CINXE.COM

Search results for: reliability analysis

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: reliability analysis</title> <meta name="description" content="Search results for: reliability analysis"> <meta name="keywords" content="reliability analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="reliability analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="reliability analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 28937</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: reliability analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28937</span> Reliability Analysis of Dam under Quicksand Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manthan%20Patel">Manthan Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinit%20Ahlawat"> Vinit Ahlawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshh%20Singh%20Claire"> Anshh Singh Claire</a>, <a href="https://publications.waset.org/abstracts/search?q=Pijush%20Samui"> Pijush Samui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the analysis of quicksand condition for a dam foundation. The quicksand condition occurs in cohesion less soil when effective stress of soil becomes zero. In a dam, the saturated sediment may appear quite solid until a sudden change in pressure or shock initiates liquefaction. This causes the sand to form a suspension and lose strength hence resulting in failure of dam. A soil profile shows different properties at different points and the values obtained are uncertain thus reliability analysis is performed. The reliability is defined as probability of safety of a system in a given environment and loading condition and it is assessed as Reliability Index. The reliability analysis of dams under quicksand condition is carried by Gaussian Process Regression (GPR). Reliability index and factor of safety relating to liquefaction of soil is analysed using GPR. The results of reliability analysis by GPR is compared to that of conventional method and it is demonstrated that on applying GPR the probabilistic analysis reduces the computational time and efforts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title="factor of safety">factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20index" title=" reliability index"> reliability index</a>, <a href="https://publications.waset.org/abstracts/search?q=quicksand" title=" quicksand"> quicksand</a> </p> <a href="https://publications.waset.org/abstracts/27180/reliability-analysis-of-dam-under-quicksand-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28936</span> Reliability Analysis in Power Distribution System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Deshpande">R. A. Deshpande</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chandhra%20Sekhar"> P. Chandhra Sekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sankar"> V. Sankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discussed the basic reliability evaluation techniques needed to evaluate the reliability of distribution systems which are applied in distribution system planning and operation. Basically, the reliability study can also help to predict the reliability performance of the system after quantifying the impact of adding new components to the system. The number and locations of new components needed to improve the reliability indices to certain limits are identified and studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title="distribution system">distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20indices" title=" reliability indices"> reliability indices</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20feeder" title=" urban feeder"> urban feeder</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20feeder" title=" rural feeder"> rural feeder</a> </p> <a href="https://publications.waset.org/abstracts/29954/reliability-analysis-in-power-distribution-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">776</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28935</span> Structural Reliability of Existing Structures: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Sakka">Z. Sakka</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Assakkaf"> I. Assakkaf</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Al-Yaqoub"> T. Al-Yaqoub</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Parol"> J. Parol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A reliability-based methodology for the analysis assessment and evaluation of reinforced concrete structural elements of concrete structures is presented herein. The results of the reliability analysis and assessment for structural elements are verified by the results obtained from the deterministic methods. The analysis outcomes of reliability-based analysis are compared against the safety limits of the required reliability index β according to international standards and codes. The methodology is based on probabilistic analysis using reliability concepts and statistics of the main random variables that are relevant to the subject matter, and for which they are to be used in the performance-function equation(s) related to the structural elements under study. These methodology techniques can result in reliability index β, which is commonly known as the reliability index or reliability measure value that can be utilized to assess and evaluate the safety, human risk, and functionality of the structural component. Also, these methods can result in revised partial safety factor values for certain target reliability indices that can be used for the purpose of redesigning the reinforced concrete elements of the building and in which they could assist in considering some other remedial actions to improve the safety and functionality of the member. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20reliability" title="structural reliability">structural reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structures" title=" concrete structures"> concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=FORM" title=" FORM"> FORM</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/13796/structural-reliability-of-existing-structures-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28934</span> Structural Reliability Analysis Using Extreme Learning Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehul%20Srivastava">Mehul Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma%20Tushar%20Ravikant"> Sharma Tushar Ravikant</a>, <a href="https://publications.waset.org/abstracts/search?q=Mridul%20Krishn%20Mishra"> Mridul Krishn Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20index" title=" reliability index"> reliability index</a>, <a href="https://publications.waset.org/abstracts/search?q=statistically%20independent" title=" statistically independent"> statistically independent</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20learning%20machine" title=" extreme