CINXE.COM
Guy Garty - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Guy Garty - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="l+d3LR/n0ZP/KZE46AKTn4A4giKFB0MWl4LpKi1811tNnga5wqlHNqLjd2xCkmEEqMr9aNHz5clYFCZa+3Ij3A==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="guy garty" /> <meta name="description" content="Guy Garty: 15 Followers, 8 Following, 99 Research papers. Research interests: Radiometry, Radiobiology of Ionizing Radiation, and Radiation Protection." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15270,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277226391,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732504041000); window.Aedu.timeDifference = new Date().getTime() - 1732504041000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/GuyGarty" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":335365,"name":"Radiometry","url":"https://www.academia.edu/Documents/in/Radiometry"},{"id":18325,"name":"Radiobiology of Ionizing Radiation","url":"https://www.academia.edu/Documents/in/Radiobiology_of_Ionizing_Radiation"},{"id":10032,"name":"Radiation Protection","url":"https://www.academia.edu/Documents/in/Radiation_Protection"},{"id":27497,"name":"Instrumentation","url":"https://www.academia.edu/Documents/in/Instrumentation"},{"id":901876,"name":"Sensitivity and Specificity","url":"https://www.academia.edu/Documents/in/Sensitivity_and_Specificity"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/GuyGarty","location":"/GuyGarty","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/GuyGarty","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-bad0ca6e-a120-41f1-a85e-4f99ef25e352"></div> <div id="ProfileCheckPaperUpdate-react-component-bad0ca6e-a120-41f1-a85e-4f99ef25e352"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Guy Garty</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Guy" data-follow-user-id="56130005" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="56130005"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">15</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">8</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">8</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56130005" href="https://www.academia.edu/Documents/in/Radiometry"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/GuyGarty","location":"/GuyGarty","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/GuyGarty","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Radiometry"]}" data-trace="false" data-dom-id="Pill-react-component-2d9f488b-bb8a-4032-ba22-4796076c3e6b"></div> <div id="Pill-react-component-2d9f488b-bb8a-4032-ba22-4796076c3e6b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56130005" href="https://www.academia.edu/Documents/in/Radiobiology_of_Ionizing_Radiation"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Radiobiology of Ionizing Radiation"]}" data-trace="false" data-dom-id="Pill-react-component-12df22cb-f3cf-4da1-8967-39da20a2377f"></div> <div id="Pill-react-component-12df22cb-f3cf-4da1-8967-39da20a2377f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56130005" href="https://www.academia.edu/Documents/in/Radiation_Protection"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Radiation Protection"]}" data-trace="false" data-dom-id="Pill-react-component-24731f6d-fe98-45d2-b1a8-cfbaf70dbf19"></div> <div id="Pill-react-component-24731f6d-fe98-45d2-b1a8-cfbaf70dbf19"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56130005" href="https://www.academia.edu/Documents/in/Instrumentation"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Instrumentation"]}" data-trace="false" data-dom-id="Pill-react-component-ef007dd0-ab8a-4d56-8cfa-68deb2b0705c"></div> <div id="Pill-react-component-ef007dd0-ab8a-4d56-8cfa-68deb2b0705c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56130005" href="https://www.academia.edu/Documents/in/Sensitivity_and_Specificity"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Sensitivity and Specificity"]}" data-trace="false" data-dom-id="Pill-react-component-642505f5-706f-468b-9693-e863c438c4c3"></div> <div id="Pill-react-component-642505f5-706f-468b-9693-e863c438c4c3"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Guy Garty</h3></div><div class="js-work-strip profile--work_container" data-work-id="98491197"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491197/DIPG_45_Radiation_induces_a_robust_interferon_response_in_Diffuse_Midline_Glioma_DMG_improving_the_potential_for_combination_immunotherapy"><img alt="Research paper thumbnail of DIPG-45. Radiation induces a robust interferon response in Diffuse Midline Glioma (DMG), improving the potential for combination immunotherapy" class="work-thumbnail" src="https://attachments.academia-assets.com/99827618/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491197/DIPG_45_Radiation_induces_a_robust_interferon_response_in_Diffuse_Midline_Glioma_DMG_improving_the_potential_for_combination_immunotherapy">DIPG-45. Radiation induces a robust interferon response in Diffuse Midline Glioma (DMG), improving the potential for combination immunotherapy</a></div><div class="wp-workCard_item"><span>Neuro-Oncology</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Diffuse Midline Glioma (DMG), H3K27M altered, confers a dismal survival of 9-15 months and has a ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Diffuse Midline Glioma (DMG), H3K27M altered, confers a dismal survival of 9-15 months and has a non-inflammatory tumor immune microenvironment (TIME). Radiation therapy (RT) is the mainstay treatment for DMG and has been shown in other cancers to recruit an immune component. However, the effect of RT on the DMG TIME has not been explored. In a syngeneic murine model of pontine DMG (PDGFB+, H3.3K27M, p53−/−), mice were treated with single fraction 15Gy RT or sham control, four mice per group. We performed single cell sequencing after CD45 isolation to evaluate the TIME 4 days post RT and compare to untreated tumor (sham control). Unsupervised clustering of 14,848 CD45+ cells revealed 16 immune cell subsets, most abundantly microglia at 75% of cells, with four subtypes representing a spectrum of homeostatic to activated. Microglia from RT are more concentrated in the activated subtypes with an upregulation of interferon response (i.e. Isg15, Ifit3) compared to untreated tumor with an...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f1139fae0a7e72497d2451abbc7490f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827618,"asset_id":98491197,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827618/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491197"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491197"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491197; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491197]").text(description); $(".js-view-count[data-work-id=98491197]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491197; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491197']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491197, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f1139fae0a7e72497d2451abbc7490f" } } $('.js-work-strip[data-work-id=98491197]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491197,"title":"DIPG-45. Radiation induces a robust interferon response in Diffuse Midline Glioma (DMG), improving the potential for combination immunotherapy","translated_title":"","metadata":{"abstract":"Diffuse Midline Glioma (DMG), H3K27M altered, confers a dismal survival of 9-15 months and has a non-inflammatory tumor immune microenvironment (TIME). Radiation therapy (RT) is the mainstay treatment for DMG and has been shown in other cancers to recruit an immune component. However, the effect of RT on the DMG TIME has not been explored. In a syngeneic murine model of pontine DMG (PDGFB+, H3.3K27M, p53−/−), mice were treated with single fraction 15Gy RT or sham control, four mice per group. We performed single cell sequencing after CD45 isolation to evaluate the TIME 4 days post RT and compare to untreated tumor (sham control). Unsupervised clustering of 14,848 CD45+ cells revealed 16 immune cell subsets, most abundantly microglia at 75% of cells, with four subtypes representing a spectrum of homeostatic to activated. Microglia from RT are more concentrated in the activated subtypes with an upregulation of interferon response (i.e. Isg15, Ifit3) compared to untreated tumor with an...","publisher":"Oxford University Press (OUP)","publication_name":"Neuro-Oncology"},"translated_abstract":"Diffuse Midline Glioma (DMG), H3K27M altered, confers a dismal survival of 9-15 months and has a non-inflammatory tumor immune microenvironment (TIME). Radiation therapy (RT) is the mainstay treatment for DMG and has been shown in other cancers to recruit an immune component. However, the effect of RT on the DMG TIME has not been explored. In a syngeneic murine model of pontine DMG (PDGFB+, H3.3K27M, p53−/−), mice were treated with single fraction 15Gy RT or sham control, four mice per group. We performed single cell sequencing after CD45 isolation to evaluate the TIME 4 days post RT and compare to untreated tumor (sham control). Unsupervised clustering of 14,848 CD45+ cells revealed 16 immune cell subsets, most abundantly microglia at 75% of cells, with four subtypes representing a spectrum of homeostatic to activated. Microglia from RT are more concentrated in the activated subtypes with an upregulation of interferon response (i.e. Isg15, Ifit3) compared to untreated tumor with an...","internal_url":"https://www.academia.edu/98491197/DIPG_45_Radiation_induces_a_robust_interferon_response_in_Diffuse_Midline_Glioma_DMG_improving_the_potential_for_combination_immunotherapy","translated_internal_url":"","created_at":"2023-03-14T02:17:35.309-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827618/thumbnails/1.jpg","file_name":"noac079.102.pdf","download_url":"https://www.academia.edu/attachments/99827618/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DIPG_45_Radiation_induces_a_robust_inter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827618/noac079.102-libre.pdf?1678786265=\u0026response-content-disposition=attachment%3B+filename%3DDIPG_45_Radiation_induces_a_robust_inter.pdf\u0026Expires=1732507640\u0026Signature=TXyqW29RwRlIZMiR3JJRI77gM58p6dpwCLpcNCS9jqAo4nwPixXeVC59iW~fMsE2KtAWJZmjcW2nZucdFZpawNbgOe3wk5VffKCKCHuVcs-BDbofmNlg~sOpCb8zI-Nr4j7LDxguBCIyeYzkdA0fld6dAN5rA5Z83aO~Iy98gom6QVpkkQkjuYc3FQWWoSqEQIVW0Eei8Lgqgg6Zw6My8pqGSsm4Q~nf6It24vEEVO9ITd6ARJAYUTu83JDT~BAjJqjbdag~2sQKygMfrR0hSlPWglaZn0jp2u3HLXkYs~naUY0gj5PI7UlojCujp5dSw1rDX1YhqYbc8Zcq7k0GFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"DIPG_45_Radiation_induces_a_robust_interferon_response_in_Diffuse_Midline_Glioma_DMG_improving_the_potential_for_combination_immunotherapy","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827618/thumbnails/1.jpg","file_name":"noac079.102.pdf","download_url":"https://www.academia.edu/attachments/99827618/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DIPG_45_Radiation_induces_a_robust_inter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827618/noac079.102-libre.pdf?1678786265=\u0026response-content-disposition=attachment%3B+filename%3DDIPG_45_Radiation_induces_a_robust_inter.pdf\u0026Expires=1732507640\u0026Signature=TXyqW29RwRlIZMiR3JJRI77gM58p6dpwCLpcNCS9jqAo4nwPixXeVC59iW~fMsE2KtAWJZmjcW2nZucdFZpawNbgOe3wk5VffKCKCHuVcs-BDbofmNlg~sOpCb8zI-Nr4j7LDxguBCIyeYzkdA0fld6dAN5rA5Z83aO~Iy98gom6QVpkkQkjuYc3FQWWoSqEQIVW0Eei8Lgqgg6Zw6My8pqGSsm4Q~nf6It24vEEVO9ITd6ARJAYUTu83JDT~BAjJqjbdag~2sQKygMfrR0hSlPWglaZn0jp2u3HLXkYs~naUY0gj5PI7UlojCujp5dSw1rDX1YhqYbc8Zcq7k0GFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":22255,"name":"Cancer Research","url":"https://www.academia.edu/Documents/in/Cancer_Research"},{"id":63279,"name":"Neuro-Oncology","url":"https://www.academia.edu/Documents/in/Neuro-Oncology"},{"id":76383,"name":"Glioma","url":"https://www.academia.edu/Documents/in/Glioma"},{"id":100501,"name":"Microglia","url":"https://www.academia.edu/Documents/in/Microglia"},{"id":126863,"name":"Immunotherapy","url":"https://www.academia.edu/Documents/in/Immunotherapy"},{"id":324154,"name":"Immune system","url":"https://www.academia.edu/Documents/in/Immune_system"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":2574583,"name":"İsg","url":"https://www.academia.edu/Documents/in/%C4%B0sg"}],"urls":[{"id":29768687,"url":"https://academic.oup.com/neuro-oncology/article-pdf/24/Supplement_1/i28/43944993/noac079.102.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491196"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491196/Additional_file_8_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation"><img alt="Research paper thumbnail of Additional file 8: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation" class="work-thumbnail" src="https://attachments.academia-assets.com/99827616/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491196/Additional_file_8_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation">Additional file 8: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Figure S2. Comparison of fold-change of Crip2, Chst3, Add3, Eif3f, Rpl26, Rpl27, Rps17, Rps19, an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Figure S2. Comparison of fold-change of Crip2, Chst3, Add3, Eif3f, Rpl26, Rpl27, Rps17, Rps19, and c-Myc by qPCR and DNA microarray. (PDF 61 kb)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="47df0e204f6e9fabbcd146df252d33f2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827616,"asset_id":98491196,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827616/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491196"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491196"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491196; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491196]").text(description); $(".js-view-count[data-work-id=98491196]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491196; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491196']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491196, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "47df0e204f6e9fabbcd146df252d33f2" } } $('.js-work-strip[data-work-id=98491196]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491196,"title":"Additional file 8: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation","translated_title":"","metadata":{"abstract":"Figure S2. Comparison of fold-change of Crip2, Chst3, Add3, Eif3f, Rpl26, Rpl27, Rps17, Rps19, and c-Myc by qPCR and DNA microarray. (PDF 61 kb)","publisher":"Figshare","publication_date":{"day":29,"month":6,"year":2018,"errors":{}}},"translated_abstract":"Figure S2. Comparison of fold-change of Crip2, Chst3, Add3, Eif3f, Rpl26, Rpl27, Rps17, Rps19, and c-Myc by qPCR and DNA microarray. (PDF 61 kb)","internal_url":"https://www.academia.edu/98491196/Additional_file_8_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_internal_url":"","created_at":"2023-03-14T02:17:35.175-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827616,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827616/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM8_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827616/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Additional_file_8_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827616/12864_2018_4884_MOESM8_ESM-libre.pdf?1678786261=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_8_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=Gu7xLFr6cGoOYdmXJ-yPm3vrYTM5WFJBmICGcpK2SybcOn50xFuYjQJ5Vtfk8nGl8qFBYzgYBud~aP7AnCY-IwOvw77u2nVx9D9Drm0Jhhhy3KbjQur6uv36rcwFlNkUz8D2~laXF35eseJ7dP-oMJ7~Js9WyO0aPlcEcTIY6BZxfZjAjDRg5PL16pbOXVXQZfMjXXwTP0bEJnhDM6EJcR5Z0uw8P5emq3lG66wi0VU69J22~FFfjdgt68uMSieE5Yy80moH5C3tu3gEAPqVhLfsoiKT8zxJMDRbwPbUPOVg-i~ic5f0yTBGLxGPsh15QJj5uXVlW3zOdBD4BYK0qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Additional_file_8_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827616,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827616/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM8_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827616/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Additional_file_8_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827616/12864_2018_4884_MOESM8_ESM-libre.pdf?1678786261=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_8_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=Gu7xLFr6cGoOYdmXJ-yPm3vrYTM5WFJBmICGcpK2SybcOn50xFuYjQJ5Vtfk8nGl8qFBYzgYBud~aP7AnCY-IwOvw77u2nVx9D9Drm0Jhhhy3KbjQur6uv36rcwFlNkUz8D2~laXF35eseJ7dP-oMJ7~Js9WyO0aPlcEcTIY6BZxfZjAjDRg5PL16pbOXVXQZfMjXXwTP0bEJnhDM6EJcR5Z0uw8P5emq3lG66wi0VU69J22~FFfjdgt68uMSieE5Yy80moH5C3tu3gEAPqVhLfsoiKT8zxJMDRbwPbUPOVg-i~ic5f0yTBGLxGPsh15QJj5uXVlW3zOdBD4BYK0qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":99827617,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827617/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM8_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827617/download_file","bulk_download_file_name":"Additional_file_8_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827617/12864_2018_4884_MOESM8_ESM-libre.pdf?1678786261=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_8_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=K7HTjWRWoPdVt5JOqFsJ~WChOPVAye8xTsk9F0GGjKu5882ZMyuEE8goyNHx8cK5DS3fnSmPwRi8z8EGAPzhE5yyxYFxUdSHeK2ospeHJ3pQIBJbrcPUN6UoFpr6jIgAoXMM30KyFcBkZbyG9Ofekn-PLBqDcG9kz85Me7-zkUdJ7yx0R2rDciJ3oOzBllpJAOZ1Bjsr3tCxW5lVXOmGE4iQhDIrfjKi1BA9uVkUj44e8lyoFB3K9Zs11nQsKh6XYlN2p5KCiQV39a~V-E3GqUDUnugWBre1J~hxp5R6gBVAOA8pmDKJFaAFFSH-5h~OEVTyLkH1o-PhPohZI5KxEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":1083,"name":"Developmental Biology","url":"https://www.academia.edu/Documents/in/Developmental_Biology"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":13827,"name":"Cell Biology","url":"https://www.academia.edu/Documents/in/Cell_Biology"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"}],"urls":[{"id":29768686,"url":"https://s3-eu-west-1.amazonaws.com/pstorage-npg-968563215/12256715/12864_2018_4884_MOESM8_ESM.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491195"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491195/Additional_file_6_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation"><img alt="Research paper thumbnail of Additional file 6: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation" class="work-thumbnail" src="https://attachments.academia-assets.com/99827615/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491195/Additional_file_6_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation">Additional file 6: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Table S1. Protein ubiquitination processes identified by PANTHER analysis. Benjamini-corrected p ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Table S1. Protein ubiquitination processes identified by PANTHER analysis. Benjamini-corrected p values are shown. (PDF 30 kb)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3b9ea18baf26b9b15577786d9798155f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827615,"asset_id":98491195,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827615/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491195"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491195"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491195; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491195]").text(description); $(".js-view-count[data-work-id=98491195]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491195; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491195']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491195, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3b9ea18baf26b9b15577786d9798155f" } } $('.js-work-strip[data-work-id=98491195]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491195,"title":"Additional file 6: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation","translated_title":"","metadata":{"abstract":"Table S1. Protein ubiquitination processes identified by PANTHER analysis. Benjamini-corrected p values are shown. (PDF 30 kb)","publisher":"Figshare","publication_date":{"day":29,"month":6,"year":2018,"errors":{}}},"translated_abstract":"Table S1. Protein ubiquitination processes identified by PANTHER analysis. Benjamini-corrected p values are shown. (PDF 30 kb)","internal_url":"https://www.academia.edu/98491195/Additional_file_6_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_internal_url":"","created_at":"2023-03-14T02:17:35.043-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827615,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827615/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM6_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827615/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Additional_file_6_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827615/12864_2018_4884_MOESM6_ESM-libre.pdf?1678786262=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_6_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=YMfX3q-CahL~ZfapMaHv3Bb2wliD7tp0CYsrQvBJtMWoM-kefVxFo8wthas6a~-DeEneuiTd6MwuZS-LB3XT5qaqa-Pjney9-~gUCXXzU4bYEKUODdWbDPmFyPOsvWYuHGraC3l9Lt-YDhtDSQ5wkM6GsCezrzkOPU9K5jroLdp8l7xgUltExsQla34mbPa1xPyUHtlzC1ChO73dz473~r9hQJIZPGTHUZKy6BBg1P~OaYuwU3RR~gfupqKuaPVQ4duJLb5vqE6zW009WWvA0r3RtRlpyW3ap7ob975PLo-72RLYMfGW09gA9rPvfz10TQUVJVoynkEchT9Lu~vodw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Additional_file_6_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827615,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827615/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM6_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827615/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Additional_file_6_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827615/12864_2018_4884_MOESM6_ESM-libre.pdf?1678786262=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_6_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=YMfX3q-CahL~ZfapMaHv3Bb2wliD7tp0CYsrQvBJtMWoM-kefVxFo8wthas6a~-DeEneuiTd6MwuZS-LB3XT5qaqa-Pjney9-~gUCXXzU4bYEKUODdWbDPmFyPOsvWYuHGraC3l9Lt-YDhtDSQ5wkM6GsCezrzkOPU9K5jroLdp8l7xgUltExsQla34mbPa1xPyUHtlzC1ChO73dz473~r9hQJIZPGTHUZKy6BBg1P~OaYuwU3RR~gfupqKuaPVQ4duJLb5vqE6zW009WWvA0r3RtRlpyW3ap7ob975PLo-72RLYMfGW09gA9rPvfz10TQUVJVoynkEchT9Lu~vodw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":99827614,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827614/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM6_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827614/download_file","bulk_download_file_name":"Additional_file_6_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827614/12864_2018_4884_MOESM6_ESM-libre.pdf?1678786261=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_6_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=Q75dWbm~BjtYhmyQAF8xNYI-0msfhHg~TQ9pXqAUKGcLokQvgAPALng6sWMftuKqYpwplvoBPhHb196PBibmrnRdqaeQPqHkSbuHRPbEm2eq6wmvmZdQ7vZCO0k678q-prIkJO~mIGWbCEjWmz0SMyM5EnhVDM6VmNhbEaFDeWLjeBoMzBudOVsGIdwgnD7wSUZalZy~O1PEqn776ZT1RFjhCjVTB4GZQsTC7QmSbqc7R0j75QBuVjieYXhyXbUgukFIMUmjvkcWdr6zMLyw3r1Mhp9~U5VhUV2r2f96zs1lXcYT87s3W8LglKjqdprVu1EvOL1ld5eTF2kgS9XuEg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1083,"name":"Developmental Biology","url":"https://www.academia.edu/Documents/in/Developmental_Biology"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":8089,"name":"Virology","url":"https://www.academia.edu/Documents/in/Virology"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"}],"urls":[{"id":29768685,"url":"https://s3-eu-west-1.amazonaws.com/pstorage-npg-968563215/12256682/12864_2018_4884_MOESM6_ESM.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491194"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/98491194/Additional_file_2_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation"><img alt="Research paper thumbnail of Additional file 2: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/98491194/Additional_file_2_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation">Additional file 2: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Excel file with complete output of IPA canonical pathways. The &quot;EIF2 Signaling&quot; pathway...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Excel file with complete output of IPA canonical pathways. The &quot;EIF2 Signaling&quot; pathway and the related &quot;mTOR Signaling&quot;, &quot;Regulation of eIF4 and p70S6K Signaling&quot;, and &quot;p70S6K Signaling&quot; pathways are highlighted in red. The most statistically significant canonical pathways (Benjamini-corrected p value</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491194"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491194"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491194; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491194]").text(description); $(".js-view-count[data-work-id=98491194]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491194; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491194']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491194, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=98491194]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491194,"title":"Additional file 2: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation","translated_title":"","metadata":{"abstract":"Excel file with complete output of IPA canonical pathways. The \u0026quot;EIF2 Signaling\u0026quot; pathway and the related \u0026quot;mTOR Signaling\u0026quot;, \u0026quot;Regulation of eIF4 and p70S6K Signaling\u0026quot;, and \u0026quot;p70S6K Signaling\u0026quot; pathways are highlighted in red. The most statistically significant canonical pathways (Benjamini-corrected p value","publisher":"Figshare","publication_date":{"day":29,"month":6,"year":2018,"errors":{}}},"translated_abstract":"Excel file with complete output of IPA canonical pathways. The \u0026quot;EIF2 Signaling\u0026quot; pathway and the related \u0026quot;mTOR Signaling\u0026quot;, \u0026quot;Regulation of eIF4 and p70S6K Signaling\u0026quot;, and \u0026quot;p70S6K Signaling\u0026quot; pathways are highlighted in red. The most statistically significant canonical pathways (Benjamini-corrected p value","internal_url":"https://www.academia.edu/98491194/Additional_file_2_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_internal_url":"","created_at":"2023-03-14T02:17:34.949-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Additional_file_2_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[{"id":140,"name":"Pharmacology","url":"https://www.academia.edu/Documents/in/Pharmacology"},{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1083,"name":"Developmental Biology","url":"https://www.academia.edu/Documents/in/Developmental_Biology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":13827,"name":"Cell Biology","url":"https://www.academia.edu/Documents/in/Cell_Biology"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491193"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/98491193/Additional_file_1_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation"><img alt="Research paper thumbnail of Additional file 1: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/98491193/Additional_file_1_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation">Additional file 1: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Excel file with 5 tabs containing a summary of differentially expressed genes by radiation type. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Excel file with 5 tabs containing a summary of differentially expressed genes by radiation type. (XLSX 2429 kb)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491193"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491193"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491193; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491193]").text(description); $(".js-view-count[data-work-id=98491193]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491193; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491193']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491193, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=98491193]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491193,"title":"Additional file 1: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation","translated_title":"","metadata":{"abstract":"Excel file with 5 tabs containing a summary of differentially expressed genes by radiation type. (XLSX 2429 kb)","publisher":"Figshare","publication_date":{"day":29,"month":6,"year":2018,"errors":{}}},"translated_abstract":"Excel file with 5 tabs containing a summary of differentially expressed genes by radiation type. (XLSX 2429 kb)","internal_url":"https://www.academia.edu/98491193/Additional_file_1_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_internal_url":"","created_at":"2023-03-14T02:17:34.855-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Additional_file_1_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":158,"name":"Marine Biology","url":"https://www.academia.edu/Documents/in/Marine_Biology"},{"id":1083,"name":"Developmental Biology","url":"https://www.academia.edu/Documents/in/Developmental_Biology"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491192"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491192/Traceable_dosimetry_for_MeV_ion_beams"><img alt="Research paper thumbnail of Traceable dosimetry for MeV ion beams" class="work-thumbnail" src="https://attachments.academia-assets.com/99827655/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491192/Traceable_dosimetry_for_MeV_ion_beams">Traceable dosimetry for MeV ion beams</a></div><div class="wp-workCard_item"><span>Journal of Instrumentation</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Standard dosimetry protocols exist for highly penetrating photon and particle beams used in the c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Standard dosimetry protocols exist for highly penetrating photon and particle beams used in the clinic and in research. However, these protocols cannot be directly applied to shallow penetration MeV-range ion beams. The Radiological Research Accelerator Facility has been using such beams for almost 50 years to irradiate cell monolayers, using self-developed dosimetry, based on tissue equivalent ionization chambers. To better align with the internationally accepted standards, we describe implementation of a commercial, NIST-traceable, air-filled ionization chamber for measurement of absorbed dose to water from low energy ions, using radiation quality correction factors calculated using TRS-398 recommendations. The reported dose does not depend on the ionization density in the range of 10–150 keV/μm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="49b06b2a1277459c6054c4b4aad3b953" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827655,"asset_id":98491192,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827655/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491192"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491192"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491192; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491192]").text(description); $(".js-view-count[data-work-id=98491192]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491192; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491192']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491192, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "49b06b2a1277459c6054c4b4aad3b953" } } $('.js-work-strip[data-work-id=98491192]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491192,"title":"Traceable dosimetry for MeV ion beams","translated_title":"","metadata":{"abstract":"Standard dosimetry protocols exist for highly penetrating photon and particle beams used in the clinic and in research. However, these protocols cannot be directly applied to shallow penetration MeV-range ion beams. The Radiological Research Accelerator Facility has been using such beams for almost 50 years to irradiate cell monolayers, using self-developed dosimetry, based on tissue equivalent ionization chambers. To better align with the internationally accepted standards, we describe implementation of a commercial, NIST-traceable, air-filled ionization chamber for measurement of absorbed dose to water from low energy ions, using radiation quality correction factors calculated using TRS-398 recommendations. The reported dose does not depend on the ionization density in the range of 10–150 keV/μm.","publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Journal of Instrumentation"},"translated_abstract":"Standard dosimetry protocols exist for highly penetrating photon and particle beams used in the clinic and in research. However, these protocols cannot be directly applied to shallow penetration MeV-range ion beams. The Radiological Research Accelerator Facility has been using such beams for almost 50 years to irradiate cell monolayers, using self-developed dosimetry, based on tissue equivalent ionization chambers. To better align with the internationally accepted standards, we describe implementation of a commercial, NIST-traceable, air-filled ionization chamber for measurement of absorbed dose to water from low energy ions, using radiation quality correction factors calculated using TRS-398 recommendations. The reported dose does not depend on the ionization density in the range of 10–150 keV/μm.","internal_url":"https://www.academia.edu/98491192/Traceable_dosimetry_for_MeV_ion_beams","translated_internal_url":"","created_at":"2023-03-14T02:17:34.709-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827655,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827655/thumbnails/1.jpg","file_name":"2201.09778v1.pdf","download_url":"https://www.academia.edu/attachments/99827655/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Traceable_dosimetry_for_MeV_ion_beams.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827655/2201.09778v1-libre.pdf?1678786269=\u0026response-content-disposition=attachment%3B+filename%3DTraceable_dosimetry_for_MeV_ion_beams.pdf\u0026Expires=1732507640\u0026Signature=DmiufF~2KoVmd3lufyrL6Cy9OZiX-RnGkOTjIEWN-20LQ7nFLI0ikERbaJ0j25CUTSgqRhUvPV6omPTp89TyreghkQKjIGbdAnH3MSbfI4foIEaXtt-YDlNRHwuTo01T1vAvy1fTEB5ZV172nDFZ4OUVrrp~h66eNeQP2OlsHQURbZZAFR6YpHnWSiMDV36697eIBPB9uGIu-qwKWge-hU-t16eIgkzORvchfeWFMkAnN6C2oOwD8MlS7cVJbWuNhA5pFXbXa0xwqv4gbmtQsxl079ccHumZ0klmHkSfmxdIGgUyfQEZoxOPQGM3hW4GgAecYXyMYfvyxGcphJRqTQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Traceable_dosimetry_for_MeV_ion_beams","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827655,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827655/thumbnails/1.jpg","file_name":"2201.09778v1.pdf","download_url":"https://www.academia.edu/attachments/99827655/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Traceable_dosimetry_for_MeV_ion_beams.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827655/2201.09778v1-libre.pdf?1678786269=\u0026response-content-disposition=attachment%3B+filename%3DTraceable_dosimetry_for_MeV_ion_beams.pdf\u0026Expires=1732507640\u0026Signature=DmiufF~2KoVmd3lufyrL6Cy9OZiX-RnGkOTjIEWN-20LQ7nFLI0ikERbaJ0j25CUTSgqRhUvPV6omPTp89TyreghkQKjIGbdAnH3MSbfI4foIEaXtt-YDlNRHwuTo01T1vAvy1fTEB5ZV172nDFZ4OUVrrp~h66eNeQP2OlsHQURbZZAFR6YpHnWSiMDV36697eIBPB9uGIu-qwKWge-hU-t16eIgkzORvchfeWFMkAnN6C2oOwD8MlS7cVJbWuNhA5pFXbXa0xwqv4gbmtQsxl079ccHumZ0klmHkSfmxdIGgUyfQEZoxOPQGM3hW4GgAecYXyMYfvyxGcphJRqTQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":27497,"name":"Instrumentation","url":"https://www.academia.edu/Documents/in/Instrumentation"},{"id":191589,"name":"Absorbed Dose","url":"https://www.academia.edu/Documents/in/Absorbed_Dose"},{"id":329196,"name":"Ionization","url":"https://www.academia.edu/Documents/in/Ionization"},{"id":555289,"name":"NIST","url":"https://www.academia.edu/Documents/in/NIST"},{"id":599005,"name":"Dosimetry","url":"https://www.academia.edu/Documents/in/Dosimetry"},{"id":3289880,"name":"Ionization Chamber","url":"https://www.academia.edu/Documents/in/Ionization_Chamber"}],"urls":[{"id":29768684,"url":"https://iopscience.iop.org/article/10.1088/1748-0221/17/02/T02002/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491191"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491191/LET_dependence_of_radiation_induced_makers_of_Immunogenic_Cell_Death_in_human_cancer_cell_lines"><img alt="Research paper thumbnail of LET-dependence of radiation-induced makers of Immunogenic Cell Death in human cancer cell lines" class="work-thumbnail" src="https://attachments.academia-assets.com/99827661/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491191/LET_dependence_of_radiation_induced_makers_of_Immunogenic_Cell_Death_in_human_cancer_cell_lines">LET-dependence of radiation-induced makers of Immunogenic Cell Death in human cancer cell lines</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACTPurposeIt has been suggested that heavy-ion radiation therapy may contribute to the contr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACTPurposeIt has been suggested that heavy-ion radiation therapy may contribute to the control of distal metastases. These distant responses may include immune cell activation. Immunostimulation resulting from radiation-induced immunogenic cell death (ICD) of cancer cells, leads to the recruitment of anti-tumor T cells. Specific markers of ICD include translocation of calreticulin (CRT) and extracellular release of high mobility group box 1 protein (HMGB1), and ATP. However, the LET dependence of these effects remains unknown.Materials and MethodsExpression of the molecular indicators described above were tested in a panel of human cancer cell lines, that included pancreatic cancer (Panc1 and Paca2), glioblastoma (U87 and LN18) and melanoma (HTB129 and SK-Mel5). Cells were irradiated with 5 Gy of particles spanning a range of LETs, from 10 KeV/μm to 150 KeV/μm and assayed for relocalization of calreticulin and release of HMGB1 and ATP were assayed 24 hours later.ResultsIn the p...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5e751e81f89a6bc33a2a7dd48c18f696" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827661,"asset_id":98491191,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827661/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491191"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491191"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491191; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491191]").text(description); $(".js-view-count[data-work-id=98491191]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491191; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491191']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491191, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5e751e81f89a6bc33a2a7dd48c18f696" } } $('.js-work-strip[data-work-id=98491191]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491191,"title":"LET-dependence of radiation-induced makers of Immunogenic Cell Death in human cancer cell lines","translated_title":"","metadata":{"abstract":"ABSTRACTPurposeIt has been suggested that heavy-ion radiation therapy may contribute to the control of distal metastases. These distant responses may include immune cell activation. Immunostimulation resulting from radiation-induced immunogenic cell death (ICD) of cancer cells, leads to the recruitment of anti-tumor T cells. Specific markers of ICD include translocation of calreticulin (CRT) and extracellular release of high mobility group box 1 protein (HMGB1), and ATP. However, the LET dependence of these effects remains unknown.Materials and MethodsExpression of the molecular indicators described above were tested in a panel of human cancer cell lines, that included pancreatic cancer (Panc1 and Paca2), glioblastoma (U87 and LN18) and melanoma (HTB129 and SK-Mel5). Cells were irradiated with 5 Gy of particles spanning a range of LETs, from 10 KeV/μm to 150 KeV/μm and assayed for relocalization of calreticulin and release of HMGB1 and ATP were assayed 24 hours later.ResultsIn the p...","publisher":"Cold Spring Harbor Laboratory","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"ABSTRACTPurposeIt has been suggested that heavy-ion radiation therapy may contribute to the control of distal metastases. These distant responses may include immune cell activation. Immunostimulation resulting from radiation-induced immunogenic cell death (ICD) of cancer cells, leads to the recruitment of anti-tumor T cells. Specific markers of ICD include translocation of calreticulin (CRT) and extracellular release of high mobility group box 1 protein (HMGB1), and ATP. However, the LET dependence of these effects remains unknown.Materials and MethodsExpression of the molecular indicators described above were tested in a panel of human cancer cell lines, that included pancreatic cancer (Panc1 and Paca2), glioblastoma (U87 and LN18) and melanoma (HTB129 and SK-Mel5). Cells were irradiated with 5 Gy of particles spanning a range of LETs, from 10 KeV/μm to 150 KeV/μm and assayed for relocalization of calreticulin and release of HMGB1 and ATP were assayed 24 hours later.ResultsIn the p...","internal_url":"https://www.academia.edu/98491191/LET_dependence_of_radiation_induced_makers_of_Immunogenic_Cell_Death_in_human_cancer_cell_lines","translated_internal_url":"","created_at":"2023-03-14T02:17:34.575-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827661/thumbnails/1.jpg","file_name":"2022.01.25.477729.full.pdf","download_url":"https://www.academia.edu/attachments/99827661/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"LET_dependence_of_radiation_induced_make.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827661/2022.01.25.477729.full-libre.pdf?1678786259=\u0026response-content-disposition=attachment%3B+filename%3DLET_dependence_of_radiation_induced_make.pdf\u0026Expires=1732507640\u0026Signature=CA5vHzC0EsckgcnRje9HGFOsEGOAv~mQkDgBUm6YkL39n3~WyR71Qzr8yFngI5Qcne9jQEeGOH6IlQccOEYMa~qLjXsT~DdepGdUNdeX051KQPymdp-s8si2jqcr5MHCfiT4Abl7KNp-l~-NYgqPpZpx-YZ9svqLH8vPmqtTjVq1-beAYJNAi3k9beg0dtxG2TehgeXJAQkPHrMwWQmZXPe3sEo-BHfj6EKsadohHMZFSJjUI2JnQcp83GNLi7smjEYBjUpw32nW9yl5NpB2JtBdL6vLKletwi6d-WsJyuDtfHDv85LYjAuGgVY-z4y-x3eKTOh6xu2x1pPItwz87Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"LET_dependence_of_radiation_induced_makers_of_Immunogenic_Cell_Death_in_human_cancer_cell_lines","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827661/thumbnails/1.jpg","file_name":"2022.01.25.477729.full.pdf","download_url":"https://www.academia.edu/attachments/99827661/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"LET_dependence_of_radiation_induced_make.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827661/2022.01.25.477729.full-libre.pdf?1678786259=\u0026response-content-disposition=attachment%3B+filename%3DLET_dependence_of_radiation_induced_make.pdf\u0026Expires=1732507640\u0026Signature=CA5vHzC0EsckgcnRje9HGFOsEGOAv~mQkDgBUm6YkL39n3~WyR71Qzr8yFngI5Qcne9jQEeGOH6IlQccOEYMa~qLjXsT~DdepGdUNdeX051KQPymdp-s8si2jqcr5MHCfiT4Abl7KNp-l~-NYgqPpZpx-YZ9svqLH8vPmqtTjVq1-beAYJNAi3k9beg0dtxG2TehgeXJAQkPHrMwWQmZXPe3sEo-BHfj6EKsadohHMZFSJjUI2JnQcp83GNLi7smjEYBjUpw32nW9yl5NpB2JtBdL6vLKletwi6d-WsJyuDtfHDv85LYjAuGgVY-z4y-x3eKTOh6xu2x1pPItwz87Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":22255,"name":"Cancer Research","url":"https://www.academia.edu/Documents/in/Cancer_Research"},{"id":26623,"name":"Pancreatic Cancer","url":"https://www.academia.edu/Documents/in/Pancreatic_Cancer"},{"id":37782,"name":"Cell Culture","url":"https://www.academia.edu/Documents/in/Cell_Culture"},{"id":506082,"name":"Cancer Cell","url":"https://www.academia.edu/Documents/in/Cancer_Cell"},{"id":1274621,"name":"Extracellular","url":"https://www.academia.edu/Documents/in/Extracellular"},{"id":2514960,"name":"calreticulin","url":"https://www.academia.edu/Documents/in/calreticulin"}],"urls":[{"id":29768683,"url":"https://syndication.highwire.org/content/doi/10.1101/2022.01.25.477729"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491190"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/98491190/Testing_the_Stand_Alone_Microbeam_at"><img alt="Research paper thumbnail of Testing the Stand-Alone Microbeam at" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/98491190/Testing_the_Stand_Alone_Microbeam_at">Testing the Stand-Alone Microbeam at</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491190"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491190"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491190; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491190]").text(description); $(".js-view-count[data-work-id=98491190]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491190; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491190']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491190, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=98491190]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491190,"title":"Testing the Stand-Alone Microbeam at","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/98491190/Testing_the_Stand_Alone_Microbeam_at","translated_internal_url":"","created_at":"2023-03-14T02:17:34.491-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Testing_the_Stand_Alone_Microbeam_at","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2139900,"name":"Microbeam","url":"https://www.academia.edu/Documents/in/Microbeam"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491189"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491189/Biofluid_Metabolomics_of_Mice_Exposed_to_External_Low_Dose_Rate_Radiation_in_a_Novel_Irradiation_System_the_Variable_Dose_Rate_External_137Cs_Irradiator"><img alt="Research paper thumbnail of Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator" class="work-thumbnail" src="https://attachments.academia-assets.com/99827658/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491189/Biofluid_Metabolomics_of_Mice_Exposed_to_External_Low_Dose_Rate_Radiation_in_a_Novel_Irradiation_System_the_Variable_Dose_Rate_External_137Cs_Irradiator">Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator</a></div><div class="wp-workCard_item"><span>Journal of Proteome Research</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0afa229c11bfd98e1105fd9c51181ab2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827658,"asset_id":98491189,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827658/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491189"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491189"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491189; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491189]").text(description); $(".js-view-count[data-work-id=98491189]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491189; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491189']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491189, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0afa229c11bfd98e1105fd9c51181ab2" } } $('.js-work-strip[data-work-id=98491189]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491189,"title":"Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Proteome Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/98491189/Biofluid_Metabolomics_of_Mice_Exposed_to_External_Low_Dose_Rate_Radiation_in_a_Novel_Irradiation_System_the_Variable_Dose_Rate_External_137Cs_Irradiator","translated_internal_url":"","created_at":"2023-03-14T02:17:34.359-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827658/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/99827658/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Biofluid_Metabolomics_of_Mice_Exposed_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827658/pdf-libre.pdf?1678786266=\u0026response-content-disposition=attachment%3B+filename%3DBiofluid_Metabolomics_of_Mice_Exposed_to.pdf\u0026Expires=1732507640\u0026Signature=E1SqPFDkvCuDjAhAeti9zn-IM5DHEnL5AcN1ZQrWZGwClo4O5kwcj4F62u8pvjQpUbT~t1WrrErpBe-svblM8eKUHcMGyFQFCs6O-ByhTw2IMFvB9cvAEWMz5QCzEVkCMsS6RyS-3pgW8dnXEg7h9Lvl3VAwaxMfAgHl9UJTnosukju9C9ePHN4V6bXNxpnJHaPdBsJRCL3GBwwrdcTJnGrLa~VWKhjUHG9COxV3rOsEKmADkJGspXfzlUpv5NOSDXguRziEkC-j7D~BtLuJTkA2IFh58mXRU3dbc81x4Kdf7PeE9tBF0mdFJGJ94iWSERKzYwX0Pz7a~RPoD6ubZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Biofluid_Metabolomics_of_Mice_Exposed_to_External_Low_Dose_Rate_Radiation_in_a_Novel_Irradiation_System_the_Variable_Dose_Rate_External_137Cs_Irradiator","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827658/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/99827658/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Biofluid_Metabolomics_of_Mice_Exposed_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827658/pdf-libre.pdf?1678786266=\u0026response-content-disposition=attachment%3B+filename%3DBiofluid_Metabolomics_of_Mice_Exposed_to.pdf\u0026Expires=1732507640\u0026Signature=E1SqPFDkvCuDjAhAeti9zn-IM5DHEnL5AcN1ZQrWZGwClo4O5kwcj4F62u8pvjQpUbT~t1WrrErpBe-svblM8eKUHcMGyFQFCs6O-ByhTw2IMFvB9cvAEWMz5QCzEVkCMsS6RyS-3pgW8dnXEg7h9Lvl3VAwaxMfAgHl9UJTnosukju9C9ePHN4V6bXNxpnJHaPdBsJRCL3GBwwrdcTJnGrLa~VWKhjUHG9COxV3rOsEKmADkJGspXfzlUpv5NOSDXguRziEkC-j7D~BtLuJTkA2IFh58mXRU3dbc81x4Kdf7PeE9tBF0mdFJGJ94iWSERKzYwX0Pz7a~RPoD6ubZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":7802,"name":"Metabolomics","url":"https://www.academia.edu/Documents/in/Metabolomics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":317806,"name":"Biodosimetry","url":"https://www.academia.edu/Documents/in/Biodosimetry"},{"id":439023,"name":"Irradiation","url":"https://www.academia.edu/Documents/in/Irradiation"},{"id":764258,"name":"Ionizing Radiation","url":"https://www.academia.edu/Documents/in/Ionizing_Radiation"},{"id":1035050,"name":"Proteome","url":"https://www.academia.edu/Documents/in/Proteome"},{"id":1223894,"name":"Metabolite","url":"https://www.academia.edu/Documents/in/Metabolite"}],"urls":[{"id":29768682,"url":"https://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.1c00638"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491188"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491188/Machine_learning_methodology_for_high_throughput_personalized_neutron_dose_reconstruction_in_mixed_neutron_photon_exposures"><img alt="Research paper thumbnail of Machine learning methodology for high throughput personalized neutron dose reconstruction in mixed neutron + photon exposures" class="work-thumbnail" src="https://attachments.academia-assets.com/99827612/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491188/Machine_learning_methodology_for_high_throughput_personalized_neutron_dose_reconstruction_in_mixed_neutron_photon_exposures">Machine learning methodology for high throughput personalized neutron dose reconstruction in mixed neutron + photon exposures</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct neutron doses in mixed neutron + photon exposures, which are expected in improvised nuclear device detonations. Such individualized reconstructions are crucial for triage and treatment because neutrons are more biologically damaging than photons. We used a high-throughput micronucleus assay with automated scanning/imaging on lymphocytes from human blood ex-vivo irradiated with 44 different combinations of 0–4 Gy neutrons and 0–15 Gy photons (542 blood samples), which include reanalysis of past experiments. We developed several metrics that describe micronuclei/cell probability distributions in binucleated cells, and used them as predictors in random forest (RF) and XGboost machine learning analyses to reconstruct the neutron dose in each sample. The probability of “overfitting” was minimized by training both algorithms with repeated cross-validation on a randomly-selected subset of the ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab5e18891c8e422abbaa125a01d55776" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827612,"asset_id":98491188,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827612/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491188"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491188"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491188; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491188]").text(description); $(".js-view-count[data-work-id=98491188]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491188; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491188']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491188, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab5e18891c8e422abbaa125a01d55776" } } $('.js-work-strip[data-work-id=98491188]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491188,"title":"Machine learning methodology for high throughput personalized neutron dose reconstruction in mixed neutron + photon exposures","translated_title":"","metadata":{"abstract":"We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct neutron doses in mixed neutron + photon exposures, which are expected in improvised nuclear device detonations. Such individualized reconstructions are crucial for triage and treatment because neutrons are more biologically damaging than photons. We used a high-throughput micronucleus assay with automated scanning/imaging on lymphocytes from human blood ex-vivo irradiated with 44 different combinations of 0–4 Gy neutrons and 0–15 Gy photons (542 blood samples), which include reanalysis of past experiments. We developed several metrics that describe micronuclei/cell probability distributions in binucleated cells, and used them as predictors in random forest (RF) and XGboost machine learning analyses to reconstruct the neutron dose in each sample. The probability of “overfitting” was minimized by training both algorithms with repeated cross-validation on a randomly-selected subset of the ...","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":"We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct neutron doses in mixed neutron + photon exposures, which are expected in improvised nuclear device detonations. Such individualized reconstructions are crucial for triage and treatment because neutrons are more biologically damaging than photons. We used a high-throughput micronucleus assay with automated scanning/imaging on lymphocytes from human blood ex-vivo irradiated with 44 different combinations of 0–4 Gy neutrons and 0–15 Gy photons (542 blood samples), which include reanalysis of past experiments. We developed several metrics that describe micronuclei/cell probability distributions in binucleated cells, and used them as predictors in random forest (RF) and XGboost machine learning analyses to reconstruct the neutron dose in each sample. The probability of “overfitting” was minimized by training both algorithms with repeated cross-validation on a randomly-selected subset of the ...","internal_url":"https://www.academia.edu/98491188/Machine_learning_methodology_for_high_throughput_personalized_neutron_dose_reconstruction_in_mixed_neutron_photon_exposures","translated_internal_url":"","created_at":"2023-03-14T02:17:34.229-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827612/thumbnails/1.jpg","file_name":"s41598-021-83575-5.pdf","download_url":"https://www.academia.edu/attachments/99827612/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Machine_learning_methodology_for_high_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827612/s41598-021-83575-5-libre.pdf?1678786276=\u0026response-content-disposition=attachment%3B+filename%3DMachine_learning_methodology_for_high_th.pdf\u0026Expires=1732507640\u0026Signature=e6KtxJPEPtIcvmrvhcG-xmOJUbW2KKamq0zV8uSzBttHnDMs9fDziIHr1gOUrjwQUOaWoHsUwfCIfM0hLAZYc6JTFJvEzqHDTZiIZ4tuxKHvDpapGfe~nlBhyYX-mx4ljk9R7EPkmdJoGNocXg~Oqke4PImJsIHAKi6X2nHfiSCWj0DIwxeShsbc92GWM2E4M1nmEDY-K5iV1~u0XYpo6GDO9pWjlSh6NctLmj7EniutfZ7xJsuDYWh5BinySRrgUByXJUDa~~8MtWYFh0zy4aRcJBYV78z5tRu8nIfoLTN5QPN1m0kF1JA9JpOto4ykWtcJMXbPi7m3D5uNFICudw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Machine_learning_methodology_for_high_throughput_personalized_neutron_dose_reconstruction_in_mixed_neutron_photon_exposures","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827612/thumbnails/1.jpg","file_name":"s41598-021-83575-5.pdf","download_url":"https://www.academia.edu/attachments/99827612/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Machine_learning_methodology_for_high_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827612/s41598-021-83575-5-libre.pdf?1678786276=\u0026response-content-disposition=attachment%3B+filename%3DMachine_learning_methodology_for_high_th.pdf\u0026Expires=1732507640\u0026Signature=e6KtxJPEPtIcvmrvhcG-xmOJUbW2KKamq0zV8uSzBttHnDMs9fDziIHr1gOUrjwQUOaWoHsUwfCIfM0hLAZYc6JTFJvEzqHDTZiIZ4tuxKHvDpapGfe~nlBhyYX-mx4ljk9R7EPkmdJoGNocXg~Oqke4PImJsIHAKi6X2nHfiSCWj0DIwxeShsbc92GWM2E4M1nmEDY-K5iV1~u0XYpo6GDO9pWjlSh6NctLmj7EniutfZ7xJsuDYWh5BinySRrgUByXJUDa~~8MtWYFh0zy4aRcJBYV78z5tRu8nIfoLTN5QPN1m0kF1JA9JpOto4ykWtcJMXbPi7m3D5uNFICudw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":99827613,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827613/thumbnails/1.jpg","file_name":"s41598-021-83575-5.pdf","download_url":"https://www.academia.edu/attachments/99827613/download_file","bulk_download_file_name":"Machine_learning_methodology_for_high_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827613/s41598-021-83575-5-libre.pdf?1678786276=\u0026response-content-disposition=attachment%3B+filename%3DMachine_learning_methodology_for_high_th.pdf\u0026Expires=1732507640\u0026Signature=FpVETkrBwLysVxt78N33PIGVycx9r2wfgDgPgDb15C-CL7xIgKCFHtigre~ONYCcpYkT0LvDcY84SbbQDZDqymyqGRQSaEAq4Ysy822~vmGAbc5UXpqr3g54W77H1wBXYXUMxnnQByseNL5WX-X3gXfmfkx9R6XXKa6VmIohQPxaqAllVx8fGgtIXRTVgI0jpRUDjK0Ce3JEfut2zYc438kfIna1zOBt-4ynJF673RruK46JqMMztMlsVDiiEtdXPgxpAH81RjOz-pHs4IwszvrF8DrNNHn115jik6D~cQljP3sP3d0wDRRzjbPYzll~1Fym4SMlmwjmG2qHjKr7XA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":317806,"name":"Biodosimetry","url":"https://www.academia.edu/Documents/in/Biodosimetry"},{"id":670466,"name":"Photon","url":"https://www.academia.edu/Documents/in/Photon"},{"id":728571,"name":"Neutron","url":"https://www.academia.edu/Documents/in/Neutron"}],"urls":[{"id":29768681,"url":"https://www.nature.com/articles/s41598-021-83575-5.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491187"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491187/A_horizontal_multi_purpose_microbeam_system"><img alt="Research paper thumbnail of A horizontal multi-purpose microbeam system" class="work-thumbnail" src="https://attachments.academia-assets.com/99827654/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491187/A_horizontal_multi_purpose_microbeam_system">A horizontal multi-purpose microbeam system</a></div><div class="wp-workCard_item"><span>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2f6a06b225406e59bf4ff5567e958601" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827654,"asset_id":98491187,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827654/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491187"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491187"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491187; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491187]").text(description); $(".js-view-count[data-work-id=98491187]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491187; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491187']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491187, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2f6a06b225406e59bf4ff5567e958601" } } $('.js-work-strip[data-work-id=98491187]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491187,"title":"A horizontal multi-purpose microbeam system","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment"},"translated_abstract":null,"internal_url":"https://www.academia.edu/98491187/A_horizontal_multi_purpose_microbeam_system","translated_internal_url":"","created_at":"2023-03-14T02:17:34.095-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827654,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827654/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/99827654/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_horizontal_multi_purpose_microbeam_sys.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827654/ptpmcrender-libre.pdf?1678786260=\u0026response-content-disposition=attachment%3B+filename%3DA_horizontal_multi_purpose_microbeam_sys.pdf\u0026Expires=1732507640\u0026Signature=bCeRP0SwQDFfnFNtnVMiuTATAORvHGw-IX195-QvtUagcqZ~d6catWc3uUVNx3liR1CliYMBEPuEw8ws9mz~BmK0Zscm-srE4guEVa1YgnAQyMkmKzRCOFmvrUajsSHKfEcN6uXFMKl7MoWWIjburdQSEJZ4jBeauyqm3fqgAFz-fnubI-8O8q016J1tztQ-c5nOp6X~zf8IngVrCDGdItZH11HE8fYNG0ktAIlM8K371XzknqlpZjZSCiiXQmdRiSlJKQsdLOVngPUwjNF6nihOG4u2UYwcvLTSnD8AOHJdLJU8SFXO-gv5MnXOY9WcGa62sz3lbE7cO160l2ODVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_horizontal_multi_purpose_microbeam_system","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827654,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827654/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/99827654/download_file?st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_horizontal_multi_purpose_microbeam_sys.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827654/ptpmcrender-libre.pdf?1678786260=\u0026response-content-disposition=attachment%3B+filename%3DA_horizontal_multi_purpose_microbeam_sys.pdf\u0026Expires=1732507640\u0026Signature=bCeRP0SwQDFfnFNtnVMiuTATAORvHGw-IX195-QvtUagcqZ~d6catWc3uUVNx3liR1CliYMBEPuEw8ws9mz~BmK0Zscm-srE4guEVa1YgnAQyMkmKzRCOFmvrUajsSHKfEcN6uXFMKl7MoWWIjburdQSEJZ4jBeauyqm3fqgAFz-fnubI-8O8q016J1tztQ-c5nOp6X~zf8IngVrCDGdItZH11HE8fYNG0ktAIlM8K371XzknqlpZjZSCiiXQmdRiSlJKQsdLOVngPUwjNF6nihOG4u2UYwcvLTSnD8AOHJdLJU8SFXO-gv5MnXOY9WcGa62sz3lbE7cO160l2ODVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":516,"name":"Optics","url":"https://www.academia.edu/Documents/in/Optics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":366350,"name":"Particle Accelerator","url":"https://www.academia.edu/Documents/in/Particle_Accelerator"},{"id":2139900,"name":"Microbeam","url":"https://www.academia.edu/Documents/in/Microbeam"}],"urls":[{"id":29768680,"url":"https://api.elsevier.com/content/article/PII:S0168900218300792?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491186"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491186/Mapping_the_sensitive_volume_of_an_ion_counting_nanodosimeter"><img alt="Research paper thumbnail of Mapping the sensitive volume of an ion-counting nanodosimeter" class="work-thumbnail" src="https://attachments.academia-assets.com/99827660/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491186/Mapping_the_sensitive_volume_of_an_ion_counting_nanodosimeter">Mapping the sensitive volume of an ion-counting nanodosimeter</a></div><div class="wp-workCard_item"><span>Journal of Instrumentation</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="196d375a4094894d38b09c28acfea9c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827660,"asset_id":98491186,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827660/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491186"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491186"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491186; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491186]").text(description); $(".js-view-count[data-work-id=98491186]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491186; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491186']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491186, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "196d375a4094894d38b09c28acfea9c2" } } $('.js-work-strip[data-work-id=98491186]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491186,"title":"Mapping the sensitive volume of an ion-counting nanodosimeter","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of Instrumentation"},"translated_abstract":null,"internal_url":"https://www.academia.edu/98491186/Mapping_the_sensitive_volume_of_an_ion_counting_nanodosimeter","translated_internal_url":"","created_at":"2023-03-14T02:17:33.983-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827660,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827660/thumbnails/1.jpg","file_name":"0601177.pdf","download_url":"https://www.academia.edu/attachments/99827660/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mapping_the_sensitive_volume_of_an_ion_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827660/0601177-libre.pdf?1678786262=\u0026response-content-disposition=attachment%3B+filename%3DMapping_the_sensitive_volume_of_an_ion_c.pdf\u0026Expires=1732507641\u0026Signature=DrkcwelvaFP8WZAdoTDmgNMl2rSP-Q74FctgsErvkCIxGkcFfsXqdxnUshwe79HEUoijZXME1HOjoPiA0EdBYR9o8OXiiKYgIqoRlu4JdIkpNJBZaLOtAibWcO5haS1HrqZR9olMBeRV83-jCHET0KhinUuxxjAI6BJVJpS53A4H8YF3M7BPfsNLBJz3KQ4D~0jZGeBMaWJ09aozdxZ6jd0ZhLr8s~-zSz456BL-njUZ3YY17bgqefwRSB-JUmcCYKfbmcGaEYy~P5nzgR5n2l7QVzB9EvRWi9zjKGMl313LiMott15nZ1WJT9f83ZXIj6whFahVBe5zdifSs4QlaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mapping_the_sensitive_volume_of_an_ion_counting_nanodosimeter","translated_slug":"","page_count":27,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827660,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827660/thumbnails/1.jpg","file_name":"0601177.pdf","download_url":"https://www.academia.edu/attachments/99827660/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mapping_the_sensitive_volume_of_an_ion_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827660/0601177-libre.pdf?1678786262=\u0026response-content-disposition=attachment%3B+filename%3DMapping_the_sensitive_volume_of_an_ion_c.pdf\u0026Expires=1732507641\u0026Signature=DrkcwelvaFP8WZAdoTDmgNMl2rSP-Q74FctgsErvkCIxGkcFfsXqdxnUshwe79HEUoijZXME1HOjoPiA0EdBYR9o8OXiiKYgIqoRlu4JdIkpNJBZaLOtAibWcO5haS1HrqZR9olMBeRV83-jCHET0KhinUuxxjAI6BJVJpS53A4H8YF3M7BPfsNLBJz3KQ4D~0jZGeBMaWJ09aozdxZ6jd0ZhLr8s~-zSz456BL-njUZ3YY17bgqefwRSB-JUmcCYKfbmcGaEYy~P5nzgR5n2l7QVzB9EvRWi9zjKGMl313LiMott15nZ1WJT9f83ZXIj6whFahVBe5zdifSs4QlaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":27497,"name":"Instrumentation","url":"https://www.academia.edu/Documents/in/Instrumentation"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":981035,"name":"Gaseous Detector R \u0026D","url":"https://www.academia.edu/Documents/in/Gaseous_Detector_R_and_D"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491115"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/98491115/Validation_of_a_High_Throughput_Dicentric_Chromosome_Assay_Using_Complex_Radiation_Exposures"><img alt="Research paper thumbnail of Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/98491115/Validation_of_a_High_Throughput_Dicentric_Chromosome_Assay_Using_Complex_Radiation_Exposures">Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures</a></div><div class="wp-workCard_item"><span>Radiation Research</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491115"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491115"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491115; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491115]").text(description); $(".js-view-count[data-work-id=98491115]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491115; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491115']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491115, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=98491115]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491115,"title":"Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures","translated_title":"","metadata":{"publisher":"Radiation Research Society","publication_name":"Radiation Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/98491115/Validation_of_a_High_Throughput_Dicentric_Chromosome_Assay_Using_Complex_Radiation_Exposures","translated_internal_url":"","created_at":"2023-03-14T02:16:56.367-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Validation_of_a_High_Throughput_Dicentric_Chromosome_Assay_Using_Complex_Radiation_Exposures","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[{"id":1328,"name":"Radiation","url":"https://www.academia.edu/Documents/in/Radiation"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":29768643,"url":"https://meridian.allenpress.com/radiation-research/article-pdf/doi/10.1667/RADE-22-00007.1/3105966/10.1667_rade-22-00007.1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605385"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73605385/Cross_platform_validation_of_a_mouse_blood_gene_signature_for_quantitative_reconstruction_of_radiation_dose"><img alt="Research paper thumbnail of Cross-platform validation of a mouse blood gene signature for quantitative reconstruction of radiation dose" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/73605385/Cross_platform_validation_of_a_mouse_blood_gene_signature_for_quantitative_reconstruction_of_radiation_dose">Cross-platform validation of a mouse blood gene signature for quantitative reconstruction of radiation dose</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the search for biological markers after a large-scale exposure of the human population to radi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the search for biological markers after a large-scale exposure of the human population to radiation, gene expression is a sensitive endpoint easily translatable to in-field high throughput applications. Primarily, the ex-vivo irradiated healthy human blood model has been used to generate available gene expression datasets. This model has limitations i.e., lack of signaling from other irradiated tissues and deterioration of blood cells cultures over time. In vivo models are needed; therefore, we present our novel approach to define a gene signature in mouse blood cells that quantitatively correlates with radiation dose (at 1 Gy/min). Starting with available microarray datasets, we selected 30 radiation-responsive genes and performed cross-validation/training-testing data splits to downselect 16 radiation-responsive genes. We then tested these genes in an independent cohort of irradiated adult C57BL/6 mice (50:50 both sexes) and measured mRNA by quantitative RT-PCR in whole blood a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605385"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605385"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605385; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605385]").text(description); $(".js-view-count[data-work-id=73605385]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605385; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605385']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605385, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73605385]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605385,"title":"Cross-platform validation of a mouse blood gene signature for quantitative reconstruction of radiation dose","translated_title":"","metadata":{"abstract":"In the search for biological markers after a large-scale exposure of the human population to radiation, gene expression is a sensitive endpoint easily translatable to in-field high throughput applications. Primarily, the ex-vivo irradiated healthy human blood model has been used to generate available gene expression datasets. This model has limitations i.e., lack of signaling from other irradiated tissues and deterioration of blood cells cultures over time. In vivo models are needed; therefore, we present our novel approach to define a gene signature in mouse blood cells that quantitatively correlates with radiation dose (at 1 Gy/min). Starting with available microarray datasets, we selected 30 radiation-responsive genes and performed cross-validation/training-testing data splits to downselect 16 radiation-responsive genes. We then tested these genes in an independent cohort of irradiated adult C57BL/6 mice (50:50 both sexes) and measured mRNA by quantitative RT-PCR in whole blood a...","publisher":"Research Square Platform LLC"},"translated_abstract":"In the search for biological markers after a large-scale exposure of the human population to radiation, gene expression is a sensitive endpoint easily translatable to in-field high throughput applications. Primarily, the ex-vivo irradiated healthy human blood model has been used to generate available gene expression datasets. This model has limitations i.e., lack of signaling from other irradiated tissues and deterioration of blood cells cultures over time. In vivo models are needed; therefore, we present our novel approach to define a gene signature in mouse blood cells that quantitatively correlates with radiation dose (at 1 Gy/min). Starting with available microarray datasets, we selected 30 radiation-responsive genes and performed cross-validation/training-testing data splits to downselect 16 radiation-responsive genes. We then tested these genes in an independent cohort of irradiated adult C57BL/6 mice (50:50 both sexes) and measured mRNA by quantitative RT-PCR in whole blood a...","internal_url":"https://www.academia.edu/73605385/Cross_platform_validation_of_a_mouse_blood_gene_signature_for_quantitative_reconstruction_of_radiation_dose","translated_internal_url":"","created_at":"2022-03-12T07:23:44.556-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cross_platform_validation_of_a_mouse_blood_gene_signature_for_quantitative_reconstruction_of_radiation_dose","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[],"urls":[{"id":18448712,"url":"https://www.researchsquare.com/article/rs-1325734/v1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605384"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73605384/Expanding_the_Question_Answering_Potential_of_Charged_Particle_Single_Cell_Microbeams"><img alt="Research paper thumbnail of Expanding the Question-Answering Potential of Charged-Particle, Single-Cell Microbeams" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/73605384/Expanding_the_Question_Answering_Potential_of_Charged_Particle_Single_Cell_Microbeams">Expanding the Question-Answering Potential of Charged-Particle, Single-Cell Microbeams</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605384"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605384"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605384; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605384]").text(description); $(".js-view-count[data-work-id=73605384]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605384; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605384']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605384, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73605384]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605384,"title":"Expanding the Question-Answering Potential of Charged-Particle, Single-Cell Microbeams","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73605384/Expanding_the_Question_Answering_Potential_of_Charged_Particle_Single_Cell_Microbeams","translated_internal_url":"","created_at":"2022-03-12T07:23:44.302-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Expanding_the_Question_Answering_Potential_of_Charged_Particle_Single_Cell_Microbeams","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605382"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73605382/Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation"><img alt="Research paper thumbnail of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation" class="work-thumbnail" src="https://attachments.academia-assets.com/82062703/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73605382/Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation">Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">BackgroundRadiation exposure due to the detonation of an improvised nuclear device remains a majo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">BackgroundRadiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness.ResultsWe investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the r...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cb3ad13663c6f7264e70556b9bcd1ea4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82062703,"asset_id":73605382,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82062703/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605382"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605382"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605382; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605382]").text(description); $(".js-view-count[data-work-id=73605382]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605382; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605382']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605382, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cb3ad13663c6f7264e70556b9bcd1ea4" } } $('.js-work-strip[data-work-id=73605382]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605382,"title":"Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation","translated_title":"","metadata":{"abstract":"BackgroundRadiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness.ResultsWe investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the r...","publisher":"BMC Genomics","publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":"BackgroundRadiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness.ResultsWe investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the r...","internal_url":"https://www.academia.edu/73605382/Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_internal_url":"","created_at":"2022-03-12T07:23:44.046-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82062703,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062703/thumbnails/1.jpg","file_name":"s12864-018-4884-6.pdf","download_url":"https://www.academia.edu/attachments/82062703/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identification_of_differentially_express.