CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,558 results for author: <span class="mathjax">Bai, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bai, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bai%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bai, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13970">arXiv:2411.13970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13970">pdf</a>, <a href="https://arxiv.org/format/2411.13970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Movable Antenna-Equipped UAV for Data Collection in Backscatter Sensor Networks: A Deep Reinforcement Learning-based Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yu Bai</a>, <a href="/search/?searchtype=author&amp;query=Xie%2C+B">Boxuan Xie</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+R">Ruifan Zhu</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+Z">Zheng Chang</a>, <a href="/search/?searchtype=author&amp;query=Jantti%2C+R">Riku Jantti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13970v1-abstract-short" style="display: inline;"> Backscatter communication (BC) becomes a promising energy-efficient solution for future wireless sensor networks (WSNs). Unmanned aerial vehicles (UAVs) enable flexible data collection from remote backscatter devices (BDs), yet conventional UAVs rely on omni-directional fixed-position antennas (FPAs), limiting channel gain and prolonging data collection time. To address this issue, we consider equ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13970v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13970v1-abstract-full" style="display: none;"> Backscatter communication (BC) becomes a promising energy-efficient solution for future wireless sensor networks (WSNs). Unmanned aerial vehicles (UAVs) enable flexible data collection from remote backscatter devices (BDs), yet conventional UAVs rely on omni-directional fixed-position antennas (FPAs), limiting channel gain and prolonging data collection time. To address this issue, we consider equipping a UAV with a directional movable antenna (MA) with high directivity and flexibility. The MA enhances channel gain by precisely aiming its main lobe at each BD, focusing transmission power for efficient communication. Our goal is to minimize the total data collection time by jointly optimizing the UAV&#39;s trajectory and the MA&#39;s orientation. We develop a deep reinforcement learning (DRL)-based strategy using the azimuth angle and distance between the UAV and each BD to simplify the agent&#39;s observation space. To ensure stability during training, we adopt Soft Actor-Critic (SAC) algorithm that balances exploration with reward maximization for efficient and reliable learning. Simulation results demonstrate that our proposed MA-equipped UAV with SAC outperforms both FPA-equipped UAVs and other RL methods, achieving significant reductions in both data collection time and energy consumption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13970v1-abstract-full').style.display = 'none'; document.getElementById('2411.13970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13914">arXiv:2411.13914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13914">pdf</a>, <a href="https://arxiv.org/format/2411.13914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> ICODE: Modeling Dynamical Systems with Extrinsic Input Information </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+Z">Zhaoyi Li</a>, <a href="/search/?searchtype=author&amp;query=Mei%2C+W">Wenjie Mei</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+K">Ke Yu</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yang Bai</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+S">Shihua Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13914v1-abstract-short" style="display: inline;"> Learning models of dynamical systems with external inputs, that may be, for example, nonsmooth or piecewise, is crucial for studying complex phenomena and predicting future state evolution, which is essential for applications such as safety guarantees and decision-making. In this work, we introduce \emph{Input Concomitant Neural ODEs (ICODEs)}, which incorporate precise real-time input information&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13914v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13914v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13914v1-abstract-full" style="display: none;"> Learning models of dynamical systems with external inputs, that may be, for example, nonsmooth or piecewise, is crucial for studying complex phenomena and predicting future state evolution, which is essential for applications such as safety guarantees and decision-making. In this work, we introduce \emph{Input Concomitant Neural ODEs (ICODEs)}, which incorporate precise real-time input information into the learning process of the models, rather than treating the inputs as hidden parameters to be learned. The sufficient conditions to ensure the model&#39;s contraction property are provided to guarantee that system trajectories of the trained model converge to a fixed point, regardless of initial conditions across different training processes. We validate our method through experiments on several representative real dynamics: Single-link robot, DC-to-DC converter, motion dynamics of a rigid body, Rabinovich-Fabrikant equation, Glycolytic-glycogenolytic pathway model, and heat conduction equation. The experimental results demonstrate that our proposed ICODEs efficiently learn the ground truth systems, achieving superior prediction performance under both typical and atypical inputs. This work offers a valuable class of neural ODE models for understanding physical systems with explicit external input information, with potential promising applications in fields such as physics and robotics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13914v1-abstract-full').style.display = 'none'; document.getElementById('2411.13914v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12746">arXiv:2411.12746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12746">pdf</a>, <a href="https://arxiv.org/format/2411.12746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Finance">q-fin.CP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Review of Reinforcement Learning in Financial Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yahui Bai</a>, <a href="/search/?searchtype=author&amp;query=Gao%2C+Y">Yuhe Gao</a>, <a href="/search/?searchtype=author&amp;query=Wan%2C+R">Runzhe Wan</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/?searchtype=author&amp;query=Song%2C+R">Rui Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12746v1-abstract-short" style="display: inline;"> In recent years, there has been a growing trend of applying Reinforcement Learning (RL) in financial applications. This approach has shown great potential to solve decision-making tasks in finance. In this survey, we present a comprehensive study of the applications of RL in finance and conduct a series of meta-analyses to investigate the common themes in the literature, such as the factors th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12746v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12746v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12746v1-abstract-full" style="display: none;"> In recent years, there has been a growing trend of applying Reinforcement Learning (RL) in financial applications. This approach has shown great potential to solve decision-making tasks in finance. In this survey, we present a comprehensive study of the applications of RL in finance and conduct a series of meta-analyses to investigate the common themes in the literature, such as the factors that most significantly affect RL&#39;s performance compared to traditional methods. Moreover, we identify challenges including explainability, Markov Decision Process (MDP) modeling, and robustness that hinder the broader utilization of RL in the financial industry and discuss recent advancements in overcoming these challenges. Finally, we propose future research directions, such as benchmarking, contextual RL, multi-agent RL, and model-based RL to address these challenges and to further enhance the implementation of RL in finance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12746v1-abstract-full').style.display = 'none'; document.getElementById('2411.12746v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11648">arXiv:2411.11648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11648">pdf</a>, <a href="https://arxiv.org/ps/2411.11648">ps</a>, <a href="https://arxiv.org/format/2411.11648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Evidence for Two Excited $惟^{-}$ Hyperons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (650 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11648v1-abstract-short" style="display: inline;"> Using $e^+e^-$ collision data corresponding to an integrated luminosity of 19 fb$^{-1}$ collected by the BESIII detector at center-of-mass energies ranging from 4.13 to 4.70 GeV, we report the first evidence for a new excited $惟^{-}$ hyperon, the $惟^*(2109)^{-}$, through the process $e^+ e^- \to 惟^*(2109)^{-} \bar惟^{+} +c.c.