CINXE.COM

Search results for: ubiquitin

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ubiquitin</title> <meta name="description" content="Search results for: ubiquitin"> <meta name="keywords" content="ubiquitin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ubiquitin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ubiquitin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ubiquitin</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Altered Expression of Ubiquitin Editing Complex in Ulcerative Colitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishani%20Majumdar">Ishani Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaishree%20Paul"> Jaishree Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ulcerative Colitis (UC) is an inflammatory disease of the colon resulting from an autoimmune response towards individual’s own microbiota. Excessive inflammation is characterized by hyper-activation of NFkB, a transcription factor regulating expression of various pro-inflammatory genes. The ubiquitin editing complex consisting of TNFAIP3, ITCH, RNF11 and TAX1BP1 maintains homeostatic levels of active NFkB through feedback inhibition and assembles in response to various stimuli that activate NFkB. TNFAIP3 deubiquitinates key signaling molecules involved in NFkB activation pathway. ITCH, RNF11 and TAX1BP1 provide substrate specificity, acting as adaptors for TNFAIP3 function. Aim: This study aimed to find expression of members of the ubiquitin editing complex at the transcript level in inflamed colon tissues of UC patients. Materials and Methods: Colonic biopsy samples were collected from 30 UC patients recruited at Department of Gastroenterology, AIIMS (New Delhi). Control group (n= 10) consisted of individuals undergoing examination for functional disorders. Real Time PCR was used to determine relative expression with GAPDH as housekeeping gene. Results: Expression of members of the ubiquitin editing complex was significantly altered during active disease. Expression of TNFAIP3 was upregulated while concomitant decrease in expression of ITCH, RNF11, TAX1BP1 was seen in UC patients. Discussion: This study reveals that increase in expression of TNFAIP3 was unable to control inflammation during active UC. Further, insufficient upregulation of ITCH, RNF11, TAX1BP1 may limit the formation of the ubiquitin complex and contribute to pathogenesis of UC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=altered%20expression" title="altered expression">altered expression</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitin%20editing%20complex" title=" ubiquitin editing complex"> ubiquitin editing complex</a>, <a href="https://publications.waset.org/abstracts/search?q=ulcerative%20colitis" title=" ulcerative colitis"> ulcerative colitis</a> </p> <a href="https://publications.waset.org/abstracts/45510/altered-expression-of-ubiquitin-editing-complex-in-ulcerative-colitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Melanoma Antigen Proteins Are Involved in DNA Damage Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivier%20de%20Backer">Olivier de Backer</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Khelfi"> Alexis Khelfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Svensek"> Olivier Svensek</a>, <a href="https://publications.waset.org/abstracts/search?q=Axelle%20Nolmans"> Axelle Nolmans</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Desnoeck"> Dominique Desnoeck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The SMC5-SMC6 complex helps replication and repair of DNA double-strand breaks. Nse1, Nse3 and Nse4 are non-SMC components of the complex in which Nse3 stimulates the E3 ubiquitin ligase activity of Nse1 and is required for recruiting the complex on DNA. In most eukaryotes, Nse3 is a single protein, but in eutherians (placental mammals), it belongs to a large family of proteins called MAGE (Melanoma antigen) that share a conserved domain of about 200 aa known as MHD (Mage homology domain). MAGE assembles specific RING and HECT ubiquitin ligases and determines new substrates for ubiquitination. The MHD is required for the interaction with the cognate E3 ligase. Some MAGEs (referred to as Type I) are exclusively expressed in germ cells of the testis but are often expressed ectopically in cancer cells as the result of epigenetic modifications. The 12 MAGE-A genes belong to this category. Serval MAGE-A proteins could promote tumorigenesis by targeting tumor suppressor proteins (including p53) for ubiquitination and degradation. We showed that depletion of MAGE-A proteins in melanoma cells results in impaired DNA damage response and increased double-strand breaks after exposure to camptothecin. Moreover, it was shown that other actors of the DNA Damage Response were impacted when cells were depleted of MAGEA proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage%20response" title="DNA damage response">DNA damage response</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=camptothecin" title=" camptothecin"> camptothecin</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20role" title=" new role"> new role</a>, <a href="https://publications.waset.org/abstracts/search?q=MAGEA" title=" MAGEA"> MAGEA</a> </p> <a href="https://publications.waset.org/abstracts/169692/melanoma-antigen-proteins-are-involved-in-dna-damage-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Sequence Analysis and Molecular Cloning of PROTEOLYSIS 6 in Tomato</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurulhikma%20Md%20Isa">Nurulhikma Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Intan%20Elya%20Suka"> Intan Elya Suka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Farhana%20Roslan"> Nur Farhana Roslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chew%20Bee%20Lynn"> Chew Bee Lynn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolutionarily conserved N-end rule pathway marks proteins for degradation by the Ubiquitin Proteosome System (UPS) based on the nature of their N-terminal residue. Proteins with a destabilizing N-terminal residue undergo a series of condition-dependent N-terminal modifications, resulting