learning machine"> extreme learning machine</a> </p> <a href="https://publications.waset.org/abstracts/21683/structural-reliability-analysis-using-extreme-learning-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">682</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28933</span> Fault Study and Reliability Analysis of Rotative Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guang%20Yang">Guang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiwei%20Bai"> Zhiwei Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Sun"> Bo Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyzes the influence of failure mode and harmfulness of rotative machine according to FMECA (Failure Mode, Effects, and Criticality Analysis) method, and finds out the weak links that affect the reliability of this equipment. Also in this paper, fault tree analysis software is used for quantitative and qualitative analysis, pointing out the main factors of failure of this equipment. Based on the experimental results, this paper puts forward corresponding measures for prevention and improvement, and fundamentally improves the inherent reliability of this rotative machine, providing the basis for the formulation of technical conditions for the safe operation of industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotative%20machine" title="rotative machine">rotative machine</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20test" title=" reliability test"> reliability test</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tree%20analysis" title=" fault tree analysis"> fault tree analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FMECA" title=" FMECA"> FMECA</a> </p> <a href="https://publications.waset.org/abstracts/90886/fault-study-and-reliability-analysis-of-rotative-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28932</span> Developing Fuzzy Logic Model for Reliability Estimation: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soroor%20K.%20H.%20Al-Khafaji">Soroor K. H. Al-Khafaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20Mohammad%20Abed"> Manal Mohammad Abed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research aim of this paper is to evaluate the reliability of a complex engineering system and to design a fuzzy model for the reliability estimation. The designed model has been applied on Vegetable Oil Purification System (neutralization system) to help the specialist user based on the concept of FMEA (Failure Mode and Effect Analysis) to estimate the reliability of the repairable system at the vegetable oil industry. The fuzzy model has been used to predict the system reliability for a future time period, depending on a historical database for the two past years. The model can help to specify the system malfunctions and to predict its reliability during a future period in more accurate and reasonable results compared with the results obtained by the traditional method of reliability estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title="fuzzy logic">fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=repairable%20systems" title=" repairable systems"> repairable systems</a>, <a href="https://publications.waset.org/abstracts/search?q=FMEA" title=" FMEA"> FMEA</a> </p> <a href="https://publications.waset.org/abstracts/11576/developing-fuzzy-logic-model-for-reliability-estimation-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28931</span> Wally Feelings Test: Validity and Reliability Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6khan%20Kayili">Gökhan Kayili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Ari"> Ramazan Ari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, it is aimed to be adapted Wally Feelings Test to Turkish children and performed the reliability and validity analysis of the test. The sampling of the research was composed of three to five year-old 699 Turkish preschoolers who are attending official and private nursery school. The schools selected with simple random sampling method by considering different socio economic conditions and different central district in Konya. In order to determine reliability of Wally Feelings Test, internal consistency coefficients (KR-20), split-half reliability and test- retest reliability analysis have been performed. During validation process construct validity, content/scope validity and concurrent/criterion validity were used. When validity and reliability of the test examined, it is seen that Wally Feelings Test is a valid and reliable instrument to evaluate three to five year old Turkish children’s understanding feeling skills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=validity" title=" validity"> validity</a>, <a href="https://publications.waset.org/abstracts/search?q=wally%20feelings%20test" title=" wally feelings test"> wally feelings test</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20sciences" title=" social sciences"> social sciences</a> </p> <a href="https://publications.waset.org/abstracts/19350/wally-feelings-test-validity-and-reliability-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28930</span> Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Essa%20Abrahim%20Abdulgader%20Saleem">Essa Abrahim Abdulgader Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Thien-My%20Dao"> Thien-My Dao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-heuristic" title=" meta-heuristic"> meta-heuristic</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=redundancy" title=" redundancy"> redundancy</a> </p> <a href="https://publications.waset.org/abstracts/55689/series-parallel-systems-reliability-optimization-using-genetic-algorithm-and-statistical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28929</span> Presentation of the Model of Reliability of the Signaling System with Emphasis on Determining Best Time Schedule for Repairments and Preventive Maintenance in the Iranian Railway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Yazdani">Maziar Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Khodaee"> Ahmad Khodaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Hajizadeh"> Fatemeh Hajizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research was analysis of the reliability of the signaling system in the railway and planning repair and maintenance of its subsystems. For this purpose, it will be endeavored to introduce practical strategies for activities control and appropriate planning for repair and preventive maintenance by statistical modeling of reliability. Therefore, modeling, evaluation, and promotion of reliability of the signaling system appear very critical. Among the key goals of the railway is provision of quality service for passengers and this purpose is gained by increasing reliability, availability, maintainability and safety of (RAMS). In this research, data were analyzed, and the