CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;15 of 15 results for author: <span class="mathjax">Bera, B K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/nlin" aria-role="search"> Searching in archive <strong>nlin</strong>. <a href="/search/?searchtype=author&amp;query=Bera%2C+B+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bera, B K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bera%2C+B+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bera, B K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.02951">arXiv:2108.02951</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.02951">pdf</a>, <a href="https://arxiv.org/format/2108.02951">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0062566">10.1063/5.0062566 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spiral wave chimera-like transient dynamics in three-dimensional grid of diffusive ecological systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Kundu%2C+S">Srilena Kundu</a>, <a href="/search/nlin?searchtype=author&amp;query=Muruganandam%2C+P">Paulsamy Muruganandam</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Lakshmanan%2C+M">M. Lakshmanan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.02951v1-abstract-short" style="display: inline;"> In the present article, we demonstrate the emergence and existence of the spiral wave chimera-like transient pattern in coupled ecological systems, composed of prey-predator patches, where the patches are connected in a three-dimensional medium through local diffusion. We explore the transition scenarios among the several collective dynamical behaviors together with transient spiral wave chimera-l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02951v1-abstract-full').style.display = 'inline'; document.getElementById('2108.02951v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.02951v1-abstract-full" style="display: none;"> In the present article, we demonstrate the emergence and existence of the spiral wave chimera-like transient pattern in coupled ecological systems, composed of prey-predator patches, where the patches are connected in a three-dimensional medium through local diffusion. We explore the transition scenarios among the several collective dynamical behaviors together with transient spiral wave chimera-like states and investigate the long time behavior of these states. The transition from the transient spiral chimera-like pattern to the long time synchronized or desynchronized pattern appears through the deformation of the incoherent region of the spiral core. We discuss the transient dynamics under the influence of the species diffusion at different time instants. By calculating the instantaneous strength of incoherence of the populations, we estimate the duration of the transient dynamics characterized by the persistence of the chimera-like spatial coexistence of coherent and incoherent patterns over the spatial domain. We generalize our observations on the transient dynamics in three-dimensional grid of diffusive ecological systems by considering two different prey-predator systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02951v1-abstract-full').style.display = 'none'; document.getElementById('2108.02951v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Chaos: An Interdisciplinary Journal of Nonlinear Science</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos 31, 083125 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.01036">arXiv:1902.01036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.01036">pdf</a>, <a href="https://arxiv.org/format/1902.01036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Chimera patterns in three-dimensional locally coupled systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Kundu%2C+S">Srilena Kundu</a>, <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Lakshmanan%2C+M">M. Lakshmanan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.01036v1-abstract-short" style="display: inline;"> The coexistence of coherent and incoherent domains, namely the appearance of chimera states, is being studied extensively in many contexts of science and technology since the past decade, though the previous studies are mostly built on the framework of one-dimensional and two-dimensional interaction topologies. Recently, the emergence of such fascinating phenomena has been studied in three-dimensi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01036v1-abstract-full').style.display = 'inline'; document.getElementById('1902.01036v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.01036v1-abstract-full" style="display: none;"> The coexistence of coherent and incoherent domains, namely the appearance of chimera states, is being studied extensively in many contexts of science and technology since the past decade, though the previous studies are mostly built on the framework of one-dimensional and two-dimensional interaction topologies. Recently, the emergence of such fascinating phenomena has been studied in three-dimensional (3D) grid formation while considering only the nonlocal interaction. Here we study the emergence and existence of chimera patterns in a three dimensional network of coupled Stuart-Landau limit cycle oscillators and Hindmarsh-Rose neuronal oscillators with local (nearest neighbour) interaction topology. The emergence of different types of spatiotemporal chimera patterns is investigated by taking two distinct nonlinear interaction functions. We provide appropriate analytical explanations in the 3D grid of network formation and the corresponding numerical justifications are given. We extend our analysis on the basis of Ott-Antonsen reduction approach in the case of Stuart-Landau oscillators containing infinite number of oscillators. Particularly, in Hindmarsh-Rose neuronal network the existence of non-stationary chimera states are characterized by instantaneous strength of incoherence and instantaneous local order parameter. Besides, the condition for achieving exact neuronal synchrony is obtained analytically through a linear stability analysis. The different types of collective dynamics together with chimera states are mapped over a wide range of various parameter spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01036v1-abstract-full').style.display = 'none'; document.getElementById('1902.01036v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical. Rev. E (February 2019). 