in their ubiquitination and degradation. Intensive research has been carried out in Arabidopsis previously. The group VII Ethylene Response Factor (ERFs) transcription factors are the first N-end rule pathway substrates found in Arabidopsis and their role in regulating oxygen sensing. ERFs also function as central hubs for the perception of gaseous signals in plants and control different plant developmental including germination, stomatal aperture, hypocotyl elongation and stress responses. However, nothing is known about the role of this pathway during fruit development and ripening aspect. The plant model system Arabidopsis cannot represent fleshy fruit model system therefore tomato is the best model plant to study. PROTEOLYSIS6 (PRT6) is an E3 ubiquitin ligase of the N-end rule pathway. Two homologs of PRT6 sequences have been identified in tomato genome database using the PRT6 protein sequence from model plant Arabidopsis thaliana. Homology search against Ensemble Plant database (tomato) showed Solyc09g010830.2 is the best hit with highest score of 1143, e-value of 0.0 and 61.3% identity compare to the second hit Solyc10g084760.1. Further homology search was done using NCBI Blast database to validate the data. The result showed best gene hit was XP_010325853.1 of uncharacterized protein LOC101255129 (Solanum lycopersicum) with highest score of 1601, e-value 0.0 and 48% identity. Both Solyc09g010830.2 and uncharacterized protein LOC101255129 were genes located at chromosome 9. Further validation was carried out using BLASTP program between these two sequences (Solyc09g010830.2 and uncharacterized protein LOC101255129) to investigate whether they were the same proteins represent PRT6 in tomato. Results showed that both proteins have 100 % identity, indicates that they were the same gene represents PRT6 in tomato. In addition, we used two different RNAi constructs that were driven under 35S and Polygalacturonase (PG) promoters to study the function of PRT6 during tomato developmental stages and ripening processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ERFs" title="ERFs">ERFs</a>, <a href="https://publications.waset.org/abstracts/search?q=PRT6" title=" PRT6"> PRT6</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitin" title=" ubiquitin"> ubiquitin</a> </p> <a href="https://publications.waset.org/abstracts/72837/sequence-analysis-and-molecular-cloning-of-proteolysis-6-in-tomato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Deubiquitinase USP35 Regulates Mitosis Progression by Blocking CDH1-Mediated Degradation of Aurora B.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Park">Jinyoung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Joo%20Song"> Eun Joo Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Deubiquitinating enzymes (DUBs) are proteases that cleave ubiquitin or ubiquitin-like modifications on substrates. Deubiquitination could regulate cellular physiology, such as signal transduction, DNA damage and repair, and cell cycle progression. Although more than 100 DUBs are encoded in the human and the importance of DUBs has been realized, the functions of most DUBs are unknown. This study aims to identify the molecular mechanism by which deubiquitinating enzyme USP35 regulates cell cycle progression for the first time. Methods: USP35 RNAi was mainly used to identify the function of USP35 in cell cycle progression. To find substrates of USP35, we analyzed protein-protein interaction using LC-MS. Several biological methods, such as ubiquitination assay, cell synchronization, immunofluorescence, and immunoprecipitation assay were used to investigate the exact mechanism by which USP35 affects successful completion of mitosis. Results: USP35 knockdown caused not only reduction of mitotic cell number but also induction of mitotic cells with abnormal spindle formation. Actually, cell proliferation was decreased by USP35 knockdown. Interestingly, we found that loss of USP35 decreased the stability and expression of Aurora B, a member of chromosomal passenger complex (CPC), and the phosphorylation of its substrate. Indeed, USP35 interacted with Aurora B and deubiquitinated it. In addition, USP35 knockdown induced abnormal localization of Aurora B in mitotic cells. Finally, CDH1-mediated ubiquitination of Aurora B level was rescued by USP35 overexpression, but not inactive form of USP35, USP35 C450A. Discussion: Our findings suggest that USP35 regulates Aurora B-mediated mitotic spindle assembly and G2-M transition by blocking CDH1-induced degradation of Aurora B. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=USP35" title="USP35">USP35</a>, <a href="https://publications.waset.org/abstracts/search?q=HSP90" title=" HSP90"> HSP90</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurora%20B" title=" Aurora B"> Aurora B</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20progression" title=" cell cycle progression"> cell cycle progression</a> </p> <a href="https://publications.waset.org/abstracts/30553/deubiquitinase-usp35-regulates-mitosis-progression-by-blocking-cdh1-mediated-degradation-of-aurora-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of Cardio-Specific Overexpression of MUL1, a Mitochondrial Protein on Myocardial Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ximena%20Calle">Ximena Calle</a>, <a href="https://publications.waset.org/abstracts/search?q=Plinio%20Cantero-L%C3%B3pez"> Plinio Cantero-López</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Mu%C3%B1oz-C%C3%B3rdova"> Felipe Muñoz-Córdova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayarling-Francisca%20Troncoso"> Mayarling-Francisca Troncoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Lavandero"> Sergio Lavandero</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Parra"> Valentina Parra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MUL1, a mitochondrial E3 ubiquitin ligase anchored to the outer mitochondrial membrane, is highly expressed in the heart. MUL1 is involved in multiple biological pathways associated with mitochondrial dynamics. Increased MUL1 affects the balance between fission and fusion, affecting mitochondrial