+J">J眉rgen Kurths</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02260v1-abstract-short" style="display: inline;"> Most complex systems are nonlinear, relying on emergent behavior from interacting subsystems, often characterized by oscillatory dynamics. Collective oscillatory behavior is essential for the proper functioning of many real world systems. Complex networks have proven efficient in elucidating the topological structures of both natural and artificial systems and describing diverse processes occurrin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02260v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02260v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02260v1-abstract-full" style="display: none;"> Most complex systems are nonlinear, relying on emergent behavior from interacting subsystems, often characterized by oscillatory dynamics. Collective oscillatory behavior is essential for the proper functioning of many real world systems. Complex networks have proven efficient in elucidating the topological structures of both natural and artificial systems and describing diverse processes occurring within them. Recent advancements have significantly enhanced our understanding of emergent dynamics in complex networks. Among various processes, a substantial body of work explores the dynamical robustness of complex networks, their ability to withstand degradation in network constituents while maintaining collective oscillatory dynamics. Many physical and biological systems experience a decline in dynamic activities due to natural or environmental factors. The impact of such damages on network performance can be significant, and the system&#39;s robustness indicates its capability to maintain functionality despite dynamic changes, often termed aging. This review provides a comprehensive overview of notable research examining how networks sustain global oscillation despite increasing inactive dynamical units. We present contemporary research dedicated to the theoretical understanding and enhancement mechanisms of dynamical robustness in complex networks. Our focus includes various network structures and coupling functions, elucidating the persistence of networked systems. We cover system characteristics from heterogeneity in network connectivity to heterogeneity in dynamical units. Finally, we discuss challenges in this field and open areas for future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02260v1-abstract-full').style.display = 'none'; document.getElementById('2407.02260v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 33 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Reports 1082, 1-46 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03771">arXiv:2406.03771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03771">pdf</a>, <a href="https://arxiv.org/ps/2406.03771">ps</a>, <a href="https://arxiv.org/format/2406.03771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033003">10.1103/PhysRevResearch.6.033003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Global synchronization in generalized multilayer higher-order networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Pal%2C+P+K">Palash Kumar Pal</a>, <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Perc%2C+M">Matjaz Perc</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03771v1-abstract-short" style="display: inline;"> Networks incorporating higher-order interactions are increasingly recognized for their ability to introduce novel dynamics into various processes, including synchronization. Previous studies on synchronization within multilayer networks have often been limited to specific models, such as the Kuramoto model, or have focused solely on higher-order interactions within individual layers. Here, we pres&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03771v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03771v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03771v1-abstract-full" style="display: none;"> Networks incorporating higher-order interactions are increasingly recognized for their ability to introduce novel dynamics into various processes, including synchronization. Previous studies on synchronization within multilayer networks have often been limited to specific models, such as the Kuramoto model, or have focused solely on higher-order interactions within individual layers. Here, we present a comprehensive framework for investigating synchronization, particularly global synchronization, in multilayer networks with higher-order interactions. Our framework considers interactions beyond pairwise connections, both within and across layers. We demonstrate the existence of a stable global synchronous state, with a condition resembling the master stability function, contingent on the choice of coupling functions. Our theoretical findings are supported by simulations using Hindmarsh-Rose neuronal and R枚ssler oscillators. These simulations illustrate how synchronization is facilitated by higher-order interactions, both within and across layers, highlighting the advantages over scenarios involving interactions within single layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03771v1-abstract-full').style.display = 'none'; document.getElementById('2406.03771v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 033003 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16868">arXiv:2404.16868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16868">pdf</a>, <a href="https://arxiv.org/format/2404.16868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Amplitude responses of swarmalators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+S">Samali Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Pal%2C+S">Suvam Pal</a>, <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16868v1-abstract-short" style="display: inline;"> Swarmalators are entities that swarm through space and sync in time and are potentially considered to replicate the complex dynamics of many real-world systems. So far, the internal dynamics of swarmalators have been taken as a phase oscillator inspired by the Kuramoto model. Here, for the first time, we examine the internal dynamics utilizing an amplitude oscillator capable of exhibiting periodic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16868v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16868v1-abstract-full" style="display: none;"> Swarmalators are entities that swarm through space and sync in time and are potentially considered to replicate the complex dynamics of many real-world systems. So far, the internal dynamics of swarmalators have been taken as a phase oscillator inspired by the Kuramoto model. Here, for the first time, we examine the internal dynamics utilizing an amplitude oscillator capable of exhibiting periodic and chaotic behaviors. To incorporate the dual interplay between spatial and internal dynamics, we propose a general model that keeps the properties of swarmalators intact. This adaptation calls for a detailed study which we present in this paper. We establish our study with the Rossler oscillator by taking parameters from both the chaotic and periodic regions. While the periodic oscillator mimics most of the patterns in the previous phase oscillator model, the chaotic oscillator brings some new fascinating states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16868v1-abstract-full').style.display = 'none'; document.getElementById('2404.16868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures; Accepted for publication in Physical Review E (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19240">arXiv:2403.19240</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19240">pdf</a>, <a href="https://arxiv.org/format/2403.19240">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Cluster formation due to repulsive spanning trees in attractively coupled networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19240v1-abstract-short" style="display: inline;"> Ensembles of coupled nonlinear oscillators are a popular paradigm and an ideal benchmark for analyzing complex collective behaviors. The onset of cluster synchronization is found to be at the core of various technological and biological processes. The current literature has investigated cluster synchronization by focusing mostly on the case of attractive coupling among the oscillators. However, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19240v1-abstract-full').style.display = 'inline'; document.getElementById('2403.19240v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19240v1-abstract-full" style="display: none;"> Ensembles of coupled nonlinear oscillators are a popular paradigm and an ideal benchmark for analyzing complex collective behaviors. The onset of cluster synchronization is found to be at the core of various technological and biological processes. The current literature has investigated cluster synchronization by focusing mostly on the case of attractive coupling among the oscillators. However, the case of two coexisting competing interactions is of practical interest due to their relevance in diverse natural settings, including neuronal networks consisting of excitatory and inhibitory neurons, the coevolving social model with voters of opposite opinions, ecological plant communities with both facilitation and competition, to name a few. In the present article, we investigate the impact of repulsive spanning trees on cluster formation within a connected network of attractively coupled limit cycle oscillators. We successfully predict which nodes belong to each cluster and the emergent frustration of the connected networks independent of the particular local dynamics at the network nodes. We also determine local asymptotic stability of the cluster states using an approach based on the formulation of a master stability function. We additionally validate the emergence of solitary states and antisynchronization for some specific choices of spanning trees and networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19240v1-abstract-full').style.display = 'none'; document.getElementById('2403.19240v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 18 figures, Accepted for publication in Physical Review E (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02825">arXiv:2401.02825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02825">pdf</a>, <a href="https://arxiv.org/ps/2401.02825">ps</a>, <a href="https://arxiv.org/format/2401.02825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Self-organized bistability on globally coupled higher-order networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Frolov%2C+N">Nikita Frolov</a>, <a href="/search/nlin?searchtype=author&amp;query=Hramov%2C+A+E">Alexander E. Hramov</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02825v1-abstract-short" style="display: inline;"> Self-organized bistability (SOB) stands as a critical behavior for the systems delicately adjusting themselves to the brink of bistability, characterized by a first-order transition. Its essence lies in the inherent ability of the system to undergo enduring shifts between the coexisting states, achieved through the self-regulation of a controlling parameter. Recently, SOB has been established in a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02825v1-abstract-full').style.display = 'inline'; document.getElementById('2401.02825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02825v1-abstract-full" style="display: none;"> Self-organized bistability (SOB) stands as a critical behavior for the systems delicately adjusting themselves to the brink of bistability, characterized by a first-order transition. Its essence lies in the inherent ability of the system to undergo enduring shifts between the coexisting states, achieved through the self-regulation of a controlling parameter. Recently, SOB has been established in a scale-free network as a recurrent transition to a short-living state of global synchronization. Here, we embark on a theoretical exploration that extends the boundaries of the SOB concept on a higher-order network (implicitly embedded microscopically within a simplicial complex) while considering the limitations imposed by coupling constraints. By applying Ott-Antonsen dimensionality reduction in the thermodynamic limit to the higher-order network, we derive SOB requirements under coupling limits that are in good agreement with numerical simulations on systems of finite size. We use continuous synchronization diagrams and statistical data from spontaneous synchronized events to demonstrate the crucial role SOB plays in initiating and terminating temporary synchronized events. We show that under weak coupling consumption, these spontaneous occurrences closely resemble the statistical traits of the epileptic brain functioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02825v1-abstract-full').style.display = 'none'; document.getElementById('2401.02825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 Pages, 8 Figures, Accepted for publication in Physical Review E (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10178">arXiv:2312.10178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.10178">pdf</a>, <a href="https://arxiv.org/format/2312.10178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> A solvable two-dimensional swarmalator model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=O%27Keeffe%2C+K">Kevin O&#39;Keeffe</a>, <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Liz%C3%A1rraga%2C+J+U+F">Joao U. F. Liz谩rraga</a>, <a href="/search/nlin?searchtype=author&amp;query=de+Aguiar%2C+M+A+M">Marcus A. M. de Aguiar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10178v2-abstract-short" style="display: inline;"> Swarmalators are oscillators that swarm through space as they synchronize in time. Introduced a few years ago to model many systems which mix synchrony with self-assembly, they remain poorly understood theoretically. Here we obtain the first analytic results on swarmalators moving in two-dimensional (2D) plane by enforcing periodic boundary conditions; this simpler topology allows expressions for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10178v2-abstract-full').style.display = 'inline'; document.getElementById('2312.10178v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10178v2-abstract-full" style="display: none;"> Swarmalators are oscillators that swarm through space as they synchronize in time. Introduced a few years ago to model many systems which mix synchrony with self-assembly, they remain poorly understood theoretically. Here we obtain the first analytic results on swarmalators moving in two-dimensional (2D) plane by enforcing periodic boundary conditions; this simpler topology allows expressions for order parameters, stabilities, and bifurcations to be derived exactly. We suggest some future directions for swarmalator research and point out some connections to the Kuramoto model and the Vicsek model from active matter; these are intended as a call-to-arms for the sync community and other researchers looking for new problems and puzzles to work on. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10178v2-abstract-full').style.display = 'none'; document.getElementById('2312.10178v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09581">arXiv:2312.09581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09581">pdf</a>, <a href="https://arxiv.org/format/2312.09581">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Directional synchrony among self-propelled particles under spatial influence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Pal%2C+S">Suvam Pal</a>, <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Pal%2C+A">Arnab Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09581v1-abstract-short" style="display: inline;"> Synchronization is one of the emerging collective phenomena in interacting particle systems. Its ubiquitous presence in nature, science, and technology has fascinated the scientific community over the decades. Moreover, a great deal of research has been, and is still being, devoted to understand various physical aspects of the subject. In particular, the study of interacting \textit{active} partic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09581v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09581v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09581v1-abstract-full" style="display: none;"> Synchronization is one of the emerging collective phenomena in interacting particle systems. Its ubiquitous presence in nature, science, and technology has fascinated the scientific community over the decades. Moreover, a great deal of research has been, and is still being, devoted to understand various physical aspects of the subject. In particular, the study of interacting \textit{active} particles has led to exotic phase transitions in such systems which have opened up a new research front-line. Motivated by this line of work, in this paper, we study the directional synchrony among self-propelled particles. These particles move inside a bounded region, and crucially their directions are also coupled with spatial degrees of freedom. We assume that the directional coupling between two particles is influenced by the relative spatial distance which changes over time. Furthermore, the nature of the influence is considered to be both short and long-ranged. We explore the phase transition scenario in both the cases and propose an approximation technique which enables us to analytically find the critical transition point. The results are further supported with numerical simulations. Our results have potential importance in the study of active systems like bird flocks, fish schools and swarming robots where spatial influence plays a pertinent role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09581v1-abstract-full').style.display = 'none'; document.getElementById('2312.09581v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Chaos (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07014">arXiv:2312.07014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07014">pdf</a>, <a href="https://arxiv.org/format/2312.07014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0177024">10.1063/5.0177024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Swarmalators on a ring with uncorrelated pinning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=O%27Keeffe%2C+K">Kevin O&#39;Keeffe</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07014v1-abstract-short" style="display: inline;"> We present a case study of swarmalators (mobile oscillators) which move on a 1D ring and are subject to pinning. Previous work considered the special case where the pinning in space and the pinning in the phase dimension were correlated. Here we study the general case where the space and phase pinning are uncorrelated, both being chosen uniformly at random. This induces several new effects, such a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07014v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07014v1-abstract-full" style="display: none;"> We present a case study of swarmalators (mobile oscillators) which move on a 1D ring and are subject to pinning. Previous work considered the special case where the pinning in space and the pinning in the phase dimension were correlated. Here we study the general case where the space and phase pinning are uncorrelated, both being chosen uniformly at random. This induces several new effects, such as pinned async, mixed states, and a first order phase transition. These phenomena may be found in real world swarmalators such as systems of vinegar eels, Janus matchsticks, electrorotated Quincke rollers or Japanese tree frogs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07014v1-abstract-full').style.display = 'none'; document.getElementById('2312.07014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos 33, 111103 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06383">arXiv:2312.06383</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06383">pdf</a>, <a href="https://arxiv.org/format/2312.06383">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Flocking and swarming in a multi-agent dynamical system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06383v1-abstract-short" style="display: inline;"> Over the past few decades, the research community has been interested in the study of multi-agent systems and their emerging collective dynamics. These systems are all around us in nature, like bacterial colonies, fish schools, bird flocks, as well as in technology, such as microswimmers and robotics, to name a few. Flocking and swarming are two key components of the collective behaviours of multi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06383v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06383v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06383v1-abstract-full" style="display: none;"> Over the past few decades, the research community has been interested in the study of multi-agent systems and their emerging collective dynamics. These systems are all around us in nature, like bacterial colonies, fish schools, bird flocks, as well as in technology, such as microswimmers and robotics, to name a few. Flocking and swarming are two key components of the collective behaviours of multi-agent systems. In flocking, the agents coordinate their direction of motion, but in swarming, they congregate in space to organise their spatial position. We investigate a minimal mathematical model of locally interacting multi-agent system where the agents simultaneously swarm in space and exhibit flocking behaviour. Various cluster structures are found, depending on the interaction range. When the coupling strength value exceeds a crucial threshold, flocking behaviour is observed. We do in-depth simulations and report the findings by changing the other parameters and with the incorporation of noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06383v1-abstract-full').style.display = 'none'; document.getElementById('2312.06383v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Chaos (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11854">arXiv:2310.11854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.11854">pdf</a>, <a href="https://arxiv.org/format/2310.11854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Desynchrony induced by higher-order interactions in triplex metapopulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Pal%2C+P+K">Palash Kumar Pal</a>, <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11854v1-abstract-short" style="display: inline;"> In a predator-prey metapopulation, the two traits are adversely related: synchronization and persistence. A decrease in synchrony apparently leads to an increase in persistence and, therefore, necessitates the study of desynchrony in a metapopulation. In this article, we study predator-prey patches that communicate with one another while being interconnected through distinct dispersal structures i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11854v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11854v1-abstract-full" style="display: none;"> In a predator-prey metapopulation, the two traits are adversely related: synchronization and persistence. A decrease in synchrony apparently leads to an increase in persistence and, therefore, necessitates the study of desynchrony in a metapopulation. In this article, we study predator-prey patches that communicate with one another while being interconnected through distinct dispersal structures in the layers of a three-layer multiplex network. We investigate the synchronization phenomenon among the patches of the outer layers by introducing higher-order interactions (specifically three-body interactions) in the middle layer. We observe a decrease in the synchronous behavior or, alternatively, an increase in desynchrony due to the inclusion of group interactions among the patches of the middle layer. The advancement of desynchrony becomes more prominent with increasing strength and numbers of three-way interactions in the middle layer. We analytically validated our numerical results by performing the stability analysis of the referred synchronous solution using the master stability function approach. Additionally, we verify our findings by taking into account two distinct predator-prey models and dispersal topologies, which ultimately assert that the findings are generalizable across various models and dispersal structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11854v1-abstract-full').style.display = 'none'; document.getElementById('2310.11854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 Pages, 10 figures. Accepted for publication in Physical Review E, 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04159">arXiv:2309.04159</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04159">pdf</a>, <a href="https://arxiv.org/format/2309.04159">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Anti-phase synchronization in a population of swarmalators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+S">Samali Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Majhi%2C+S">Soumen Majhi</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04159v1-abstract-short" style="display: inline;"> Swarmalators are oscillatory systems endowed with a spatial component, whose spatial and phase dynamics affect each other. Such systems can demonstrate fascinating collective dynamics resembling many real-world processes. Through this work, we study a population of swarmalators where they are divided into different communities. The strengths of spatial attraction, repulsion as well as phase intera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04159v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04159v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04159v1-abstract-full" style="display: none;"> Swarmalators are oscillatory systems endowed with a spatial component, whose spatial and phase dynamics affect each other. Such systems can demonstrate fascinating collective dynamics resembling many real-world processes. Through this work, we study a population of swarmalators where they are divided into different communities. The strengths of spatial attraction, repulsion as well as phase interaction differ from one group to another. Also, they vary from inter-community to intra-community. We encounter, as a result of variation in the phase coupling strength, different routes to achieve the static synchronization state by choosing several parameter combinations. We observe that when the inter-community phase coupling strength is sufficiently large, swarmalators settle in the static synchronization state. On the other hand, with a significant small phase coupling strength the state of anti-phase synchronization as well as chimera-like coexistence of sync and async are realized. Apart from rigorous numerical results, we have been successful to provide semi-analytical treatment for the existence and stability of global static sync and the anti-phase sync states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04159v1-abstract-full').style.display = 'none'; document.getElementById('2309.04159v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review E (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03343">arXiv:2309.03343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.03343">pdf</a>, <a href="https://arxiv.org/format/2309.03343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Exactly Solvable and Integrable Systems">nlin.SI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01556-2">10.1038/s42005-024-01556-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective dynamics of swarmalators with higher-order interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Perc%2C+M">Matjaz Perc</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03343v1-abstract-short" style="display: inline;"> Higher-order interactions shape collective dynamics, but how they affect transitions between different states in swarmalator systems is yet to be determined. To that effect, we here study an analytically tractable swarmalator model that incorporates both pairwise and higher-order interactions, resulting in four distinct collective states: async, phase wave, mixed, and sync states. We show that eve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03343v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03343v1-abstract-full" style="display: none;"> Higher-order interactions shape collective dynamics, but how they affect transitions between different states in swarmalator systems is yet to be determined. To that effect, we here study an analytically tractable swarmalator model that incorporates both pairwise and higher-order interactions, resulting in four distinct collective states: async, phase wave, mixed, and sync states. We show that even a minute fraction of higher-order interactions induces abrupt transitions from the async state to the phase wave and the sync state. We also show that higher-order interactions facilitate an abrupt transition from the phase wave to the sync state by bypassing the intermediate mixed state. Moreover, elevated levels of higher-order interactions can sustain the presence of phase wave and sync state, even when pairwise interactions lean towards repulsion. The insights gained from these findings unveil self-organizing processes that hold the potential to explain sudden transitions between various collective states in numerous real-world systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03343v1-abstract-full').style.display = 'none'; document.getElementById('2309.03343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 7, 59 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.16163">arXiv:2307.16163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.16163">pdf</a>, <a href="https://arxiv.org/format/2307.16163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.109.054302">10.1103/PhysRevE.109.054302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchronizability in randomized weighted simplicial complexes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Jenifer%2C+S+N">S. Nirmala Jenifer</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Muruganandam%2C+P">Paulsamy Muruganandam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.16163v3-abstract-short" style="display: inline;"> We present a formula for determining synchronizability in large, randomized and weighted simplicial complexes. This formula leverages eigenratios and costs to assess complete synchronizability under diverse network topologies and intensity distributions. We systematically vary coupling strengths (pairwise and three-body), degree and intensity distributions to identify the synchronizability of thes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16163v3-abstract-full').style.display = 'inline'; document.getElementById('2307.16163v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.16163v3-abstract-full" style="display: none;"> We present a formula for determining synchronizability in large, randomized and weighted simplicial complexes. This formula leverages eigenratios and costs to assess complete synchronizability under diverse network topologies and intensity distributions. We systematically vary coupling strengths (pairwise and three-body), degree and intensity distributions to identify the synchronizability of these simplicial complexes of the identical oscillators with natural coupling. We focus on randomized weighted connections with diffusive couplings and check synchronizability for different cases. For all these scenarios, eigenratios and costs reliably gauge synchronizability, eliminating the need for explicit connectivity matrices and eigenvalue calculations. This efficient approach offers a general formula for manipulating synchronizability in diffusively coupled identical systems with higher-order interactions simply by manipulating degrees, weights, and coupling strengths. We validate our findings with simplicial complexes of R枚ssler oscillators and confirm that the results are independent of the number of oscillators, connectivity components and distributions of degrees and intensities. Finally, we validate the theory by considering a real-world connection topology using chaotic R枚ssler oscillators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16163v3-abstract-full').style.display = 'none'; document.getElementById('2307.16163v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, accepted for publication in Phys. Rev. E</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E 109, 054302 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04568">arXiv:2307.04568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.04568">pdf</a>, <a href="https://arxiv.org/ps/2307.04568">ps</a>, <a href="https://arxiv.org/format/2307.04568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Global synchronization on time-varying higher-order structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Carletti%2C+T">Timoteo Carletti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04568v1-abstract-short" style="display: inline;"> Synchronization has received a lot of attention from the scientific community for systems evolving on static networks or higher-order structures, such as hypergraphs and simplicial complexes. In many relevant real world applications, the latter are not static but do evolve in time, in this paper we thus discuss the impact of the time-varying nature of high-order structures in the emergence of glob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04568v1-abstract-full').style.display = 'inline'; document.getElementById('2307.04568v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04568v1-abstract-full" style="display: none;"> Synchronization has received a lot of attention from the scientific community for systems evolving on static networks or higher-order structures, such as hypergraphs and simplicial complexes. In many relevant real world applications, the latter are not static but do evolve in time, in this paper we thus discuss the impact of the time-varying nature of high-order structures in the emergence of global synchronization. To achieve this goal we extend the master stability formalism to account, in a general way, for the additional contributions arising from the time evolution of the higher-order structure supporting the dynamical systems. The theory is successfully challenged against two illustrative examples, the Stuart-Landau nonlinear oscillator and the Lorenz chaotic oscillator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04568v1-abstract-full').style.display = 'none'; document.getElementById('2307.04568v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09589">arXiv:2306.09589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09589">pdf</a>, <a href="https://arxiv.org/format/2306.09589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Solvable model of driven matter with pinning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=O%27Keeffe%2C+K">Kevin O&#39;Keeffe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09589v1-abstract-short" style="display: inline;"> We present a simple model of driven matter in a 1D medium with pinning impurities, applicable to magnetic domains walls, confined colloids, and other systems. We find rich dynamics, including hysteresis, reentrance, quasiperiodicity, and two distinct routes to chaos. In contrast to other minimal models of driven matter, the model is solvable: we derive the full phase diagram for small $N$, and for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09589v1-abstract-full').style.display = 'inline'; document.getElementById('2306.09589v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09589v1-abstract-full" style="display: none;"> We present a simple model of driven matter in a 1D medium with pinning impurities, applicable to magnetic domains walls, confined colloids, and other systems. We find rich dynamics, including hysteresis, reentrance, quasiperiodicity, and two distinct routes to chaos. In contrast to other minimal models of driven matter, the model is solvable: we derive the full phase diagram for small $N$, and for large $N$, derive expressions for order parameters and several bifurcation curves. The model is also realistic. Its collective states match those seen in the experiments of magnetic domain walls, and its force-velocity curve imitates those of superconductor vortices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09589v1-abstract-full').style.display = 'none'; document.getElementById('2306.09589v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00039">arXiv:2304.00039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.00039">pdf</a>, <a href="https://arxiv.org/format/2304.00039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0152699">10.1063/5.0152699 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extreme rotational events in a forced-damped nonlinear pendulum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Pal%2C+T+K">Tapas Kumar Pal</a>, <a href="/search/nlin?searchtype=author&amp;query=Ray%2C+A">Arnob Ray</a>, <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00039v1-abstract-short" style="display: inline;"> Since Galileo&#39;s time, the pendulum has evolved into one of the most exciting physical objects in mathematical modeling due to its vast range of applications for studying various oscillatory dynamics, including bifurcations and chaos, under various interests. This well-deserved focus aids in comprehending various oscillatory physical phenomena that can be reduced to the equations of the pendulum. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00039v1-abstract-full').style.display = 'inline'; document.getElementById('2304.00039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00039v1-abstract-full" style="display: none;"> Since Galileo&#39;s time, the pendulum has evolved into one of the most exciting physical objects in mathematical modeling due to its vast range of applications for studying various oscillatory dynamics, including bifurcations and chaos, under various interests. This well-deserved focus aids in comprehending various oscillatory physical phenomena that can be reduced to the equations of the pendulum. The present article focuses on the rotational dynamics of the two-dimensional forced damped pendulum under the influence of the ac and dc torque. Interestingly, we are able to detect a range of the pendulum&#39;s length for which the angular velocity exhibits a few intermittent extreme rotational events that deviate significantly from a certain well-defined threshold. The statistics of the return intervals between these extreme rotational events are supported by our data to be spread exponentially. The numerical results show a sudden increase in the size of the chaotic attractor due to interior crisis which is the source of instability that is responsible for triggering large amplitude events in our system. We also notice the occurrence of phase slips with the appearance of extreme rotational events when phase difference between the instantaneous phase of the system and the externally applied ac torque is observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00039v1-abstract-full').style.display = 'none'; document.getElementById('2304.00039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08158">arXiv:2303.08158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08158">pdf</a>, <a href="https://arxiv.org/format/2303.08158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jtbi.2023.111446">10.1016/j.jtbi.2023.111446 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Eco-evolutionary cyclic dominance among predators, prey, and parasites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Banerjee%2C+J">Jeet Banerjee</a>, <a href="/search/nlin?searchtype=author&amp;query=Perc%2C+M">Matja啪 Perc</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08158v1-abstract-short" style="display: inline;"> Predator prey interactions are one of ecology&#39;s central research themes, but with many interdisciplinary implications across the social and natural sciences. Here we consider an often-overlooked species in these interactions, namely parasites. We first show that a simple predator prey parasite model, inspired by the classical Lotka Volterra equations, fails to produce a stable coexistence of all t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08158v1-abstract-full').style.display = 'inline'; document.getElementById('2303.08158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08158v1-abstract-full" style="display: none;"> Predator prey interactions are one of ecology&#39;s central research themes, but with many interdisciplinary implications across the social and natural sciences. Here we consider an often-overlooked species in these interactions, namely parasites. We first show that a simple predator prey parasite model, inspired by the classical Lotka Volterra equations, fails to produce a stable coexistence of all three species, thus failing to provide a biologically realistic outcome. To improve this, we introduce free space as a relevant eco-evolutionary component in a new mathematical model that uses a game-theoretical payoff matrix to describe a more realistic setup. We then show that the consideration of free space stabilizes the dynamics by means of cyclic dominance that emerges between the three species. We determine the parameter regions of coexistence as well as the types of bifurcations leading to it by means of analytical derivations as well as by means of numerical simulations. We conclude that the consideration of free space as a finite resource reveals the limits of biodiversity in predator prey parasite interactions, and it may also help us in the determination of factors that promote a healthy biota. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08158v1-abstract-full').style.display = 'none'; document.getElementById('2303.08158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jtbi.2023.111446</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Theor. Biol. 564, 111446 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08126">arXiv:2303.08126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08126">pdf</a>, <a href="https://arxiv.org/format/2303.08126">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.107.034313">10.1103/PhysRevE.107.034313 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interlayer antisynchronization in degree-biased duplex networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Rakshit%2C+S">Sarbendu Rakshit</a>, <a href="/search/nlin?searchtype=author&amp;query=Hens%2C+C">Chittaranjan Hens</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08126v1-abstract-short" style="display: inline;"> With synchronization being one of nature&#39;s most ubiquitous collective behaviors, the field of network synchronization has experienced tremendous growth, leading to significant theoretical developments. However, most of these previous studies consider uniform connection weights and undirected networks with positive coupling. In the present article, we incorporate the asymmetry in a two-layer multip&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08126v1-abstract-full').style.display = 'inline'; document.getElementById('2303.08126v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08126v1-abstract-full" style="display: none;"> With synchronization being one of nature&#39;s most ubiquitous collective behaviors, the field of network synchronization has experienced tremendous growth, leading to significant theoretical developments. However, most of these previous studies consider uniform connection weights and undirected networks with positive coupling. In the present article, we incorporate the asymmetry in a two-layer multiplex network by assigning the ratio of the adjacent nodes&#39; degrees as the weights to the intralayer edges. Despite the presence of degree-biased weighting mechanism and attractive-repulsive coupling strengths, we are able to find the necessary conditions for intralayer synchronization and interlayer antisynchronization and test whether these two macroscopic states can withstand demultiplexing in a network. During the occurrence of these two states, we analytically calculate the oscillator&#39;s amplitude. In addition to deriving the local stability conditions for interlayer antisynchronization via the master stability function approach, we also construct a suitable Lyapunov function to determine a sufficient condition for global stability. We provide numerical evidence to show the necessity of negative interlayer coupling strength for the occurrence of antisynchronization, and such repulsive interlayer coupling coefficients can not destroy intralayer synchronization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08126v1-abstract-full').style.display = 'none'; document.getElementById('2303.08126v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures (Accepted for publication in the journal Physical Review E)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01081">arXiv:2212.01081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01081">pdf</a>, <a href="https://arxiv.org/ps/2212.01081">ps</a>, <a href="https://arxiv.org/format/2212.01081">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1137/22M1525909">10.1137/22M1525909 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchronization in temporal simplicial complexes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01081v1-abstract-short" style="display: inline;"> The stability analysis of synchronization in time-varying higher-order networked structures (simplicial complexes) is one of the challenging problem due to the presence of time-varying group interactions. In this context, most of the previous studies have been done either on temporal pairwise networks or on static simplicial complexes. Here, for the first time, we propose a general framework to st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01081v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01081v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01081v1-abstract-full" style="display: none;"> The stability analysis of synchronization in time-varying higher-order networked structures (simplicial complexes) is one of the challenging problem due to the presence of time-varying group interactions. In this context, most of the previous studies have been done either on temporal pairwise networks or on static simplicial complexes. Here, for the first time, we propose a general framework to study the synchronization phenomenon in temporal simplicial complexes. We show that the synchronous state exists as an invariant solution and obtain the necessary condition for it to be emerged as a stable state in fast switching regime. We prove that the time-averaged simplicial complex plays the role of synchronization indicator whenever the switching among simplicial topologies are adequately fast. We attempt to transform the stability problem into a master stability function form. Unfortunately, for the general circumstances, the dimension reduction of the master stability equation is cumbersome due to the presence of group interactions. However, we overcome this difficulty in two interesting situations based on either the functional forms of the coupling schemes or the connectivity structure of the simplicial complex, and demonstrate that the necessary condition mimics the form of a master stability function in these cases. We verify our analytical findings by applying them on synthetic and real-world networked systems. In addition, our results also reveal that with sufficient higher-order coupling and adequately fast rewiring, the temporal simplicial complex achieves synchrony even in a very low connectivity regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01081v1-abstract-full').style.display = 'none'; document.getElementById('2212.01081v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures, any comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SIAM Journal on Applied Dynamical Systems, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00988">arXiv:2212.00988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.00988">pdf</a>, <a href="https://arxiv.org/ps/2212.00988">ps</a>, <a href="https://arxiv.org/format/2212.00988">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.107.014201">10.1103/PhysRevE.107.014201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchronization in repulsively coupled oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Mirzaei%2C+S">Simin Mirzaei</a>, <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Parastesh%2C+F">Fatemeh Parastesh</a>, <a href="/search/nlin?searchtype=author&amp;query=Jafari%2C+S">Sajad Jafari</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00988v1-abstract-short" style="display: inline;"> A long-standing expectation is that two repulsively coupled oscillators tend to oscillate in opposite directions. It has been difficult to achieve complete synchrony in coupled identical oscillators with purely repulsive coupling. Here, we introduce a general coupling condition based on the linear matrix of dynamical systems for the emergence of the complete synchronization in pure repulsively cou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00988v1-abstract-full').style.display = 'inline'; document.getElementById('2212.00988v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00988v1-abstract-full" style="display: none;"> A long-standing expectation is that two repulsively coupled oscillators tend to oscillate in opposite directions. It has been difficult to achieve complete synchrony in coupled identical oscillators with purely repulsive coupling. Here, we introduce a general coupling condition based on the linear matrix of dynamical systems for the emergence of the complete synchronization in pure repulsively coupled oscillators. The proposed coupling profiles (coupling matrices) define a bidirectional cross-coupling link that plays the role of indicator for the onset of complete synchrony between identical oscillators. We illustrate the proposed coupling scheme on several paradigmatic two-coupled chaotic oscillators and validate its effectiveness through the linear stability analysis of the synchronous solution based on the master stability function approach. We further demonstrate that the proposed general condition for the selection of coupling profiles to achieve synchronization even works perfectly for a large ensemble of oscillators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00988v1-abstract-full').style.display = 'none'; document.getElementById('2212.00988v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review E</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02353">arXiv:2211.02353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.02353">pdf</a>, <a href="https://arxiv.org/format/2211.02353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.107.024215">10.1103/PhysRevE.107.024215 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pinning in a system of swarmalators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=O%27Keeffe%2C+K">Kevin O&#39;Keeffe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02353v2-abstract-short" style="display: inline;"> We study a population of swarmalators (swarming/mobile oscillators) which run on a ring and are subject to random pinning. The pinning represents the tendency of particles to stick to defects in the underlying medium which competes with the tendency to sync / swarm. The result is rich collective behavior. A highlight is low dimensional chaos which in systems of ordinary, Kuramoto-type oscillators&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02353v2-abstract-full').style.display = 'inline'; document.getElementById('2211.02353v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02353v2-abstract-full" style="display: none;"> We study a population of swarmalators (swarming/mobile oscillators) which run on a ring and are subject to random pinning. The pinning represents the tendency of particles to stick to defects in the underlying medium which competes with the tendency to sync / swarm. The result is rich collective behavior. A highlight is low dimensional chaos which in systems of ordinary, Kuramoto-type oscillators is uncommon. Some of the states (the phase wave and split phase wave) resemble those seen in systems of Janus matchsticks or Japanese tree frogs. The others (such as the sync and unsteady states) may be observable in systems of vinegar eels, electrorotated Quincke rollers, or other swarmalators moving in disordered environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02353v2-abstract-full').style.display = 'none'; document.getElementById('2211.02353v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review E (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.00825">arXiv:2209.00825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.00825">pdf</a>, <a href="https://arxiv.org/ps/2209.00825">ps</a>, <a href="https://arxiv.org/format/2209.00825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Stability of synchronization in simplicial complexes with multiple interaction layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.00825v1-abstract-short" style="display: inline;"> Understanding how the interplay between higher-order and multilayer structures of interconnections influences the synchronization behaviors of dynamical systems is a feasible problem of interest, with possible application in essential topics such as neuronal dynamics. Here, we provide a comprehensive approach for analyzing the stability of the complete synchronization state in simplicial complexes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00825v1-abstract-full').style.display = 'inline'; document.getElementById('2209.00825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.00825v1-abstract-full" style="display: none;"> Understanding how the interplay between higher-order and multilayer structures of interconnections influences the synchronization behaviors of dynamical systems is a feasible problem of interest, with possible application in essential topics such as neuronal dynamics. Here, we provide a comprehensive approach for analyzing the stability of the complete synchronization state in simplicial complexes with numerous interaction layers. We show that the synchronization state exists as an invariant solution and derive the necessary condition for a stable synchronization state in presence of general coupling functions. It generalizes the well-known master stability function scheme to the higher-order structures with multiple interaction layers. We verify our theoretical results by employing them on networks of paradigmatic R枚ssler oscillators and Sherman neuronal models, and demonstrate that the presence of group interactions considerably improves the synchronization phenomenon in the multilayer framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00825v1-abstract-full').style.display = 'none'; document.getElementById('2209.00825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures; Accepted for publication in Physical Review E (2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14803">arXiv:2208.14803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14803">pdf</a>, <a href="https://arxiv.org/format/2208.14803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/ac8445">10.1209/0295-5075/ac8445 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of swarmalators: A pedagogical review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14803v1-abstract-short" style="display: inline;"> Swarmalators have emerged as a new paradigm for dynamical collective behavior of multi-agent systems due to the interplay of synchronization and swarming that they inherently incorporate. Their dynamics have been explored with different coupling topologies, interaction functions, external forcing, noise, competitive interactions, and from other important viewpoints. Here we take a systematic appro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14803v1-abstract-full').style.display = 'inline'; document.getElementById('2208.14803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14803v1-abstract-full" style="display: none;"> Swarmalators have emerged as a new paradigm for dynamical collective behavior of multi-agent systems due to the interplay of synchronization and swarming that they inherently incorporate. Their dynamics have been explored with different coupling topologies, interaction functions, external forcing, noise, competitive interactions, and from other important viewpoints. Here we take a systematic approach and review the collective dynamics of swarmalators analytically and/or numerically. Long-term states of position aggregation and phase synchronization are revealed in this perspective with some future problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14803v1-abstract-full').style.display = 'none'; document.getElementById('2208.14803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Europhysics Letters 139 (2022) 53001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10108">arXiv:2208.10108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.10108">pdf</a>, <a href="https://arxiv.org/format/2208.10108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0102599">10.1063/5.0102599 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling species densities in structurally perturbed intransitive cycles with higher-order interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Chatterjee%2C+S">Sourin Chatterjee</a>, <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Hens%2C+C">Chittaranjan Hens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10108v1-abstract-short" style="display: inline;"> The persistence of biodiversity of species is a challenging proposition in ecological communities in the face of Darwinian selection. The present article investigates beyond the pairwise competitive interactions and provides a novel perspective for understanding the influence of higher-order interactions on the evolution of social phenotypes. Our simple model yields a prosperous outlook to demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10108v1-abstract-full').style.display = 'inline'; document.getElementById('2208.10108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10108v1-abstract-full" style="display: none;"> The persistence of biodiversity of species is a challenging proposition in ecological communities in the face of Darwinian selection. The present article investigates beyond the pairwise competitive interactions and provides a novel perspective for understanding the influence of higher-order interactions on the evolution of social phenotypes. Our simple model yields a prosperous outlook to demonstrate the impact of perturbations on intransitive competitive higher-order interactions. Using a mathematical technique, we show how alone the perturbed interaction network can quickly determine the coexistence equilibrium of competing species instead of solving a large system of ordinary differential equations. It is possible to split the system into multiple feasible cluster states depending on the number of perturbations. Our analysis also reveals the ratio between the unperturbed and perturbed species is inversely proportional to the amount of employed perturbation. Our results suggest that nonlinear dynamical systems and interaction topologies can be interplayed to comprehend species&#39; coexistence under adverse conditions. Particularly our findings signify that less competition between two species increases their abundance and outperforms others. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10108v1-abstract-full').style.display = 'none'; document.getElementById('2208.10108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.06850">arXiv:2208.06850</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.06850">pdf</a>, <a href="https://arxiv.org/format/2208.06850">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D3SM00271C">10.1039/D3SM00271C <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resetting mediated navigation of active Brownian searcher in a homogeneous topography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab Kumar Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ray%2C+A">Arnob Ray</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Hens%2C+C">Chittaranjan Hens</a>, <a href="/search/nlin?searchtype=author&amp;query=Pal%2C+A">Arnab Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.06850v1-abstract-short" style="display: inline;"> Designing navigation strategies for search time optimization remains of interest in various interdisciplinary branches in science. In here, we focus on microscopic self-propelled searchers namely active Brownian walkers in noisy and confined environment which are mediated by one such autonomous strategy namely resetting. As such, resetting stops the motion and compels the walkers to restart from t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06850v1-abstract-full').style.display = 'inline'; document.getElementById('2208.06850v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.06850v1-abstract-full" style="display: none;"> Designing navigation strategies for search time optimization remains of interest in various interdisciplinary branches in science. In here, we focus on microscopic self-propelled searchers namely active Brownian walkers in noisy and confined environment which are mediated by one such autonomous strategy namely resetting. As such, resetting stops the motion and compels the walkers to restart from the initial configuration intermittently according to an external timer that does not require control by the walkers. In particular, the resetting coordinates are either quenched (fixed) or annealed (fluctuating) over the entire topography. Although the strategy relies upon simple rules, it shows a significant ramification on the search time statistics in contrast to the original search. We show that the resetting driven protocols mitigate the performance of these active searchers based, robustly, on the inherent search time fluctuations. Notably, for the annealed condition, resetting is always found to expedite the search process. These features, as well as their applicability to more general optimization problems starting from queuing systems, computer science to living systems, make resetting based strategies universally promising. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06850v1-abstract-full').style.display = 'none'; document.getElementById('2208.06850v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Soft Matter (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14582">arXiv:2206.14582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14582">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> </div> <p class="title is-5 mathjax"> Complexity Analysis of Wind Energy, Wind Speed and Wind Direction in the light of nonlinear technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Chakraborty%2C+S">Sayantan Chakraborty</a>, <a href="/search/nlin?searchtype=author&amp;query=Samanta%2C+S">Sourav Samanta</a>, <a href="/search/nlin?searchtype=author&amp;query=Samanta%2C+S">Shukla Samanta</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dipak Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Banerjee%2C+K">Kumardeb Banerjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14582v1-abstract-short" style="display: inline;"> Wind energy has an inherent intermittent character due to certain inevitable factors of nature, such as availability of wind at different weather conditions, wind direction etc. To study the intermittent character of wind energy, its daily data along with the two other important quantities, wind speed and wind direction measured in a &#34;showcase&#34; wind farm for a span of ten years are analyzed applyi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14582v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14582v1-abstract-full" style="display: none;"> Wind energy has an inherent intermittent character due to certain inevitable factors of nature, such as availability of wind at different weather conditions, wind direction etc. To study the intermittent character of wind energy, its daily data along with the two other important quantities, wind speed and wind direction measured in a &#34;showcase&#34; wind farm for a span of ten years are analyzed applying a nonlinear robust tool Multifractal Detrended Cross-correlation Analysis (MFDXA). MFDXA is a meticulous application for computation of cross-correlation between simultaneously measured nonstationary time series. Significant difference in degree of multifractality is observed for wind energy, wind speed and wind direction. Wind direction is found to possess the highest degree of multifractality implying that the degree of complexity of wind direction is higher than wind speed or energy. Further strong cross-correlation between wind energy and wind direction is an indication that the direction of wind is one of the crucial factors in generation of wind energy. Thus, the cross-correlation analysis between wind energy - wind speed, and between wind energy - wind direction gives significant information about the scaling behavior, which may have necessary inputs towards optimization of wind power generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14582v1-abstract-full').style.display = 'none'; document.getElementById('2206.14582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10847">arXiv:2204.10847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10847">pdf</a>, <a href="https://arxiv.org/ps/2204.10847">ps</a>, <a href="https://arxiv.org/format/2204.10847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0093234">10.1063/5.0093234 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling the spontaneous firing behavior of a neuron with astrocyte </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Palabas%2C+T">Tugba Palabas</a>, <a href="/search/nlin?searchtype=author&amp;query=Longtin%2C+A">Andre Longtin</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Uzuntarla%2C+M">Muhammet Uzuntarla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10847v1-abstract-short" style="display: inline;"> Mounting evidence in recent years suggests that astrocytes, a sub-type of glial cells, not only serve metabolic and structural support for neurons and synapses but also play critical roles in regulation of proper functioning of the nervous system. In this work, we investigate the effect of astrocyte on the spontaneous firing activity of a neuron through a combined model which includes a neuron-ast&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10847v1-abstract-full').style.display = 'inline'; document.getElementById('2204.10847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10847v1-abstract-full" style="display: none;"> Mounting evidence in recent years suggests that astrocytes, a sub-type of glial cells, not only serve metabolic and structural support for neurons and synapses but also play critical roles in regulation of proper functioning of the nervous system. In this work, we investigate the effect of astrocyte on the spontaneous firing activity of a neuron through a combined model which includes a neuron-astrocyte pair. First, we show that an astrocyte may provide a kind of multistability in neuron dynamics by inducing different firing modes such as random and bursty spiking. Then, we identify the underlying mechanism of this behavior and search for the astrocytic factors that may have regulatory roles in different firing regimes. More specifically, we explore how an astrocyte can participate in occurrence and control of spontaneous irregular spiking activity of a neuron in random spiking mode. Additionally, we systematically investigate the bursty firing regime dynamics of the neuron under the variation of biophysical facts related to the intracellular environment of the astrocyte. It is found that an astrocyte coupled to a neuron can provide a control mechanism for both spontaneous firing irregularity and burst firing statistics, i.e., burst regularity and size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10847v1-abstract-full').style.display = 'none'; document.getElementById('2204.10847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures; accepted for publication in Chaos: An Interdisciplinary Journal of Nonlinear Science, 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00037">arXiv:2204.00037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00037">pdf</a>, <a href="https://arxiv.org/format/2204.00037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.105.L042202">10.1103/PhysRevE.105.L042202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher-order interactions promote chimera states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Kundu%2C+S">Srilena Kundu</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00037v1-abstract-short" style="display: inline;"> Since the discovery