13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.08443">arXiv:1707.08443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.08443">pdf</a>, <a href="https://arxiv.org/format/1707.08443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.97.022201">10.1103/PhysRevE.97.022201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chimera states in two-dimensional networks of locally coupled oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Kundu%2C+S">Srilena Kundu</a>, <a href="/search/nlin?searchtype=author&amp;query=Majhi%2C+S">Soumen Majhi</a>, <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Lakshmanan%2C+M">M. Lakshmanan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.08443v2-abstract-short" style="display: inline;"> Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08443v2-abstract-full').style.display = 'inline'; document.getElementById('1707.08443v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.08443v2-abstract-full" style="display: none;"> Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart - Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08443v2-abstract-full').style.display = 'none'; document.getElementById('1707.08443v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Rev. E (2018)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 97, 022201 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.05483">arXiv:1707.05483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.05483">pdf</a>, <a href="https://arxiv.org/format/1707.05483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2016.08.036">10.1016/j.physleta.2016.08.036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Restoration of oscillation in network of oscillators in presence of direct and indirect interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Majhi%2C+S">Soumen Majhi</a>, <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Bhowmick%2C+S+K">Sourav K. Bhowmick</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.05483v1-abstract-short" style="display: inline;"> The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05483v1-abstract-full').style.display = 'inline'; document.getElementById('1707.05483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.05483v1-abstract-full" style="display: none;"> The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kind of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau-Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05483v1-abstract-full').style.display = 'none'; document.getElementById('1707.05483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages(double column), 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters A 380 (2016) 3617 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.05478">arXiv:1707.05478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.05478">pdf</a>, <a href="https://arxiv.org/format/1707.05478">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjst/e2016-02624-9">10.1140/epjst/e2016-02624-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchronization of chaotic modulated time delay networks in presence of noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Majhi%2C+S">Soumen Majhi</a>, <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Banerjee%2C+S">Santo Banerjee</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.05478v1-abstract-short" style="display: inline;"> We study the constructive role of noises in a Lorenz system with functional delay. The effect of delay can change the dynamics of the system to a chaotic one from its steady state. Induced synchronization with white and colored (red and green) noises are observed between two identical uncoupled systems and enhancement of synchrony is also observed with unidirectional coupling. We investigate both&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05478v1-abstract-full').style.display = 'inline'; document.getElementById('1707.05478v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.05478v1-abstract-full" style="display: none;"> We study the constructive role of noises in a Lorenz system with functional delay. The effect of delay can change the dynamics of the system to a chaotic one from its steady state. Induced synchronization with white and colored (red and green) noises are observed between two identical uncoupled systems and enhancement of synchrony is also observed with unidirectional coupling. We investigate both the phenomena in a globally coupled network in the presence of white and color noises. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05478v1-abstract-full').style.display = 'none'; document.getElementById('1707.05478v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur Phys J Special Topics 225 (2016) 65 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.05472">arXiv:1707.05472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.05472">pdf</a>, <a href="https://arxiv.org/format/1707.05472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjb/e2017-70743-2">10.1140/epjb/e2017-70743-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resurgence of oscillation in coupled oscillators under delayed cyclic interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Majhi%2C+S">Soumen Majhi</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.05472v1-abstract-short" style="display: inline;"> This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05472v1-abstract-full').style.display = 'inline'; document.getElementById('1707.05472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.05472v1-abstract-full" style="display: none;"> This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05472v1-abstract-full').style.display = 'none'; document.getElementById('1707.05472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur Phys J B 90 (2017) 132 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.01695">arXiv:1707.01695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.01695">pdf</a>, <a href="https://arxiv.org/format/1707.01695">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep45909">10.1038/srep45909 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Basin stability measure of different steady states in coupled oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Rakshit%2C+S">Sarbendu Rakshit</a>, <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Majhi%2C+S">Soumen Majhi</a>, <a href="/search/nlin?searchtype=author&amp;query=Hens%2C+C">Chittaranjan Hens</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.01695v1-abstract-short" style="display: inline;"> In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01695v1-abstract-full').style.display = 'inline'; document.getElementById('1707.01695v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.01695v1-abstract-full" style="display: none;"> In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01695v1-abstract-full').style.display = 'none'; document.getElementById('1707.01695v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages(double column), 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 7 (2017) 45909 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.01272">arXiv:1707.01272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.01272">pdf</a>, <a href="https://arxiv.org/format/1707.01272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjst/e2017-70027-9">10.1140/epjst/e2017-70027-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancing synchronization in chaotic oscillators by induced heterogeneity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Banerjee%2C+R">Ranjib Banerjee</a>, <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Dana%2C+S+K">Syamal Kumar Dana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.01272v1-abstract-short" style="display: inline;"> We report enhancing of complete synchronization in identical chaotic oscillators when their interaction is mediated by a mismatched oscillator. The identical oscillators now interact indirectly through the intermediate relay oscillator. The induced heterogeneity in the intermediate oscillator plays a constructive role in reducing the critical coupling for a transition to complete synchronization.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01272v1-abstract-full').style.display = 'inline'; document.getElementById('1707.01272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.01272v1-abstract-full" style="display: none;"> We report enhancing of complete synchronization in identical chaotic oscillators when their interaction is mediated by a mismatched oscillator. The identical oscillators now interact indirectly through the intermediate relay oscillator. The induced heterogeneity in the intermediate oscillator plays a constructive role in reducing the critical coupling for a transition to complete synchronization. A common lag synchronization emerges between the mismatched relay oscillator and its neighboring identical oscillators that leads to this enhancing effect. We present examples of one-dimensional open array, a ring, a star network and a two-dimensional lattice of dynamical systems to demonstrate how this enhancing effect occurs. The paradigmatic R枚ssler oscillator is used as a dynamical unit, in our numerical experiment, for different networks to reveal the enhancing phenomenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01272v1-abstract-full').style.display = 'none'; document.getElementById('1707.01272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> European Physical Journal Special Topics 226 (2017) 1893 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.01266">arXiv:1707.01266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.01266">pdf</a>, <a href="https://arxiv.org/format/1707.01266">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4993459">10.1063/1.4993459 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Parmananda%2C+P">Punit Parmananda</a>, <a href="/search/nlin?searchtype=author&amp;query=Osipov%2C+G+V">G. V. Osipov</a>, <a href="/search/nlin?searchtype=author&amp;query=Dana%2C+S+K">Syamal K. Dana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.01266v1-abstract-short" style="display: inline;"> We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback streng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01266v1-abstract-full').style.display = 'inline'; document.getElementById('1707.01266v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.01266v1-abstract-full" style="display: none;"> We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart (LS) system and the Kuramoto-Sakaguchi (KS) phase model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01266v1-abstract-full').style.display = 'none'; document.getElementById('1707.01266v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures, accepted for publication in CHAOS (July 2017)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.06786">arXiv:1705.06786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.06786">pdf</a>, <a href="https://arxiv.org/format/1705.06786">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/118/10001">10.1209/0295-5075/118/10001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chimera states: Effects of different coupling topologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Majhi%2C+S">Soumen Majhi</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Perc%2C+M">Matjaz Perc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.06786v1-abstract-short" style="display: inline;"> Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06786v1-abstract-full').style.display = 'inline'; document.getElementById('1705.06786v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.06786v1-abstract-full" style="display: none;"> Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06786v1-abstract-full').style.display = 'none'; document.getElementById('1705.06786v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 two-column pages, 4 figures; Perspective accepted for publication in EPL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL 118, 10001 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.05301">arXiv:1704.05301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.05301">pdf</a>, <a href="https://arxiv.org/format/1704.05301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-017-02409-5">10.1038/s41598-017-02409-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Basin stability for chimera states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Rakshit%2C+S">Sarbendu Rakshit</a>, <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Perc%2C+M">Matjaz Perc</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.05301v1-abstract-short" style="display: inline;"> Chimera states, namely complex spatiotemporal patterns that consist of coexisting domains of spatially coherent and incoherent dynamics, are investigated in a network of coupled identical oscillators. These intriguing spatiotemporal patterns were first reported in nonlocally coupled phase oscillators, and it was shown that such mixed type behavior occurs only for specific initial conditions in non&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05301v1-abstract-full').style.display = 'inline'; document.getElementById('1704.05301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.05301v1-abstract-full" style="display: none;"> Chimera states, namely complex spatiotemporal patterns that consist of coexisting domains of spatially coherent and incoherent dynamics, are investigated in a network of coupled identical oscillators. These intriguing spatiotemporal patterns were first reported in nonlocally coupled phase oscillators, and it was shown that such mixed type behavior occurs only for specific initial conditions in nonlocally and globally coupled networks. The influence of initial conditions on chimera states has remained a fundamental problem since their discovery. In this report, we investigate the robustness of chimera states together with incoherent and coherent states in dependence on the initial conditions. For this, we use the basin stability method which is related to the volume of the basin of attraction, and we consider nonlocally and globally coupled time-delayed Mackey-Glass oscillators as example. Previously, it was shown that the existence of chimera states can be characterized by mean phase velocity and a statistical measure, such as the strength of incoherence, by using well prepared initial conditions. Here we show further how the coexistence of different dynamical states can be identified and quantified by means of the basin stability measure over a wide range of the parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05301v1-abstract-full').style.display = 'none'; document.getElementById('1704.05301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures; accepted for publication in Scientific Reports</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 7, 2412 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.07943">arXiv:1604.07943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.07943">pdf</a>, <a href="https://arxiv.org/ps/1604.07943">ps</a>, <a href="https://arxiv.org/format/1604.07943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2015.09.044">10.1016/j.physleta.2015.09.044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transition from homogeneous to inhomogeneous steady states in oscillators under cyclic coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Hens%2C+C">Chittaranjan Hens</a>, <a href="/search/nlin?searchtype=author&amp;query=Bhowmick%2C+S+K">Sourav K. Bhowmick</a>, <a href="/search/nlin?searchtype=author&amp;query=Pal%2C+P">Pinaki Pal</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.07943v1-abstract-short" style="display: inline;"> We report a transition from homogeneous steady state to inhomogeneous steady state in coupled oscillators, both limit cycle and chaotic, under cyclic coupling and diffusive coupling as well when an asymmetry is introduced in terms of a negative parameter mismatch. Such a transition appears in limit cycle systems via pitchfork bifurcation as usual. Especially, when we focus on chaotic systems, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07943v1-abstract-full').style.display = 'inline'; document.getElementById('1604.07943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.07943v1-abstract-full" style="display: none;"> We report a transition from homogeneous steady state to inhomogeneous steady state in coupled oscillators, both limit cycle and chaotic, under cyclic coupling and diffusive coupling as well when an asymmetry is introduced in terms of a negative parameter mismatch. Such a transition appears in limit cycle systems via pitchfork bifurcation as usual. Especially, when we focus on chaotic systems, the transition follows a transcritical bifurcation for cyclic coupling while it is a pitchfork bifurcation for the conventional diffusive coupling. We use the paradigmatic Van der Pol oscillator as the limit cycle system and a Sprott system as a chaotic system. We verified our results analytically for cyclic coupling and numerically check all results including diffusive coupling for both the limit cycle and chaotic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07943v1-abstract-full').style.display = 'none'; document.getElementById('1604.07943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Letts. A, 380(2016) 130-134 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.07936">arXiv:1604.07936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.07936">pdf</a>, <a