function, which plays a crucial role in myocardial function. Therefore, it is interesting to evaluate the effect of cardiac-specific overexpression of MUL1 on myocardial function. Aim: To determine heart functionality in a mouse model with cardio-specific overexpression MUL1 protein. Methods and Results: Male C57BL/Tg transgenic mice with cardiomyocyte-specific overexpression of MUL1 (n=10) and control (n=4) were evaluated at 12, 27, and 35 weeks of age. Glucose tolerance curve determination was performed after a 6-hours fast to assess metabolic capacity, treadmill test, and systolic, and diastolic pressure was evaluated by the mouse tail-cuff blood pressure system equipment. The result showed no glucose tolerance curve, and the treadmill test demonstrated no significant changes between groups. However, substantial changes in diastolic function were observed by ultrasound and determination of cardiac hypertrophy proteins by western blot. Conclusions: Cardio-specific overexpression of MUL1 in mice without any treatment affects diastolic cardiac function, thus showing the important role contributed by MUL1 in the heart. Future research should evaluate the effect of cardiomyocyte-specific overexpression of MUL1 in pathological conditions such as a high-fat diet is one of the main risk factors for cardiovascular disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diastolic%20dysfunction" title="diastolic dysfunction">diastolic dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertrophy%20cardiac" title=" hypertrophy cardiac"> hypertrophy cardiac</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20E3%20ubiquitin%20ligase%201" title=" mitochondrial E3 ubiquitin ligase 1"> mitochondrial E3 ubiquitin ligase 1</a>, <a href="https://publications.waset.org/abstracts/search?q=MUL1" title=" MUL1"> MUL1</a> </p> <a href="https://publications.waset.org/abstracts/156095/effect-of-cardio-specific-overexpression-of-mul1-a-mitochondrial-protein-on-myocardial-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Clinical and Analytical Performance of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase L1 Biomarkers for Traumatic Brain Injury in the Alinity Traumatic Brain Injury Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Chandran">Raj Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Saul%20Datwyler"> Saul Datwyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Marino"> Jaime Marino</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20West"> Daniel West</a>, <a href="https://publications.waset.org/abstracts/search?q=Karla%20Grasso"> Karla Grasso</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Buss"> Adam Buss</a>, <a href="https://publications.waset.org/abstracts/search?q=Hina%20Syed"> Hina Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zina%20Al%20Sahouri"> Zina Al Sahouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Yen"> Jennifer Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Krista%20Caudle"> Krista Caudle</a>, <a href="https://publications.waset.org/abstracts/search?q=Beth%20McQuiston"> Beth McQuiston</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Alinity i TBI test is Therapeutic Goods Administration (TGA) registered and is a panel of in vitro diagnostic chemiluminescent microparticle immunoassays for the measurement of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) in plasma and serum. The Alinity i TBI performance was evaluated in a multi-center pivotal study to demonstrate the capability to assist in determining the need for a CT scan of the head in adult subjects (age 18+) presenting with suspected mild TBI (traumatic brain injury) with a Glasgow Coma Scale score of 13 to 15. TBI has been recognized as an important cause of death and disability and is a growing public health problem. An estimated 69 million people globally experience a TBI annually1. Blood-based biomarkers such as glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have shown utility to predict acute traumatic intracranial injury on head CT scans after TBI. A pivotal study using prospectively collected archived (frozen) plasma specimens was conducted to establish the clinical performance of the TBI test on the Alinity i system. The specimens were originally collected in a prospective, multi-center clinical study. Testing of the specimens was performed at three clinical sites in the United States. Performance characteristics such as detection limits, imprecision, linearity, measuring interval, expected values, and interferences were established following Clinical and Laboratory Standards Institute (CLSI) guidance. Of the 1899 mild TBI subjects, 120 had positive head CT scan results; 116 of the 120 specimens had a positive TBI interpretation (Sensitivity 96.7%; 95% CI: 91.7%, 98.7%). Of the 1779 subjects with negative CT scan results, 713 had a negative TBI interpretation (Specificity 40.1%; 95% CI: 37.8, 42.4). The negative predictive value (NPV) of the test was 99.4% (713/717, 95% CI: 98.6%, 99.8%). The analytical measuring interval (AMI) extends from the limit of quantitation (LoQ) to the upper LoQ and is determined by the range that demonstrates acceptable performance for linearity, imprecision, and bias. The AMI is 6.1 to 42,000 pg/mL for GFAP and 26.3 to 25,000 pg/mL for UCH-L1. Overall, within-laboratory imprecision (20 day) ranged from 3.7 to 5.9% CV for GFAP and 3.0 to 6.0% CV for UCH-L1, when including lot and instrument variances. The Alinity i TBI clinical performance results demonstrated high sensitivity and high NPV, supporting the utility to assist in determining the need for a head CT scan in subjects presenting to the emergency department with suspected mild TBI. The GFAP and UCH-L1 assays show robust analytical performance across a broad concentration range of GFAP and UCH-L1 and may serve as a valuable tool to help evaluate TBI patients across the spectrum of mild to severe injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarker" title="biomarker">biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic" title=" diagnostic"> diagnostic</a>, <a href="https://publications.waset.org/abstracts/search?q=neurology" title=" neurology"> neurology</a>, <a