of chimera states, the presence of a nonzero phase lag parameter turns out to be an essential attribute for the emergence of chimeras in a nonlocally coupled identical Kuramoto phase oscillators&#39; network with pairwise interactions. In this letter, we report the emergence of chimeras without phase lag in nonlocally coupled identical Kuramoto network owing to the introduction of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00037v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00037v1-abstract-full" style="display: none;"> Since the discovery of chimera states, the presence of a nonzero phase lag parameter turns out to be an essential attribute for the emergence of chimeras in a nonlocally coupled identical Kuramoto phase oscillators&#39; network with pairwise interactions. In this letter, we report the emergence of chimeras without phase lag in nonlocally coupled identical Kuramoto network owing to the introduction of non-pairwise interactions. The influence of added nonlinearity in the coupled system dynamics in the form of simplicial complexes mitigates the requisite of a nonzero phase lag parameter for the emergence of chimera states. Chimera states stimulated by the reciprocity of the pairwise and non-pairwise interaction strengths and their multistable nature are characterized with appropriate measures and are demonstrated in the parameter spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00037v1-abstract-full').style.display = 'none'; document.getElementById('2204.00037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures; accepted for publication in Physical Review E (Letters), 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E, 105, L042202 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12461">arXiv:2203.12461</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.12461">pdf</a>, <a href="https://arxiv.org/format/2203.12461">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0074641">10.1063/5.0074641 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intralayer and interlayer synchronization in multiplex network with higher-order interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12461v1-abstract-short" style="display: inline;"> Recent developments in complex systems have witnessed that many real-world scenarios, successfully represented as networks are not always restricted to binary interactions but often include higher-order interactions among the nodes. These beyond pairwise interactions are preferably modeled by hypergraphs, where hyperedges represent higher-order interactions between a set of nodes. In this work, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12461v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12461v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12461v1-abstract-full" style="display: none;"> Recent developments in complex systems have witnessed that many real-world scenarios, successfully represented as networks are not always restricted to binary interactions but often include higher-order interactions among the nodes. These beyond pairwise interactions are preferably modeled by hypergraphs, where hyperedges represent higher-order interactions between a set of nodes. In this work, we consider a multiplex network where the intralayer connections are represented by hypergraphs, called multiplex hypergraph. The hypergraph is constructed by mapping the maximal cliques of a scale-free network to hyperedges of suitable sizes. We investigate the intralayer and interlayer synchronization of such multiplex structures. Our study unveils that the intralayer synchronization appreciably enhances when the higher-order structure is taken into consideration inspite of only pairwise connections. We derive the necessary condition for stable synchronization states by the master stability function approach, which perfectly agrees with the numerical results. We also explore the robustness of interlayer synchronization and find that for the multiplex structures with many-body interaction, the interlayer synchronization is more persistent than multiplex networks with pairwise interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12461v1-abstract-full').style.display = 'none'; document.getElementById('2203.12461v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures; Accepted for publication in Chaos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos: An Interdisciplinary Journal of Nonlinear Science 32 (3), 033125 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06601">arXiv:2203.06601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.06601">pdf</a>, <a href="https://arxiv.org/format/2203.06601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsif.2022.0043">10.1098/rsif.2022.0043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics on higher-order networks: A review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Majhi%2C+S">Soumen Majhi</a>, <a href="/search/nlin?searchtype=author&amp;query=Perc%2C+M">Matjaz Perc</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06601v1-abstract-short" style="display: inline;"> Network science has evolved into an indispensable platform for studying complex systems. But recent research has identified limits of classical networks, where links connect pairs of nodes, to comprehensively describe group interactions. Higher-order networks, where a link can connect more than two nodes, have therefore emerged as a new frontier in network science. Since group interactions are com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06601v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06601v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06601v1-abstract-full" style="display: none;"> Network science has evolved into an indispensable platform for studying complex systems. But recent research has identified limits of classical networks, where links connect pairs of nodes, to comprehensively describe group interactions. Higher-order networks, where a link can connect more than two nodes, have therefore emerged as a new frontier in network science. Since group interactions are common in social, biological, and technological systems, higher-order networks have recently led to important new discoveries across many fields of research. We here review these works, focusing in particular on the novel aspects of the dynamics that emerges on higher-order networks. We cover a variety of dynamical processes that have thus far been studied, including different synchronization phenomena, contagion processes, the evolution of cooperation, and consensus formation. We also outline open challenges and promising directions for future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06601v1-abstract-full').style.display = 'none'; document.getElementById('2203.06601v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures; accepted for publication in Journal of the Royal Society Interface</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. R. Soc. Interface 19, 20220043 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01598">arXiv:2201.01598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.01598">pdf</a>, <a href="https://arxiv.org/format/2201.01598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac5da2">10.1088/1367-2630/ac5da2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Swarmalators under competitive time-varying phase interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Sar%2C+G+K">Gourab K. Sar</a>, <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Perc%2C+M">Matjaz Perc</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01598v2-abstract-short" style="display: inline;"> Swarmalators are entities with the simultaneous presence of swarming and synchronization that reveal emergent collective behavior due to the fascinating bidirectional interplay between phase and spatial dynamics. Although different coupling topologies have already been considered, here we introduce time-varying competitive phase interaction among swarmalators where the underlying connectivity for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01598v2-abstract-full').style.display = 'inline'; document.getElementById('2201.01598v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01598v2-abstract-full" style="display: none;"> Swarmalators are entities with the simultaneous presence of swarming and synchronization that reveal emergent collective behavior due to the fascinating bidirectional interplay between phase and spatial dynamics. Although different coupling topologies have already been considered, here we introduce time-varying competitive phase interaction among swarmalators where the underlying connectivity for attractive and repulsive coupling varies depending on the vision (sensing) radius. Apart from investigating some fundamental properties like conservation of center of position and collision avoidance, we also scrutinize the cases of extreme limits of vision radius. The concurrence of attractive-repulsive competitive phase coupling allows the exploration of diverse asymptotic states, like static $蟺$, and mixed phase wave states, and we explore the feasible routes of those states through a detailed numerical analysis. In sole presence of attractive local coupling, we reveal the occurrence of static cluster synchronization where the number of clusters depends crucially on the initial distribution of positions and phases of each swarmalator. In addition, we analytically calculate the sufficient condition for the emergence of the static synchronization state. We further report the appearance of the static ring phase wave state and evaluate its radius theoretically. Finally, we validate our findings using Stuart-Landau oscillators to describe the phase dynamics of swarmalators subject to attractive local coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01598v2-abstract-full').style.display = 'none'; document.getElementById('2201.01598v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures; accepted for publication in New Journal of Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 24, 043004 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09044">arXiv:2111.09044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09044">pdf</a>, <a href="https://arxiv.org/format/2111.09044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.105.024303">10.1103/PhysRevE.105.024303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stability analysis of intralayer synchronization in time-varying multilayer networks with generic coupling functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Anwar%2C+M+S">Md Sayeed Anwar</a>, <a href="/search/nlin?searchtype=author&amp;query=Rakshit%2C+S">Sarbendu Rakshit</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Bollt%2C+E+M">Erik M. Bollt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09044v2-abstract-short" style="display: inline;"> The stability analysis of synchronization patterns on generalized network structures is of immense importance nowadays. In this article, we scrutinize the stability of intralayer synchronous state in temporal multilayer hypernetworks, where each dynamic units in a layer communicate with others through various independent time-varying connection mechanisms. Here, dynamical units within and between&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09044v2-abstract-full').style.display = 'inline'; document.getElementById('2111.09044v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09044v2-abstract-full" style="display: none;"> The stability analysis of synchronization patterns on generalized network structures is of immense importance nowadays. In this article, we scrutinize the stability of intralayer synchronous state in temporal multilayer hypernetworks, where each dynamic units in a layer communicate with others through various independent time-varying connection mechanisms. Here, dynamical units within and between layers may be interconnected through arbitrary generic coupling functions. We show that intralayer synchronous state exists as an invariant solution. Using fast switching stability criteria, we derive the condition for stable coherent state in terms of associated time-averaged network structure, and in some instances we are able to separate the transverse subspace optimally. Using simultaneous block diagonalization of coupling matrices, we derive the synchronization stability condition without considering time-averaged network structure. Finally, we verify our analytically derived results through a series of numerical simulations on synthetic and real-world neuronal networked systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09044v2-abstract-full').style.display = 'none'; document.getElementById('2111.09044v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E 105, 024303 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.11219">arXiv:2109.11219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.11219">pdf</a>, <a href="https://arxiv.org/format/2109.11219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2022.04.001">10.1016/j.physrep.2022.04.