$ with a significance of 3.7 $蟽$. The mass and width of $惟^*(2109)^{-}$ ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11648v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11648v1-abstract-full" style="display: none;"> Using $e^+e^-$ collision data corresponding to an integrated luminosity of 19 fb$^{-1}$ collected by the BESIII detector at center-of-mass energies ranging from 4.13 to 4.70 GeV, we report the first evidence for a new excited $惟^{-}$ hyperon, the $惟^*(2109)^{-}$, through the process $e^+ e^- \to 惟^*(2109)^{-} \bar惟^{+} +c.c.$ with a significance of 3.7 $蟽$. The mass and width of $惟^*(2109)^{-}$ are measured to be $2108.8 \pm 5.5_{\rm stat} \pm 1.5_{\rm syst} {\rm MeV}/c^{2}$ and $21.6 \pm 17.7_{\rm stat} \pm 9.4_{\rm syst} {\rm MeV}$, respectively. We also present evidence for production of the $惟^*(2012)^{-}$ in the process $e^+ e^- \to 惟^*(2012)^{-} \bar惟^{+} +c.c.$ with a significance of 3.7 $蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11648v1-abstract-full').style.display = 'none'; document.getElementById('2411.11648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10651">arXiv:2411.10651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10651">pdf</a>, <a href="https://arxiv.org/format/2411.10651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation">stat.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Understanding Learning with Sliced-Wasserstein Requires Rethinking Informative Slices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tran%2C+H">Huy Tran</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yikun Bai</a>, <a href="/search/?searchtype=author&amp;query=Shahbazi%2C+A">Ashkan Shahbazi</a>, <a href="/search/?searchtype=author&amp;query=Hershey%2C+J+R">John R. Hershey</a>, <a href="/search/?searchtype=author&amp;query=Kolouri%2C+S">Soheil Kolouri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10651v1-abstract-short" style="display: inline;"> The practical applications of Wasserstein distances (WDs) are constrained by their sample and computational complexities. Sliced-Wasserstein distances (SWDs) provide a workaround by projecting distributions onto one-dimensional subspaces, leveraging the more efficient, closed-form WDs for one-dimensional distributions. However, in high dimensions, most random projections become uninformative due t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10651v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10651v1-abstract-full" style="display: none;"> The practical applications of Wasserstein distances (WDs) are constrained by their sample and computational complexities. Sliced-Wasserstein distances (SWDs) provide a workaround by projecting distributions onto one-dimensional subspaces, leveraging the more efficient, closed-form WDs for one-dimensional distributions. However, in high dimensions, most random projections become uninformative due to the concentration of measure phenomenon. Although several SWD variants have been proposed to focus on \textit{informative} slices, they often introduce additional complexity, numerical instability, and compromise desirable theoretical (metric) properties of SWD. Amidst the growing literature that focuses on directly modifying the slicing distribution, which often face challenges, we revisit the classical Sliced-Wasserstein and propose instead to rescale the 1D Wasserstein to make all slices equally informative. Importantly, we show that with an appropriate data assumption and notion of \textit{slice informativeness}, rescaling for all individual slices simplifies to \textbf{a single global scaling factor} on the SWD. This, in turn, translates to the standard learning rate search for gradient-based learning in common machine learning workflows. We perform extensive experiments across various machine learning tasks showing that the classical SWD, when properly configured, can often match or surpass the performance of more complex variants. We then answer the following question: &#34;Is Sliced-Wasserstein all you need for common learning tasks?&#34; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10651v1-abstract-full').style.display = 'none'; document.getElementById('2411.10651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10434">arXiv:2411.10434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10434">pdf</a>, <a href="https://arxiv.org/format/2411.10434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Fair Division via the Cake-Cutting Share </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yannan Bai</a>, <a href="/search/?searchtype=author&amp;query=Munagala%2C+K">Kamesh Munagala</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+Y">Yiheng Shen</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+I">Ian Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10434v1-abstract-short" style="display: inline;"> In this paper, we consider the classic fair division problem of allocating $m$ divisible items to $n$ agents with linear valuations over the items. We define novel notions of fair shares from the perspective of individual agents via the cake-cutting process. These shares generalize the notion of proportionality by taking into account the valuations of other agents via constraints capturing envy. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10434v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10434v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10434v1-abstract-full" style="display: none;"> In this paper, we consider the classic fair division problem of allocating $m$ divisible items to $n$ agents with linear valuations over the items. We define novel notions of fair shares from the perspective of individual agents via the cake-cutting process. These shares generalize the notion of proportionality by taking into account the valuations of other agents via constraints capturing envy. We study what fraction (approximation) of these shares are achievable in the worst case, and present tight and non-trivial approximation bounds as a function of $n$ and $m$. In particular, we show a tight approximation bound of $螛(\sqrt{n})$ for various notions of such shares. We show this bound via a novel application of dual fitting, which may be of independent interest. We also present a bound of $O(m^{2/3})$ for a strict notion of share, with an almost matching lower bound. We further develop weaker notions of shares whose approximation bounds interpolate smoothly between proportionality and the shares described above. We finally present empirical results showing that our definitions lead to more reasonable shares than the standard fair share notion of proportionality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10434v1-abstract-full').style.display = 'none'; document.getElementById('2411.10434v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09808">arXiv:2411.09808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09808">pdf</a>, <a href="https://arxiv.org/ps/2411.09808">ps</a>, <a href="https://arxiv.org/format/2411.09808">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Econometrics">econ.EM</span> </div> </div> <p class="title is-5 mathjax"> Sharp Testable Implications of Encouragement Designs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yuehao Bai</a>, <a href="/search/?searchtype=author&amp;query=Tabord-Meehan%2C+M">Max Tabord-Meehan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09808v1-abstract-short" style="display: inline;"> This paper studies the sharp testable implications of an additive random utility model with a discrete multi-valued treatment and a discrete multi-valued instrument, in which each value of the instrument only weakly increases the utility of one choice. Borrowing the terminology used in randomized experiments, we call such a setting an encouragement design. We derive inequalities in terms of the co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09808v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09808v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09808v1-abstract-full" style="display: none;"> This paper studies the sharp testable implications of an additive random utility model with a discrete multi-valued treatment and a discrete multi-valued instrument, in which each value of the instrument only weakly increases the utility of one choice. Borrowing the terminology used in randomized experiments, we call such a setting an encouragement design. We derive inequalities in terms of the conditional choice probabilities that characterize when the distribution of the observed data is consistent with such a model. Through a novel constructive argument, we further show these inequalities are sharp in the sense that any distribution of the observed data that satisfies these inequalities is