href="https://publications.waset.org/abstracts/search?q=TBI" title=" TBI"> TBI</a> </p> <a href="https://publications.waset.org/abstracts/177550/clinical-and-analytical-performance-of-glial-fibrillary-acidic-protein-and-ubiquitin-c-terminal-hydrolase-l1-biomarkers-for-traumatic-brain-injury-in-the-alinity-traumatic-brain-injury-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Improved Intracellular Protein Degradation System for Rapid Screening and Quantitative Study of Essential Fungal Proteins in Biopharmaceutical Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patarasuda%20Chaisupa">Patarasuda Chaisupa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Clay%20Wright"> R. Clay Wright</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The selection of appropriate biomolecular targets is a crucial aspect of biopharmaceutical development. The Auxin-Inducible Degron Degradation (AID) technology has demonstrated remarkable potential in efficiently and rapidly degrading target proteins, thereby enabling the identification and acquisition of drug targets. The AID system also offers a viable method to deplete specific proteins, particularly in cases where the degradation pathway has not been exploited or when the adaptation of proteins, including the cell environment, occurs to compensate for the mutation or gene knockout. In this study, we have engineered an improved AID system tailored to deplete proteins of interest. This AID construct combines the auxin-responsive E3 ubiquitin ligase binding domain, AFB2, and the substrate degron, IAA17, fused to the target genes. Essential genes of fungi with the lowest percent amino acid similarity to human and plant orthologs, according to the Basic Local Alignment Search Tool (BLAST), were cloned into the AID construct in S. cerevisiae (AID-tagged strains) using a modular yeast cloning toolkit for multipart assembly and direct genetic modification. Each E3 ubiquitin ligase and IAA17 degron was fused to a fluorescence protein, allowing for real-time monitoring of protein levels in response to different auxin doses via cytometry. Our AID system exhibited high sensitivity, with an EC50 value of 0.040 µM (SE = 0.016) for AFB2, enabling the specific promotion of IAA17::target protein degradation. Furthermore, we demonstrate how this improved AID system enhances quantitative functional studies of various proteins in fungi. The advancements made in auxin-inducible protein degradation in this study offer a powerful approach to investigating critical target protein viability in fungi, screening protein targets for drugs, and regulating intracellular protein abundance, thus revolutionizing the study of protein function underlying a diverse range of biological processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20biology" title="synthetic biology">synthetic biology</a>, <a href="https://publications.waset.org/abstracts/search?q=bioengineering" title=" bioengineering"> bioengineering</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a> </p> <a href="https://publications.waset.org/abstracts/170472/improved-intracellular-protein-degradation-system-for-rapid-screening-and-quantitative-study-of-essential-fungal-proteins-in-biopharmaceutical-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Effect of SIAH1 on PINK1 Homeostasis in Parkinson Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20Abd%20Elghani">Fatimah Abd Elghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymonde%20Szargel"> Raymonde Szargel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vered%20Shani"> Vered Shani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazem%20Safory"> Hazem Safory</a>, <a href="https://publications.waset.org/abstracts/search?q=Haya%20Hamza"> Haya Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Mor%20Savyon"> Mor Savyon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Rott"> Ruth Rott</a>, <a href="https://publications.waset.org/abstracts/search?q=Rina%20Bandopadhyay"> Rina Bandopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Simone%20Engelender"> Simone Engelender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson’s disease. Down regulation of PINK1 results in abnormal mitochondrial morphology and altered membrane potential. Although PINK1 has a predicted mitochondrial import sequence, it’s cellular, and submitochondrial localization remains unclear, in part because it is rapidly degraded. In this work, we investigated the mechanisms involved in PINK1 degradation and how this may affect PINK1 stability and function, with implications for mitochondrial function in PD. In addition, pharmacological inhibition of proteasome activity was shown to lead to PINK1 accumulation, indicating that PINK1 degradation depends on the ubiquitin-proteasome system (UPS). Methods: Using co-immunoprecipitation assays, we identified E3 ubiquitin ligase SIAH1 as a PINK1-interacting protein in HEK293 cells as well as on rat brain tissues. In addition, we determined the effect of SIAH 1, SIAH2 and Parkin on PINK1 steady-state levels by Western blot analysis, and checked their possibility to ubiquitinate and mediate PINK1 degradation through the proteasome carried out in vivo ubiquitination experiments. Results: We have obtained results showing that SIAH-1 interacts with and ubiquitinates PINK1. The ubiquitination promoted by SIAH-1 leads to the proteasomal degradation of PINK1. We confirmed these findings by knocking down SIAH-1 and observing important accumulation of PINK1 in cells. Besides, we found that SIAH-1 decreases PINK1 steady-state levels but not the E3 ligase Parkin. We also investigated the interaction of SIAH-1 with PINK1 disease mutants and its ability to promote their ubiquitination and degradation. Although, no clear difference in the ability of SIAH-1 to promote the degradation of PINK1 disease mutants was observed. It is possible that dysfunction of proteasomal activity in the disease may lead to the accumulation and aggregation of ubiquitinated PINK1 in patients with PINK1 mutations, with possible implications to the pathogenesis of PD. Conclusions: Here, we demonstrated