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062703/s12864-018-4884-6-libre.pdf?1647099948=\u0026response-content-disposition=attachment%3B+filename%3DIdentification_of_differentially_express.pdf\u0026Expires=1732507641\u0026Signature=LiEzLYqWHdtzdLzzY0Znc93DP6A8-EY0Nv9a2lGv2p-FDKF7Vw85TYYfzIuZXpXLmmd9ghoElNIBUdI289H920MqvnMs2tFDXFKPEzqmmXaM7eCx02femLr1f6Pm0YIYsuU9p3JOuVQCscs0Lng6H~B1qPJjxSWvgs3xXgQGNngBmwLr-FNNuIbNGJbXGu35tc87Pe5kajsxB9pkzKSIQd4n2Gttsrq-ZOBu2wYQid3Z7CE3dhcWaBLouRly4kEJK7-I1CgZtKrjtr7aaoFRM-euOUM2UV~0ELuWN54WDuZvtbOp5wmJE~FQjX1mMNRhs3VsckbTgPotmLER4qvc7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":82062703,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062703/thumbnails/1.jpg","file_name":"s12864-018-4884-6.pdf","download_url":"https://www.academia.edu/attachments/82062703/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identification_of_differentially_express.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062703/s12864-018-4884-6-libre.pdf?1647099948=\u0026response-content-disposition=attachment%3B+filename%3DIdentification_of_differentially_express.pdf\u0026Expires=1732507641\u0026Signature=LiEzLYqWHdtzdLzzY0Znc93DP6A8-EY0Nv9a2lGv2p-FDKF7Vw85TYYfzIuZXpXLmmd9ghoElNIBUdI289H920MqvnMs2tFDXFKPEzqmmXaM7eCx02femLr1f6Pm0YIYsuU9p3JOuVQCscs0Lng6H~B1qPJjxSWvgs3xXgQGNngBmwLr-FNNuIbNGJbXGu35tc87Pe5kajsxB9pkzKSIQd4n2Gttsrq-ZOBu2wYQid3Z7CE3dhcWaBLouRly4kEJK7-I1CgZtKrjtr7aaoFRM-euOUM2UV~0ELuWN54WDuZvtbOp5wmJE~FQjX1mMNRhs3VsckbTgPotmLER4qvc7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":82062704,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062704/thumbnails/1.jpg","file_name":"s12864-018-4884-6.pdf","download_url":"https://www.academia.edu/attachments/82062704/download_file","bulk_download_file_name":"Identification_of_differentially_express.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062704/s12864-018-4884-6-libre.pdf?1647099948=\u0026response-content-disposition=attachment%3B+filename%3DIdentification_of_differentially_express.pdf\u0026Expires=1732507641\u0026Signature=StzOQdiaqzTJtCrKTMMuJXoqJn6MyasGAJlaLasdMtA9lWGFcy9TnDY-D6vi5AFCs8JrSMNKap9sMgRHVNq0k5U7RiTR3NG7Oyp6ffPp6Tv885mCtkaexD9Klurpqs89TA6wUMyJF1Nc9cqy8Va8Wke4CNl6IHQiW~Q3yVHV~kDWB1e4kIwDf0YtqvRtLW6qIs75AVjFLGcCNgP14gBWkBojspoc2c7Cm198mX6ABZZy3Hf-4lwk3Ijt991fo6Qmw3VOsH6B7nSRFXMj1ObWejFMMBAflqmsXOCWaFct3N132v2fgH-K~m7mKMJ0-19HTN7oS4l8mp1thkHMNEdEVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":18448711,"url":"https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-018-4884-6"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605381"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73605381/91_Impact_of_ultra_fast_FLASH_radiotherapy_on_single_cell_immunogenomics_in_diffuse_intrinsic_pontine_glioma_DIPG_"><img alt="Research paper thumbnail of 91 Impact of ultra-fast ‘FLASH’ radiotherapy on single cell immunogenomics in diffuse intrinsic pontine glioma (DIPG)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73605381/91_Impact_of_ultra_fast_FLASH_radiotherapy_on_single_cell_immunogenomics_in_diffuse_intrinsic_pontine_glioma_DIPG_">91 Impact of ultra-fast ‘FLASH’ radiotherapy on single cell immunogenomics in diffuse intrinsic pontine glioma (DIPG)</a></div><div class="wp-workCard_item"><span>Journal for ImmunoTherapy of Cancer</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">BackgroundDiffuse intrinsic pontine gliomas (DIPG’s) are immunologically inert tumors with a medi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">BackgroundDiffuse intrinsic pontine gliomas (DIPG’s) are immunologically inert tumors with a median survival of 9–15 months. Radiation therapy (RT) is the mainstay treatment for DIPG but is associated with immunodepletion of the tumor microenvironment (TME) at high dose ranges. FLASH, or ultra-fast dose rate RT, represents a novel ablative technique that may spare TME immune responses while decreasing tumor burden. Here, we present single-cell immune profiling of DIPG tumors treated with FLASH, conventional dose rate RT (CONV) or no RT (SHAM).MethodsMurine H3.3K27M mutant DIPG cells were stereotactically injected and tumor induction confirmed by magnetic resonance imaging (MRI) 15 days later. DIPG-bearing mice were randomly assigned to one of three treatment groups (n=4/group), FLASH, CONV or SHAM. A fourth group with no tumor (NML) was included as a negative biological control. A modified linear accelerator was used to deliver 15 Gy of electron RT to the brainstem at dose rates of ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605381"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605381"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605381; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605381]").text(description); $(".js-view-count[data-work-id=73605381]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605381; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605381']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605381, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73605381]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605381,"title":"91 Impact of ultra-fast ‘FLASH’ radiotherapy on single cell immunogenomics in diffuse intrinsic pontine glioma (DIPG)","translated_title":"","metadata":{"abstract":"BackgroundDiffuse intrinsic pontine gliomas (DIPG’s) are immunologically inert tumors with a median survival of 9–15 months. Radiation therapy (RT) is the mainstay treatment for DIPG but is associated with immunodepletion of the tumor microenvironment (TME) at high dose ranges. FLASH, or ultra-fast dose rate RT, represents a novel ablative technique that may spare TME immune responses while decreasing tumor burden. Here, we present single-cell immune profiling of DIPG tumors treated with FLASH, conventional dose rate RT (CONV) or no RT (SHAM).MethodsMurine H3.3K27M mutant DIPG cells were stereotactically injected and tumor induction confirmed by magnetic resonance imaging (MRI) 15 days later. DIPG-bearing mice were randomly assigned to one of three treatment groups (n=4/group), FLASH, CONV or SHAM. A fourth group with no tumor (NML) was included as a negative biological control. A modified linear accelerator was used to deliver 15 Gy of electron RT to the brainstem at dose rates of ...","publisher":"BMJ","publication_name":"Journal for ImmunoTherapy of Cancer"},"translated_abstract":"BackgroundDiffuse intrinsic pontine gliomas (DIPG’s) are immunologically inert tumors with a median survival of 9–15 months. Radiation therapy (RT) is the mainstay treatment for DIPG but is associated with immunodepletion of the tumor microenvironment (TME) at high dose ranges. FLASH, or ultra-fast dose rate RT, represents a novel ablative technique that may spare TME immune responses while decreasing tumor burden. Here, we present single-cell immune profiling of DIPG tumors treated with FLASH, conventional dose rate RT (CONV) or no RT (SHAM).MethodsMurine H3.3K27M mutant DIPG cells were stereotactically injected and tumor induction confirmed by magnetic resonance imaging (MRI) 15 days later. DIPG-bearing mice were randomly assigned to one of three treatment groups (n=4/group), FLASH, CONV or SHAM. A fourth group with no tumor (NML) was included as a negative biological control. A modified linear accelerator was used to deliver 15 Gy of electron RT to the brainstem at dose rates of ...","internal_url":"https://www.academia.edu/73605381/91_Impact_of_ultra_fast_FLASH_radiotherapy_on_single_cell_immunogenomics_in_diffuse_intrinsic_pontine_glioma_DIPG_","translated_internal_url":"","created_at":"2022-03-12T07:23:43.793-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"91_Impact_of_ultra_fast_FLASH_radiotherapy_on_single_cell_immunogenomics_in_diffuse_intrinsic_pontine_glioma_DIPG_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[],"urls":[{"id":18448710,"url":"https://syndication.highwire.org/content/doi/10.1136/jitc-2021-SITC2021.091"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605380"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73605380/The_RABiT_II_DCA_in_the_Rhesus_Macaque_Model"><img alt="Research paper thumbnail of The RABiT-II DCA in the Rhesus Macaque Model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73605380/The_RABiT_II_DCA_in_the_Rhesus_Macaque_Model">The RABiT-II DCA in the Rhesus Macaque Model</a></div><div class="wp-workCard_item"><span>Radiation Research</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An automated platform for cytogenetic biodosimetry, the &quot;Rapid Automated Biodosimetry Tool I...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An automated platform for cytogenetic biodosimetry, the &quot;Rapid Automated Biodosimetry Tool II (RABiT-II),&quot; adapts the dicentric chromosome assay (DCA) for high-throughput mass-screening of the population after a large-scale radiological event. To validate this test, the U.S. Federal Drug Administration (FDA) recommends demonstrating that the high-throughput biodosimetric assay in question correctly reports the dose in an in vivo model. Here we describe the use of rhesus macaques (Macaca mulatta) to augment human studies and validate the accuracy of the high-throughput version of the DCA. To perform analysis, we developed the 17/22-mer peptide nucleic acid (PNA) probes that bind to the rhesus macaque&#39;s centromeres. To our knowledge, these are the first custom PNA probes with high specificity that can be used for chromosome analysis in M. mulatta. The accuracy of fully-automated chromosome analysis was improved by optimizing a low-temperature telomere PNA FISH staining in multiwell plates and adding the telomere detection feature to our custom chromosome detection software, FluorQuantDic V4. The dicentric frequencies estimated from in vitro irradiated rhesus macaque samples were compared to human blood samples of individuals subjected to the same ex vivo irradiation conditions. The results of the RABiT-II DCA analysis suggest that, in the lymphocyte system, the dose responses to gamma radiation in the rhesus macaques were similar to those in humans, with small but statistically significant differences between these two model systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605380"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605380"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605380; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605380]").text(description); $(".js-view-count[data-work-id=73605380]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605380; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605380']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605380, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73605380]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605380,"title":"The RABiT-II DCA in the Rhesus Macaque Model","translated_title":"","metadata":{"abstract":"An automated platform for cytogenetic biodosimetry, the \u0026quot;Rapid Automated Biodosimetry Tool II (RABiT-II),\u0026quot; adapts the dicentric chromosome assay (DCA) for high-throughput mass-screening of the population after a large-scale radiological event. To validate this test, the U.S. Federal Drug Administration (FDA) recommends demonstrating that the high-throughput biodosimetric assay in question correctly reports the dose in an in vivo model. Here we describe the use of rhesus macaques (Macaca mulatta) to augment human studies and validate the accuracy of the high-throughput version of the DCA. To perform analysis, we developed the 17/22-mer peptide nucleic acid (PNA) probes that bind to the rhesus macaque\u0026#39;s centromeres. To our knowledge, these are the first custom PNA probes with high specificity that can be used for chromosome analysis in M. mulatta. The accuracy of fully-automated chromosome analysis was improved by optimizing a low-temperature telomere PNA FISH staining in multiwell plates and adding the telomere detection feature to our custom chromosome detection software, FluorQuantDic V4. The dicentric frequencies estimated from in vitro irradiated rhesus macaque samples were compared to human blood samples of individuals subjected to the same ex vivo irradiation conditions. The results of the RABiT-II DCA analysis suggest that, in the lymphocyte system, the dose responses to gamma radiation in the rhesus macaques were similar to those in humans, with small but statistically significant differences between these two model systems.","publisher":"Radiation Research Society","publication_name":"Radiation Research"},"translated_abstract":"An automated platform for cytogenetic biodosimetry, the \u0026quot;Rapid Automated Biodosimetry Tool II (RABiT-II),\u0026quot; adapts the dicentric chromosome assay (DCA) for high-throughput mass-screening of the population after a large-scale radiological event. To validate this test, the U.S. Federal Drug Administration (FDA) recommends demonstrating that the high-throughput biodosimetric assay in question correctly reports the dose in an in vivo model. Here we describe the use of rhesus macaques (Macaca mulatta) to augment human studies and validate the accuracy of the high-throughput version of the DCA. To perform analysis, we developed the 17/22-mer peptide nucleic acid (PNA) probes that bind to the rhesus macaque\u0026#39;s centromeres. To our knowledge, these are the first custom PNA probes with high specificity that can be used for chromosome analysis in M. mulatta. The accuracy of fully-automated chromosome analysis was improved by optimizing a low-temperature telomere PNA FISH staining in multiwell plates and adding the telomere detection feature to our custom chromosome detection software, FluorQuantDic V4. The dicentric frequencies estimated from in vitro irradiated rhesus macaque samples were compared to human blood samples of individuals subjected to the same ex vivo irradiation conditions. The results of the RABiT-II DCA analysis suggest that, in the lymphocyte system, the dose responses to gamma radiation in the rhesus macaques were similar to those in humans, with small but statistically significant differences between these two model systems.","internal_url":"https://www.academia.edu/73605380/The_RABiT_II_DCA_in_the_Rhesus_Macaque_Model","translated_internal_url":"","created_at":"2022-03-12T07:23:43.615-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_RABiT_II_DCA_in_the_Rhesus_Macaque_Model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[{"id":1328,"name":"Radiation","url":"https://www.academia.edu/Documents/in/Radiation"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605378"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73605378/The_use_of_a_centrifuge_free_RABiT_II_system_for_high_throughput_micronucleus_analysis"><img alt="Research paper thumbnail of The use of a centrifuge-free RABiT-II system for high-throughput micronucleus analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/82062718/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73605378/The_use_of_a_centrifuge_free_RABiT_II_system_for_high_throughput_micronucleus_analysis">The use of a centrifuge-free RABiT-II system for high-throughput micronucleus analysis</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The cytokinesis-block micronucleus (CBMN) assay is considered as the most suitable biodosimetry m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The cytokinesis-block micronucleus (CBMN) assay is considered as the most suitable biodosimetry method for automation. Previously, we automated this assay on a commercial robotic biotech high-throughput system (RABiT-II) adopting both a traditional and an accelerated micronucleus protocol, both using centrifugation steps for lymphocyte harvesting and washing, after whole blood culturing. Here we describe further development of our accelerated CBMN assay protocol for using on High Throughput/High Content Screening (HTS/HCS) robotic systems without a centrifuge. This opens the way for implementation of the CBMN assay on a wider range of commercial automated HTS/HCS systems and thus increases the potential capacity of dose estimates following a mass-casualty radiological event.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ea819a15f118ec7fc429decfd96091e9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82062718,"asset_id":73605378,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82062718/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605378"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605378"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605378; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605378]").text(description); $(".js-view-count[data-work-id=73605378]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605378; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605378']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605378, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ea819a15f118ec7fc429decfd96091e9" } } $('.js-work-strip[data-work-id=73605378]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605378,"title":"The use of a centrifuge-free RABiT-II system for high-throughput micronucleus analysis","translated_title":"","metadata":{"abstract":"The cytokinesis-block micronucleus (CBMN) assay is considered as the most suitable biodosimetry method for automation. Previously, we automated this assay on a commercial robotic biotech high-throughput system (RABiT-II) adopting both a traditional and an accelerated micronucleus protocol, both using centrifugation steps for lymphocyte harvesting and washing, after whole blood culturing. Here we describe further development of our accelerated CBMN assay protocol for using on High Throughput/High Content Screening (HTS/HCS) robotic systems without a centrifuge. This opens the way for implementation of the CBMN assay on a wider range of commercial automated HTS/HCS systems and thus increases the potential capacity of dose estimates following a mass-casualty radiological event.","publisher":"Cold Spring Harbor Laboratory"},"translated_abstract":"The cytokinesis-block micronucleus (CBMN) assay is considered as the most suitable biodosimetry method for automation. Previously, we automated this assay on a commercial robotic biotech high-throughput system (RABiT-II) adopting both a traditional and an accelerated micronucleus protocol, both using centrifugation steps for lymphocyte harvesting and washing, after whole blood culturing. Here we describe further development of our accelerated CBMN assay protocol for using on High Throughput/High Content Screening (HTS/HCS) robotic systems without a centrifuge. This opens the way for implementation of the CBMN assay on a wider range of commercial automated HTS/HCS systems and thus increases the potential capacity of dose estimates following a mass-casualty radiological event.","internal_url":"https://www.academia.edu/73605378/The_use_of_a_centrifuge_free_RABiT_II_system_for_high_throughput_micronucleus_analysis","translated_internal_url":"","created_at":"2022-03-12T07:23:43.351-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82062718,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062718/thumbnails/1.jpg","file_name":"627596.full.pdf","download_url":"https://www.academia.edu/attachments/82062718/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_a_centrifuge_free_RABiT_II_sy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062718/627596.full-libre.pdf?1647099943=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_a_centrifuge_free_RABiT_II_sy.pdf\u0026Expires=1732507641\u0026Signature=UumjW~ck4c~NcswkeD2jdGtL2Dpu4KIvWq8~ZwYGImmFPniSSmN4Kaf~~NWF639bia~sqy2R303GKdsDEMAPMPVZoAXYh-ExmLuAvmcu~TAQ6~nUsojYxX3BD~YYYe2FOPI686pnojGei7bOchug4HVXs1UCvhf~S6wbQQ-O9IGkrsZLSMcAinTDHpUll7ikFFD3PVto-YU~8y4V3PFDYuMIJgPhB7-3pzft556KNp5lxahxGc7WM0~yxPyX6S1oeVp00r-3rvqNaXGFgI6fyv0GY9nG3isDVI-gKzxqXvYhrOP4Gi3pMrc50H677-UJhk8daAugeSLxNgbuajy9qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_use_of_a_centrifuge_free_RABiT_II_system_for_high_throughput_micronucleus_analysis","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":82062718,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062718/thumbnails/1.jpg","file_name":"627596.full.pdf","download_url":"https://www.academia.edu/attachments/82062718/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_a_centrifuge_free_RABiT_II_sy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062718/627596.full-libre.pdf?1647099943=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_a_centrifuge_free_RABiT_II_sy.pdf\u0026Expires=1732507641\u0026Signature=UumjW~ck4c~NcswkeD2jdGtL2Dpu4KIvWq8~ZwYGImmFPniSSmN4Kaf~~NWF639bia~sqy2R303GKdsDEMAPMPVZoAXYh-ExmLuAvmcu~TAQ6~nUsojYxX3BD~YYYe2FOPI686pnojGei7bOchug4HVXs1UCvhf~S6wbQQ-O9IGkrsZLSMcAinTDHpUll7ikFFD3PVto-YU~8y4V3PFDYuMIJgPhB7-3pzft556KNp5lxahxGc7WM0~yxPyX6S1oeVp00r-3rvqNaXGFgI6fyv0GY9nG3isDVI-gKzxqXvYhrOP4Gi3pMrc50H677-UJhk8daAugeSLxNgbuajy9qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18448709,"url":"https://syndication.highwire.org/content/doi/10.1101/627596"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605377"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73605377/A_new_approach_to_automated_CBMN_scoring_following_high_doses"><img alt="Research paper thumbnail of A new approach to automated CBMN scoring following high doses" class="work-thumbnail" src="https://attachments.academia-assets.com/82062721/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73605377/A_new_approach_to_automated_CBMN_scoring_following_high_doses">A new approach to automated CBMN scoring following high doses</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In recent years we have automated the CBMN assay using microvolumes of blood, processed in multiw...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In recent years we have automated the CBMN assay using microvolumes of blood, processed in multiwell plates. We have seen that at doses above 6 Gy the detected yield of micronuclei actually declines with dose, likely because of mitotic delay, preventing cells from forming micronuclei and also, when using one color imaging, resulting in many false binucleated cells, consisting of two randomly-adjacent nuclei. By using the inverse mitotic index (the ratio of mononuclear to binuclear cells) to adjust the micronucleus yield we were able to obtain a monotonic increasing dose response curve at doses of up to at least 10 Gy from the same samples which generated dose-response curve with a peak near 6 Gy, when scored using the traditional micronucleus yield.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c01e1e6751f583fc216496ad8c353f70" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82062721,"asset_id":73605377,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82062721/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605377"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605377"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605377; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605377]").text(description); $(".js-view-count[data-work-id=73605377]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605377; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605377']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605377, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c01e1e6751f583fc216496ad8c353f70" } } $('.js-work-strip[data-work-id=73605377]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605377,"title":"A new approach to automated CBMN scoring following high doses","translated_title":"","metadata":{"abstract":"In recent years we have automated the CBMN assay using microvolumes of blood, processed in multiwell plates. We have seen that at doses above 6 Gy the detected yield of micronuclei actually declines with dose, likely because of mitotic delay, preventing cells from forming micronuclei and also, when using one color imaging, resulting in many false binucleated cells, consisting of two randomly-adjacent nuclei. By using the inverse mitotic index (the ratio of mononuclear to binuclear cells) to adjust the micronucleus yield we were able to obtain a monotonic increasing dose response curve at doses of up to at least 10 Gy from the same samples which generated dose-response curve with a peak near 6 Gy, when scored using the traditional micronucleus yield.","publisher":"Cold Spring Harbor Laboratory"},"translated_abstract":"In recent years we have automated the CBMN assay using microvolumes of blood, processed in multiwell plates. We have seen that at doses above 6 Gy the detected yield of micronuclei actually declines with dose, likely because of mitotic delay, preventing cells from forming micronuclei and also, when using one color imaging, resulting in many false binucleated cells, consisting of two randomly-adjacent nuclei. By using the inverse mitotic index (the ratio of mononuclear to binuclear cells) to adjust the micronucleus yield we were able to obtain a monotonic increasing dose response curve at doses of up to at least 10 Gy from the same samples which generated dose-response curve with a peak near 6 Gy, when scored using the traditional micronucleus yield.","internal_url":"https://www.academia.edu/73605377/A_new_approach_to_automated_CBMN_scoring_following_high_doses","translated_internal_url":"","created_at":"2022-03-12T07:23:43.007-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82062721,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062721/thumbnails/1.jpg","file_name":"620971.full.pdf","download_url":"https://www.academia.edu/attachments/82062721/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_approach_to_automated_CBMN_scoring.