generated by this additive random utility model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09808v1-abstract-full').style.display = 'none'; document.getElementById('2411.09808v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09368">arXiv:2411.09368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09368">pdf</a>, <a href="https://arxiv.org/format/2411.09368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Entropy dynamics of the binary bond disordered Heisenberg chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Han%2C+D">Di Han</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yankui Bai</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y">Yang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09368v2-abstract-short" style="display: inline;"> In this article, we study the quench dynamics of the binary bond disordered Heisenberg spin chain. First, we develop a new algorithm, the ancilla TEBD method, which combines the purification technique and the time-evolving block decimation (TEBD) algorithm to study the entanglement dynamics of binary bonded disordered spin chains. With the support of exact diagonalization (ED), we calculate the mu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09368v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09368v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09368v2-abstract-full" style="display: none;"> In this article, we study the quench dynamics of the binary bond disordered Heisenberg spin chain. First, we develop a new algorithm, the ancilla TEBD method, which combines the purification technique and the time-evolving block decimation (TEBD) algorithm to study the entanglement dynamics of binary bonded disordered spin chains. With the support of exact diagonalization (ED), we calculate the multifaractal dimension of the binary bond disordered Heisenberg spin model and study its dependence on the strength of the disorder potential; we find that the multifaractal dimension shows no critical behavior which rules out the existence of the many body localization transition. Then, we reproduce the long time scaling of the von Neumann entropy at the time scale that is beyond the reach of typical TEBD and time dependent density matrix renormalization group (tDMRG) algorithms. Based on the numerical analysis, we propose that such a long time scaling is due to the competition of the spin interaction and the disorder which can be seen as a new mechanism for the generating of long time scale entropy dynamics. At last, we numerically proved the existence of the transient Mpemba effect in the bond disordered Heisenberg chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09368v2-abstract-full').style.display = 'none'; document.getElementById('2411.09368v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07730">arXiv:2411.07730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07730">pdf</a>, <a href="https://arxiv.org/ps/2411.07730">ps</a>, <a href="https://arxiv.org/format/2411.07730">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Study of the light scalar $a_{0}(980)$ through the decay $D^{0} \to a_{0}(980)^-e^{+} 谓_{e}$ with $a_{0}(980)^- \to 畏蟺^-$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (649 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07730v1-abstract-short" style="display: inline;"> Using 7.93 ${\rm fb^{-1}}$ of $e^+e^-$ collision data collected at a center-of-mass energy of 3.773 ${\rm GeV}$ with the BESIII detector, we present an analysis of the decay $D^{0} \to 畏蟺^- e^+ 谓_{e}$. The branching fraction of the decay $D^{0} \to a_{0}(980)^{-} e^+ 谓_{e}$ with $a_{0}(980)^{-} \to 畏蟺^{-}$ is measured to be $(0.86\pm0.17_{\text{stat}}\pm0.05_{\text{syst}})\times 10^{-4}$. The deca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07730v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07730v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07730v1-abstract-full" style="display: none;"> Using 7.93 ${\rm fb^{-1}}$ of $e^+e^-$ collision data collected at a center-of-mass energy of 3.773 ${\rm GeV}$ with the BESIII detector, we present an analysis of the decay $D^{0} \to 畏蟺^- e^+ 谓_{e}$. The branching fraction of the decay $D^{0} \to a_{0}(980)^{-} e^+ 谓_{e}$ with $a_{0}(980)^{-} \to 畏蟺^{-}$ is measured to be $(0.86\pm0.17_{\text{stat}}\pm0.05_{\text{syst}})\times 10^{-4}$. The decay dynamics of this process is studied with a single-pole parameterization of the hadronic form factor and the Flatt茅 formula describing the $a_0(980)$ line shape in the differential decay rate. The product of the form factor $f^{ a_0}_{+}(0)$ and the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cd}|$ is determined for the first time with the result $f^{ a_0}_+(0)|V_{cd}|=0.126\pm0.013_{\rm stat}\pm0.003_{\rm syst}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07730v1-abstract-full').style.display = 'none'; document.getElementById('2411.07730v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06055">arXiv:2411.06055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06055">pdf</a>, <a href="https://arxiv.org/format/2411.06055">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Metric Geometry">math.MG</span> </div> </div> <p class="title is-5 mathjax"> Linear Spherical Sliced Optimal Transport: A Fast Metric for Comparing Spherical Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Liu%2C+X">Xinran Liu</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yikun Bai</a>, <a href="/search/?searchtype=author&amp;query=Mart%C3%ADn%2C+R+D">Roc铆o D铆az Mart铆n</a>, <a href="/search/?searchtype=author&amp;query=Shi%2C+K">Kaiwen Shi</a>, <a href="/search/?searchtype=author&amp;query=Shahbazi%2C+A">Ashkan Shahbazi</a>, <a href="/search/?searchtype=author&amp;query=Landman%2C+B+A">Bennett A. Landman</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+C">Catie Chang</a>, <a href="/search/?searchtype=author&amp;query=Kolouri%2C+S">Soheil Kolouri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06055v1-abstract-short" style="display: inline;"> Efficient comparison of spherical probability distributions becomes important in fields such as computer vision, geosciences, and medicine. Sliced optimal transport distances, such as spherical and stereographic spherical sliced Wasserstein distances, have recently been developed to address this need. These methods reduce the computational burden of optimal transport by slicing hyperspheres into o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06055v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06055v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06055v1-abstract-full" style="display: none;"> Efficient comparison of spherical probability distributions becomes important in fields such as computer vision, geosciences, and medicine. Sliced optimal transport distances, such as spherical and stereographic spherical sliced Wasserstein distances, have recently been developed to address this need. These methods reduce the computational burden of optimal transport by slicing hyperspheres into one-dimensional projections, i.e., lines or circles. Concurrently, linear optimal transport has been proposed to embed distributions into \( L^2 \) spaces, where the \( L^2 \) distance approximates the optimal transport distance, thereby simplifying comparisons across multiple distributions. In this work, we introduce the Linear Spherical Sliced Optimal Transport (LSSOT) framework, which utilizes slicing to embed spherical distributions into \( L^2 \) spaces while preserving their intrinsic geometry, offering a computationally efficient metric for spherical probability measures. We establish the metricity of LSSOT and demonstrate its superior computational efficiency in applications such as cortical surface registration, 3D point cloud interpolation via gradient flow, and shape embedding. Our results demonstrate the significant computational benefits and high accuracy of LSSOT in these applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06055v1-abstract-full').style.display = 'none'; document.getElementById('2411.06055v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05220">arXiv:2411.05220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05220">pdf</a>, <a href="https://arxiv.org/format/2411.05220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Econometrics">econ.EM</span> </div> </div> <p class="title is-5 mathjax"> Inference for Treatment Effects Conditional on Generalized Principal Strata using Instrumental Variables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yuehao Bai</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+S">Shunzhuang Huang</a>, <a href="/search/?searchtype=author&amp;query=Moon%2C+S">Sarah Moon</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+A">Andres Santos</a>, <a href="/search/?searchtype=author&amp;query=Shaikh%2C+A+M">Azeem M. Shaikh</a>, <a href="/search/?searchtype=author&amp;query=Vytlacil%2C+E+J">Edward J. Vytlacil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05220v1-abstract-short" style="display: inline;"> In a setting with a multi-valued outcome, treatment and instrument, this paper considers the problem of inference for a general class of treatment effect parameters. The class of parameters considered are those that can be expressed as the expectation of a function of the response type conditional on a generalized principal stratum. Here, the response type simply refers to the vector of potential&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05220v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05220v1-abstract-full" style="display: none;"> In a setting with a multi-valued outcome, treatment and instrument, this paper considers the problem of inference for a general class of treatment effect parameters. The class of parameters considered are those that can be expressed as the expectation of a function of the response type conditional on a generalized principal stratum. Here, the response type simply refers to the vector of potential outcomes and potential treatments, and a generalized principal stratum is a set of possible values for the response type. In addition to instrument exogeneity, the main substantive restriction imposed rules out certain values for the response types in the sense that they are assumed to occur with probability zero. It is shown through a series of examples that this framework includes a wide variety of parameters and assumptions that have been considered in the previous literature. A key result in our analysis is a characterization of the identified set for such parameters under these assumptions in terms of existence of a non-negative solution to linear systems of equations with a special structure. We propose methods for inference exploiting this special structure and recent results in Fang et al. (2023). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05220v1-abstract-full').style.display = 'none'; document.getElementById('2411.05220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05001">arXiv:2411.05001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05001">pdf</a>, <a href="https://arxiv.org/format/2411.05001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Analyzing The Language of Visual Tokens </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+D+M">David M. Chan</a>, <a href="/search/?searchtype=author&amp;query=Corona%2C+R">Rodolfo Corona</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+J">Joonyong Park</a>, <a href="/search/?searchtype=author&amp;query=Cho%2C+C+J">Cheol Jun Cho</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yutong Bai</a>, <a href="/search/?searchtype=author&amp;query=Darrell%2C+T">Trevor Darrell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05001v1-abstract-short" style="display: inline;"> With the introduction of transformer-based models for vision and language tasks, such as LLaVA and Chameleon, there has been renewed interest in the discrete tokenized representation of images. These models often treat image patches as discrete tokens, analogous to words in natural language, learning joint alignments between visual and human languages. However, little is known about the statistica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05001v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05001v1-abstract-full" style="display: none;"> With the introduction of transformer-based models for vision and language tasks, such as LLaVA and Chameleon, there has been renewed interest in the discrete tokenized representation of images. These models often treat image patches as discrete tokens, analogous to words in natural language, learning joint alignments between visual and human languages. However, little is known about the statistical behavior of these visual languages - whether they follow similar frequency distributions, grammatical structures, or topologies as natural languages. In this paper, we take a natural-language-centric approach to analyzing discrete visual languages and uncover striking similarities and fundamental differences. We demonstrate that, although visual languages adhere to Zipfian distributions, higher token innovation drives greater entropy and lower compression, with tokens predominantly representing object parts, indicating intermediate granularity. We also show that visual languages lack cohesive grammatical structures, leading to higher perplexity and weaker hierarchical organization compared to natural languages. Finally, we demonstrate that, while vision models align more closely with natural languages than other models, this alignment remains significantly weaker than the cohesion found within natural languages. Through these experiments, we demonstrate how understanding the statistical properties of discrete visual languages can inform the design of more effective computer vision models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05001v1-abstract-full').style.display = 'none'; document.getElementById('2411.05001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02886">arXiv:2411.02886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02886">pdf</a>, <a href="https://arxiv.org/format/2411.02886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wu%2C+W">Wei Wu</a>, <a href="/search/?searchtype=author&amp;query=Pan%2C+Z">Zhuoshi Pan</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+C">Chao Wang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+L">Liyi Chen</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yunchu Bai</a>, <a href="/search/?searchtype=author&amp;query=Fu%2C+K">Kun Fu</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Z">Zheng Wang</a>, <a href="/search/?searchtype=author&amp;query=Xiong%2C+H">Hui Xiong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02886v1-abstract-short" style="display: inline;"> With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02886v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02886v1-abstract-full" style="display: none;"> With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02886v1-abstract-full').style.display = 'none'; document.getElementById('2411.02886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01215">arXiv:2411.01215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01215">pdf</a>, <a href="https://arxiv.org/format/2411.01215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Detection of two TeV gamma-ray outbursts from NGC 1275 by LHAASO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cao%2C+Z">Zhen Cao</a>, <a href="/search/?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/?searchtype=author&amp;query=Axikegu"> Axikegu</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/?searchtype=author&amp;query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/?searchtype=author&amp;query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/?searchtype=author&amp;query=Cai%2C+J+T">J. T. Cai</a>, <a href="/search/?searchtype=author&amp;query=Cao%2C+Q">Q. Cao</a>, <a href="/search/?searchtype=author&amp;query=Cao%2C+W+Y">W. Y. Cao</a>, <a href="/search/?searchtype=author&amp;query=Cao%2C+Z">Zhe Cao</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+A+M">A. M. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+E+S">E. S. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+L">Long Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+S+H">S. H. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+S+Z">S. Z. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+T+L">T. L. Chen</a> , et al. (254 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01215v2-abstract-short" style="display: inline;"> The Water Cherenkov Detector Array (WCDA) is one of the components of Large High Altitude Air Shower Observatory (LHAASO) and can monitor any sources over two-thirds of the sky for up to 7 hours per day with &gt;98\% duty cycle. In this work, we report the detection of two outbursts of the Fanaroff-Riley I radio galaxy NGC 1275 that were detected by LHAASO-WCDA between November 2022 and January 2023&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01215v2-abstract-full').style.display = 'inline'; document.getElementById('2411.01215v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01215v2-abstract-full" style="display: none;"> The Water Cherenkov Detector Array (WCDA) is one of the components of Large High Altitude Air Shower Observatory (LHAASO) and can monitor any sources over two-thirds of the sky for up to 7 hours per day with &gt;98\% duty cycle. In this work, we report the detection of two outbursts of the Fanaroff-Riley I radio galaxy NGC 1275 that were detected by LHAASO-WCDA between November 2022 and January 2023 with statistical significance of 5.2~$蟽$ and 8.3~$蟽$. The observed spectral energy distribution in the range from 500 GeV to 3 TeV is fitted by a power-law with a best-fit spectral index of $伪=-3.37\pm0.52$ and $-3.35\pm0.29$, respectively. The outburst flux above 0.5~TeV was ($4.55\pm 4.21)\times~10^{-11}~\rm cm^{-2}~s^{-1}$ and ($3.45\pm 1.78)\times~10^{-11}~\rm