href="https://arxiv.org/ps/1604.07936">ps</a>, <a href="https://arxiv.org/format/1604.07936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.94.012215">10.1103/PhysRevE.94.012215 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imperfect traveling chimera states induced by local synaptic gradient coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Banerjee%2C+T">Tanmoy Banerjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.07936v1-abstract-short" style="display: inline;"> In this paper we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through {\it local}, synaptic {\it gradient} coupling. We discover a new chimera pattern, namely the {\it imperfect traveling chimera} where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for {\i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07936v1-abstract-full').style.display = 'inline'; document.getElementById('1604.07936v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.07936v1-abstract-full" style="display: none;"> In this paper we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through {\it local}, synaptic {\it gradient} coupling. We discover a new chimera pattern, namely the {\it imperfect traveling chimera} where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for {\it one-way} local coupling, which is in contrast to the earlier belief that only nonlocal, global or nearest neighbor local coupling can give rise to chimera; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators and show that depending upon the relative strength of the synaptic and gradient coupling several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, in-phase synchronized state and global amplitude death state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07936v1-abstract-full').style.display = 'none'; document.getElementById('1604.07936v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures,submitted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 94, 012215 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.02371">arXiv:1507.02371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.02371">pdf</a>, <a href="https://arxiv.org/ps/1507.02371">ps</a>, <a href="https://arxiv.org/format/1507.02371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.93.012205">10.1103/PhysRevE.93.012205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chimera states in bursting neurons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a>, <a href="/search/nlin?searchtype=author&amp;query=Lakshmanan%2C+M">M. Lakshmanan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.02371v2-abstract-short" style="display: inline;"> We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of stability function in the incoherent (i.e. disorder), coherent, chimera and multi-chimera states. Surprisingly, we find that chimera and multi-chimera states occur even usi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02371v2-abstract-full').style.display = 'inline'; document.getElementById('1507.02371v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.02371v2-abstract-full" style="display: none;"> We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of stability function in the incoherent (i.e. disorder), coherent, chimera and multi-chimera states. Surprisingly, we find that chimera and multi-chimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. Existence of chimera, multi-chimera, coherent and disordered states are confirmed by means of the recently introduced statistical measures and mean phase velocity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02371v2-abstract-full').style.display = 'none'; document.getElementById('1507.02371v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures; Accepted for publication in PRE</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.5804">arXiv:1412.5804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.5804">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cnsns.2014.09.024">10.1016/j.cnsns.2014.09.024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generalized counter-rotating oscillators: Mixed synchronization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nlin?searchtype=author&amp;query=Bhowmick%2C+S+K">Sourav K. Bhowmick</a>, <a href="/search/nlin?searchtype=author&amp;query=Bera%2C+B+K">Bidesh K. Bera</a>, <a href="/search/nlin?searchtype=author&amp;query=Ghosh%2C+D">Dibakar Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.5804v1-abstract-short" style="display: inline;"> In this paper, we report mixed synchronization between two counter rotating chaotic oscillators. We describe a procedure how to obtain a counter rotating oscillator for generalized oscillators. We elaborate the method with numerical examples of the Sprott system, Pikovsky-Rabinovich (PR) circuit model. Noise-induced mixed synchronization is also reported in PR circuit model. The physical realizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.5804v1-abstract-full').style.display = 'inline'; document.getElementById('1412.5804v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.5804v1-abstract-full" style="display: none;"> In this paper, we report mixed synchronization between two counter rotating chaotic oscillators. We describe a procedure how to obtain a counter rotating oscillator for generalized oscillators. We elaborate the method with numerical examples of the Sprott system, Pikovsky-Rabinovich (PR) circuit model. Noise-induced mixed synchronization is also reported in PR circuit model. The physical realization of mixed synchronization in an electronic circuit of two counters-rotating Sprott systems also shown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.5804v1-abstract-full').style.display = 'none'; document.getElementById('1412.5804v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages(single column), 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Nonlinear Sci Numer Simulat. 22(2015) 692-701 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10