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062721/620971.full-libre.pdf?1647099943=\u0026response-content-disposition=attachment%3B+filename%3DA_new_approach_to_automated_CBMN_scoring.pdf\u0026Expires=1732507641\u0026Signature=hDv~PdRDTwCwnar5AkUx7jeJhDclNu-hy4oFvceHm2fq8JPNwSSSyMj45tmu47E3VANqcSNS4DVT09tQCh0TYzJb7eET8MYjb9AQj6~xKGk3xjK0kflWIUQWmmzY2gtyF5Aa9NWdTs5hrJIdZhv6138gA76QNDZMiJQGDDL8CiHN1sIjLQgH~f9kywBb7uWjk8GPYn2iudfVTWUQ6fufuPGNRqI~zQv4vTgQbmHzoKFEsUoNrfl3h5U9Qp4hYtJhPDyyM9BzvjzTIWsVV3IBqiUiHZHZGdz7NdbXy7h1lUiNPjaw3zEPuAxlle-FbMeNKS-ta18fImcRzQnEU2pkhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_approach_to_automated_CBMN_scoring_following_high_doses","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":82062721,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062721/thumbnails/1.jpg","file_name":"620971.full.pdf","download_url":"https://www.academia.edu/attachments/82062721/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_approach_to_automated_CBMN_scoring.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062721/620971.full-libre.pdf?1647099943=\u0026response-content-disposition=attachment%3B+filename%3DA_new_approach_to_automated_CBMN_scoring.pdf\u0026Expires=1732507641\u0026Signature=hDv~PdRDTwCwnar5AkUx7jeJhDclNu-hy4oFvceHm2fq8JPNwSSSyMj45tmu47E3VANqcSNS4DVT09tQCh0TYzJb7eET8MYjb9AQj6~xKGk3xjK0kflWIUQWmmzY2gtyF5Aa9NWdTs5hrJIdZhv6138gA76QNDZMiJQGDDL8CiHN1sIjLQgH~f9kywBb7uWjk8GPYn2iudfVTWUQ6fufuPGNRqI~zQv4vTgQbmHzoKFEsUoNrfl3h5U9Qp4hYtJhPDyyM9BzvjzTIWsVV3IBqiUiHZHZGdz7NdbXy7h1lUiNPjaw3zEPuAxlle-FbMeNKS-ta18fImcRzQnEU2pkhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"}],"urls":[{"id":18448708,"url":"https://syndication.highwire.org/content/doi/10.1101/620971"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="6095286" id="papers"><div class="js-work-strip profile--work_container" data-work-id="98491197"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491197/DIPG_45_Radiation_induces_a_robust_interferon_response_in_Diffuse_Midline_Glioma_DMG_improving_the_potential_for_combination_immunotherapy"><img alt="Research paper thumbnail of DIPG-45. Radiation induces a robust interferon response in Diffuse Midline Glioma (DMG), improving the potential for combination immunotherapy" class="work-thumbnail" src="https://attachments.academia-assets.com/99827618/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491197/DIPG_45_Radiation_induces_a_robust_interferon_response_in_Diffuse_Midline_Glioma_DMG_improving_the_potential_for_combination_immunotherapy">DIPG-45. Radiation induces a robust interferon response in Diffuse Midline Glioma (DMG), improving the potential for combination immunotherapy</a></div><div class="wp-workCard_item"><span>Neuro-Oncology</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Diffuse Midline Glioma (DMG), H3K27M altered, confers a dismal survival of 9-15 months and has a ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Diffuse Midline Glioma (DMG), H3K27M altered, confers a dismal survival of 9-15 months and has a non-inflammatory tumor immune microenvironment (TIME). Radiation therapy (RT) is the mainstay treatment for DMG and has been shown in other cancers to recruit an immune component. However, the effect of RT on the DMG TIME has not been explored. In a syngeneic murine model of pontine DMG (PDGFB+, H3.3K27M, p53−/−), mice were treated with single fraction 15Gy RT or sham control, four mice per group. We performed single cell sequencing after CD45 isolation to evaluate the TIME 4 days post RT and compare to untreated tumor (sham control). Unsupervised clustering of 14,848 CD45+ cells revealed 16 immune cell subsets, most abundantly microglia at 75% of cells, with four subtypes representing a spectrum of homeostatic to activated. Microglia from RT are more concentrated in the activated subtypes with an upregulation of interferon response (i.e. Isg15, Ifit3) compared to untreated tumor with an...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f1139fae0a7e72497d2451abbc7490f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827618,"asset_id":98491197,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827618/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491197"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491197"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491197; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491197]").text(description); $(".js-view-count[data-work-id=98491197]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491197; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491197']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491197, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f1139fae0a7e72497d2451abbc7490f" } } $('.js-work-strip[data-work-id=98491197]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491197,"title":"DIPG-45. Radiation induces a robust interferon response in Diffuse Midline Glioma (DMG), improving the potential for combination immunotherapy","translated_title":"","metadata":{"abstract":"Diffuse Midline Glioma (DMG), H3K27M altered, confers a dismal survival of 9-15 months and has a non-inflammatory tumor immune microenvironment (TIME). Radiation therapy (RT) is the mainstay treatment for DMG and has been shown in other cancers to recruit an immune component. However, the effect of RT on the DMG TIME has not been explored. In a syngeneic murine model of pontine DMG (PDGFB+, H3.3K27M, p53−/−), mice were treated with single fraction 15Gy RT or sham control, four mice per group. We performed single cell sequencing after CD45 isolation to evaluate the TIME 4 days post RT and compare to untreated tumor (sham control). Unsupervised clustering of 14,848 CD45+ cells revealed 16 immune cell subsets, most abundantly microglia at 75% of cells, with four subtypes representing a spectrum of homeostatic to activated. Microglia from RT are more concentrated in the activated subtypes with an upregulation of interferon response (i.e. Isg15, Ifit3) compared to untreated tumor with an...","publisher":"Oxford University Press (OUP)","publication_name":"Neuro-Oncology"},"translated_abstract":"Diffuse Midline Glioma (DMG), H3K27M altered, confers a dismal survival of 9-15 months and has a non-inflammatory tumor immune microenvironment (TIME). Radiation therapy (RT) is the mainstay treatment for DMG and has been shown in other cancers to recruit an immune component. However, the effect of RT on the DMG TIME has not been explored. In a syngeneic murine model of pontine DMG (PDGFB+, H3.3K27M, p53−/−), mice were treated with single fraction 15Gy RT or sham control, four mice per group. We performed single cell sequencing after CD45 isolation to evaluate the TIME 4 days post RT and compare to untreated tumor (sham control). Unsupervised clustering of 14,848 CD45+ cells revealed 16 immune cell subsets, most abundantly microglia at 75% of cells, with four subtypes representing a spectrum of homeostatic to activated. Microglia from RT are more concentrated in the activated subtypes with an upregulation of interferon response (i.e. Isg15, Ifit3) compared to untreated tumor with an...","internal_url":"https://www.academia.edu/98491197/DIPG_45_Radiation_induces_a_robust_interferon_response_in_Diffuse_Midline_Glioma_DMG_improving_the_potential_for_combination_immunotherapy","translated_internal_url":"","created_at":"2023-03-14T02:17:35.309-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827618/thumbnails/1.jpg","file_name":"noac079.102.pdf","download_url":"https://www.academia.edu/attachments/99827618/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DIPG_45_Radiation_induces_a_robust_inter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827618/noac079.102-libre.pdf?1678786265=\u0026response-content-disposition=attachment%3B+filename%3DDIPG_45_Radiation_induces_a_robust_inter.pdf\u0026Expires=1732507640\u0026Signature=TXyqW29RwRlIZMiR3JJRI77gM58p6dpwCLpcNCS9jqAo4nwPixXeVC59iW~fMsE2KtAWJZmjcW2nZucdFZpawNbgOe3wk5VffKCKCHuVcs-BDbofmNlg~sOpCb8zI-Nr4j7LDxguBCIyeYzkdA0fld6dAN5rA5Z83aO~Iy98gom6QVpkkQkjuYc3FQWWoSqEQIVW0Eei8Lgqgg6Zw6My8pqGSsm4Q~nf6It24vEEVO9ITd6ARJAYUTu83JDT~BAjJqjbdag~2sQKygMfrR0hSlPWglaZn0jp2u3HLXkYs~naUY0gj5PI7UlojCujp5dSw1rDX1YhqYbc8Zcq7k0GFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"DIPG_45_Radiation_induces_a_robust_interferon_response_in_Diffuse_Midline_Glioma_DMG_improving_the_potential_for_combination_immunotherapy","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827618/thumbnails/1.jpg","file_name":"noac079.102.pdf","download_url":"https://www.academia.edu/attachments/99827618/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DIPG_45_Radiation_induces_a_robust_inter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827618/noac079.102-libre.pdf?1678786265=\u0026response-content-disposition=attachment%3B+filename%3DDIPG_45_Radiation_induces_a_robust_inter.pdf\u0026Expires=1732507640\u0026Signature=TXyqW29RwRlIZMiR3JJRI77gM58p6dpwCLpcNCS9jqAo4nwPixXeVC59iW~fMsE2KtAWJZmjcW2nZucdFZpawNbgOe3wk5VffKCKCHuVcs-BDbofmNlg~sOpCb8zI-Nr4j7LDxguBCIyeYzkdA0fld6dAN5rA5Z83aO~Iy98gom6QVpkkQkjuYc3FQWWoSqEQIVW0Eei8Lgqgg6Zw6My8pqGSsm4Q~nf6It24vEEVO9ITd6ARJAYUTu83JDT~BAjJqjbdag~2sQKygMfrR0hSlPWglaZn0jp2u3HLXkYs~naUY0gj5PI7UlojCujp5dSw1rDX1YhqYbc8Zcq7k0GFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":22255,"name":"Cancer Research","url":"https://www.academia.edu/Documents/in/Cancer_Research"},{"id":63279,"name":"Neuro-Oncology","url":"https://www.academia.edu/Documents/in/Neuro-Oncology"},{"id":76383,"name":"Glioma","url":"https://www.academia.edu/Documents/in/Glioma"},{"id":100501,"name":"Microglia","url":"https://www.academia.edu/Documents/in/Microglia"},{"id":126863,"name":"Immunotherapy","url":"https://www.academia.edu/Documents/in/Immunotherapy"},{"id":324154,"name":"Immune system","url":"https://www.academia.edu/Documents/in/Immune_system"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":2574583,"name":"İsg","url":"https://www.academia.edu/Documents/in/%C4%B0sg"}],"urls":[{"id":29768687,"url":"https://academic.oup.com/neuro-oncology/article-pdf/24/Supplement_1/i28/43944993/noac079.102.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491196"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491196/Additional_file_8_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation"><img alt="Research paper thumbnail of Additional file 8: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation" class="work-thumbnail" src="https://attachments.academia-assets.com/99827616/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491196/Additional_file_8_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation">Additional file 8: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Figure S2. Comparison of fold-change of Crip2, Chst3, Add3, Eif3f, Rpl26, Rpl27, Rps17, Rps19, an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Figure S2. Comparison of fold-change of Crip2, Chst3, Add3, Eif3f, Rpl26, Rpl27, Rps17, Rps19, and c-Myc by qPCR and DNA microarray. (PDF 61 kb)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="47df0e204f6e9fabbcd146df252d33f2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827616,"asset_id":98491196,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827616/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491196"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491196"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491196; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491196]").text(description); $(".js-view-count[data-work-id=98491196]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491196; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491196']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491196, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "47df0e204f6e9fabbcd146df252d33f2" } } $('.js-work-strip[data-work-id=98491196]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491196,"title":"Additional file 8: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation","translated_title":"","metadata":{"abstract":"Figure S2. Comparison of fold-change of Crip2, Chst3, Add3, Eif3f, Rpl26, Rpl27, Rps17, Rps19, and c-Myc by qPCR and DNA microarray. (PDF 61 kb)","publisher":"Figshare","publication_date":{"day":29,"month":6,"year":2018,"errors":{}}},"translated_abstract":"Figure S2. Comparison of fold-change of Crip2, Chst3, Add3, Eif3f, Rpl26, Rpl27, Rps17, Rps19, and c-Myc by qPCR and DNA microarray. (PDF 61 kb)","internal_url":"https://www.academia.edu/98491196/Additional_file_8_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_internal_url":"","created_at":"2023-03-14T02:17:35.175-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827616,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827616/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM8_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827616/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Additional_file_8_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827616/12864_2018_4884_MOESM8_ESM-libre.pdf?1678786261=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_8_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=Gu7xLFr6cGoOYdmXJ-yPm3vrYTM5WFJBmICGcpK2SybcOn50xFuYjQJ5Vtfk8nGl8qFBYzgYBud~aP7AnCY-IwOvw77u2nVx9D9Drm0Jhhhy3KbjQur6uv36rcwFlNkUz8D2~laXF35eseJ7dP-oMJ7~Js9WyO0aPlcEcTIY6BZxfZjAjDRg5PL16pbOXVXQZfMjXXwTP0bEJnhDM6EJcR5Z0uw8P5emq3lG66wi0VU69J22~FFfjdgt68uMSieE5Yy80moH5C3tu3gEAPqVhLfsoiKT8zxJMDRbwPbUPOVg-i~ic5f0yTBGLxGPsh15QJj5uXVlW3zOdBD4BYK0qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Additional_file_8_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827616,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827616/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM8_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827616/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Additional_file_8_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827616/12864_2018_4884_MOESM8_ESM-libre.pdf?1678786261=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_8_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=Gu7xLFr6cGoOYdmXJ-yPm3vrYTM5WFJBmICGcpK2SybcOn50xFuYjQJ5Vtfk8nGl8qFBYzgYBud~aP7AnCY-IwOvw77u2nVx9D9Drm0Jhhhy3KbjQur6uv36rcwFlNkUz8D2~laXF35eseJ7dP-oMJ7~Js9WyO0aPlcEcTIY6BZxfZjAjDRg5PL16pbOXVXQZfMjXXwTP0bEJnhDM6EJcR5Z0uw8P5emq3lG66wi0VU69J22~FFfjdgt68uMSieE5Yy80moH5C3tu3gEAPqVhLfsoiKT8zxJMDRbwPbUPOVg-i~ic5f0yTBGLxGPsh15QJj5uXVlW3zOdBD4BYK0qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":99827617,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827617/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM8_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827617/download_file","bulk_download_file_name":"Additional_file_8_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827617/12864_2018_4884_MOESM8_ESM-libre.pdf?1678786261=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_8_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=K7HTjWRWoPdVt5JOqFsJ~WChOPVAye8xTsk9F0GGjKu5882ZMyuEE8goyNHx8cK5DS3fnSmPwRi8z8EGAPzhE5yyxYFxUdSHeK2ospeHJ3pQIBJbrcPUN6UoFpr6jIgAoXMM30KyFcBkZbyG9Ofekn-PLBqDcG9kz85Me7-zkUdJ7yx0R2rDciJ3oOzBllpJAOZ1Bjsr3tCxW5lVXOmGE4iQhDIrfjKi1BA9uVkUj44e8lyoFB3K9Zs11nQsKh6XYlN2p5KCiQV39a~V-E3GqUDUnugWBre1J~hxp5R6gBVAOA8pmDKJFaAFFSH-5h~OEVTyLkH1o-PhPohZI5KxEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":1083,"name":"Developmental Biology","url":"https://www.academia.edu/Documents/in/Developmental_Biology"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":13827,"name":"Cell Biology","url":"https://www.academia.edu/Documents/in/Cell_Biology"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"}],"urls":[{"id":29768686,"url":"https://s3-eu-west-1.amazonaws.com/pstorage-npg-968563215/12256715/12864_2018_4884_MOESM8_ESM.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491195"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491195/Additional_file_6_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation"><img alt="Research paper thumbnail of Additional file 6: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation" class="work-thumbnail" src="https://attachments.academia-assets.com/99827615/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491195/Additional_file_6_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation">Additional file 6: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Table S1. Protein ubiquitination processes identified by PANTHER analysis. Benjamini-corrected p ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Table S1. Protein ubiquitination processes identified by PANTHER analysis. Benjamini-corrected p values are shown. (PDF 30 kb)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3b9ea18baf26b9b15577786d9798155f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827615,"asset_id":98491195,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827615/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491195"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491195"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491195; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491195]").text(description); $(".js-view-count[data-work-id=98491195]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491195; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491195']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491195, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3b9ea18baf26b9b15577786d9798155f" } } $('.js-work-strip[data-work-id=98491195]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491195,"title":"Additional file 6: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation","translated_title":"","metadata":{"abstract":"Table S1. Protein ubiquitination processes identified by PANTHER analysis. Benjamini-corrected p values are shown. (PDF 30 kb)","publisher":"Figshare","publication_date":{"day":29,"month":6,"year":2018,"errors":{}}},"translated_abstract":"Table S1. Protein ubiquitination processes identified by PANTHER analysis. Benjamini-corrected p values are shown. (PDF 30 kb)","internal_url":"https://www.academia.edu/98491195/Additional_file_6_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_internal_url":"","created_at":"2023-03-14T02:17:35.043-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827615,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827615/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM6_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827615/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Additional_file_6_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827615/12864_2018_4884_MOESM6_ESM-libre.pdf?1678786262=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_6_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=YMfX3q-CahL~ZfapMaHv3Bb2wliD7tp0CYsrQvBJtMWoM-kefVxFo8wthas6a~-DeEneuiTd6MwuZS-LB3XT5qaqa-Pjney9-~gUCXXzU4bYEKUODdWbDPmFyPOsvWYuHGraC3l9Lt-YDhtDSQ5wkM6GsCezrzkOPU9K5jroLdp8l7xgUltExsQla34mbPa1xPyUHtlzC1ChO73dz473~r9hQJIZPGTHUZKy6BBg1P~OaYuwU3RR~gfupqKuaPVQ4duJLb5vqE6zW009WWvA0r3RtRlpyW3ap7ob975PLo-72RLYMfGW09gA9rPvfz10TQUVJVoynkEchT9Lu~vodw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Additional_file_6_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827615,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827615/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM6_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827615/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Additional_file_6_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827615/12864_2018_4884_MOESM6_ESM-libre.pdf?1678786262=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_6_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=YMfX3q-CahL~ZfapMaHv3Bb2wliD7tp0CYsrQvBJtMWoM-kefVxFo8wthas6a~-DeEneuiTd6MwuZS-LB3XT5qaqa-Pjney9-~gUCXXzU4bYEKUODdWbDPmFyPOsvWYuHGraC3l9Lt-YDhtDSQ5wkM6GsCezrzkOPU9K5jroLdp8l7xgUltExsQla34mbPa1xPyUHtlzC1ChO73dz473~r9hQJIZPGTHUZKy6BBg1P~OaYuwU3RR~gfupqKuaPVQ4duJLb5vqE6zW009WWvA0r3RtRlpyW3ap7ob975PLo-72RLYMfGW09gA9rPvfz10TQUVJVoynkEchT9Lu~vodw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":99827614,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827614/thumbnails/1.jpg","file_name":"12864_2018_4884_MOESM6_ESM.pdf","download_url":"https://www.academia.edu/attachments/99827614/download_file","bulk_download_file_name":"Additional_file_6_of_Identification_of_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827614/12864_2018_4884_MOESM6_ESM-libre.pdf?1678786261=\u0026response-content-disposition=attachment%3B+filename%3DAdditional_file_6_of_Identification_of_d.pdf\u0026Expires=1732507640\u0026Signature=Q75dWbm~BjtYhmyQAF8xNYI-0msfhHg~TQ9pXqAUKGcLokQvgAPALng6sWMftuKqYpwplvoBPhHb196PBibmrnRdqaeQPqHkSbuHRPbEm2eq6wmvmZdQ7vZCO0k678q-prIkJO~mIGWbCEjWmz0SMyM5EnhVDM6VmNhbEaFDeWLjeBoMzBudOVsGIdwgnD7wSUZalZy~O1PEqn776ZT1RFjhCjVTB4GZQsTC7QmSbqc7R0j75QBuVjieYXhyXbUgukFIMUmjvkcWdr6zMLyw3r1Mhp9~U5VhUV2r2f96zs1lXcYT87s3W8LglKjqdprVu1EvOL1ld5eTF2kgS9XuEg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1083,"name":"Developmental Biology","url":"https://www.academia.edu/Documents/in/Developmental_Biology"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":8089,"name":"Virology","url":"https://www.academia.edu/Documents/in/Virology"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"}],"urls":[{"id":29768685,"url":"https://s3-eu-west-1.amazonaws.com/pstorage-npg-968563215/12256682/12864_2018_4884_MOESM6_ESM.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491194"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/98491194/Additional_file_2_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation"><img alt="Research paper thumbnail of Additional file 2: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/98491194/Additional_file_2_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation">Additional file 2: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Excel file with complete output of IPA canonical pathways. The &quot;EIF2 Signaling&quot; pathway...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Excel file with complete output of IPA canonical pathways. The &quot;EIF2 Signaling&quot; pathway and the related &quot;mTOR Signaling&quot;, &quot;Regulation of eIF4 and p70S6K Signaling&quot;, and &quot;p70S6K Signaling&quot; pathways are highlighted in red. The most statistically significant canonical pathways (Benjamini-corrected p value</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491194"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491194"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491194; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491194]").text(description); $(".js-view-count[data-work-id=98491194]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491194; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491194']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491194, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=98491194]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491194,"title":"Additional file 2: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation","translated_title":"","metadata":{"abstract":"Excel file with complete output of IPA canonical pathways. The \u0026quot;EIF2 Signaling\u0026quot; pathway and the related \u0026quot;mTOR Signaling\u0026quot;, \u0026quot;Regulation of eIF4 and p70S6K Signaling\u0026quot;, and \u0026quot;p70S6K Signaling\u0026quot; pathways are highlighted in red. The most statistically significant canonical pathways (Benjamini-corrected p value","publisher":"Figshare","publication_date":{"day":29,"month":6,"year":2018,"errors":{}}},"translated_abstract":"Excel file with complete output of IPA canonical pathways. The \u0026quot;EIF2 Signaling\u0026quot; pathway and the related \u0026quot;mTOR Signaling\u0026quot;, \u0026quot;Regulation of eIF4 and p70S6K Signaling\u0026quot;, and \u0026quot;p70S6K Signaling\u0026quot; pathways are highlighted in red. The most statistically significant canonical pathways (Benjamini-corrected p value","internal_url":"https://www.academia.edu/98491194/Additional_file_2_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_internal_url":"","created_at":"2023-03-14T02:17:34.949-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Additional_file_2_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[{"id":140,"name":"Pharmacology","url":"https://www.academia.edu/Documents/in/Pharmacology"},{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1083,"name":"Developmental Biology","url":"https://www.academia.edu/Documents/in/Developmental_Biology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":13827,"name":"Cell Biology","url":"https://www.academia.edu/Documents/in/Cell_Biology"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491193"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/98491193/Additional_file_1_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation"><img alt="Research paper thumbnail of Additional file 1: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/98491193/Additional_file_1_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation">Additional file 1: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Excel file with 5 tabs containing a summary of differentially expressed genes by radiation type. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Excel file with 5 tabs containing a summary of differentially expressed genes by radiation type. (XLSX 2429 kb)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491193"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491193"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491193; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491193]").text(description); $(".js-view-count[data-work-id=98491193]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491193; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491193']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491193, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=98491193]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491193,"title":"Additional file 1: of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation","translated_title":"","metadata":{"abstract":"Excel file with 5 tabs containing a summary of differentially expressed genes by radiation type. (XLSX 2429 kb)","publisher":"Figshare","publication_date":{"day":29,"month":6,"year":2018,"errors":{}}},"translated_abstract":"Excel file with 5 tabs containing a summary of differentially expressed genes by radiation type. (XLSX 2429 kb)","internal_url":"https://www.academia.edu/98491193/Additional_file_1_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_internal_url":"","created_at":"2023-03-14T02:17:34.855-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Additional_file_1_of_Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":158,"name":"Marine Biology","url":"https://www.academia.edu/Documents/in/Marine_Biology"},{"id":1083,"name":"Developmental Biology","url":"https://www.academia.edu/Documents/in/Developmental_Biology"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491192"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491192/Traceable_dosimetry_for_MeV_ion_beams"><img alt="Research paper thumbnail of Traceable dosimetry for MeV ion beams" class="work-thumbnail" src="https://attachments.academia-assets.com/99827655/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491192/Traceable_dosimetry_for_MeV_ion_beams">Traceable dosimetry for MeV ion beams</a></div><div class="wp-workCard_item"><span>Journal of Instrumentation</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Standard dosimetry protocols exist for highly penetrating photon and particle beams used in the c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Standard dosimetry protocols exist for highly penetrating photon and particle beams used in the clinic and in research. However, these protocols cannot be directly applied to shallow penetration MeV-range ion beams. The Radiological Research Accelerator Facility has been using such beams for almost 50 years to irradiate cell monolayers, using self-developed dosimetry, based on tissue equivalent ionization chambers. To better align with the internationally accepted standards, we describe implementation of a commercial, NIST-traceable, air-filled ionization chamber for measurement of absorbed dose to water from low energy ions, using radiation quality correction factors calculated using TRS-398 recommendations. The reported dose does not depend on the ionization density in the range of 10–150 keV/μm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="49b06b2a1277459c6054c4b4aad3b953" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827655,"asset_id":98491192,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827655/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491192"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491192"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491192; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491192]").text(description); $(".js-view-count[data-work-id=98491192]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491192; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491192']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491192, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "49b06b2a1277459c6054c4b4aad3b953" } } $('.js-work-strip[data-work-id=98491192]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491192,"title":"Traceable dosimetry for MeV ion beams","translated_title":"","metadata":{"abstract":"Standard dosimetry protocols exist for highly penetrating photon and particle beams used in the clinic and in research. However, these protocols cannot be directly applied to shallow penetration MeV-range ion beams. The Radiological Research Accelerator Facility has been using such beams for almost 50 years to irradiate cell monolayers, using self-developed dosimetry, based on tissue equivalent ionization chambers. To better align with the internationally accepted standards, we describe implementation of a commercial, NIST-traceable, air-filled ionization chamber for measurement of absorbed dose to water from low energy ions, using radiation quality correction factors calculated using TRS-398 recommendations. The reported dose does not depend on the ionization density in the range of 10–150 keV/μm.","publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Journal of Instrumentation"},"translated_abstract":"Standard dosimetry protocols exist for highly penetrating photon and particle beams used in the clinic and in research. However, these protocols cannot be directly applied to shallow penetration MeV-range ion beams. The Radiological Research Accelerator Facility has been using such beams for almost 50 years to irradiate cell monolayers, using self-developed dosimetry, based on tissue equivalent ionization chambers. To better align with the internationally accepted standards, we describe implementation of a commercial, NIST-traceable, air-filled ionization chamber for measurement of absorbed dose to water from low energy ions, using radiation quality correction factors calculated using TRS-398 recommendations. The reported dose does not depend on the ionization density in the range of 10–150 keV/μm.","internal_url":"https://www.academia.edu/98491192/Traceable_dosimetry_for_MeV_ion_beams","translated_internal_url":"","created_at":"2023-03-14T02:17:34.709-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827655,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827655/thumbnails/1.jpg","file_name":"2201.09778v1.pdf","download_url":"https://www.academia.edu/attachments/99827655/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Traceable_dosimetry_for_MeV_ion_beams.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827655/2201.09778v1-libre.pdf?1678786269=\u0026response-content-disposition=attachment%3B+filename%3DTraceable_dosimetry_for_MeV_ion_beams.pdf\u0026Expires=1732507640\u0026Signature=DmiufF~2KoVmd3lufyrL6Cy9OZiX-RnGkOTjIEWN-20LQ7nFLI0ikERbaJ0j25CUTSgqRhUvPV6omPTp89TyreghkQKjIGbdAnH3MSbfI4foIEaXtt-YDlNRHwuTo01T1vAvy1fTEB5ZV172nDFZ4OUVrrp~h66eNeQP2OlsHQURbZZAFR6YpHnWSiMDV36697eIBPB9uGIu-qwKWge-hU-t16eIgkzORvchfeWFMkAnN6C2oOwD8MlS7cVJbWuNhA5pFXbXa0xwqv4gbmtQsxl079ccHumZ0klmHkSfmxdIGgUyfQEZoxOPQGM3hW4GgAecYXyMYfvyxGcphJRqTQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Traceable_dosimetry_for_MeV_ion_beams","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827655,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827655/thumbnails/1.jpg","file_name":"2201.09778v1.pdf","download_url":"https://www.academia.edu/attachments/99827655/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Traceable_dosimetry_for_MeV_ion_beams.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827655/2201.09778v1-libre.pdf?1678786269=\u0026response-content-disposition=attachment%3B+filename%3DTraceable_dosimetry_for_MeV_ion_beams.pdf\u0026Expires=1732507640\u0026Signature=DmiufF~2KoVmd3lufyrL6Cy9OZiX-RnGkOTjIEWN-20LQ7nFLI0ikERbaJ0j25CUTSgqRhUvPV6omPTp89TyreghkQKjIGbdAnH3MSbfI4foIEaXtt-YDlNRHwuTo01T1vAvy1fTEB5ZV172nDFZ4OUVrrp~h66eNeQP2OlsHQURbZZAFR6YpHnWSiMDV36697eIBPB9uGIu-qwKWge-hU-t16eIgkzORvchfeWFMkAnN6C2oOwD8MlS7cVJbWuNhA5pFXbXa0xwqv4gbmtQsxl079ccHumZ0klmHkSfmxdIGgUyfQEZoxOPQGM3hW4GgAecYXyMYfvyxGcphJRqTQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":27497,"name":"Instrumentation","url":"https://www.academia.edu/Documents/in/Instrumentation"},{"id":191589,"name":"Absorbed Dose","url":"https://www.academia.edu/Documents/in/Absorbed_Dose"},{"id":329196,"name":"Ionization","url":"https://www.academia.edu/Documents/in/Ionization"},{"id":555289,"name":"NIST","url":"https://www.academia.edu/Documents/in/NIST"},{"id":599005,"name":"Dosimetry","url":"https://www.academia.edu/Documents/in/Dosimetry"},{"id":3289880,"name":"Ionization Chamber","url":"https://www.academia.edu/Documents/in/Ionization_Chamber"}],"urls":[{"id":29768684,"url":"https://iopscience.iop.org/article/10.1088/1748-0221/17/02/T02002/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491191"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491191/LET_dependence_of_radiation_induced_makers_of_Immunogenic_Cell_Death_in_human_cancer_cell_lines"><img alt="Research paper thumbnail of LET-dependence of radiation-induced makers of Immunogenic Cell Death in human cancer cell lines" class="work-thumbnail" src="https://attachments.academia-assets.com/99827661/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491191/LET_dependence_of_radiation_induced_makers_of_Immunogenic_Cell_Death_in_human_cancer_cell_lines">LET-dependence of radiation-induced makers of Immunogenic Cell Death in human cancer cell lines</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACTPurposeIt has been suggested that heavy-ion radiation therapy may contribute to the contr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACTPurposeIt has been suggested that heavy-ion radiation therapy may contribute to the control of distal metastases. These distant responses may include immune cell activation. Immunostimulation resulting from radiation-induced immunogenic cell death (ICD) of cancer cells, leads to the recruitment of anti-tumor T cells. Specific markers of ICD include translocation of calreticulin (CRT) and extracellular release of high mobility group box 1 protein (HMGB1), and ATP. However, the LET dependence of these effects remains unknown.Materials and MethodsExpression of the molecular indicators described above were tested in a panel of human cancer cell lines, that included pancreatic cancer (Panc1 and Paca2), glioblastoma (U87 and LN18) and melanoma (HTB129 and SK-Mel5). Cells were irradiated with 5 Gy of particles spanning a range of LETs, from 10 KeV/μm to 150 KeV/μm and assayed for relocalization of calreticulin and release of HMGB1 and ATP were assayed 24 hours later.ResultsIn the p...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5e751e81f89a6bc33a2a7dd48c18f696" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827661,"asset_id":98491191,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827661/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491191"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491191"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491191; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491191]").text(description); $(".js-view-count[data-work-id=98491191]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491191; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491191']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491191, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5e751e81f89a6bc33a2a7dd48c18f696" } } $('.js-work-strip[data-work-id=98491191]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491191,"title":"LET-dependence of radiation-induced makers of Immunogenic Cell Death in human cancer cell lines","translated_title":"","metadata":{"abstract":"ABSTRACTPurposeIt has been suggested that heavy-ion radiation therapy may contribute to the control of distal metastases. These distant responses may include immune cell activation. Immunostimulation resulting from radiation-induced immunogenic cell death (ICD) of cancer cells, leads to the recruitment of anti-tumor T cells. Specific markers of ICD include translocation of calreticulin (CRT) and extracellular release of high mobility group box 1 protein (HMGB1), and ATP. However, the LET dependence of these effects remains unknown.Materials and MethodsExpression of the molecular indicators described above were tested in a panel of human cancer cell lines, that included pancreatic cancer (Panc1 and Paca2), glioblastoma (U87 and LN18) and melanoma (HTB129 and SK-Mel5). Cells were irradiated with 5 Gy of particles spanning a range of LETs, from 10 KeV/μm to 150 KeV/μm and assayed for relocalization of calreticulin and release of HMGB1 and ATP were assayed 24 hours later.ResultsIn the p...","publisher":"Cold Spring Harbor Laboratory","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"ABSTRACTPurposeIt has been suggested that heavy-ion radiation therapy may contribute to the control of distal metastases. These distant responses may include immune cell activation. Immunostimulation resulting from radiation-induced immunogenic cell death (ICD) of cancer cells, leads to the recruitment of anti-tumor T cells. Specific markers of ICD include translocation of calreticulin (CRT) and extracellular release of high mobility group box 1 protein (HMGB1), and ATP. However, the LET dependence of these effects remains unknown.Materials and MethodsExpression of the molecular indicators described above were tested in a panel of human cancer cell lines, that included pancreatic cancer (Panc1 and Paca2), glioblastoma (U87 and LN18) and melanoma (HTB129 and SK-Mel5). Cells were irradiated with 5 Gy of particles spanning a range of LETs, from 10 KeV/μm to 150 KeV/μm and assayed for relocalization of calreticulin and release of HMGB1 and ATP were assayed 24 hours later.ResultsIn the p...","internal_url":"https://www.academia.edu/98491191/LET_dependence_of_radiation_induced_makers_of_Immunogenic_Cell_Death_in_human_cancer_cell_lines","translated_internal_url":"","created_at":"2023-03-14T02:17:34.575-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827661/thumbnails/1.jpg","file_name":"2022.01.25.477729.full.pdf","download_url":"https://www.academia.edu/attachments/99827661/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"LET_dependence_of_radiation_induced_make.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827661/2022.01.25.477729.full-libre.pdf?1678786259=\u0026response-content-disposition=attachment%3B+filename%3DLET_dependence_of_radiation_induced_make.pdf\u0026Expires=1732507640\u0026Signature=CA5vHzC0EsckgcnRje9HGFOsEGOAv~mQkDgBUm6YkL39n3~WyR71Qzr8yFngI5Qcne9jQEeGOH6IlQccOEYMa~qLjXsT~DdepGdUNdeX051KQPymdp-s8si2jqcr5MHCfiT4Abl7KNp-l~-NYgqPpZpx-YZ9svqLH8vPmqtTjVq1-beAYJNAi3k9beg0dtxG2TehgeXJAQkPHrMwWQmZXPe3sEo-BHfj6EKsadohHMZFSJjUI2JnQcp83GNLi7smjEYBjUpw32nW9yl5NpB2JtBdL6vLKletwi6d-WsJyuDtfHDv85LYjAuGgVY-z4y-x3eKTOh6xu2x1pPItwz87Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"LET_dependence_of_radiation_induced_makers_of_Immunogenic_Cell_Death_in_human_cancer_cell_lines","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827661/thumbnails/1.jpg","file_name":"2022.01.25.477729.full.pdf","download_url":"https://www.academia.edu/attachments/99827661/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"LET_dependence_of_radiation_induced_make.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827661/2022.01.25.477729.full-libre.pdf?1678786259=\u0026response-content-disposition=attachment%3B+filename%3DLET_dependence_of_radiation_induced_make.pdf\u0026Expires=1732507640\u0026Signature=CA5vHzC0EsckgcnRje9HGFOsEGOAv~mQkDgBUm6YkL39n3~WyR71Qzr8yFngI5Qcne9jQEeGOH6IlQccOEYMa~qLjXsT~DdepGdUNdeX051KQPymdp-s8si2jqcr5MHCfiT4Abl7KNp-l~-NYgqPpZpx-YZ9svqLH8vPmqtTjVq1-beAYJNAi3k9beg0dtxG2TehgeXJAQkPHrMwWQmZXPe3sEo-BHfj6EKsadohHMZFSJjUI2JnQcp83GNLi7smjEYBjUpw32nW9yl5NpB2JtBdL6vLKletwi6d-WsJyuDtfHDv85LYjAuGgVY-z4y-x3eKTOh6xu2x1pPItwz87Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":22255,"name":"Cancer Research","url":"https://www.academia.edu/Documents/in/Cancer_Research"},{"id":26623,"name":"Pancreatic Cancer","url":"https://www.academia.edu/Documents/in/Pancreatic_Cancer"},{"id":37782,"name":"Cell Culture","url":"https://www.academia.edu/Documents/in/Cell_Culture"},{"id":506082,"name":"Cancer Cell","url":"https://www.academia.edu/Documents/in/Cancer_Cell"},{"id":1274621,"name":"Extracellular","url":"https://www.academia.edu/Documents/in/Extracellular"},{"id":2514960,"name":"calreticulin","url":"https://www.academia.edu/Documents/in/calreticulin"}],"urls":[{"id":29768683,"url":"https://syndication.highwire.org/content/doi/10.1101/2022.01.25.477729"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491190"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/98491190/Testing_the_Stand_Alone_Microbeam_at"><img alt="Research paper thumbnail of Testing the Stand-Alone Microbeam at" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/98491190/Testing_the_Stand_Alone_Microbeam_at">Testing the Stand-Alone Microbeam at</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491190"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491190"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491190; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491190]").text(description); $(".js-view-count[data-work-id=98491190]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491190; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491190']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491190, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=98491190]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491190,"title":"Testing the Stand-Alone Microbeam at","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/98491190/Testing_the_Stand_Alone_Microbeam_at","translated_internal_url":"","created_at":"2023-03-14T02:17:34.491-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Testing_the_Stand_Alone_Microbeam_at","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2139900,"name":"Microbeam","url":"https://www.academia.edu/Documents/in/Microbeam"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491189"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491189/Biofluid_Metabolomics_of_Mice_Exposed_to_External_Low_Dose_Rate_Radiation_in_a_Novel_Irradiation_System_the_Variable_Dose_Rate_External_137Cs_Irradiator"><img alt="Research paper thumbnail of Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator" class="work-thumbnail" src="https://attachments.academia-assets.com/99827658/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491189/Biofluid_Metabolomics_of_Mice_Exposed_to_External_Low_Dose_Rate_Radiation_in_a_Novel_Irradiation_System_the_Variable_Dose_Rate_External_137Cs_Irradiator">Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator</a></div><div class="wp-workCard_item"><span>Journal of Proteome Research</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0afa229c11bfd98e1105fd9c51181ab2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827658,"asset_id":98491189,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827658/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491189"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491189"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491189; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491189]").text(description); $(".js-view-count[data-work-id=98491189]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491189; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491189']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491189, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0afa229c11bfd98e1105fd9c51181ab2" } } $('.js-work-strip[data-work-id=98491189]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491189,"title":"Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Proteome Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/98491189/Biofluid_Metabolomics_of_Mice_Exposed_to_External_Low_Dose_Rate_Radiation_in_a_Novel_Irradiation_System_the_Variable_Dose_Rate_External_137Cs_Irradiator","translated_internal_url":"","created_at":"2023-03-14T02:17:34.359-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827658/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/99827658/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Biofluid_Metabolomics_of_Mice_Exposed_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827658/pdf-libre.pdf?1678786266=\u0026response-content-disposition=attachment%3B+filename%3DBiofluid_Metabolomics_of_Mice_Exposed_to.pdf\u0026Expires=1732507640\u0026Signature=E1SqPFDkvCuDjAhAeti9zn-IM5DHEnL5AcN1ZQrWZGwClo4O5kwcj4F62u8pvjQpUbT~t1WrrErpBe-svblM8eKUHcMGyFQFCs6O-ByhTw2IMFvB9cvAEWMz5QCzEVkCMsS6RyS-3pgW8dnXEg7h9Lvl3VAwaxMfAgHl9UJTnosukju9C9ePHN4V6bXNxpnJHaPdBsJRCL3GBwwrdcTJnGrLa~VWKhjUHG9COxV3rOsEKmADkJGspXfzlUpv5NOSDXguRziEkC-j7D~BtLuJTkA2IFh58mXRU3dbc81x4Kdf7PeE9tBF0mdFJGJ94iWSERKzYwX0Pz7a~RPoD6ubZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Biofluid_Metabolomics_of_Mice_Exposed_to_External_Low_Dose_Rate_Radiation_in_a_Novel_Irradiation_System_the_Variable_Dose_Rate_External_137Cs_Irradiator","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827658/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/99827658/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Biofluid_Metabolomics_of_Mice_Exposed_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827658/pdf-libre.pdf?1678786266=\u0026response-content-disposition=attachment%3B+filename%3DBiofluid_Metabolomics_of_Mice_Exposed_to.pdf\u0026Expires=1732507640\u0026Signature=E1SqPFDkvCuDjAhAeti9zn-IM5DHEnL5AcN1ZQrWZGwClo4O5kwcj4F62u8pvjQpUbT~t1WrrErpBe-svblM8eKUHcMGyFQFCs6O-ByhTw2IMFvB9cvAEWMz5QCzEVkCMsS6RyS-3pgW8dnXEg7h9Lvl3VAwaxMfAgHl9UJTnosukju9C9ePHN4V6bXNxpnJHaPdBsJRCL3GBwwrdcTJnGrLa~VWKhjUHG9COxV3rOsEKmADkJGspXfzlUpv5NOSDXguRziEkC-j7D~BtLuJTkA2IFh58mXRU3dbc81x4Kdf7PeE9tBF0mdFJGJ94iWSERKzYwX0Pz7a~RPoD6ubZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":7802,"name":"Metabolomics","url":"https://www.academia.edu/Documents/in/Metabolomics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":317806,"name":"Biodosimetry","url":"https://www.academia.edu/Documents/in/Biodosimetry"},{"id":439023,"name":"Irradiation","url":"https://www.academia.edu/Documents/in/Irradiation"},{"id":764258,"name":"Ionizing Radiation","url":"https://www.academia.edu/Documents/in/Ionizing_Radiation"},{"id":1035050,"name":"Proteome","url":"https://www.academia.edu/Documents/in/Proteome"},{"id":1223894,"name":"Metabolite","url":"https://www.academia.edu/Documents/in/Metabolite"}],"urls":[{"id":29768682,"url":"https://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.1c00638"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491188"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491188/Machine_learning_methodology_for_high_throughput_personalized_neutron_dose_reconstruction_in_mixed_neutron_photon_exposures"><img alt="Research paper thumbnail of Machine learning methodology for high throughput personalized neutron dose reconstruction in mixed neutron + photon exposures" class="work-thumbnail" src="https://attachments.academia-assets.com/99827612/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491188/Machine_learning_methodology_for_high_throughput_personalized_neutron_dose_reconstruction_in_mixed_neutron_photon_exposures">Machine learning methodology for high throughput personalized neutron dose reconstruction in mixed neutron + photon exposures</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct neutron doses in mixed neutron + photon exposures, which are expected in improvised nuclear device detonations. Such individualized reconstructions are crucial for triage and treatment because neutrons are more biologically damaging than photons. We used a high-throughput micronucleus assay with automated scanning/imaging on lymphocytes from human blood ex-vivo irradiated with 44 different combinations of 0–4 Gy neutrons and 0–15 Gy photons (542 blood samples), which include reanalysis of past experiments. We developed several metrics that describe micronuclei/cell probability distributions in binucleated cells, and used them as predictors in random forest (RF) and XGboost machine learning analyses to reconstruct the neutron dose in each sample. The probability of “overfitting” was minimized by training both algorithms with repeated cross-validation on a randomly-selected subset of the ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab5e18891c8e422abbaa125a01d55776" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827612,"asset_id":98491188,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827612/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491188"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491188"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491188; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491188]").text(description); $(".js-view-count[data-work-id=98491188]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491188; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491188']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491188, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab5e18891c8e422abbaa125a01d55776" } } $('.js-work-strip[data-work-id=98491188]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491188,"title":"Machine learning methodology for high throughput personalized neutron dose reconstruction in mixed neutron + photon exposures","translated_title":"","metadata":{"abstract":"We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct neutron doses in mixed neutron + photon exposures, which are expected in improvised nuclear device detonations. Such individualized reconstructions are crucial for triage and treatment because neutrons are more biologically damaging than photons. We used a high-throughput micronucleus assay with automated scanning/imaging on lymphocytes from human blood ex-vivo irradiated with 44 different combinations of 0–4 Gy neutrons and 0–15 Gy photons (542 blood samples), which include reanalysis of past experiments. We developed several metrics that describe micronuclei/cell probability distributions in binucleated cells, and used them as predictors in random forest (RF) and XGboost machine learning analyses to reconstruct the neutron dose in each sample. The probability of “overfitting” was minimized by training both algorithms with repeated cross-validation on a randomly-selected subset of the ...","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":"We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct neutron doses in mixed neutron + photon exposures, which are expected in improvised nuclear device detonations. Such individualized reconstructions are crucial for triage and treatment because neutrons are more biologically damaging than photons. We used a high-throughput micronucleus assay with automated scanning/imaging on lymphocytes from human blood ex-vivo irradiated with 44 different combinations of 0–4 Gy neutrons and 0–15 Gy photons (542 blood samples), which include reanalysis of past experiments. We developed several metrics that describe micronuclei/cell probability distributions in binucleated cells, and used them as predictors in random forest (RF) and XGboost machine learning analyses to reconstruct the neutron dose in each sample. The probability of “overfitting” was minimized by training both algorithms with repeated cross-validation on a randomly-selected subset of the ...","internal_url":"https://www.academia.edu/98491188/Machine_learning_methodology_for_high_throughput_personalized_neutron_dose_reconstruction_in_mixed_neutron_photon_exposures","translated_internal_url":"","created_at":"2023-03-14T02:17:34.229-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827612/thumbnails/1.jpg","file_name":"s41598-021-83575-5.pdf","download_url":"https://www.academia.edu/attachments/99827612/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Machine_learning_methodology_for_high_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827612/s41598-021-83575-5-libre.pdf?1678786276=\u0026response-content-disposition=attachment%3B+filename%3DMachine_learning_methodology_for_high_th.pdf\u0026Expires=1732507640\u0026Signature=e6KtxJPEPtIcvmrvhcG-xmOJUbW2KKamq0zV8uSzBttHnDMs9fDziIHr1gOUrjwQUOaWoHsUwfCIfM0hLAZYc6JTFJvEzqHDTZiIZ4tuxKHvDpapGfe~nlBhyYX-mx4ljk9R7EPkmdJoGNocXg~Oqke4PImJsIHAKi6X2nHfiSCWj0DIwxeShsbc92GWM2E4M1nmEDY-K5iV1~u0XYpo6GDO9pWjlSh6NctLmj7EniutfZ7xJsuDYWh5BinySRrgUByXJUDa~~8MtWYFh0zy4aRcJBYV78z5tRu8nIfoLTN5QPN1m0kF1JA9JpOto4ykWtcJMXbPi7m3D5uNFICudw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Machine_learning_methodology_for_high_throughput_personalized_neutron_dose_reconstruction_in_mixed_neutron_photon_exposures","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827612/thumbnails/1.jpg","file_name":"s41598-021-83575-5.pdf","download_url":"https://www.academia.edu/attachments/99827612/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Machine_learning_methodology_for_high_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827612/s41598-021-83575-5-libre.pdf?1678786276=\u0026response-content-disposition=attachment%3B+filename%3DMachine_learning_methodology_for_high_th.pdf\u0026Expires=1732507640\u0026Signature=e6KtxJPEPtIcvmrvhcG-xmOJUbW2KKamq0zV8uSzBttHnDMs9fDziIHr1gOUrjwQUOaWoHsUwfCIfM0hLAZYc6JTFJvEzqHDTZiIZ4tuxKHvDpapGfe~nlBhyYX-mx4ljk9R7EPkmdJoGNocXg~Oqke4PImJsIHAKi6X2nHfiSCWj0DIwxeShsbc92GWM2E4M1nmEDY-K5iV1~u0XYpo6GDO9pWjlSh6NctLmj7EniutfZ7xJsuDYWh5BinySRrgUByXJUDa~~8MtWYFh0zy4aRcJBYV78z5tRu8nIfoLTN5QPN1m0kF1JA9JpOto4ykWtcJMXbPi7m3D5uNFICudw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":99827613,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827613/thumbnails/1.jpg","file_name":"s41598-021-83575-5.pdf","download_url":"https://www.academia.edu/attachments/99827613/download_file","bulk_download_file_name":"Machine_learning_methodology_for_high_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827613/s41598-021-83575-5-libre.pdf?1678786276=\u0026response-content-disposition=attachment%3B+filename%3DMachine_learning_methodology_for_high_th.pdf\u0026Expires=1732507640\u0026Signature=FpVETkrBwLysVxt78N33PIGVycx9r2wfgDgPgDb15C-CL7xIgKCFHtigre~ONYCcpYkT0LvDcY84SbbQDZDqymyqGRQSaEAq4Ysy822~vmGAbc5UXpqr3g54W77H1wBXYXUMxnnQByseNL5WX-X3gXfmfkx9R6XXKa6VmIohQPxaqAllVx8fGgtIXRTVgI0jpRUDjK0Ce3JEfut2zYc438kfIna1zOBt-4ynJF673RruK46JqMMztMlsVDiiEtdXPgxpAH81RjOz-pHs4IwszvrF8DrNNHn115jik6D~cQljP3sP3d0wDRRzjbPYzll~1Fym4SMlmwjmG2qHjKr7XA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":317806,"name":"Biodosimetry","url":"https://www.academia.edu/Documents/in/Biodosimetry"},{"id":670466,"name":"Photon","url":"https://www.academia.edu/Documents/in/Photon"},{"id":728571,"name":"Neutron","url":"https://www.academia.edu/Documents/in/Neutron"}],"urls":[{"id":29768681,"url":"https://www.nature.com/articles/s41598-021-83575-5.