cm^{-2}~s^{-1}$, corresponding to 60\%, 45\% of Crab Nebula flux. Variation analysis reveals the variability time-scale of days at the TeV energy band. A simple test by one-zone synchrotron self-Compton model reproduces the data in the gamma-ray band well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01215v2-abstract-full').style.display = 'none'; document.getElementById('2411.01215v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23375">arXiv:2410.23375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23375">pdf</a>, <a href="https://arxiv.org/format/2410.23375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Geometry Dynamics in Chiral Superfluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yuting Bai</a>, <a href="/search/?searchtype=author&amp;query=Cardoso%2C+G">Gabriel Cardoso</a>, <a href="/search/?searchtype=author&amp;query=Malek%2C+R">Rajae Malek</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+Q">Qing-Dong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23375v1-abstract-short" style="display: inline;"> We investigate the geometric response of chiral superfluids when coupled to a dynamic background geometry. We find that geometry fluctuations, represented by the flexural mode, interact with the superfluid phase fluctuations (the Goldstone mode). Starting from a minimally coupled theory, we derive the equilibrium conditions for a static background defined by supercurrent, curvature, and tension, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23375v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23375v1-abstract-full" style="display: none;"> We investigate the geometric response of chiral superfluids when coupled to a dynamic background geometry. We find that geometry fluctuations, represented by the flexural mode, interact with the superfluid phase fluctuations (the Goldstone mode). Starting from a minimally coupled theory, we derive the equilibrium conditions for a static background defined by supercurrent, curvature, and tension, and then obtain linearized equations for the propagation of the Goldstone and flexural modes. The equations reveal distinctive chirality-dependent effects in the propagation of the flexural mode. Specifically, a background supercurrent induces a chiral drag effect, localizing flexural waves at the superfluid boundary, while background curvature introduces anisotropic corrections to the superfluid phase and group velocities, as well as a tension in the flexural mode dispersion. Furthermore, curvature couples flexural and phase modes into dressed excitations, with tilted Dirac cones along the principal curvature directions. These effects provide dynamical signatures of the formation of a chiral condensate, and can be tuned by manipulating the background geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23375v1-abstract-full').style.display = 'none'; document.getElementById('2410.23375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22809">arXiv:2410.22809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22809">pdf</a>, <a href="https://arxiv.org/format/2410.22809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Causality-Enhanced Behavior Sequence Modeling in LLMs for Personalized Recommendation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/?searchtype=author&amp;query=You%2C+J">Juntao You</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yimeng Bai</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+J">Jizhi Zhang</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+K">Keqin Bao</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+W">Wenjie Wang</a>, <a href="/search/?searchtype=author&amp;query=Chua%2C+T">Tat-Seng Chua</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22809v1-abstract-short" style="display: inline;"> Recent advancements in recommender systems have focused on leveraging Large Language Models (LLMs) to improve user preference modeling, yielding promising outcomes. However, current LLM-based approaches struggle to fully leverage user behavior sequences, resulting in suboptimal preference modeling for personalized recommendations. In this study, we propose a novel Counterfactual Fine-Tuning (CFT)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22809v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22809v1-abstract-full" style="display: none;"> Recent advancements in recommender systems have focused on leveraging Large Language Models (LLMs) to improve user preference modeling, yielding promising outcomes. However, current LLM-based approaches struggle to fully leverage user behavior sequences, resulting in suboptimal preference modeling for personalized recommendations. In this study, we propose a novel Counterfactual Fine-Tuning (CFT) method to address this issue by explicitly emphasizing the role of behavior sequences when generating recommendations. Specifically, we employ counterfactual reasoning to identify the causal effects of behavior sequences on model output and introduce a task that directly fits the ground-truth labels based on these effects, achieving the goal of explicit emphasis. Additionally, we develop a token-level weighting mechanism to adjust the emphasis strength for different item tokens, reflecting the diminishing influence of behavior sequences from earlier to later tokens during predicting an item. Extensive experiments on real-world datasets demonstrate that CFT effectively improves behavior sequence modeling. Our codes are available at https://github.com/itsmeyjt/CFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22809v1-abstract-full').style.display = 'none'; document.getElementById('2410.22809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21841">arXiv:2410.21841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21841">pdf</a>, <a href="https://arxiv.org/ps/2410.21841">ps</a>, <a href="https://arxiv.org/format/2410.21841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Search for $螞$-$\bar螞 $ oscillation in $J/蠄\rightarrow螞\bar螞$ decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (638 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21841v2-abstract-short" style="display: inline;"> Using $(10087\pm44)\times 10^{6}$ $J/蠄$ decays collected by the BESIII detector at the BEPCII collider, we search for baryon number violation via $螞-\bar螞$ oscillation in the decay $J/蠄\to 螞\bar螞$. No evidence for $螞-\bar螞$ oscillation is observed. The upper limit on the time-integrated probability of $螞-\bar螞$ oscillation is estimated to be $1.4\times 10^{-6}$, corresponding to an oscillation par&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21841v2-abstract-full').style.display = 'inline'; document.getElementById('2410.21841v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21841v2-abstract-full" style="display: none;"> Using $(10087\pm44)\times 10^{6}$ $J/蠄$ decays collected by the BESIII detector at the BEPCII collider, we search for baryon number violation via $螞-\bar螞$ oscillation in the decay $J/蠄\to 螞\bar螞$. No evidence for $螞-\bar螞$ oscillation is observed. The upper limit on the time-integrated probability of $螞-\bar螞$ oscillation is estimated to be $1.4\times 10^{-6}$, corresponding to an oscillation parameter less than $2.1\times 10^{-18}~\mathrm{GeV}$ at $90\%$ confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21841v2-abstract-full').style.display = 'none'; document.getElementById('2410.21841v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20324">arXiv:2410.20324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20324">pdf</a>, <a href="https://arxiv.org/format/2410.20324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> A New Non-Binary Response Generation Scheme from Physical Unclonable Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yonghong Bai</a>, <a href="/search/?searchtype=author&amp;query=Yan%2C+Z">Zhiyuan Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20324v1-abstract-short" style="display: inline;"> Physical Unclonable Functions (PUFs) are widely used in key generation, with each PUF cell typically producing one bit of data. To enable the extraction of longer keys, a new non-binary response generation scheme based on the one-probability of PUF bits is proposed. Instead of using PUF bits directly as keys, non-binary responses are first derived by comparing the one-frequency of PUF bits with th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20324v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20324v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20324v1-abstract-full" style="display: none;"> Physical Unclonable Functions (PUFs) are widely used in key generation, with each PUF cell typically producing one bit of data. To enable the extraction of longer keys, a new non-binary response generation scheme based on the one-probability of PUF bits is proposed. Instead of using PUF bits directly as keys, non-binary responses are first derived by comparing the one-frequency of PUF bits with thresholds that evenly divide the area under