reliability of the subsystems and entire system was calculated and with emphasis on preservation of performance of each of the subsystems with a reliability of 80%, a plan for repair and preventive maintenance of the subsystems of the signaling system was introduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20reliability" title=" modeling reliability"> modeling reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=plan%20for%20repair%20and%20preventive%20maintenance" title=" plan for repair and preventive maintenance"> plan for repair and preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=signaling%20system" title=" signaling system"> signaling system</a> </p> <a href="https://publications.waset.org/abstracts/90078/presentation-of-the-model-of-reliability-of-the-signaling-system-with-emphasis-on-determining-best-time-schedule-for-repairments-and-preventive-maintenance-in-the-iranian-railway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28928</span> Analysis of Reliability of Mining Shovel Using Weibull Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Savarnya">Anurag Savarnya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reliability of the various parts of electric mining shovel has been assessed through the application of Weibull Model. The study was initiated to find reliability of components of electric mining shovel. The paper aims to optimize the reliability of components and increase the life cycle of component. A multilevel decomposition of the electric mining shovel was done and maintenance records were used to evaluate the failure data and appropriate system characterization was done to model the system in terms of reasonable number of components. The approach used develops a mathematical model to assess the reliability of the electric mining shovel components. The model can be used to predict reliability of components of the hydraulic mining shovel and system performance. Reliability is an inherent attribute to a system. When the life-cycle costs of a system are being analyzed, reliability plays an important role as a major driver of these costs and has considerable influence on system performance. It is an iterative process that begins with specification of reliability goals consistent with cost and performance objectives. The data were collected from an Indian open cast coal mine and the reliability of various components of the electric mining shovel has been assessed by following a Weibull Model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20model" title=" Weibull model"> Weibull model</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20mining%20shovel" title=" electric mining shovel"> electric mining shovel</a> </p> <a href="https://publications.waset.org/abstracts/8913/analysis-of-reliability-of-mining-shovel-using-weibull-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28927</span> Reliability Based Optimal Design of Laterally Loaded Pile with Limited Residual Strain Energy Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Movahedi%20Rad">M. Movahedi Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a general approach to the reliability based limit analysis of laterally loaded piles is presented. In engineering practice, the uncertainties play a very important role. The aim of this study is to evaluate the lateral load capacity of free head and fixed-head long pile when the plastic limit analysis is considered. In addition to the plastic limit analysis to control the plastic behaviour of the structure, uncertain bound on the complementary strain energy of the residual forces is also applied. This bound has a significant effect for the load parameter. The solution to reliability-based problems is obtained by a computer program which is governed by the reliability index calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=laterally%20loaded%20pile" title=" laterally loaded pile"> laterally loaded pile</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20strain%20energy" title=" residual strain energy"> residual strain energy</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20analysis" title=" limit analysis"> limit analysis</a> </p> <a href="https://publications.waset.org/abstracts/32265/reliability-based-optimal-design-of-laterally-loaded-pile-with-limited-residual-strain-energy-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28926</span> Software Reliability Prediction Model Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lela%20Mirtskhulava">Lela Mirtskhulava</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Khunjgurua"> Mariam Khunjgurua</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Lomineishvili"> Nino Lomineishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Koba%20Bakuria"> Koba Bakuria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20distribution" title="exponential distribution">exponential distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20mean%20time%20to%20failure" title=" conditional mean time to failure"> conditional mean time to failure</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20function" title=" distribution function"> distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20reliability" title=" software reliability"> software reliability</a> </p> <a href="https://publications.waset.org/abstracts/5219/software-reliability-prediction-model-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28925</span> Seismic Reliability of Two-DegreE-of-Freedom Systems with Supplemental Damping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.D.%20Garc%C3%ADa-Soto">A.D. García-Soto</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Jaimes"> Miguel Jaimes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.G.%20Vald%C3%A9s-V%C3%A1zquez"> J.G. Valdés-Vázquez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hern%C3%A1ndez-Mart%C3%ADnez"> A. Hernández-Martínez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic reliability of two-degree-of-freedom (2DOF) systems with and without supplemental damping are computed. The used records are scaled from realistic records using standard incremental dynamic Analysis (IDA). The total normalized shear base is computed for both cases using different scaling factors, and it is considered as the demand. The seismic reliability is computed using codified design to stipulate the capacity and, after some assumptions, applying the first-order reliability method (FORM). The 2DOF considered can be thought as structures with non-linear behavior, with and without seismic protection, subjected to earthquake activity in Mexico City. It is found that the reliability of 2DOF structures retrofitted with supplemental damper at its first story is generally higher than the reliability of 2DOF structures without supplemental damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2DOF%20structures" title="2DOF structures">2DOF