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491187"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491187/A_horizontal_multi_purpose_microbeam_system"><img alt="Research paper thumbnail of A horizontal multi-purpose microbeam system" class="work-thumbnail" src="https://attachments.academia-assets.com/99827654/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491187/A_horizontal_multi_purpose_microbeam_system">A horizontal multi-purpose microbeam system</a></div><div class="wp-workCard_item"><span>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2f6a06b225406e59bf4ff5567e958601" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827654,"asset_id":98491187,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827654/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491187"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491187"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491187; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491187]").text(description); $(".js-view-count[data-work-id=98491187]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491187; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491187']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491187, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2f6a06b225406e59bf4ff5567e958601" } } $('.js-work-strip[data-work-id=98491187]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491187,"title":"A horizontal multi-purpose microbeam system","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment"},"translated_abstract":null,"internal_url":"https://www.academia.edu/98491187/A_horizontal_multi_purpose_microbeam_system","translated_internal_url":"","created_at":"2023-03-14T02:17:34.095-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827654,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827654/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/99827654/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_horizontal_multi_purpose_microbeam_sys.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827654/ptpmcrender-libre.pdf?1678786260=\u0026response-content-disposition=attachment%3B+filename%3DA_horizontal_multi_purpose_microbeam_sys.pdf\u0026Expires=1732507640\u0026Signature=bCeRP0SwQDFfnFNtnVMiuTATAORvHGw-IX195-QvtUagcqZ~d6catWc3uUVNx3liR1CliYMBEPuEw8ws9mz~BmK0Zscm-srE4guEVa1YgnAQyMkmKzRCOFmvrUajsSHKfEcN6uXFMKl7MoWWIjburdQSEJZ4jBeauyqm3fqgAFz-fnubI-8O8q016J1tztQ-c5nOp6X~zf8IngVrCDGdItZH11HE8fYNG0ktAIlM8K371XzknqlpZjZSCiiXQmdRiSlJKQsdLOVngPUwjNF6nihOG4u2UYwcvLTSnD8AOHJdLJU8SFXO-gv5MnXOY9WcGa62sz3lbE7cO160l2ODVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_horizontal_multi_purpose_microbeam_system","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827654,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827654/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/99827654/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_horizontal_multi_purpose_microbeam_sys.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827654/ptpmcrender-libre.pdf?1678786260=\u0026response-content-disposition=attachment%3B+filename%3DA_horizontal_multi_purpose_microbeam_sys.pdf\u0026Expires=1732507640\u0026Signature=bCeRP0SwQDFfnFNtnVMiuTATAORvHGw-IX195-QvtUagcqZ~d6catWc3uUVNx3liR1CliYMBEPuEw8ws9mz~BmK0Zscm-srE4guEVa1YgnAQyMkmKzRCOFmvrUajsSHKfEcN6uXFMKl7MoWWIjburdQSEJZ4jBeauyqm3fqgAFz-fnubI-8O8q016J1tztQ-c5nOp6X~zf8IngVrCDGdItZH11HE8fYNG0ktAIlM8K371XzknqlpZjZSCiiXQmdRiSlJKQsdLOVngPUwjNF6nihOG4u2UYwcvLTSnD8AOHJdLJU8SFXO-gv5MnXOY9WcGa62sz3lbE7cO160l2ODVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":516,"name":"Optics","url":"https://www.academia.edu/Documents/in/Optics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":366350,"name":"Particle Accelerator","url":"https://www.academia.edu/Documents/in/Particle_Accelerator"},{"id":2139900,"name":"Microbeam","url":"https://www.academia.edu/Documents/in/Microbeam"}],"urls":[{"id":29768680,"url":"https://api.elsevier.com/content/article/PII:S0168900218300792?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491186"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98491186/Mapping_the_sensitive_volume_of_an_ion_counting_nanodosimeter"><img alt="Research paper thumbnail of Mapping the sensitive volume of an ion-counting nanodosimeter" class="work-thumbnail" src="https://attachments.academia-assets.com/99827660/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98491186/Mapping_the_sensitive_volume_of_an_ion_counting_nanodosimeter">Mapping the sensitive volume of an ion-counting nanodosimeter</a></div><div class="wp-workCard_item"><span>Journal of Instrumentation</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="196d375a4094894d38b09c28acfea9c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99827660,"asset_id":98491186,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99827660/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491186"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491186"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491186; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491186]").text(description); $(".js-view-count[data-work-id=98491186]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491186; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491186']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491186, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "196d375a4094894d38b09c28acfea9c2" } } $('.js-work-strip[data-work-id=98491186]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491186,"title":"Mapping the sensitive volume of an ion-counting nanodosimeter","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of Instrumentation"},"translated_abstract":null,"internal_url":"https://www.academia.edu/98491186/Mapping_the_sensitive_volume_of_an_ion_counting_nanodosimeter","translated_internal_url":"","created_at":"2023-03-14T02:17:33.983-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99827660,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827660/thumbnails/1.jpg","file_name":"0601177.pdf","download_url":"https://www.academia.edu/attachments/99827660/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mapping_the_sensitive_volume_of_an_ion_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827660/0601177-libre.pdf?1678786262=\u0026response-content-disposition=attachment%3B+filename%3DMapping_the_sensitive_volume_of_an_ion_c.pdf\u0026Expires=1732507641\u0026Signature=DrkcwelvaFP8WZAdoTDmgNMl2rSP-Q74FctgsErvkCIxGkcFfsXqdxnUshwe79HEUoijZXME1HOjoPiA0EdBYR9o8OXiiKYgIqoRlu4JdIkpNJBZaLOtAibWcO5haS1HrqZR9olMBeRV83-jCHET0KhinUuxxjAI6BJVJpS53A4H8YF3M7BPfsNLBJz3KQ4D~0jZGeBMaWJ09aozdxZ6jd0ZhLr8s~-zSz456BL-njUZ3YY17bgqefwRSB-JUmcCYKfbmcGaEYy~P5nzgR5n2l7QVzB9EvRWi9zjKGMl313LiMott15nZ1WJT9f83ZXIj6whFahVBe5zdifSs4QlaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mapping_the_sensitive_volume_of_an_ion_counting_nanodosimeter","translated_slug":"","page_count":27,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":99827660,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99827660/thumbnails/1.jpg","file_name":"0601177.pdf","download_url":"https://www.academia.edu/attachments/99827660/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mapping_the_sensitive_volume_of_an_ion_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99827660/0601177-libre.pdf?1678786262=\u0026response-content-disposition=attachment%3B+filename%3DMapping_the_sensitive_volume_of_an_ion_c.pdf\u0026Expires=1732507641\u0026Signature=DrkcwelvaFP8WZAdoTDmgNMl2rSP-Q74FctgsErvkCIxGkcFfsXqdxnUshwe79HEUoijZXME1HOjoPiA0EdBYR9o8OXiiKYgIqoRlu4JdIkpNJBZaLOtAibWcO5haS1HrqZR9olMBeRV83-jCHET0KhinUuxxjAI6BJVJpS53A4H8YF3M7BPfsNLBJz3KQ4D~0jZGeBMaWJ09aozdxZ6jd0ZhLr8s~-zSz456BL-njUZ3YY17bgqefwRSB-JUmcCYKfbmcGaEYy~P5nzgR5n2l7QVzB9EvRWi9zjKGMl313LiMott15nZ1WJT9f83ZXIj6whFahVBe5zdifSs4QlaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":27497,"name":"Instrumentation","url":"https://www.academia.edu/Documents/in/Instrumentation"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":981035,"name":"Gaseous Detector R \u0026D","url":"https://www.academia.edu/Documents/in/Gaseous_Detector_R_and_D"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98491115"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/98491115/Validation_of_a_High_Throughput_Dicentric_Chromosome_Assay_Using_Complex_Radiation_Exposures"><img alt="Research paper thumbnail of Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/98491115/Validation_of_a_High_Throughput_Dicentric_Chromosome_Assay_Using_Complex_Radiation_Exposures">Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures</a></div><div class="wp-workCard_item"><span>Radiation Research</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98491115"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98491115"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98491115; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98491115]").text(description); $(".js-view-count[data-work-id=98491115]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98491115; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98491115']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98491115, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=98491115]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98491115,"title":"Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures","translated_title":"","metadata":{"publisher":"Radiation Research Society","publication_name":"Radiation Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/98491115/Validation_of_a_High_Throughput_Dicentric_Chromosome_Assay_Using_Complex_Radiation_Exposures","translated_internal_url":"","created_at":"2023-03-14T02:16:56.367-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Validation_of_a_High_Throughput_Dicentric_Chromosome_Assay_Using_Complex_Radiation_Exposures","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[{"id":1328,"name":"Radiation","url":"https://www.academia.edu/Documents/in/Radiation"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":29768643,"url":"https://meridian.allenpress.com/radiation-research/article-pdf/doi/10.1667/RADE-22-00007.1/3105966/10.1667_rade-22-00007.1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605385"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73605385/Cross_platform_validation_of_a_mouse_blood_gene_signature_for_quantitative_reconstruction_of_radiation_dose"><img alt="Research paper thumbnail of Cross-platform validation of a mouse blood gene signature for quantitative reconstruction of radiation dose" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/73605385/Cross_platform_validation_of_a_mouse_blood_gene_signature_for_quantitative_reconstruction_of_radiation_dose">Cross-platform validation of a mouse blood gene signature for quantitative reconstruction of radiation dose</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the search for biological markers after a large-scale exposure of the human population to radi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the search for biological markers after a large-scale exposure of the human population to radiation, gene expression is a sensitive endpoint easily translatable to in-field high throughput applications. Primarily, the ex-vivo irradiated healthy human blood model has been used to generate available gene expression datasets. This model has limitations i.e., lack of signaling from other irradiated tissues and deterioration of blood cells cultures over time. In vivo models are needed; therefore, we present our novel approach to define a gene signature in mouse blood cells that quantitatively correlates with radiation dose (at 1 Gy/min). Starting with available microarray datasets, we selected 30 radiation-responsive genes and performed cross-validation/training-testing data splits to downselect 16 radiation-responsive genes. We then tested these genes in an independent cohort of irradiated adult C57BL/6 mice (50:50 both sexes) and measured mRNA by quantitative RT-PCR in whole blood a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605385"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605385"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605385; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605385]").text(description); $(".js-view-count[data-work-id=73605385]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605385; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605385']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605385, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73605385]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605385,"title":"Cross-platform validation of a mouse blood gene signature for quantitative reconstruction of radiation dose","translated_title":"","metadata":{"abstract":"In the search for biological markers after a large-scale exposure of the human population to radiation, gene expression is a sensitive endpoint easily translatable to in-field high throughput applications. Primarily, the ex-vivo irradiated healthy human blood model has been used to generate available gene expression datasets. This model has limitations i.e., lack of signaling from other irradiated tissues and deterioration of blood cells cultures over time. In vivo models are needed; therefore, we present our novel approach to define a gene signature in mouse blood cells that quantitatively correlates with radiation dose (at 1 Gy/min). Starting with available microarray datasets, we selected 30 radiation-responsive genes and performed cross-validation/training-testing data splits to downselect 16 radiation-responsive genes. We then tested these genes in an independent cohort of irradiated adult C57BL/6 mice (50:50 both sexes) and measured mRNA by quantitative RT-PCR in whole blood a...","publisher":"Research Square Platform LLC"},"translated_abstract":"In the search for biological markers after a large-scale exposure of the human population to radiation, gene expression is a sensitive endpoint easily translatable to in-field high throughput applications. Primarily, the ex-vivo irradiated healthy human blood model has been used to generate available gene expression datasets. This model has limitations i.e., lack of signaling from other irradiated tissues and deterioration of blood cells cultures over time. In vivo models are needed; therefore, we present our novel approach to define a gene signature in mouse blood cells that quantitatively correlates with radiation dose (at 1 Gy/min). Starting with available microarray datasets, we selected 30 radiation-responsive genes and performed cross-validation/training-testing data splits to downselect 16 radiation-responsive genes. We then tested these genes in an independent cohort of irradiated adult C57BL/6 mice (50:50 both sexes) and measured mRNA by quantitative RT-PCR in whole blood a...","internal_url":"https://www.academia.edu/73605385/Cross_platform_validation_of_a_mouse_blood_gene_signature_for_quantitative_reconstruction_of_radiation_dose","translated_internal_url":"","created_at":"2022-03-12T07:23:44.556-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cross_platform_validation_of_a_mouse_blood_gene_signature_for_quantitative_reconstruction_of_radiation_dose","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[],"urls":[{"id":18448712,"url":"https://www.researchsquare.com/article/rs-1325734/v1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605384"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73605384/Expanding_the_Question_Answering_Potential_of_Charged_Particle_Single_Cell_Microbeams"><img alt="Research paper thumbnail of Expanding the Question-Answering Potential of Charged-Particle, Single-Cell Microbeams" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/73605384/Expanding_the_Question_Answering_Potential_of_Charged_Particle_Single_Cell_Microbeams">Expanding the Question-Answering Potential of Charged-Particle, Single-Cell Microbeams</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605384"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605384"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605384; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605384]").text(description); $(".js-view-count[data-work-id=73605384]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605384; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605384']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605384, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73605384]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605384,"title":"Expanding the Question-Answering Potential of Charged-Particle, Single-Cell Microbeams","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73605384/Expanding_the_Question_Answering_Potential_of_Charged_Particle_Single_Cell_Microbeams","translated_internal_url":"","created_at":"2022-03-12T07:23:44.302-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Expanding_the_Question_Answering_Potential_of_Charged_Particle_Single_Cell_Microbeams","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605382"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73605382/Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation"><img alt="Research paper thumbnail of Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation" class="work-thumbnail" src="https://attachments.academia-assets.com/82062703/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73605382/Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation">Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">BackgroundRadiation exposure due to the detonation of an improvised nuclear device remains a majo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">BackgroundRadiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness.ResultsWe investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the r...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cb3ad13663c6f7264e70556b9bcd1ea4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82062703,"asset_id":73605382,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82062703/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605382"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605382"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605382; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605382]").text(description); $(".js-view-count[data-work-id=73605382]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605382; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605382']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605382, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cb3ad13663c6f7264e70556b9bcd1ea4" } } $('.js-work-strip[data-work-id=73605382]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605382,"title":"Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation","translated_title":"","metadata":{"abstract":"BackgroundRadiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness.ResultsWe investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the r...","publisher":"BMC Genomics","publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":"BackgroundRadiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness.ResultsWe investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the r...","internal_url":"https://www.academia.edu/73605382/Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_internal_url":"","created_at":"2022-03-12T07:23:44.046-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82062703,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062703/thumbnails/1.jpg","file_name":"s12864-018-4884-6.pdf","download_url":"https://www.academia.edu/attachments/82062703/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identification_of_differentially_express.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062703/s12864-018-4884-6-libre.pdf?1647099948=\u0026response-content-disposition=attachment%3B+filename%3DIdentification_of_differentially_express.pdf\u0026Expires=1732507641\u0026Signature=LiEzLYqWHdtzdLzzY0Znc93DP6A8-EY0Nv9a2lGv2p-FDKF7Vw85TYYfzIuZXpXLmmd9ghoElNIBUdI289H920MqvnMs2tFDXFKPEzqmmXaM7eCx02femLr1f6Pm0YIYsuU9p3JOuVQCscs0Lng6H~B1qPJjxSWvgs3xXgQGNngBmwLr-FNNuIbNGJbXGu35tc87Pe5kajsxB9pkzKSIQd4n2Gttsrq-ZOBu2wYQid3Z7CE3dhcWaBLouRly4kEJK7-I1CgZtKrjtr7aaoFRM-euOUM2UV~0ELuWN54WDuZvtbOp5wmJE~FQjX1mMNRhs3VsckbTgPotmLER4qvc7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identification_of_differentially_expressed_genes_and_pathways_in_mice_exposed_to_mixed_field_neutron_photon_radiation","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":82062703,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062703/thumbnails/1.jpg","file_name":"s12864-018-4884-6.pdf","download_url":"https://www.academia.edu/attachments/82062703/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identification_of_differentially_express.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062703/s12864-018-4884-6-libre.pdf?1647099948=\u0026response-content-disposition=attachment%3B+filename%3DIdentification_of_differentially_express.pdf\u0026Expires=1732507641\u0026Signature=LiEzLYqWHdtzdLzzY0Znc93DP6A8-EY0Nv9a2lGv2p-FDKF7Vw85TYYfzIuZXpXLmmd9ghoElNIBUdI289H920MqvnMs2tFDXFKPEzqmmXaM7eCx02femLr1f6Pm0YIYsuU9p3JOuVQCscs0Lng6H~B1qPJjxSWvgs3xXgQGNngBmwLr-FNNuIbNGJbXGu35tc87Pe5kajsxB9pkzKSIQd4n2Gttsrq-ZOBu2wYQid3Z7CE3dhcWaBLouRly4kEJK7-I1CgZtKrjtr7aaoFRM-euOUM2UV~0ELuWN54WDuZvtbOp5wmJE~FQjX1mMNRhs3VsckbTgPotmLER4qvc7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":82062704,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062704/thumbnails/1.jpg","file_name":"s12864-018-4884-6.pdf","download_url":"https://www.academia.edu/attachments/82062704/download_file","bulk_download_file_name":"Identification_of_differentially_express.