the probability density function of the one-probability distribution and then converted to binary keys. To simplify the calculation of these thresholds, a re-scaling process is proposed and the beta distribution is used to model the one-probability distribution. Our FPGA implementation results demonstrate a significant increase in effective key length as opposed to previous works. Finally, we estimate the error rates and biases of the generated keys, and confirm the feasibility of the proposed key generation scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20324v1-abstract-full').style.display = 'none'; document.getElementById('2410.20324v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures, conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20309">arXiv:2410.20309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20309">pdf</a>, <a href="https://arxiv.org/format/2410.20309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Enhancing Community Vision Screening -- AI Driven Retinal Photography for Early Disease Detection and Patient Trust </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lei%2C+X">Xiaofeng Lei</a>, <a href="/search/?searchtype=author&amp;query=Tham%2C+Y">Yih-Chung Tham</a>, <a href="/search/?searchtype=author&amp;query=Goh%2C+J+H+L">Jocelyn Hui Lin Goh</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+Y">Yangqin Feng</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yang Bai</a>, <a href="/search/?searchtype=author&amp;query=Da+Soh%2C+Z">Zhi Da Soh</a>, <a href="/search/?searchtype=author&amp;query=Goh%2C+R+S+M">Rick Siow Mong Goh</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+X">Xinxing Xu</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Yong Liu</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+C">Ching-Yu Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20309v1-abstract-short" style="display: inline;"> Community vision screening plays a crucial role in identifying individuals with vision loss and preventing avoidable blindness, particularly in rural communities where access to eye care services is limited. Currently, there is a pressing need for a simple and efficient process to screen and refer individuals with significant eye disease-related vision loss to tertiary eye care centers for further&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20309v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20309v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20309v1-abstract-full" style="display: none;"> Community vision screening plays a crucial role in identifying individuals with vision loss and preventing avoidable blindness, particularly in rural communities where access to eye care services is limited. Currently, there is a pressing need for a simple and efficient process to screen and refer individuals with significant eye disease-related vision loss to tertiary eye care centers for further care. An ideal solution should seamlessly and readily integrate with existing workflows, providing comprehensive initial screening results to service providers, thereby enabling precise patient referrals for timely treatment. This paper introduces the Enhancing Community Vision Screening (ECVS) solution, which addresses the aforementioned concerns with a novel and feasible solution based on simple, non-invasive retinal photography for the detection of pathology-based visual impairment. Our study employs four distinct deep learning models: RETinal photo Quality Assessment (RETQA), Pathology Visual Impairment detection (PVI), Eye Disease Diagnosis (EDD) and Visualization of Lesion Regions of the eye (VLR). We conducted experiments on over 10 datasets, totaling more than 80,000 fundus photos collected from various sources. The models integrated into ECVS achieved impressive AUC scores of 0.98 for RETQA, 0.95 for PVI, and 0.90 for EDD, along with a DICE coefficient of 0.48 for VLR. These results underscore the promising capabilities of ECVS as a straightforward and scalable method for community-based vision screening. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20309v1-abstract-full').style.display = 'none'; document.getElementById('2410.20309v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, published in MICCAI2024 OMIA XI workshop</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20063">arXiv:2410.20063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20063">pdf</a>, <a href="https://arxiv.org/format/2410.20063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the branching fraction of $D^+ \to 蟿^+谓_蟿$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (650 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20063v1-abstract-short" style="display: inline;"> By analyzing $e^{+}e^{-}$ collision data with an integrated luminosity of 7.9~fb$^{-1}$ collected with the BESIII detector at the center-of-mass energy of 3.773~GeV, the branching fraction of $D^+\to蟿^+谓_蟿$ is determined as $\mathcal{B}=(9.9\pm 1.1_\mathrm{stat}\pm 0.5_\mathrm{syst})\times10^{-4}$. Taking the most precise result&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20063v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20063v1-abstract-full" style="display: none;"> By analyzing $e^{+}e^{-}$ collision data with an integrated luminosity of 7.9~fb$^{-1}$ collected with the BESIII detector at the center-of-mass energy of 3.773~GeV, the branching fraction of $D^+\to蟿^+谓_蟿$ is determined as $\mathcal{B}=(9.9\pm 1.1_\mathrm{stat}\pm 0.5_\mathrm{syst})\times10^{-4}$. Taking the most precise result $\mathcal{B}(D^+\to渭^+谓_渭)=(3.981\pm 0.079_\mathrm{stat}\pm0.040_\mathrm{syst})\times10^{-4}$, we determine $R_{蟿/渭} = 螕(D^+\to蟿^+谓_蟿)/螕(D^+\to渭^+谓_渭)= 2.49\pm0.31$, achieving a factor of two improvement in precision compared to the previous BESIII result. This measurement is in agreement with the standard model prediction of lepton flavor universality within one standard deviation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20063v1-abstract-full').style.display = 'none'; document.getElementById('2410.20063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19678">arXiv:2410.19678</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19678">pdf</a>, <a href="https://arxiv.org/format/2410.19678">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Approaching Stable Quark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yang Bai</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+T">Ting-Kuo Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19678v2-abstract-short" style="display: inline;"> The determination of whether the ground state of baryon matter in Quantum Chromodynamics (QCD) is the ordinary nucleus or a quark matter state remains a long-standing question in physics. A critical parameter in this investigation is the bag parameter $B$, which quantifies the QCD vacuum energy and can be computed using nonperturbative methods such as Lattice QCD (LQCD). By combining the equation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19678v2-abstract-full').style.display = 'inline'; document.getElementById('2410.19678v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19678v2-abstract-full" style="display: none;"> The determination of whether the ground state of baryon matter in Quantum Chromodynamics (QCD) is the ordinary nucleus or a quark matter state remains a long-standing question in physics. A critical parameter in this investigation is the bag parameter $B$, which quantifies the QCD vacuum energy and can be computed using nonperturbative methods such as Lattice QCD (LQCD). By combining the equation of state derived from perturbative QCD (pQCD) with the bag parameter to fit the LQCD-simulated data for isospin-dense matter, we address the stability of quark matter within the LQCD+pQCD framework. Our findings suggest that the current data imposes an upper bound on $B^{1/4} \lesssim 160~{\rm MeV}$, approaching a conclusive statement on quark matter stability. Given the lower bound on $B$ from the quark condensate contribution to the vacuum energy, the stable 2-flavor quark matter remains possible, whereas the stable 2+1-flavor quark matter is excluded. Additionally, we derive more general thermodynamic bounds on the quark matter energy-per-baryon and $B$, which, while weaker, provide complementary insights. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19678v2-abstract-full').style.display = 'none'; document.getElementById('2410.19678v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added lower bounds on the bag parameter; stable 2+1 flavor quark matter is excluded; references added; 12 figures and 28 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19008">arXiv:2410.19008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19008">pdf</a>, <a href="https://arxiv.org/format/2410.19008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Teach Multimodal LLMs to Comprehend Electrocardiographic Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Liu%2C+R">Ruoqi Liu</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yuelin Bai</a>, <a href="/search/?searchtype=author&amp;query=Yue%2C+X">Xiang Yue</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+P">Ping Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19008v1-abstract-short" style="display: inline;"> The electrocardiogram (ECG) is an essential non-invasive diagnostic tool for assessing cardiac conditions. Existing automatic interpretation methods suffer from limited generalizability, focusing on a narrow range of cardiac conditions, and typically depend on raw physiological signals, which may not be readily available in resource-limited settings where only printed or digital ECG images are acc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19008v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19008v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19008v1-abstract-full" style="display: none;"> The electrocardiogram (ECG) is an essential non-invasive diagnostic tool for assessing cardiac conditions. Existing automatic interpretation methods suffer from limited generalizability, focusing on a narrow range of cardiac conditions, and typically depend on raw physiological signals, which may not be readily available in resource-limited settings where only printed or digital ECG images are accessible. Recent advancements in multimodal large language models (MLLMs) present promising opportunities for addressing these challenges. However, the application of MLLMs to ECG image interpretation remains challenging due to the lack of instruction tuning datasets and well-established ECG image benchmarks for quantitative evaluation. To address these challenges, we introduce ECGInstruct, a comprehensive ECG image instruction tuning dataset of over one million samples, covering a wide range of ECG-related tasks from diverse data sources. Using ECGInstruct, we develop PULSE, an MLLM tailored for ECG image comprehension. In addition, we curate ECGBench, a new evaluation benchmark covering four key ECG image interpretation tasks across nine different datasets. Our experiments show that PULSE sets a new state-of-the-art, outperforming general MLLMs with an average accuracy improvement of 15% to 30%. This work highlights the potential of PULSE to enhance ECG interpretation in clinical practice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19008v1-abstract-full').style.display = 'none'; document.getElementById('2410.19008v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18464">arXiv:2410.18464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18464">pdf</a>, <a href="https://arxiv.org/ps/2410.18464">ps</a>, <a href="https://arxiv.org/format/2410.18464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Search for $畏_c(2S)\to p\bar{p}$ and branching fraction measurements of $蠂_{cJ} \to p\bar{p}$ via $蠄(2S)$ radiative decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (640 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18464v1-abstract-short" style="display: inline;"> Using $(27.12\pm0.14) \times 10^{8}$ $蠄(2S)$ events collected by the BESIII detector operating at BEPCII, we search for the decay $畏_c(2S)\to p\bar{p}$ via the process $蠄(2S)\to 纬畏_c(2S)$, and only find a signal with a significance of $1.7\,蟽$. The upper limit of the product branching fraction at the 90% confidence level is determined to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18464v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18464v1-abstract-full" style="display: none;"> Using $(27.12\pm0.14) \times 10^{8}$ $蠄(2S)$ events collected by the BESIII detector operating at BEPCII, we search for the decay $畏_c(2S)\to p\bar{p}$ via the process $蠄(2S)\to 纬畏_c(2S)$, and only find a signal with a significance of $1.7\,蟽$. The upper limit of the product branching fraction at the 90% confidence level is determined to be $\mathcal{B}(蠄(2S)\to 纬畏_c(2S))\times \mathcal{B}(畏_c(2S)\to p\bar{p})&lt;2.4\times 10^{-7}$. The branching fractions of $蠂_{cJ}\to p\bar{p}~(J=0,1,2)$ are also measured to be $\mathcal{B}(蠂_{c0}\to p\bar{p})=(2.51\pm0.02\pm0.08)\times 10^{-4}$, $\mathcal{B}(蠂_{c1}\to p\bar{p})=(8.16\pm0.09\pm0.25)\times 10^{-4}$, and $\mathcal{B}(蠂_{c2}\to p\bar{p})=(8.33\pm0.09\pm0.22)\times 10^{-4}$, where the first uncertainty is statistical and the second systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18464v1-abstract-full').style.display = 'none'; document.getElementById('2410.18464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17814">arXiv:2410.17814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17814">pdf</a>, <a href="https://arxiv.org/format/2410.17814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning Lossless Compression for High Bit-Depth Volumetric Medical Image </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yuanchao Bai</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D">Daxin Li</a>, <a href="/search/?searchtype=author&amp;query=Zhai%2C+D">Deming Zhai</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+J">Junjun Jiang</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+X">Xianming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17814v1-abstract-short" style="display: inline;"> Recent advances in learning-based methods have markedly enhanced the capabilities of image compression. However, these methods struggle with high bit-depth volumetric medical images, facing issues such as degraded performance, increased memory demand, and reduced processing speed. To address these challenges, this paper presents the Bit-Division based Lossless Volumetric Image Compression (BD-LVIC&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17814v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17814v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17814v1-abstract-full" style="display: none;"> Recent advances in learning-based methods have markedly enhanced the capabilities of image compression. However, these methods struggle with high bit-depth volumetric medical images, facing issues such as degraded performance, increased memory demand, and reduced processing speed. To address these challenges, this paper presents the Bit-Division based Lossless Volumetric Image Compression (BD-LVIC) framework, which is tailored for high bit-depth medical volume compression. The BD-LVIC framework skillfully divides the high bit-depth volume into two lower bit-depth segments: the Most Significant Bit-Volume (MSBV) and the Least Significant Bit-Volume (LSBV). The MSBV concentrates on the most significant bits of the volumetric medical image, capturing vital structural details in a compact manner. This reduction in complexity greatly improves compression efficiency using traditional codecs. Conversely, the LSBV deals with the least significant bits, which encapsulate intricate texture details. To compress this detailed information effectively, we introduce an effective learning-based compression model equipped with a Transformer-Based Feature Alignment Module, which exploits both intra-slice and inter-slice redundancies to accurately align features. Subsequently, a Parallel Autoregressive Coding Module merges these features to precisely estimate the probability distribution of the least significant bit-planes. Our extensive testing demonstrates that the BD-LVIC framework not only sets new performance benchmarks across various datasets but also maintains a competitive coding speed, highlighting its significant potential and practical utility in the realm of volumetric medical image compression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17814v1-abstract-full').style.display = 'none'; document.getElementById('2410.17814v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16912">arXiv:2410.16912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16912">pdf</a>, <a href="https://arxiv.org/ps/2410.16912">ps</a>, <a href="https://arxiv.org/format/2410.16912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the branching fractions of the decays $螞_{c}^{+}\rightarrow螞K_{S}^{0}K^{+}$, $螞_{c}^{+}\rightarrow螞K_{S}^{0}蟺^{+}$ and $螞_{c}^{+}\rightarrow螞K^{*+}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (639 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16912v1-abstract-short" style="display: inline;"> Studies are performed of the Cabibbo-favored decay $螞_{c}^{+}\to螞K_{S}^{0}K^+$ and the singly Cabibbo-suppressed decay $螞_{c}^{+}\to螞K_{S}^{0}蟺^+$, based on a sample of $e^{+}e^{-}$ collision data, corresponding to an integrated luminosity of 4.5 fb$^{-1}$, accumulated at center-of-mass energies between $4599.53$ MeV and $4698.82$ MeV with the BESIII detector. The decay&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16912v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16912v1-abstract-full" style="display: none;"> Studies are performed of the Cabibbo-favored decay $螞_{c}^{+}\to螞K_{S}^{0}K^+$ and the singly Cabibbo-suppressed decay $螞_{c}^{+}\to螞K_{S}^{0}蟺^+$, based on a sample of $e^{+}e^{-}$ collision data, corresponding to an integrated