structures</a>, <a href="https://publications.waset.org/abstracts/search?q=IDA" title=" IDA"> IDA</a>, <a href="https://publications.waset.org/abstracts/search?q=FORM" title=" FORM"> FORM</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reliability" title=" seismic reliability"> seismic reliability</a> </p> <a href="https://publications.waset.org/abstracts/126842/seismic-reliability-of-two-degree-of-freedom-systems-with-supplemental-damping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28924</span> Reliability-Based Method for Assessing Liquefaction Potential of Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Naghizaderokni">Mehran Naghizaderokni</a>, <a href="https://publications.waset.org/abstracts/search?q=Asscar%20Janalizadechobbasty"> Asscar Janalizadechobbasty </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores probabilistic method for assessing the liquefaction potential of sandy soils. The current simplified methods for assessing soil liquefaction potential use a deterministic safety factor in order to determine whether liquefaction will occur or not. However, these methods are unable to determine the liquefaction probability related to a safety factor. A solution to this problem can be found by reliability analysis.This paper presents a reliability analysis method based on the popular certain liquefaction analysis method. The proposed probabilistic method is formulated based on the results of reliability analyses of 190 field records and observations of soil performance against liquefaction. The results of the present study show that confidence coefficient greater and smaller than 1 does not mean safety and/or liquefaction in cadence for liquefaction, and for assuring liquefaction probability, reliability based method analysis should be used. This reliability method uses the empirical acceleration attenuation law in the Chalos area to derive the probability density distribution function and the statistics for the earthquake-induced cyclic shear stress ratio (CSR). The CSR and CRR statistics are used in continuity with the first order and second moment method to calculate the relation between the liquefaction probability, the safety factor and the reliability index. Based on the proposed method, the liquefaction probability related to a safety factor can be easily calculated. The influence of some of the soil parameters on the liquefaction probability can be quantitatively evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chalos%20area" title=" chalos area"> chalos area</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20and%20structural%20engineering" title=" civil and structural engineering"> civil and structural engineering</a> </p> <a href="https://publications.waset.org/abstracts/26223/reliability-based-method-for-assessing-liquefaction-potential-of-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28923</span> Effect of Correlation of Random Variables on Structural Reliability Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Dudzik">Agnieszka Dudzik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of correlation between random variables in the structural reliability analysis has been extensively discussed in literature on the subject. The cases taken under consideration were usually related to correlation between random variables from one side of ultimate limit state: correlation between particular loads applied on structure or correlation between resistance of particular members of a structure as a system. It has been proved that positive correlation between these random variables reduces the reliability of structure and increases the probability of failure. In the paper, the problem of correlation between random variables from both side of the limit state equation will be taken under consideration. The simplest case where these random variables are of the normal distributions will be concerned. The case when a degree of that correlation is described by the covariance or the coefficient of correlation will be used. Special attention will be paid on questions: how much that correlation changes the reliability level and can it be ignored. In reliability analysis will be used well-known methods for assessment of the failure probability: based on the Hasofer-Lind reliability index and Monte Carlo method adapted to the problem of correlation. The main purpose of this work will be a presentation how correlation of random variables influence on reliability index of steel bar structures. Structural design parameters will be defined as deterministic values and random variables. The latter will be correlated. The criterion of structural failure will be expressed by limit functions related to the ultimate and serviceability limit state. In the description of random variables will be used only for the normal distribution. Sensitivity of reliability index to the random variables will be defined. If the reliability index sensitivity due to the random variable X will be low when compared with other variables, it can be stated that the impact of this variable on failure probability is small. Therefore, in successive computations, it can be treated as a deterministic parameter. Sensitivity analysis leads to simplify the description of the mathematical model, determine the new limit functions and values of the Hasofer-Lind reliability index. In the examples, the NUMPRESS software will be used in the reliability analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20of%20random%20variables" title="correlation of random variables">correlation of random variables</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20index" title=" reliability index"> reliability index</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20of%20reliability%20index" title=" sensitivity of reliability index"> sensitivity of reliability index</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a> </p> <a href="https://publications.waset.org/abstracts/95343/effect-of-correlation-of-random-variables-on-structural-reliability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28922</span> Reliability-Based Design of an Earth Slope Taking into Account Unsaturated Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Siacara">A. T. Siacara</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Beck"> A. T. Beck</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Futai"> M. M. Futai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows how accurately and efficiently reliability analyses of geotechnical installations can be performed by directly coupling geotechnical software with a reliability solver. An earth slope is used as the study object. The limit equilibrium method of Morgenstern-Price is used to calculate factors of safety and find the critical slip surface. The deterministic software package Seep/W and Slope/W is coupled with the StRAnD reliability