that SIAH-1 ubiquitinates and promotes the degradation of PINK1. In addition, SIAH-1 represents now a target that may help the improvement of mitophagy in PD. Further investigations needed to understand how mitophagy is regulated by PINK1-SIAH-1 axis to provide targets for future therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PD" title="PD">PD</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title=" Parkinson&#039;s disease"> Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=PINK1" title=" PINK1"> PINK1</a>, <a href="https://publications.waset.org/abstracts/search?q=PTEN-induced%20kinase1" title=" PTEN-induced kinase1"> PTEN-induced kinase1</a>, <a href="https://publications.waset.org/abstracts/search?q=SIAH" title=" SIAH"> SIAH</a>, <a href="https://publications.waset.org/abstracts/search?q=seven%20in%20absentia%20homolog" title=" seven in absentia homolog"> seven in absentia homolog</a>, <a href="https://publications.waset.org/abstracts/search?q=SN" title=" SN"> SN</a>, <a href="https://publications.waset.org/abstracts/search?q=substantia%20nigra" title=" substantia nigra"> substantia nigra</a> </p> <a href="https://publications.waset.org/abstracts/110954/the-effect-of-siah1-on-pink1-homeostasis-in-parkinson-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Selection of Suitable Reference Genes for Assessing Endurance Related Traits in a Native Pony Breed of Zanskar at High Altitude</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prince%20Vivek">Prince Vivek</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20K.%20Bharti"> Vijay K. Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=Manishi%20Mukesh"> Manishi Mukesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Sharma"> Ankita Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20Prakash%20Chaurasia"> Om Prakash Chaurasia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhuvnesh%20Kumar"> Bhuvnesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High performance of endurance in equid requires adaptive changes involving physio-biochemical, and molecular responses in an attempt to regain homeostasis. We hypothesized that the identification of the suitable reference genes might be considered for assessing of endurance related traits in pony at high altitude and may ensure for individuals struggling to potent endurance trait in ponies at high altitude. A total of 12 mares of ponies, Zanskar breed, were divided into three groups, group-A (without load), group-B, (60 Kg) and group-C (80 Kg) on backpack loads were subjected to a load carry protocol, on a steep climb of 4 km uphill, and of gravel, uneven rocky surface track at an altitude of 3292 m to 3500 m (endpoint). Blood was collected before and immediately after the load carry on sodium heparin anticoagulant, and the peripheral blood mononuclear cell was separated for total RNA isolation and thereafter cDNA synthesis. Real time-PCR reactions were carried out to evaluate the mRNAs expression profile of a panel of putative internal control genes (ICGs), related to different functional classes, namely glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β₂ microglobulin (β₂M), β-actin (ACTB), ribosomal protein 18 (RS18), hypoxanthine-guanine phosophoribosyltransferase (HPRT), ubiquitin B (UBB), ribosomal protein L32 (RPL32), transferrin receptor protein (TFRC), succinate dehydrogenase complex subunit A (SDHA) for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of native pony’s. Three different algorithms, geNorm, NormFinder, and BestKeeper software, were used to evaluate the stability of reference genes. The result showed that GAPDH was best stable gene and stability value for the best combination of two genes was observed TFRC and β₂M. In conclusion, the geometric mean of GAPDH, TFRC and β₂M might be used for accurate normalization of transcriptional data for assessing endurance related traits in Zanskar ponies during load carrying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endurance%20exercise" title="endurance exercise">endurance exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitin%20B%20%28UBB%29" title=" ubiquitin B (UBB)"> ubiquitin B (UBB)</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2%E2%82%82%20microglobulin%20%28%CE%B2%E2%82%82M%29" title=" β₂ microglobulin (β₂M)"> β₂ microglobulin (β₂M)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20altitude" title=" high altitude"> high altitude</a>, <a href="https://publications.waset.org/abstracts/search?q=Zanskar%20ponies" title=" Zanskar ponies"> Zanskar ponies</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20gene" title=" reference gene"> reference gene</a> </p> <a href="https://publications.waset.org/abstracts/94149/selection-of-suitable-reference-genes-for-assessing-endurance-related-traits-in-a-native-pony-breed-of-zanskar-at-high-altitude" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Human C-Cbl and Cbl-b Proteins Are More Highly Expressed in the Thymus Compared to the Testis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazo%20Kone">Mazo Kone</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Salah"> Rachida Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Harir%20Noria"> Harir Noria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and objectives: c-Cbl and Cbl-b are two members of the Cbl family proteins, with a crucial role of downregulation of tyrosine kinase receptors. They act as E3 ubiquitin ligases and are multivalent adaptor proteins, making them important in maintaining homeostasis in the body. This study investigated the expression level in thymus and testis in normal conditions. Methods: The expression level was assessed by immunochemistry of tissue microarrays of normal thymus and testis biopsies. Results: Cbl-b and c-Cbl proteins were found to be highly expressed in normal testis and thymus, indicated as yellowish brown granules in the cytomembrane and cytoplasm compared to controls. The c-Cbl appears to be more highly expressed than the Cbl-b in the thymus, while c-Cbl appears slightly stronger than Cbl-b in the testis. The thymus was found with a higher grade compared to the testis. Conclusion: In this work we concluded, that in normal condition, thymus tissue expresses more Cbl family proteins(c-Cbl and Cbl-b) than the testis tissue in humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Human%20C-Cbl%20proteins" title="Human C-Cbl proteins">Human C-Cbl proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=Human%20Cbl-b%20protein" title=" Human Cbl-b protein"> Human Cbl-b protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Testis" title=" Testis"> Testis</a>, <a href="https://publications.waset.org/abstracts/search?q=Thymus" title=" Thymus"> Thymus</a> </p> <a href="https://publications.waset.org/abstracts/72064/human-c-cbl-and-cbl-b-proteins-are-more-highly-expressed-in-the-thymus-compared-to-the-testis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Investigation of the Effects of Monoamine Oxidase Levels on the 20S Proteasome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavini%20Patel">Bhavini Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Aslihan%20Ugun-Klusek"> Aslihan Ugun-Klusek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Billet"> Ellen Billet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two main contributing factors to familial and idiopathic form of Parkinson’s disease (PD) are oxidative stress and altered proteolysis. Monoamine oxidase-A (MAO-A) plays a significant role in redox homeostasis by producing reactive oxygen species (ROS) via deamination of for example, dopamine. The ROS generated induces chemical modification of proteins resulting in altered biological function. The ubiquitin-proteasome system, which consists of three different types or proteolytic activity, namely “chymotrypsin-like” activity (CLA), “trypsin-like” activity (TLA) and “post acidic-like” activity (PLA), is responsible for the degradation of ubiquitinated proteins. Defects in UPS are known to be strongly correlated to PD. Herein, the effect of ROS generated by MAO-A on proteasome activity and the effects of proteasome inhibition on MAO-A protein levels in WT, mock and MAO-A overexpressed (MAO-A+) SHSY5Y neuroblastoma cell lines were investigated. The data in this study report increased proteolytic activity when MAO-A protein levels are significantly increased, in particular CLA and PLA. Additionally, 20S proteasome inhibition induced a decrease in MAO-A levels in WT and mock cells in comparison to MAO-A+ cells in which 20S proteasome inhibition induced increased MAO-A levels to be further increased at 48 hours of inhibition. This study supports the fact that MAO-A could be a potential pharmaceutical target for neuronal protection as data suggests that endogenous MAO-A levels may be essential for modulating cell death and survival. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monoamine%20oxidase" title="monoamine oxidase">monoamine oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title=" Parkinson&#039;s disease"> Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=proteasome" title=" proteasome"> proteasome</a> </p> <a href="https://publications.waset.org/abstracts/122381/investigation-of-the-effects-of-monoamine-oxidase-levels-on-the-20s-proteasome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Mechanism of Modeling the Level of Bcr-Abl Oncoprotein by Ubiquitin-Proteasome System in Chronic Myeloid Leukemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svitlana%20Antonenko">Svitlana Antonenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennady%20Telegeev"> Gennady Telegeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introductive statement: The development of chronic myeloid leukemia (CML) is caused by Bcr-Abl oncoprotein. Modern treatments with tyrosine kinase inhibitors are greatly complicated by the mutational variability of the Bcr-Abl oncoprotein, which causes drug resistance. Therefore, there is an urgent need to develop new approaches to the treatment of the disease, which will allow modeling the level of Bcr-Abl oncoprotein in the cell. Promising in this direction is the identification of proteases that can selectively promote cellular proteolysis of oncoproteins. The aim of the study was to study the effect of the interaction of Bcr-Abl with deubiquitinase USP1 on the level of oncoprotein in CML cells. Methodology: K562 cells were selected for the experiment. Сells were incubated with ML323 inhibitor for 24 hours. Precipitation of endogenous proteins from K562 cell lysate was performed using anti-Bcr-Abl antibodies. Cell lysates and precipitation results were studied by Western blot. Subcellular localization of proteins was studied by immunofluorescence analysis followed by confocal microscopy. The results were analyzed quantitatively and statistically. Major findings: The Bcr-Abl/USP1 protein complex was detected in CML cells, and it was found that inhibition of USP1 deubiquitinating activity by the compound ML323 leads to disruption of this protein complex and a decrease in the level of Bcr-Abl oncoprotein in cells. The interaction of Bcr-Abl with USP1 may result in deubiquitination of the oncoprotein, which disrupts its proteasomal degradation and leads to the accumulation of CML in cells. Conclusion: We believe that the interaction of oncoprotein with USP1 may be one of the prerequisites that contribute to malignant cell transformation due to the deubiquitination of oncoprotein, which leads to its accumulation and disease progression. A correlation was found between the deubiquitinating activity of USP1 and the level of oncoprotein in CML cells. Thus, we identify deubiquitinase USP1 as a promising therapeutic target for the development of a new strategy for the treatment of CML by modulating the level of Bcr-Abl in the cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20myeloid%20leukemia" title="chronic myeloid leukemia">chronic myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bcr-Abl" title=" Bcr-Abl"> Bcr-Abl</a>, <a href="https://publications.waset.org/abstracts/search?q=USP1" title=" USP1"> USP1</a>, <a href="https://publications.waset.org/abstracts/search?q=deubiquitination%20Bcr-Abl" title=" deubiquitination Bcr-Abl"> deubiquitination Bcr-Abl</a>, <a