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extreme events in dynamical systems and random walkers: A review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Ray%2C+A">Arnob Ray</a>, <a href="/search/nlin?searchtype=author&amp;query=Dana%2C+S+K">Syamal K. Dana</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.11219v2-abstract-short" style="display: inline;"> Extreme events gain the attention of researchers due to their utmost importance in various contexts ranging from finance to climatology. This brings such recurrent events to the limelight of attention in interdisciplinary research. A comprehensive review of recent progress is provided to capture recent improvements in analyzing such very high-amplitude events from the point of view of dynamical sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11219v2-abstract-full').style.display = 'inline'; document.getElementById('2109.11219v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.11219v2-abstract-full" style="display: none;"> Extreme events gain the attention of researchers due to their utmost importance in various contexts ranging from finance to climatology. This brings such recurrent events to the limelight of attention in interdisciplinary research. A comprehensive review of recent progress is provided to capture recent improvements in analyzing such very high-amplitude events from the point of view of dynamical systems and random walkers. We emphasize, in detail, the mechanisms responsible for the emergence of such events in complex systems. Several mechanisms that contribute to the occurrence of extreme events have been elaborated that investigate the sources of instabilities leading to them. In addition, we discuss the prediction of extreme events from two different contexts, using dynamical instabilities and data-based machine learning algorithms. Tracking of instabilities in the phase space is not always feasible and precise knowledge of the dynamics of extreme events does not necessarily help in forecasting extreme events. Moreover, in most studies on high-dimensional systems, only a few degrees of freedom participate in extreme events&#39; formation. Thus, the notable inclusion of prediction through machine learning is of enormous significance, particularly for those cases where the governing equations of the model are explicitly unavailable. Besides, random walks on complex networks can represent several transport processes, and exceedances of the flux of walkers above a prescribed threshold may describe extreme events. We unveil the theoretical studies on random walkers with their enormous potential for applications in reducing extreme events. We cover the possible controlling strategies, which may be helpful to mitigate extreme events in physical situations like traffic jams, heavy load of web requests, competition for shared resources, floods in the network of rivers, and many more. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11219v2-abstract-full').style.display = 'none'; document.getElementById('2109.11219v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">78 pages, 30 figures Accepted for publication in Physics Reports on 6th April 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.12625">arXiv:2108.12625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.12625">pdf</a>, <a href="https://arxiv.org/format/2108.12625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-072X/ac221f">10.1088/2632-072X/ac221f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extreme events in globally coupled chaotic maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Ray%2C+A">Arnob Ray</a>, <a href="/search/nlin?searchtype=author&amp;query=Mishra%2C+A">Arindam Mishra</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.12625v1-abstract-short" style="display: inline;"> Understanding and predicting uncertain things are the central themes of scientific evolution. Human beings revolve around these fears of uncertainties concerning various aspects like a global pandemic, health, finances, to name but a few. Dealing with this unavoidable part of life is far tougher due to the chaotic nature of these unpredictable activities. In the present article, we consider a glob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.12625v1-abstract-full').style.display = 'inline'; document.getElementById('2108.12625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.12625v1-abstract-full" style="display: none;"> Understanding and predicting uncertain things are the central themes of scientific evolution. Human beings revolve around these fears of uncertainties concerning various aspects like a global pandemic, health, finances, to name but a few. Dealing with this unavoidable part of life is far tougher due to the chaotic nature of these unpredictable activities. In the present article, we consider a global network of identical chaotic maps, which splits into two different clusters, despite the interaction between all nodes are uniform. The stability analysis of the spatially homogeneous chaotic solutions provides a critical coupling strength, before which we anticipate such partial synchronization. The distance between these two chaotic synchronized populations often deviates more than eight times of standard deviation from its long-term average. The probability density function of these highly deviated values fits well with the Generalized Extreme Value distribution. Meanwhile, the distribution of recurrence time intervals between extreme events resembles the Weibull distribution. The existing literature helps us to characterize such events as extreme events using the significant height. These extremely high fluctuations are less frequent in terms of their occurrence. We determine numerically a range of coupling strength for these extremely large but recurrent events. On-off intermittency is the responsible mechanism underlying the formation of such extreme events. Besides understanding the generation of such extreme events and their statistical signature, we furnish forecasting these events using the powerful deep learning algorithms of an artificial recurrent neural network. This Long Short-Term Memory (LSTM) can offer handy one-step forecasting of these chaotic intermittent bursts. We also ensure the robustness of this forecasting model with two hundred hidden cells in each LSTM layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.12625v1-abstract-full').style.display = 'none'; document.getElementById('2108.12625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Journal of Physics: Complexity (22 pages, 6 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.02951">arXiv:2108.02951</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.02951">pdf</a>, <a href="https://arxiv.org/format/2108.02951">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0062566">10.1063/5.0062566 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spiral wave chimera-like transient dynamics in three-dimensional grid of diffusive ecological systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Kundu%2C+S">Srilena Kundu</a>, <a href="/search/nlin?searchtype=author&amp;query=Muruganandam%2C+P">Paulsamy Muruganandam</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Lakshmanan%2C+M">M. Lakshmanan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.02951v1-abstract-short" style="display: inline;"> In the present article, we demonstrate the emergence and existence of the spiral wave chimera-like transient pattern in coupled ecological systems, composed of prey-predator patches, where the patches are connected in a three-dimensional medium through local diffusion. We explore the transition scenarios among the several collective dynamical behaviors together with transient spiral wave chimera-l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02951v1-abstract-full').style.display = 'inline'; document.getElementById('2108.02951v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.02951v1-abstract-full" style="display: none;"> In the present article, we demonstrate the emergence and existence of the spiral wave chimera-like transient pattern in coupled ecological systems, composed of prey-predator patches, where the patches are connected in a three-dimensional medium through local diffusion. We explore the transition scenarios among the several collective dynamical behaviors together with transient spiral wave chimera-like states and investigate the long time behavior of these states. The transition from the transient spiral chimera-like pattern to the long time synchronized or desynchronized pattern appears through the deformation of the incoherent region of the spiral core. We discuss the transient dynamics under the influence of the species diffusion at different time instants. By calculating the instantaneous strength of incoherence of the populations, we estimate the duration of the transient dynamics characterized by the persistence of the chimera-like spatial coexistence of coherent and incoherent patterns over the spatial domain. We generalize our observations on the transient dynamics in three-dimensional grid of diffusive ecological systems by considering two different prey-predator systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02951v1-abstract-full').style.display = 'none'; document.getElementById('2108.02951v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Chaos: An Interdisciplinary Journal of Nonlinear Science</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos 31, 083125 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13526">arXiv:2107.13526</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.13526">pdf</a>, <a href="https://arxiv.org/format/2107.13526">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/132/20001">10.1209/0295-5075/132/20001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perspective on attractive-repulsive interactions in dynamical networks: progress and future </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Majhi%2C+S">Soumen Majhi</a>, <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13526v1-abstract-short" style="display: inline;"> Emerging collective behavior in complex dynamical networks depends on both coupling function and underlying coupling topology. Through this perspective, we provide a brief yet profound excerpt of recent research efforts that explore how the synergy of attractive and repulsive interactions influence the destiny of ensembles of interacting dynamical systems. We review the incarnation of collective s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13526v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13526v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13526v1-abstract-full" style="display: none;"> Emerging collective behavior in complex dynamical networks depends on both coupling function and underlying coupling topology. Through this perspective, we provide a brief yet profound excerpt of recent research efforts that explore how the synergy of attractive and repulsive interactions influence the destiny of ensembles of interacting dynamical systems. We review the incarnation of collective states ranging from chimera or solitary states to extreme events and oscillation quenching arising as a result of different network arrangements. Though the existing literature demonstrates that many of the crucial developments have been made, nonetheless, we come up with significant routes of further research in this field of study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13526v1-abstract-full').style.display = 'none'; document.getElementById('2107.13526v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL (Europhysics Letters), Volume 132, Number 2, Published 16 December 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08400">arXiv:2106.08400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.08400">pdf</a>, <a href="https://arxiv.org/format/2106.08400">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2021.127519">10.1016/j.physleta.2021.127519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Traveling chimera patterns in two-dimensional neuronal network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Simo%2C+G+R">Gael R. Simo</a>, <a href="/search/nlin?searchtype=author&amp;query=Louodop%2C+P">Patrick Louodop</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Njougou%2C+T">Thierry Njougou</a>, <a href="/search/nlin?searchtype=author&amp;query=Tchitnga%2C+R">Robert Tchitnga</a>, <a href="/search/nlin?searchtype=author&amp;query=Cerdeira%2C+H+A">Hilda A. Cerdeira</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08400v1-abstract-short" style="display: inline;"> We study the emergence of the traveling chimera state in a two-dimensional network of Hindmarsh-Rose burst neurons with the mutual presence of local and non-local couplings. We show that in the unique presence of the non-local chemical coupling modeled by a nonlinear function, the traveling chimera phenomenon occurs with a displacement in both directions of the plane of the grid. The introduction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08400v1-abstract-full').style.display = 'inline'; document.getElementById('2106.08400v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08400v1-abstract-full" style="display: none;"> We study the emergence of the traveling chimera state in a two-dimensional network of Hindmarsh-Rose burst neurons with the mutual presence of local and non-local couplings. We show that in the unique presence of the non-local chemical coupling modeled by a nonlinear function, the traveling chimera phenomenon occurs with a displacement in both directions of the plane of the grid. The introduction of local electrical coupling shows that the mutual influence of the two types of coupling can, for certain values, generate traveling chimera, imperfect-traveling, traveling multi-clusters, and alternating traveling chimera, ie the presence in the network under study, of patterns of coherent elements interspersed by other incoherent elements in movement and alternately changing their position over time. The confirmation of the states of coherence is done by introducing the parameter of instantaneous local order parameter in two dimensions. We extend our analysis through mathematical tools such as the Hamilton energy function to determine the direction of propagation of patterns in two dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08400v1-abstract-full').style.display = 'none'; document.getElementById('2106.08400v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures, Accepted for publication in Physics Letters A (2021)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.10701">arXiv:2105.10701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.10701">pdf</a>, <a href="https://arxiv.org/format/2105.10701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.103.062209">10.1103/PhysRevE.103.062209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Amplitude mediated spiral chimera pattern in a nonlinear reaction-diffusion system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Kundu%2C+S">Srilena Kundu</a>, <a href="/search/nlin?searchtype=author&amp;query=Muruganandam%2C+P">Paulsamy Muruganandam</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Lakshmanan%2C+M">M. Lakshmanan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.10701v1-abstract-short" style="display: inline;"> Formation of diverse patterns in spatially extended reaction-diffusion systems is an important aspect of study which is pertinent to many chemical and biological processes. Of special interest is the peculiar phenomenon of chimera state having spatial coexistence of coherent and incoherent dynamics in a system of identically interacting individuals. In the present article, we report the emergence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10701v1-abstract-full').style.display = 'inline'; document.getElementById('2105.10701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.10701v1-abstract-full" style="display: none;"> Formation of diverse patterns in spatially extended reaction-diffusion systems is an important aspect of study which is pertinent to many chemical and biological processes. Of special interest is the peculiar phenomenon of chimera state having spatial coexistence of coherent and incoherent dynamics in a system of identically interacting individuals. In the present article, we report the emergence of various collective dynamical patterns while considering a system of prey-predator dynamics in presence of a two-dimensional diffusive environment. Particularly, we explore the observance of four distinct categories of spatial arrangements among the species, namely spiral wave, spiral chimera, completely synchronized oscillations, and oscillation death states in a broad region of the diffusion-driven parameter space. Emergence of amplitude mediated spiral chimera states displaying drifted amplitudes and phases in the incoherent subpopulation is detected for parameter values beyond both Turing and Hopf bifurcations. Transition scenarios among all these distinguishable patterns are numerically demonstrated for a wide range of the diffusion coefficients which reveal that the chimera states arise during the transition from oscillatory to steady state dynamics. Furthermore, we characterize the occurrence of each of the recognizable patterns by estimating the strength of incoherent subpopulations in the two-dimensional space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10701v1-abstract-full').style.display = 'none'; document.getElementById('2105.10701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures, Accepted for publication in Phys. Rev. E (2021)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 103, 062209 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09797">arXiv:2103.09797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.09797">pdf</a>, <a href="https://arxiv.org/format/2103.09797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.9790/4861-1304030714">10.9790/4861-1304030714 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear analysis of a classical double oscillator model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Bagchi%2C+B">Bijan Bagchi</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibyendu Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Saha%2C+L+M">Lal Mohan Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09797v2-abstract-short" style="display: inline;"> A classical double oscillator model, that includes in certain parameter limits, the standard harmonic oscillator and the inverse oscillator, is interpreted as a dynamical system. We study its essential features and make a qualitative analysis of orbits around the equilibrium points, period-doubling bifurcation, time series curves, surfaces of section and Poincare maps. An interesting outcome of ou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09797v2-abstract-full').style.display = 'inline'; document.getElementById('2103.09797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09797v2-abstract-full" style="display: none;"> A classical double oscillator model, that includes in certain parameter limits, the standard harmonic oscillator and the inverse oscillator, is interpreted as a dynamical system. We study its essential features and make a qualitative analysis of orbits around the equilibrium points, period-doubling bifurcation, time series curves, surfaces of section and Poincare maps. An interesting outcome of our findings is the emergence of chaotic behavior when the system is confronted with a periodic force term like fcos蠅t. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09797v2-abstract-full').style.display = 'none'; document.getElementById('2103.09797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages and 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IOSR J. App. Phys. 13, 7 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09262">arXiv:2101.09262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09262">pdf</a>, <a href="https://arxiv.org/format/2101.09262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/133/40003">10.1209/0295-5075/133/40003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic interaction induced explosive death </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Dixit%2C+S">Shiva Dixit</a>, <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Shrimali%2C+M+D">Manish Dev Shrimali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09262v1-abstract-short" style="display: inline;"> Most previous studies on coupled dynamical systems assume that all interactions between oscillators take place uniformly in time, but in reality, this does not necessarily reflect the usual scenario. The heterogeneity in the timings of such interactions strongly influences the dynamical processes. Here, we introduce a time-evolving state-space dependent coupling among an ensemble of identical coup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09262v1-abstract-full').style.display = 'inline'; document.getElementById('2101.09262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09262v1-abstract-full" style="display: none;"> Most previous studies on coupled dynamical systems assume that all interactions between oscillators take place uniformly in time, but in reality, this does not necessarily reflect the usual scenario. The heterogeneity in the timings of such interactions strongly influences the dynamical processes. Here, we introduce a time-evolving state-space dependent coupling among an ensemble of identical coupled oscillators, where individual units are interacting only when the mean state of the system lies within a certain proximity of the phase space. They interact globally with mean-field diffusive coupling in a certain vicinity and behave like uncoupled oscillators with self-feedback in the remaining complementary subspace. Interestingly due to this occasional interaction, we find that the system shows an abrupt explosive transition from oscillatory to death state. Further, in the explosive death transitions, the oscillatory state and the death state coexist over a range of coupling strengths near the transition point. We explore our claim using Van der pol, FitzHughNagumo and Lorenz oscillators with dynamic mean field interaction. The dynamic interaction mechanism can explain sudden suppression of oscillations and concurrence of oscillatory and steady state in biological as well as technical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09262v1-abstract-full').style.display = 'none'; document.getElementById('2101.09262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.04005">arXiv:2101.04005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.04005">pdf</a>, <a href="https://arxiv.org/format/2101.04005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0039879">10.1063/5.0039879 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Dixit%2C+S">Shiva Dixit</a>, <a href="/search/nlin?searchtype=author&amp;query=Chowdhury%2C+S+N">Sayantan Nag Chowdhury</a>, <a href="/search/nlin?searchtype=author&amp;query=Prasad%2C+A">Awadhesh Prasad</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Shrimali%2C+M+D">Manish Dev Shrimali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.04005v1-abstract-short" style="display: inline;"> The role of a new form of dynamic interaction is explored in a network of generic identical oscillators. The proposed design of dynamic coupling facilitates the onset of a plethora of asymptotic states including synchronous states, amplitude death states, oscillation death states, a mixed state (complete synchronized cluster and small amplitude unsynchronized domain), and bistable states (coexiste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04005v1-abstract-full').style.display = 'inline'; document.getElementById('2101.04005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.04005v1-abstract-full" style="display: none;"> The role of a new form of dynamic interaction is explored in a network of generic identical oscillators. The proposed design of dynamic coupling facilitates the onset of a plethora of asymptotic states including synchronous states, amplitude death states, oscillation death states, a mixed state (complete synchronized cluster and small amplitude unsynchronized domain), and bistable states (coexistence of two attractors). The dynamical transitions from the oscillatory to death state are characterized using an average temporal interaction approximation, which agrees with the numerical results in temporal interaction. A first-order phase transition behavior may change into a second-order transition in spatial dynamic interaction solely depending on the choice of initial conditions in the bistable regime. However, this possible abrupt first-order like transition is completely non-existent in the case of temporal dynamic interaction. Besides the study on periodic Stuart-Landau systems, we present results for paradigmatic chaotic model of R枚ssler oscillators and Mac-arthur ecological model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04005v1-abstract-full').style.display = 'none'; document.getElementById('2101.04005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Chaos: An Interdisciplinary Journal of Nonlinear Science, 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos: An Interdisciplinary Journal of Nonlinear Science (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.07649">arXiv:2010.07649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.07649">pdf</a>, <a href="https://arxiv.org/format/2010.07649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0053262">10.1063/5.0053262 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal test-kit based intervention strategy of epidemic spreading in heterogeneous complex networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+S">Subrata Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Senapati%2C+A">Abhishek Senapati</a>, <a href="/search/nlin?searchtype=author&amp;query=Chattopadhyay%2C+J">Joydev Chattopadhyay</a>, <a href="/search/nlin?searchtype=author&amp;query=Hens%2C+C">Chittaranjan Hens</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.07649v1-abstract-short" style="display: inline;"> We propose a deterministic compartmental model of infectious disease which considers the test-kits as an important ingredient for the suppression and mitigation of epidemics. A rigorous simulation (with analytical argument) is provided to reveal the effective reduction of final outbreak size and peak of infection as a function of basic reproduction number in a single patch. Further, to study the i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.07649v1-abstract-full').style.display = 'inline'; document.getElementById('2010.07649v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.07649v1-abstract-full" style="display: none;"> We propose a deterministic compartmental model of infectious disease which considers the test-kits as an important ingredient for the suppression and mitigation of epidemics. A rigorous simulation (with analytical argument) is provided to reveal the effective reduction of final outbreak size and peak of infection as a function of basic reproduction number in a single patch. Further, to study the impact of long and short-distance human migration among the patches, we have considered heterogeneous networks where the linear diffusive connectivity is determined by the network link structure. We numerically confirm that implementation of test-kits in the fraction of nodes (patches) having larger degrees or betweenness centralities can reduce the peak of infection (as well as final outbreak size) significantly. A next-generation matrix based analytical treatment is provided to find out the critical transmission probability in the entire network for the onset of epidemics. Finally, the optimal intervention strategy is validated in two real networks: global airport networks and transportation networks of Kolkata, India. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.07649v1-abstract-full').style.display = 'none'; document.getElementById('2010.07649v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 9 Figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ghosh%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ghosh%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ghosh%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ghosh%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10