software. Reliability indexes of critical probabilistic surfaces are evaluated by the first-order reliability methods (FORM). By means of sensitivity analysis, the effective cohesion (c') is found to be the most relevant uncertain geotechnical parameter for slope equilibrium. The slope was tested using different geometries, taking into account unsaturated soil properties. Finally, a critical slip surface, identified in terms of minimum factor of safety, is shown here not to be the critical surface in terms of reliability index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope" title="slope">slope</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated" title=" unsaturated"> unsaturated</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage" title=" seepage"> seepage</a> </p> <a href="https://publications.waset.org/abstracts/126812/reliability-based-design-of-an-earth-slope-taking-into-account-unsaturated-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28921</span> Fault Tree Analysis (FTA) of CNC Turning Center</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Patil">R. B. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Kothavale"> B. S. Kothavale</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Y.%20Waghmode"> L. Y. Waghmode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the CNC turning center becomes an important machine tool for manufacturing industry worldwide. However, as the breakdown of a single CNC turning center may result in the production of an entire plant being halted. For this reason, operations and preventive maintenance have to be minimized to ensure availability of the system. Indeed, improving the availability of the CNC turning center as a whole, objectively leads to a substantial reduction in production loss, operating, maintenance and support cost. In this paper, fault tree analysis (FTA) method is used for reliability analysis of CNC turning center. The major faults associated with the system and the causes for the faults are presented graphically. Boolean algebra is used for evaluating fault tree (FT) diagram and for deriving governing reliability model for CNC turning center. Failure data over a period of six years has been collected and used for evaluating the model. Qualitative and quantitative analysis is also carried out to identify critical sub-systems and components of CNC turning center. It is found that, at the end of the warranty period (one year), the reliability of the CNC turning center as a whole is around 0.61628. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tree%20analysis%20%28FTA%29" title="fault tree analysis (FTA)">fault tree analysis (FTA)</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20analysis" title=" hazard analysis"> hazard analysis</a> </p> <a href="https://publications.waset.org/abstracts/41777/fault-tree-analysis-fta-of-cnc-turning-center" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28920</span> Reliability Analysis of Heat Exchanger Cycle Using Non-Parametric Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apurv%20Kulkarni">Apurv Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreyas%20Badave"> Shreyas Badave</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Rajiv"> B. Rajiv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-parametric reliability technique is useful for assessment of reliability of systems for which failure rates are not available. This is useful when detection of malfunctioning of any component is the key purpose during ongoing operation of the system. The main purpose of the Heat Exchanger Cycle discussed in this paper is to provide hot water at a constant temperature for longer periods of time. In such a cycle, certain components play a crucial role and this paper presents an effective way to predict the malfunctioning of the components by determination of system reliability. The method discussed in the paper is feasible and this is clarified with the help of various test cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger%20cycle" title="heat exchanger cycle">heat exchanger cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=k-statistics" title=" k-statistics"> k-statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20controller" title=" PID controller"> PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20reliability" title=" system reliability"> system reliability</a> </p> <a href="https://publications.waset.org/abstracts/69697/reliability-analysis-of-heat-exchanger-cycle-using-non-parametric-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28919</span> Logical-Probabilistic Modeling of the Reliability of Complex Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergo%20Tsiramua">Sergo Tsiramua</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulkhan%20Sulkhanishvili"> Sulkhan Sulkhanishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabed%20Asabashvili"> Elisabed Asabashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Lazare%20Kvirtia"> Lazare Kvirtia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents logical-probabilistic methods, models and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of weights of elements. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research and designing of optimal structure systems are carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Complex%20systems" title="Complex systems">Complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=logical-probabilistic%20methods" title=" logical-probabilistic methods"> logical-probabilistic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonalization%20algorithm" title=" orthogonalization algorithm"> orthogonalization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20of%20element" title=" weight of element"> weight of element</a> </p> <a href="https://publications.waset.org/abstracts/174834/logical-probabilistic-modeling-of-the-reliability-of-complex-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28918</span> Reliability and Validity for Measurement of Body Composition: A Field Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Hashim">Ahmad Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarizi%20Ab%20Rahman"> Zarizi Ab Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measurement of body composition via a field method has the most popular instruments which are used to estimate the percentage of body fat. Among the instruments used are the Body Mass Index, Bio Impedance Analysis and Skinfold Test. All three of these instruments do not involve high costs, do not require high technical skills, are mobile, save time, and are suitable for use in large populations. Because all three instruments can estimate the percentage of body fat, but it is important to identify the most appropriate instruments and have high reliability. Hence, this study was conducted to determine the reliability and convergent