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062704/s12864-018-4884-6-libre.pdf?1647099948=\u0026response-content-disposition=attachment%3B+filename%3DIdentification_of_differentially_express.pdf\u0026Expires=1732507641\u0026Signature=StzOQdiaqzTJtCrKTMMuJXoqJn6MyasGAJlaLasdMtA9lWGFcy9TnDY-D6vi5AFCs8JrSMNKap9sMgRHVNq0k5U7RiTR3NG7Oyp6ffPp6Tv885mCtkaexD9Klurpqs89TA6wUMyJF1Nc9cqy8Va8Wke4CNl6IHQiW~Q3yVHV~kDWB1e4kIwDf0YtqvRtLW6qIs75AVjFLGcCNgP14gBWkBojspoc2c7Cm198mX6ABZZy3Hf-4lwk3Ijt991fo6Qmw3VOsH6B7nSRFXMj1ObWejFMMBAflqmsXOCWaFct3N132v2fgH-K~m7mKMJ0-19HTN7oS4l8mp1thkHMNEdEVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":18448711,"url":"https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-018-4884-6"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605381"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73605381/91_Impact_of_ultra_fast_FLASH_radiotherapy_on_single_cell_immunogenomics_in_diffuse_intrinsic_pontine_glioma_DIPG_"><img alt="Research paper thumbnail of 91 Impact of ultra-fast ‘FLASH’ radiotherapy on single cell immunogenomics in diffuse intrinsic pontine glioma (DIPG)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73605381/91_Impact_of_ultra_fast_FLASH_radiotherapy_on_single_cell_immunogenomics_in_diffuse_intrinsic_pontine_glioma_DIPG_">91 Impact of ultra-fast ‘FLASH’ radiotherapy on single cell immunogenomics in diffuse intrinsic pontine glioma (DIPG)</a></div><div class="wp-workCard_item"><span>Journal for ImmunoTherapy of Cancer</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">BackgroundDiffuse intrinsic pontine gliomas (DIPG’s) are immunologically inert tumors with a medi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">BackgroundDiffuse intrinsic pontine gliomas (DIPG’s) are immunologically inert tumors with a median survival of 9–15 months. Radiation therapy (RT) is the mainstay treatment for DIPG but is associated with immunodepletion of the tumor microenvironment (TME) at high dose ranges. FLASH, or ultra-fast dose rate RT, represents a novel ablative technique that may spare TME immune responses while decreasing tumor burden. Here, we present single-cell immune profiling of DIPG tumors treated with FLASH, conventional dose rate RT (CONV) or no RT (SHAM).MethodsMurine H3.3K27M mutant DIPG cells were stereotactically injected and tumor induction confirmed by magnetic resonance imaging (MRI) 15 days later. DIPG-bearing mice were randomly assigned to one of three treatment groups (n=4/group), FLASH, CONV or SHAM. A fourth group with no tumor (NML) was included as a negative biological control. A modified linear accelerator was used to deliver 15 Gy of electron RT to the brainstem at dose rates of ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605381"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605381"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605381; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605381]").text(description); $(".js-view-count[data-work-id=73605381]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605381; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605381']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605381, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73605381]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605381,"title":"91 Impact of ultra-fast ‘FLASH’ radiotherapy on single cell immunogenomics in diffuse intrinsic pontine glioma (DIPG)","translated_title":"","metadata":{"abstract":"BackgroundDiffuse intrinsic pontine gliomas (DIPG’s) are immunologically inert tumors with a median survival of 9–15 months. Radiation therapy (RT) is the mainstay treatment for DIPG but is associated with immunodepletion of the tumor microenvironment (TME) at high dose ranges. FLASH, or ultra-fast dose rate RT, represents a novel ablative technique that may spare TME immune responses while decreasing tumor burden. Here, we present single-cell immune profiling of DIPG tumors treated with FLASH, conventional dose rate RT (CONV) or no RT (SHAM).MethodsMurine H3.3K27M mutant DIPG cells were stereotactically injected and tumor induction confirmed by magnetic resonance imaging (MRI) 15 days later. DIPG-bearing mice were randomly assigned to one of three treatment groups (n=4/group), FLASH, CONV or SHAM. A fourth group with no tumor (NML) was included as a negative biological control. A modified linear accelerator was used to deliver 15 Gy of electron RT to the brainstem at dose rates of ...","publisher":"BMJ","publication_name":"Journal for ImmunoTherapy of Cancer"},"translated_abstract":"BackgroundDiffuse intrinsic pontine gliomas (DIPG’s) are immunologically inert tumors with a median survival of 9–15 months. Radiation therapy (RT) is the mainstay treatment for DIPG but is associated with immunodepletion of the tumor microenvironment (TME) at high dose ranges. FLASH, or ultra-fast dose rate RT, represents a novel ablative technique that may spare TME immune responses while decreasing tumor burden. Here, we present single-cell immune profiling of DIPG tumors treated with FLASH, conventional dose rate RT (CONV) or no RT (SHAM).MethodsMurine H3.3K27M mutant DIPG cells were stereotactically injected and tumor induction confirmed by magnetic resonance imaging (MRI) 15 days later. DIPG-bearing mice were randomly assigned to one of three treatment groups (n=4/group), FLASH, CONV or SHAM. A fourth group with no tumor (NML) was included as a negative biological control. A modified linear accelerator was used to deliver 15 Gy of electron RT to the brainstem at dose rates of ...","internal_url":"https://www.academia.edu/73605381/91_Impact_of_ultra_fast_FLASH_radiotherapy_on_single_cell_immunogenomics_in_diffuse_intrinsic_pontine_glioma_DIPG_","translated_internal_url":"","created_at":"2022-03-12T07:23:43.793-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"91_Impact_of_ultra_fast_FLASH_radiotherapy_on_single_cell_immunogenomics_in_diffuse_intrinsic_pontine_glioma_DIPG_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[],"urls":[{"id":18448710,"url":"https://syndication.highwire.org/content/doi/10.1136/jitc-2021-SITC2021.091"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605380"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73605380/The_RABiT_II_DCA_in_the_Rhesus_Macaque_Model"><img alt="Research paper thumbnail of The RABiT-II DCA in the Rhesus Macaque Model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73605380/The_RABiT_II_DCA_in_the_Rhesus_Macaque_Model">The RABiT-II DCA in the Rhesus Macaque Model</a></div><div class="wp-workCard_item"><span>Radiation Research</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An automated platform for cytogenetic biodosimetry, the &quot;Rapid Automated Biodosimetry Tool I...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An automated platform for cytogenetic biodosimetry, the &quot;Rapid Automated Biodosimetry Tool II (RABiT-II),&quot; adapts the dicentric chromosome assay (DCA) for high-throughput mass-screening of the population after a large-scale radiological event. To validate this test, the U.S. Federal Drug Administration (FDA) recommends demonstrating that the high-throughput biodosimetric assay in question correctly reports the dose in an in vivo model. Here we describe the use of rhesus macaques (Macaca mulatta) to augment human studies and validate the accuracy of the high-throughput version of the DCA. To perform analysis, we developed the 17/22-mer peptide nucleic acid (PNA) probes that bind to the rhesus macaque&#39;s centromeres. To our knowledge, these are the first custom PNA probes with high specificity that can be used for chromosome analysis in M. mulatta. The accuracy of fully-automated chromosome analysis was improved by optimizing a low-temperature telomere PNA FISH staining in multiwell plates and adding the telomere detection feature to our custom chromosome detection software, FluorQuantDic V4. The dicentric frequencies estimated from in vitro irradiated rhesus macaque samples were compared to human blood samples of individuals subjected to the same ex vivo irradiation conditions. The results of the RABiT-II DCA analysis suggest that, in the lymphocyte system, the dose responses to gamma radiation in the rhesus macaques were similar to those in humans, with small but statistically significant differences between these two model systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605380"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605380"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605380; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605380]").text(description); $(".js-view-count[data-work-id=73605380]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605380; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605380']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605380, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73605380]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605380,"title":"The RABiT-II DCA in the Rhesus Macaque Model","translated_title":"","metadata":{"abstract":"An automated platform for cytogenetic biodosimetry, the \u0026quot;Rapid Automated Biodosimetry Tool II (RABiT-II),\u0026quot; adapts the dicentric chromosome assay (DCA) for high-throughput mass-screening of the population after a large-scale radiological event. To validate this test, the U.S. Federal Drug Administration (FDA) recommends demonstrating that the high-throughput biodosimetric assay in question correctly reports the dose in an in vivo model. Here we describe the use of rhesus macaques (Macaca mulatta) to augment human studies and validate the accuracy of the high-throughput version of the DCA. To perform analysis, we developed the 17/22-mer peptide nucleic acid (PNA) probes that bind to the rhesus macaque\u0026#39;s centromeres. To our knowledge, these are the first custom PNA probes with high specificity that can be used for chromosome analysis in M. mulatta. The accuracy of fully-automated chromosome analysis was improved by optimizing a low-temperature telomere PNA FISH staining in multiwell plates and adding the telomere detection feature to our custom chromosome detection software, FluorQuantDic V4. The dicentric frequencies estimated from in vitro irradiated rhesus macaque samples were compared to human blood samples of individuals subjected to the same ex vivo irradiation conditions. The results of the RABiT-II DCA analysis suggest that, in the lymphocyte system, the dose responses to gamma radiation in the rhesus macaques were similar to those in humans, with small but statistically significant differences between these two model systems.","publisher":"Radiation Research Society","publication_name":"Radiation Research"},"translated_abstract":"An automated platform for cytogenetic biodosimetry, the \u0026quot;Rapid Automated Biodosimetry Tool II (RABiT-II),\u0026quot; adapts the dicentric chromosome assay (DCA) for high-throughput mass-screening of the population after a large-scale radiological event. To validate this test, the U.S. Federal Drug Administration (FDA) recommends demonstrating that the high-throughput biodosimetric assay in question correctly reports the dose in an in vivo model. Here we describe the use of rhesus macaques (Macaca mulatta) to augment human studies and validate the accuracy of the high-throughput version of the DCA. To perform analysis, we developed the 17/22-mer peptide nucleic acid (PNA) probes that bind to the rhesus macaque\u0026#39;s centromeres. To our knowledge, these are the first custom PNA probes with high specificity that can be used for chromosome analysis in M. mulatta. The accuracy of fully-automated chromosome analysis was improved by optimizing a low-temperature telomere PNA FISH staining in multiwell plates and adding the telomere detection feature to our custom chromosome detection software, FluorQuantDic V4. The dicentric frequencies estimated from in vitro irradiated rhesus macaque samples were compared to human blood samples of individuals subjected to the same ex vivo irradiation conditions. The results of the RABiT-II DCA analysis suggest that, in the lymphocyte system, the dose responses to gamma radiation in the rhesus macaques were similar to those in humans, with small but statistically significant differences between these two model systems.","internal_url":"https://www.academia.edu/73605380/The_RABiT_II_DCA_in_the_Rhesus_Macaque_Model","translated_internal_url":"","created_at":"2022-03-12T07:23:43.615-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_RABiT_II_DCA_in_the_Rhesus_Macaque_Model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[],"research_interests":[{"id":1328,"name":"Radiation","url":"https://www.academia.edu/Documents/in/Radiation"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605378"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73605378/The_use_of_a_centrifuge_free_RABiT_II_system_for_high_throughput_micronucleus_analysis"><img alt="Research paper thumbnail of The use of a centrifuge-free RABiT-II system for high-throughput micronucleus analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/82062718/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73605378/The_use_of_a_centrifuge_free_RABiT_II_system_for_high_throughput_micronucleus_analysis">The use of a centrifuge-free RABiT-II system for high-throughput micronucleus analysis</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The cytokinesis-block micronucleus (CBMN) assay is considered as the most suitable biodosimetry m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The cytokinesis-block micronucleus (CBMN) assay is considered as the most suitable biodosimetry method for automation. Previously, we automated this assay on a commercial robotic biotech high-throughput system (RABiT-II) adopting both a traditional and an accelerated micronucleus protocol, both using centrifugation steps for lymphocyte harvesting and washing, after whole blood culturing. Here we describe further development of our accelerated CBMN assay protocol for using on High Throughput/High Content Screening (HTS/HCS) robotic systems without a centrifuge. This opens the way for implementation of the CBMN assay on a wider range of commercial automated HTS/HCS systems and thus increases the potential capacity of dose estimates following a mass-casualty radiological event.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ea819a15f118ec7fc429decfd96091e9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82062718,"asset_id":73605378,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82062718/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605378"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605378"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605378; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605378]").text(description); $(".js-view-count[data-work-id=73605378]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605378; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605378']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605378, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ea819a15f118ec7fc429decfd96091e9" } } $('.js-work-strip[data-work-id=73605378]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605378,"title":"The use of a centrifuge-free RABiT-II system for high-throughput micronucleus analysis","translated_title":"","metadata":{"abstract":"The cytokinesis-block micronucleus (CBMN) assay is considered as the most suitable biodosimetry method for automation. Previously, we automated this assay on a commercial robotic biotech high-throughput system (RABiT-II) adopting both a traditional and an accelerated micronucleus protocol, both using centrifugation steps for lymphocyte harvesting and washing, after whole blood culturing. Here we describe further development of our accelerated CBMN assay protocol for using on High Throughput/High Content Screening (HTS/HCS) robotic systems without a centrifuge. This opens the way for implementation of the CBMN assay on a wider range of commercial automated HTS/HCS systems and thus increases the potential capacity of dose estimates following a mass-casualty radiological event.","publisher":"Cold Spring Harbor Laboratory"},"translated_abstract":"The cytokinesis-block micronucleus (CBMN) assay is considered as the most suitable biodosimetry method for automation. Previously, we automated this assay on a commercial robotic biotech high-throughput system (RABiT-II) adopting both a traditional and an accelerated micronucleus protocol, both using centrifugation steps for lymphocyte harvesting and washing, after whole blood culturing. Here we describe further development of our accelerated CBMN assay protocol for using on High Throughput/High Content Screening (HTS/HCS) robotic systems without a centrifuge. This opens the way for implementation of the CBMN assay on a wider range of commercial automated HTS/HCS systems and thus increases the potential capacity of dose estimates following a mass-casualty radiological event.","internal_url":"https://www.academia.edu/73605378/The_use_of_a_centrifuge_free_RABiT_II_system_for_high_throughput_micronucleus_analysis","translated_internal_url":"","created_at":"2022-03-12T07:23:43.351-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82062718,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062718/thumbnails/1.jpg","file_name":"627596.full.pdf","download_url":"https://www.academia.edu/attachments/82062718/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_a_centrifuge_free_RABiT_II_sy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062718/627596.full-libre.pdf?1647099943=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_a_centrifuge_free_RABiT_II_sy.pdf\u0026Expires=1732507641\u0026Signature=UumjW~ck4c~NcswkeD2jdGtL2Dpu4KIvWq8~ZwYGImmFPniSSmN4Kaf~~NWF639bia~sqy2R303GKdsDEMAPMPVZoAXYh-ExmLuAvmcu~TAQ6~nUsojYxX3BD~YYYe2FOPI686pnojGei7bOchug4HVXs1UCvhf~S6wbQQ-O9IGkrsZLSMcAinTDHpUll7ikFFD3PVto-YU~8y4V3PFDYuMIJgPhB7-3pzft556KNp5lxahxGc7WM0~yxPyX6S1oeVp00r-3rvqNaXGFgI6fyv0GY9nG3isDVI-gKzxqXvYhrOP4Gi3pMrc50H677-UJhk8daAugeSLxNgbuajy9qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_use_of_a_centrifuge_free_RABiT_II_system_for_high_throughput_micronucleus_analysis","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":82062718,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062718/thumbnails/1.jpg","file_name":"627596.full.pdf","download_url":"https://www.academia.edu/attachments/82062718/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_a_centrifuge_free_RABiT_II_sy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062718/627596.full-libre.pdf?1647099943=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_a_centrifuge_free_RABiT_II_sy.pdf\u0026Expires=1732507641\u0026Signature=UumjW~ck4c~NcswkeD2jdGtL2Dpu4KIvWq8~ZwYGImmFPniSSmN4Kaf~~NWF639bia~sqy2R303GKdsDEMAPMPVZoAXYh-ExmLuAvmcu~TAQ6~nUsojYxX3BD~YYYe2FOPI686pnojGei7bOchug4HVXs1UCvhf~S6wbQQ-O9IGkrsZLSMcAinTDHpUll7ikFFD3PVto-YU~8y4V3PFDYuMIJgPhB7-3pzft556KNp5lxahxGc7WM0~yxPyX6S1oeVp00r-3rvqNaXGFgI6fyv0GY9nG3isDVI-gKzxqXvYhrOP4Gi3pMrc50H677-UJhk8daAugeSLxNgbuajy9qw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18448709,"url":"https://syndication.highwire.org/content/doi/10.1101/627596"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73605377"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73605377/A_new_approach_to_automated_CBMN_scoring_following_high_doses"><img alt="Research paper thumbnail of A new approach to automated CBMN scoring following high doses" class="work-thumbnail" src="https://attachments.academia-assets.com/82062721/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73605377/A_new_approach_to_automated_CBMN_scoring_following_high_doses">A new approach to automated CBMN scoring following high doses</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In recent years we have automated the CBMN assay using microvolumes of blood, processed in multiw...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In recent years we have automated the CBMN assay using microvolumes of blood, processed in multiwell plates. We have seen that at doses above 6 Gy the detected yield of micronuclei actually declines with dose, likely because of mitotic delay, preventing cells from forming micronuclei and also, when using one color imaging, resulting in many false binucleated cells, consisting of two randomly-adjacent nuclei. By using the inverse mitotic index (the ratio of mononuclear to binuclear cells) to adjust the micronucleus yield we were able to obtain a monotonic increasing dose response curve at doses of up to at least 10 Gy from the same samples which generated dose-response curve with a peak near 6 Gy, when scored using the traditional micronucleus yield.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c01e1e6751f583fc216496ad8c353f70" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82062721,"asset_id":73605377,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82062721/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73605377"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73605377"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73605377; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73605377]").text(description); $(".js-view-count[data-work-id=73605377]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73605377; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73605377']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73605377, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c01e1e6751f583fc216496ad8c353f70" } } $('.js-work-strip[data-work-id=73605377]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73605377,"title":"A new approach to automated CBMN scoring following high doses","translated_title":"","metadata":{"abstract":"In recent years we have automated the CBMN assay using microvolumes of blood, processed in multiwell plates. We have seen that at doses above 6 Gy the detected yield of micronuclei actually declines with dose, likely because of mitotic delay, preventing cells from forming micronuclei and also, when using one color imaging, resulting in many false binucleated cells, consisting of two randomly-adjacent nuclei. By using the inverse mitotic index (the ratio of mononuclear to binuclear cells) to adjust the micronucleus yield we were able to obtain a monotonic increasing dose response curve at doses of up to at least 10 Gy from the same samples which generated dose-response curve with a peak near 6 Gy, when scored using the traditional micronucleus yield.","publisher":"Cold Spring Harbor Laboratory"},"translated_abstract":"In recent years we have automated the CBMN assay using microvolumes of blood, processed in multiwell plates. We have seen that at doses above 6 Gy the detected yield of micronuclei actually declines with dose, likely because of mitotic delay, preventing cells from forming micronuclei and also, when using one color imaging, resulting in many false binucleated cells, consisting of two randomly-adjacent nuclei. By using the inverse mitotic index (the ratio of mononuclear to binuclear cells) to adjust the micronucleus yield we were able to obtain a monotonic increasing dose response curve at doses of up to at least 10 Gy from the same samples which generated dose-response curve with a peak near 6 Gy, when scored using the traditional micronucleus yield.","internal_url":"https://www.academia.edu/73605377/A_new_approach_to_automated_CBMN_scoring_following_high_doses","translated_internal_url":"","created_at":"2022-03-12T07:23:43.007-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56130005,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82062721,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062721/thumbnails/1.jpg","file_name":"620971.full.pdf","download_url":"https://www.academia.edu/attachments/82062721/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_approach_to_automated_CBMN_scoring.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062721/620971.full-libre.pdf?1647099943=\u0026response-content-disposition=attachment%3B+filename%3DA_new_approach_to_automated_CBMN_scoring.pdf\u0026Expires=1732507641\u0026Signature=hDv~PdRDTwCwnar5AkUx7jeJhDclNu-hy4oFvceHm2fq8JPNwSSSyMj45tmu47E3VANqcSNS4DVT09tQCh0TYzJb7eET8MYjb9AQj6~xKGk3xjK0kflWIUQWmmzY2gtyF5Aa9NWdTs5hrJIdZhv6138gA76QNDZMiJQGDDL8CiHN1sIjLQgH~f9kywBb7uWjk8GPYn2iudfVTWUQ6fufuPGNRqI~zQv4vTgQbmHzoKFEsUoNrfl3h5U9Qp4hYtJhPDyyM9BzvjzTIWsVV3IBqiUiHZHZGdz7NdbXy7h1lUiNPjaw3zEPuAxlle-FbMeNKS-ta18fImcRzQnEU2pkhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_approach_to_automated_CBMN_scoring_following_high_doses","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":56130005,"first_name":"Guy","middle_initials":null,"last_name":"Garty","page_name":"GuyGarty","domain_name":"independent","created_at":"2016-11-04T11:33:57.953-07:00","display_name":"Guy Garty","url":"https://independent.academia.edu/GuyGarty"},"attachments":[{"id":82062721,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82062721/thumbnails/1.jpg","file_name":"620971.full.pdf","download_url":"https://www.academia.edu/attachments/82062721/download_file?st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&st=MTczMjUwNDA0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_approach_to_automated_CBMN_scoring.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82062721/620971.full-libre.pdf?1647099943=\u0026response-content-disposition=attachment%3B+filename%3DA_new_approach_to_automated_CBMN_scoring.pdf\u0026Expires=1732507641\u0026Signature=hDv~PdRDTwCwnar5AkUx7jeJhDclNu-hy4oFvceHm2fq8JPNwSSSyMj45tmu47E3VANqcSNS4DVT09tQCh0TYzJb7eET8MYjb9AQj6~xKGk3xjK0kflWIUQWmmzY2gtyF5Aa9NWdTs5hrJIdZhv6138gA76QNDZMiJQGDDL8CiHN1sIjLQgH~f9kywBb7uWjk8GPYn2iudfVTWUQ6fufuPGNRqI~zQv4vTgQbmHzoKFEsUoNrfl3h5U9Qp4hYtJhPDyyM9BzvjzTIWsVV3IBqiUiHZHZGdz7NdbXy7h1lUiNPjaw3zEPuAxlle-FbMeNKS-ta18fImcRzQnEU2pkhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"}],"urls":[{"id":18448708,"url":"https://syndication.highwire.org/content/doi/10.1101/620971"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "56cb0cb82e55a944e610448e17a2f5ea71619aa9eee035ddd2b54c370a7e8f5d", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="4y6uBoVmCeKR+A04U2f6DS4yCf3wE7XykwjGPHVlhDc5V9+SWCifR8wy62z59wiWBsB2t6TnEy1cnglMo2twsA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/GuyGarty" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="lu3OuFZGWj0jHNcdwXIP8yyL/9jUKSfDz6sU6R1IbwdMlL8siwjMmH7WMUlr4v1oBHmAkoDdgRwAPduZy0abgA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>