href="https://publications.waset.org/abstracts/search?q=K562%20cell" title=" K562 cell"> K562 cell</a> </p> <a href="https://publications.waset.org/abstracts/149255/mechanism-of-modeling-the-level-of-bcr-abl-oncoprotein-by-ubiquitin-proteasome-system-in-chronic-myeloid-leukemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Clinical Trial of VEUPLEXᵀᴹ TBI Assay to Help Diagnose Traumatic Brain Injury by Quantifying Glial Fibrillary Acidic Protein and Ubiquitin Carboxy-Terminal Hydrolase L1 in the Serum of Patients Suspected of Mild TBI by Fluorescence Immunoassay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moon%20Jung%20Kim">Moon Jung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Guil%20Rhim"> Guil Rhim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The clinical sensitivity of the “VEUPLEXTM TBI assay”, a clinical trial medical device, in mild traumatic brain injury was 28.6% (95% CI, 19.7%-37.5%), and the clinical specificity was 94.0% (95% CI, 89.3%). -98.7%). In addition, when the results analyzed by marker were put together, the sensitivity was higher when interpreting the two tests together than the two tests, UCHL1 and GFAP alone. Additionally, when sensitivity and specificity were analyzed based on CT results for the mild traumatic brain injury patient group, the clinical sensitivity for 2 CT-positive cases was 50.0% (95% CI: 1.3%-98.7%), and 19 CT-negative cases. The clinical specificity for cases was 68.4% (95% CI: 43.5% - 87.4%). Since the low clinical sensitivity for the two CT-positive cases was not statistically significant due to the small number of samples analyzed, it was judged necessary to secure and analyze more samples in the future. Regarding the clinical specificity analysis results for 19 CT-negative cases, there were a large number of patients who were actually clinically diagnosed with mild traumatic brain injury but actually received a CT-negative result, and about 31.6% of them showed abnormal results on VEUPLEXTM TBI assay. Although traumatic brain injury could not be detected in 31.6% of the CT scans, the possibility of actually suffering a mild brain injury could not be ruled out, so it was judged that this could be confirmed through follow-up observation of the patient. In addition, among patients with mild traumatic brain injury, CT examinations were not performed in many cases because the symptoms were very mild, but among these patients, about 25% or more showed abnormal results in the VEUPLEXTM TBI assay. In fact, no damage is observed with the naked eye immediately after traumatic brain injury, and traumatic brain injury is not observed even on CT. But in some cases, brain hemorrhage may occur (delayed cerebral hemorrhage) after a certain period of time, so the patients who did show abnormal results on VEUPLEXTM TBI assay should be followed up for the delayed cerebral hemorrhage. In conclusion, it was judged that it was difficult to judge mild traumatic brain injury with the VEUPLEXTM TBI assay only through clinical findings without CT results, that is, based on the GCS value. Even in the case of CT, it does not detect all mild traumatic brain injury, so it is difficult to necessarily judge that there is no traumatic brain injury, even if there is no evidence of traumatic brain injury in CT. And in the long term, more patients should be included to evaluate the usefulness of the VEUPLEXTM TBI assay in the detection of microscopic traumatic brain injuries without using CT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20injury" title="brain injury">brain injury</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20brain%20injury" title=" traumatic brain injury"> traumatic brain injury</a>, <a href="https://publications.waset.org/abstracts/search?q=GFAP" title=" GFAP"> GFAP</a>, <a href="https://publications.waset.org/abstracts/search?q=UCHL1" title=" UCHL1"> UCHL1</a> </p> <a href="https://publications.waset.org/abstracts/166823/clinical-trial-of-veuplex-tbi-assay-to-help-diagnose-traumatic-brain-injury-by-quantifying-glial-fibrillary-acidic-protein-and-ubiquitin-carboxy-terminal-hydrolase-l1-in-the-serum-of-patients-suspected-of-mild-tbi-by-fluorescence-immunoassay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Significance of Molecular Autophagic Pathway in Gaucher Disease Pathology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Oral">Ozlem Oral</a>, <a href="https://publications.waset.org/abstracts/search?q=Emre%20Taskin"> Emre Taskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysel%20Yuce"> Aysel Yuce</a>, <a href="https://publications.waset.org/abstracts/search?q=Serap%20%20Dokmeci"> Serap Dokmeci</a>, <a href="https://publications.waset.org/abstracts/search?q=Devrim%20Gozuacik"> Devrim Gozuacik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autophagy is an evolutionary conserved lysosome-dependent catabolic pathway, responsible for the degradation of long-lived proteins, abnormal aggregates and damaged organelles which cannot be degraded by the ubiquitin-proteasome system. Lysosomes degrade the substrates through the activity of lysosomal hydrolases and lysosomal membrane-bound proteins. Mutations in the coding region of these proteins cause malfunctional lysosomes, which contributes to the pathogenesis of lysosomal storage diseases. Gaucher disease is a lysosomal storage disease resulting from the mutation of a lysosomal membrane-associated glycoprotein called glucocerebrosidase and its cofactor saposin C. The disease leads to intracellular accumulation of glucosylceramide and other glycolipids. Because of the essential role of lysosomes in autophagic degradation, Gaucher disease may directly be linked to this pathway. In this study, we investigated the expression of autophagy and/or lysosome-related genes and proteins in fibroblast cells isolated from patients with different mutations. We carried out confocal microscopy analysis and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. We also evaluated lysosomal pH by active lysosome staining and lysosomal enzyme activity. Beside lysosomes, we also performed proteasomal activity and cell death analysis in patient samples. Our data showed significant attenuation in the expression of key autophagy-related genes and accumulation of their proteins in mutant cells. We found decreased the ability of autophagosomes to fuse with lysosomes, associated with elevated lysosomal pH and reduced lysosomal enzyme activity. Proteasomal degradation and cell death analysis showed reduced proteolytic activity of the proteasome, which consequently leads to increased susceptibility to cell death. Our data indicate that the major degradation pathways are affected by multifunctional lysosomes in mutant patient cells and may underlie in the mechanism of clinical severity of Gaucher patients. (This project is supported by TUBITAK-3501-National Young Researchers Career Development Program, Project No: 112T130). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autophagy" title="autophagy">autophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaucher%27s%20disease" title=" Gaucher&#039;s disease"> Gaucher&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=glucocerebrosidase" title=" glucocerebrosidase"> glucocerebrosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=mutant%20fibroblasts" title=" mutant fibroblasts"> mutant fibroblasts</a> </p> <a href="https://publications.waset.org/abstracts/50909/significance-of-molecular-autophagic-pathway-in-gaucher-disease-pathology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Transcriptomic Analysis of Acanthamoeba castellanii Virulence Alteration by Epigenetic DNA Methylation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Hao%20Wong">Yi-Hao Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Li%20Chan"> Li-Li Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee-Onn%20Leong"> Chee-Onn Leong</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Ambu"> Stephen Ambu</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Wah%20Mak"> Joon-Wah Mak</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyasashi%20Sahu"> Priyasashi Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Acanthamoeba is a genus of amoebae which lives as a free-living in nature or as a human pathogen that causes severe brain and eye infections. Virulence potential of Acanthamoeba is not constant and can change with growth conditions. DNA methylation, an epigenetic process which adds methyl groups to DNA, is used by eukaryotic cells, including several human parasites to control their gene expression. We used qPCR, siRNA gene silencing, and RNA sequencing (RNA-Seq) to study DNA-methyltransferase gene family (DNMT) in order to indicate the possibility of its involvement in programming Acanthamoeba virulence potential. Methods: A virulence-attenuated Acanthamoeba isolate (designation: ATCC; original isolate: ATCC 50492) was subjected to mouse passages to restore its pathogenicity; a virulence-reactivated isolate (designation: AC/5) was generated. Several established factors associated with Acanthamoeba virulence phenotype were examined to confirm the succession of reactivation process. Differential gene expression of DNMT between ATCC and AC/5 isolates was performed by qPCR. Silencing on DNMT gene expression in AC/5 isolate was achieved by siRNA duplex. Total RNAs extracted from ATCC, AC/5, and siRNA-treated (designation: si-146) were subjected to RNA-Seq for comparative transcriptomic analysis in order to identify the genome-wide effect of DNMT in regulating Acanthamoeba gene expression. qPCR was performed to validate the RNA-Seq results. Results: Physiological and cytophatic assays demonstrated an increased in virulence potential of AC/5 isolate after mouse passages. DNMT gene expression was significantly higher in AC/5 compared to ATCC isolate (p ≤ 0.01) by qPCR. si-146 duplex reduced DNMT gene expression in AC/5 isolate by 30%. Comparative transcriptome analysis identified the differentially expressed genes, with 3768 genes in AC/5 vs ATCC isolate; 2102 genes in si-146 vs AC/5 isolate and 3422 genes in si-146 vs ATCC isolate, respectively (fold-change of ≥ 2 or ≤ 0.5, p-value adjusted (padj) < 0.05). Of these, 840 and 1262 genes were upregulated and downregulated, respectively, in si-146 vs AC/5 isolate. Eukaryotic orthologous group (KOG) assignments revealed a higher percentage of downregulated gene expression in si-146 compared to AC/5 isolate, were related to posttranslational modification, signal transduction and energy production. Gene Ontology (GO) terms for those downregulated genes shown were associated with transport activity, oxidation-reduction process, and metabolic process. Among these downregulated genes were putative genes encoded for heat shock proteins, transporters, ubiquitin-related proteins, proteins for vesicular trafficking (small GTPases), and oxidoreductases. Functional analysis of similar predicted proteins had been described in other parasitic protozoa for their survival and pathogenicity. Decreased expression of these genes in si146-treated isolate may account in part for Acanthamoeba reduced pathogenicity. qPCR on 6 selected genes upregulated in AC/5 compared to ATCC isolate corroborated the RNA sequencing findings, indicating a good concordance between these two analyses. Conclusion: To the best of our knowledge, this study represents the first genome-wide analysis of DNA methylation and its effects on gene expression in Acanthamoeba spp. The present data indicate that DNA methylation has substantial effect on global gene expression, allowing further dissection of the genome-wide effects of DNA-methyltransferase gene in regulating Acanthamoeba pathogenicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acanthamoeba" title="Acanthamoeba">Acanthamoeba</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20methylation" title=" DNA methylation"> DNA methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA%20sequencing" title=" RNA sequencing"> RNA sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=virulence" title=" virulence"> virulence</a> </p> <a href="https://publications.waset.org/abstracts/94889/transcriptomic-analysis-of-acanthamoeba-castellanii-virulence-alteration-by-epigenetic-dna-methylation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10