validity of the instruments. A total of 40 students, males and females aged between 13 and 14 years participated in this study. The study found that the test retest and Pearson correlation coefficient of reliability for the three instruments is very high, r = .99. While the inter class reliability also are at high level with r = .99 for Body Mass Index and Bio Impedance Analysis, r = .96 for Skin fold test. Intra class reliability coefficient for these three instruments is too high for Body Mass Index r = .99, Bio Impedance Analysis r = .97, and Skin fold Test r = .90. However, Standard Error of Measurement value for all three instruments indicates the Body Mass Index is the most appropriate instrument with a mean value of .000672 compared with other instruments. The findings show that the Body Mass Index is an instrument which is the most accurate and reliable in estimating body fat percentage for the population studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=validity" title=" validity"> validity</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20impedance%20analysis%20and%20skinfold%20test" title=" bio impedance analysis and skinfold test"> bio impedance analysis and skinfold test</a> </p> <a href="https://publications.waset.org/abstracts/81917/reliability-and-validity-for-measurement-of-body-composition-a-field-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28917</span> Binary Decision Diagram Based Methods to Evaluate the Reliability of Systems Considering Failure Dependencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siqi%20Qiu">Siqi Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yijian%20Zheng"> Yijian Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Guo%20Ming"> Xin Guo Ming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many reliability and risk analysis, failures of components are supposed to be independent. However, in reality, the ignorance of failure dependencies among components may render the results of reliability and risk analysis incorrect. There are two principal ways to incorporate failure dependencies in system reliability and risk analysis: implicit and explicit methods. In the implicit method, failure dependencies can be modeled by joint probabilities, correlation values or conditional probabilities. In the explicit method, certain types of dependencies can be modeled in a fault tree as mutually independent basic events for specific component failures. In this paper, explicit and implicit methods based on BDD will be proposed to evaluate the reliability of systems considering failure dependencies. The obtained results prove the equivalence of the proposed implicit and explicit methods. It is found that the consideration of failure dependencies decreases the reliability of systems. This observation is intuitive, because more components fail due to failure dependencies. The consideration of failure dependencies helps designers to reduce the dependencies between components during the design phase to make the system more reliable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability%20assessment" title="reliability assessment">reliability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20dependencies" title=" failure dependencies"> failure dependencies</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20decision%20diagram" title=" binary decision diagram"> binary decision diagram</a> </p> <a href="https://publications.waset.org/abstracts/67235/binary-decision-diagram-based-methods-to-evaluate-the-reliability-of-systems-considering-failure-dependencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28916</span> Reliability Analysis of Steel Columns under Buckling Load in Second-Order Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Abshari">Hamed Abshari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Reza%20Emami%20Azadi"> M. Reza Emami Azadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Madjid%20Sadegh%20Azar"> Madjid Sadegh Azar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> For studying the overall instability of members of steel structures, there are several methods in which overall buckling and geometrical imperfection effects are considered in analysis. In first section, these methods are compared and ability of software to apply these methods is studied. Buckling loads determined from theoretical methods and software is compared for 2D one bay, one and two stories steel frames. To consider actual condition, buckling loads of three steel frames that have various dimensions are calculated and compared. Also, uncertainties that exist in loading and modeling of structures such as geometrical imperfection, yield stress, and modulus of elasticity in buckling load of 2D framed steel structures have been studied. By performing these uncertainties to each reliability analysis procedures (first-order, second-order, and simulation methods of reliability), one index of reliability from each procedure is determined. These values are studied and compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling" title="buckling">buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=second-order%20theory" title=" second-order theory"> second-order theory</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20index" title=" reliability index"> reliability index</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20columns" title=" steel columns"> steel columns</a> </p> <a href="https://publications.waset.org/abstracts/9301/reliability-analysis-of-steel-columns-under-buckling-load-in-second-order-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28915</span> Validity and Reliability of Competency Assessment Implementation (CAI) Instrument Using Rasch Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurfirdawati%20Muhamad%20Hanafi">Nurfirdawati Muhamad Hanafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Azmanirah%20Ab%20Rahman"> Azmanirah Ab Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Ibrahim%20Mukhtar"> Marina Ibrahim Mukhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamil%20Ahmad"> Jamil Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarebah%20Warman"> Sarebah Warman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to generate empirical evidence on validity and reliability of the item of Competency Assessment Implementation (CAI) Instrument using Rasch Model for polythomous data aided by Winstep software version 3.68. The construct validity was examined by analyzing the point-measure correlation index (PTMEA), in fit and outfit MNSQ values; meanwhile the reliability was examined by analyzing item reliability index. A survey technique was used as the major method with the CAI instrument on 156 teachers from vocational schools. The results have shown that the reliability of CAI Instrument items were between 0.80 and 0.98. PTMEA Correlation is in positive values, in which the item is able to distinguish between the ability of the respondent. Statistical data obtained shows that out of 154 items, 12 items from the instrument suggested to be omitted. This study is hoped could bring a new direction to the process of data analysis in educational research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competency%20assessment" title="competency assessment">competency assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=validity" title=" validity"> validity</a>, <a href="https://publications.waset.org/abstracts/search?q=item%20analysis" title=" item analysis"> item analysis</a> </p> <a href="https://publications.waset.org/abstracts/4060/validity-and-reliability-of-competency-assessment-implementation-cai-instrument-using-rasch-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28914</span> Logical-Probabilistic Modeling of the Reliability of Complex Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergo%20Tsiramua">Sergo Tsiramua</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulkhan%20Sulkhanishvili"> Sulkhan Sulkhanishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabed%20Asabashvili"> Elisabed Asabashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Lazare%20Kvirtia"> Lazare Kvirtia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents logical-probabilistic methods, models, and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. It is important to design systems based on structural analysis, research, and evaluation of efficiency indicators. One of the important efficiency criteria is the reliability of the system, which depends on the components of the structure. Quantifying the reliability of large-scale systems is a computationally complex process, and it is advisable to perform it with the help of a computer. Logical-probabilistic modeling is one of the effective means of describing the structure of a complex system and quantitatively evaluating its reliability, which was the basis of our application. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of “weights” of elements of system. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research, and designing of optimal structure systems are carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title="complex systems">complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=logical-probabilistic%20methods" title=" logical-probabilistic methods"> logical-probabilistic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonalization%20algorithm" title=" orthogonalization algorithm"> orthogonalization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20of%20systems" title=" reliability of systems"> reliability of systems</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%9Cweights%E2%80%9D%20of%20elements" title=" “weights” of elements"> “weights” of elements</a> </p> <a href="https://publications.waset.org/abstracts/174609/logical-probabilistic-modeling-of-the-reliability-of-complex-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28913</span> Criterion-Referenced Test Reliability through Threshold Loss Agreement: Fuzzy Logic Analysis Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Alavidoost">Mohammad Ali Alavidoost</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Bozorgian"> Hossein Bozorgian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Criterion-referenced tests (CRTs) are designed to measure student performance against a fixed set of predetermined criteria or learning standards. The reliability of such tests cannot be based on internal reliability. Threshold loss agreement is one way to calculate the reliability of CRTs. However, the selection of master and non-master in such agreement is determined by the threshold point. The problem is if the threshold point witnesses a minute change, the selection of master and non-master may have a drastic change, leading to the change in reliability results. Therefore, in this study, the Fuzzy logic approach is employed as a remedial procedure for data analysis to obviate the threshold point problem. Forty-one Iranian students were selected; the participants were all between 20 and 30 years old. A quantitative approach was used to address the research questions. In doing so, a quasi-experimental design was utilized since the selection of the participants was not randomized. Based on the Fuzzy logic approach, the threshold point would be more stable during the analysis, resulting in rather constant reliability results and more precise assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criterion-referenced%20tests" title="criterion-referenced tests">criterion-referenced tests</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20loss%20agreement" title=" threshold loss agreement"> threshold loss agreement</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20point" title=" threshold point"> threshold point</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20approach" title=" fuzzy logic approach"> fuzzy logic approach</a> </p> <a href="https://publications.waset.org/abstracts/135929/criterion-referenced-test-reliability-through-threshold-loss-agreement-fuzzy-logic-analysis-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28912</span> Development of an Attitude Scale Towards Social Networking Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCnevver%20Ba%C5%9Fman">Münevver Başman</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20G%C3%BCllero%C4%9Flu"> Deniz Gülleroğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to develop a scale to determine the attitudes towards social networking sites. 45 tryout items, prepared for this aim, were applied to 342 students studying at Marmara University, Faculty of Education. The reliability and the validity of the scale were conducted with the help of these students. As a result of exploratory factor analysis with Varimax rotation, 41 items grouped according to the structure with three factors (interest, reality and negative effects) is obtained. While alpha reliability of the scale is obtained as .899; the reliability of factors is obtained as .899, .799, .775, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Attitude" title="Attitude">Attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20networking%20sites" title=" social networking sites"> social networking sites</a>, <a href="https://publications.waset.org/abstracts/search?q=validity." title=" validity."> validity.</a> </p> <a href="https://publications.waset.org/abstracts/43374/development-of-an-attitude-scale-towards-social-networking-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28911</span> Reliability Analysis of Computer Centre at Yobe State University Using LRU Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Singh">V. V. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ibrahim%20Gwanda"> Yusuf Ibrahim Gwanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Prasad"> Rajesh Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we focus on the reliability and performance analysis of Computer Centre (CC) at Yobe State University, Damaturu, Nigeria. The CC consists of three servers: one database mail server, one redundant and one for sharing with the client computers in the CC (called as a local server). Observing the different possibilities of the functioning of the CC, the analysis has been done to evaluate the various popular measures of reliability such as availability, reliability, mean time to failure (MTTF), profit analysis due to the operation of the system. The system can ultimately fail due to the failure of router, redundant server before repairing the mail server and switch failure. The system can also partially fail when a local server fails. The failed devices have restored according to Least Recently Used (LRU) techniques. The system can also fail entirely due to a cooling failure of the server, electricity failure or some natural calamity like earthquake, fire tsunami, etc. All the failure rates are assumed to be constant and follow exponential time distribution, while the repair follows two types of distributions: i.e. general and Gumbel-Hougaard family copula distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=availability%20Gumbel-Hougaard%20family%20copula" title=" availability Gumbel-Hougaard family copula"> availability Gumbel-Hougaard family copula</a>, <a href="https://publications.waset.org/abstracts/search?q=MTTF" title=" MTTF"> MTTF</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20data%20centre" title=" internet data centre"> internet data centre</a> </p> <a href="https://publications.waset.org/abstracts/17889/reliability-analysis-of-computer-centre-at-yobe-state-university-using-lru-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28910</span> Reliability Analysis of a Fuel Supply System in Automobile Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chitaranjan%20Sharma">Chitaranjan Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper deals with the analysis of a fuel supply system in an automobile engine of a four wheeler which is having both the option of fuel i.e. PETROL and CNG. Since CNG is cheaper than petrol so the priority is given to consume CNG as compared to petrol. An automatic switch is used to start petrol supply at the time of failure of CNG supply. Using regenerative point technique with Markov renewal process, the reliability characteristics which are useful to system designers are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=redundancy" title=" redundancy"> redundancy</a>, <a href="https://publications.waset.org/abstracts/search?q=repair%20time" title=" repair time"> repair time</a>, <a href="https://publications.waset.org/abstracts/search?q=transition" title=" transition"> transition</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20points" title=" regenerative points"> regenerative points</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20renewal" title=" markov renewal"> markov renewal</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a> </p> <a href="https://publications.waset.org/abstracts/16527/reliability-analysis-of-a-fuel-supply-system-in-automobile-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28909</span> The Use of Degradation Measures to Design Reliability Test Plans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20V.%20Crowder">Stephen V. Crowder</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20W.%20Lane"> Jonathan W. Lane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. In this work we present a case study involving an electronic component subject to degradation. The data, consisting of 42 degradation paths of cycles to failure, are first used to estimate a reliability function. Bootstrapping techniques are then used to perform power studies and develop a minimal reliability test plan for future production of this component. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation%20measure" title="degradation measure">degradation measure</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20failure%20distribution" title=" time to failure distribution"> time to failure distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrap" title=" bootstrap"> bootstrap</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20science" title=" computational science"> computational science</a> </p> <a href="https://publications.waset.org/abstracts/5420/the-use-of-degradation-measures-to-design-reliability-test-plans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28908</span> Reliability Assessment Using Full Probabilistic Modelling for Carbonation and Chloride Exposures, Including Initiation and Propagation Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frank%20Papworth">Frank Papworth</a>, <a href="https://publications.waset.org/abstracts/search?q=Inam%20Khan"> Inam Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fib’s model code 2020 has four approaches for design life verification. Historically ‘deemed to satisfy provisions have been the principal approach, but this has limited options for materials and covers. The use of an equation in fib’s model code for service life design to predict time to corrosion initiation has become increasingly popular to justify further options, but in some cases, the analysis approaches are incorrect. Even when the equations are computed using full probabilistic analysis, there are common mistakes. This paper reviews the work of recent fib commissions on implementing the service life model to assess the reliability of durability designs, including initiation and propagation periods. The paper goes on to consider the assessment of deemed to satisfy requirements in national codes and considers the influence of various options, including different steel types, various cement systems, quality of concrete and cover, on reliability achieved. As modelling is based on achieving agreed target reliability, consideration is given to how a project might determine appropriate target reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorides" title="chlorides">chlorides</a>, <a href="https://publications.waset.org/abstracts/search?q=marine" title=" marine"> marine</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure" title=" exposure"> exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20life" title=" design life"> design life</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/141325/reliability-assessment-using-full-probabilistic-modelling-for-carbonation-and-chloride-exposures-including-initiation-and-propagation-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=964">964</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=965">965</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reliability%20analysis&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10