luminosity of 4.5 fb$^{-1}$, accumulated at center-of-mass energies between $4599.53$ MeV and $4698.82$ MeV with the BESIII detector. The decay $螞_{c}^{+}\to螞K_{S}^{0}蟺^+$ is observed for the first time. The branching fractions of $螞_{c}^{+}\to螞K_{S}^{0}K^+$ and $螞_{c}^{+}\to螞K_{S}^{0}蟺^+$ are measured to be $(3.04\pm0.30\pm0.16)\times 10^{-3}$ and $(1.73\pm0.27\pm0.10)\times 10^{-3}$, respectively, where the first uncertainties are statistical and the second are systematic. These results correspond to the most precise measurement of these quantities for both decays. Evidence of a $K^{*+}$ contribution in the $螞_{c}^{+}\to螞K_{S}^{0}蟺^+$ decay is found with a statistical significance of $4.7蟽$. The branching fraction of $螞_{c}^{+}\to螞K^{*+}$ is calculated under three possible interference scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16912v1-abstract-full').style.display = 'none'; document.getElementById('2410.16912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16669">arXiv:2410.16669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16669">pdf</a>, <a href="https://arxiv.org/format/2410.16669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Linear Partial Gromov-Wasserstein Embedding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yikun Bai</a>, <a href="/search/?searchtype=author&amp;query=Kothapalli%2C+A">Abihith Kothapalli</a>, <a href="/search/?searchtype=author&amp;query=Du%2C+H">Hengrong Du</a>, <a href="/search/?searchtype=author&amp;query=Martin%2C+R+D">Rocio Diaz Martin</a>, <a href="/search/?searchtype=author&amp;query=Kolouri%2C+S">Soheil Kolouri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16669v2-abstract-short" style="display: inline;"> The Gromov Wasserstein (GW) problem, a variant of the classical optimal transport (OT) problem, has attracted growing interest in the machine learning and data science communities due to its ability to quantify similarity between measures in different metric spaces. However, like the classical OT problem, GW imposes an equal mass constraint between measures, which restricts its application in many&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16669v2-abstract-full').style.display = 'inline'; document.getElementById('2410.16669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16669v2-abstract-full" style="display: none;"> The Gromov Wasserstein (GW) problem, a variant of the classical optimal transport (OT) problem, has attracted growing interest in the machine learning and data science communities due to its ability to quantify similarity between measures in different metric spaces. However, like the classical OT problem, GW imposes an equal mass constraint between measures, which restricts its application in many machine learning tasks. To address this limitation, the partial Gromov-Wasserstein (PGW) problem has been introduced, which relaxes the equal mass constraint, enabling the comparison of general positive Radon measures. Despite this, both GW and PGW face significant computational challenges due to their non-convex nature. To overcome these challenges, we propose the linear partial Gromov-Wasserstein (LPGW) embedding, a linearized embedding technique for the PGW problem. For $K$ different metric measure spaces, the pairwise computation of the PGW distance requires solving the PGW problem $\mathcal{O}(K^2)$ times. In contrast, the proposed linearization technique reduces this to $\mathcal{O}(K)$ times. Similar to the linearization technique for the classical OT problem, we prove that LPGW defines a valid metric for metric measure spaces. Finally, we demonstrate the effectiveness of LPGW in practical applications such as shape retrieval and learning with transport-based embeddings, showing that LPGW preserves the advantages of PGW in partial matching while significantly enhancing computational efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16669v2-abstract-full').style.display = 'none'; document.getElementById('2410.16669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16215">arXiv:2410.16215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16215">pdf</a>, <a href="https://arxiv.org/format/2410.16215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Pre-training Distillation for Large Language Models: A Design Space Exploration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Peng%2C+H">Hao Peng</a>, <a href="/search/?searchtype=author&amp;query=Lv%2C+X">Xin Lv</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yushi Bai</a>, <a href="/search/?searchtype=author&amp;query=Yao%2C+Z">Zijun Yao</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+J">Jiajie Zhang</a>, <a href="/search/?searchtype=author&amp;query=Hou%2C+L">Lei Hou</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">Juanzi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16215v1-abstract-short" style="display: inline;"> Knowledge distillation (KD) aims to transfer knowledge from a large teacher model to a smaller student model. Previous work applying KD in the field of large language models (LLMs) typically focused on the post-training phase, where the student LLM learns directly from instructions and corresponding responses generated by the teacher model. In this paper, we extend KD to the pre-training phase of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16215v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16215v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16215v1-abstract-full" style="display: none;"> Knowledge distillation (KD) aims to transfer knowledge from a large teacher model to a smaller student model. Previous work applying KD in the field of large language models (LLMs) typically focused on the post-training phase, where the student LLM learns directly from instructions and corresponding responses generated by the teacher model. In this paper, we extend KD to the pre-training phase of LLMs, named pre-training distillation (PD). We first conduct a preliminary experiment using GLM-4-9B as the teacher LLM to distill a 1.9B parameter student LLM, validating the effectiveness of PD. Considering the key impact factors of distillation, we systematically explore the design space of pre-training distillation across four aspects: logits processing, loss selection, scaling law, and offline or online logits. We conduct extensive experiments to explore the design space of pre-training distillation and find better configurations and interesting conclusions, such as larger student LLMs generally benefiting more from pre-training distillation, while a larger teacher LLM does not necessarily guarantee better results. We hope our exploration of the design space will inform future practices in pre-training distillation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16215v1-abstract-full').style.display = 'none'; document.getElementById('2410.16215v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13854">arXiv:2410.13854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13854">pdf</a>, <a href="https://arxiv.org/format/2410.13854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Can MLLMs Understand the Deep Implication Behind Chinese Images? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhang%2C+C">Chenhao Zhang</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+X">Xi Feng</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yuelin Bai</a>, <a href="/search/?searchtype=author&amp;query=Du%2C+X">Xinrun Du</a>, <a href="/search/?searchtype=author&amp;query=Hou%2C+J">Jinchang Hou</a>, <a href="/search/?searchtype=author&amp;query=Deng%2C+K">Kaixin Deng</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+G">Guangzeng Han</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Q">Qinrui Li</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+B">Bingli Wang</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+J">Jiaheng Liu</a>, <a href="/search/?searchtype=author&amp;query=Qu%2C+X">Xingwei Qu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Yifei Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+Q">Qixuan Zhao</a>, <a href="/search/?searchtype=author&amp;query=Liang%2C+Y">Yiming Liang</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Z">Ziqiang Liu</a>, <a href="/search/?searchtype=author&amp;query=Fang%2C+F">Feiteng Fang</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+M">Min Yang</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+W">Wenhao Huang</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+C">Chenghua Lin</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+G">Ge Zhang</a>, <a href="/search/?searchtype=author&amp;query=Ni%2C+S">Shiwen Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13854v1-abstract-short" style="display: inline;"> As the capabilities of Multimodal Large Language Models (MLLMs) continue to improve, the need for higher-order capability evaluation of MLLMs is increasing. However, there is a lack of work evaluating MLLM for higher-order perception and understanding of Chinese visual content. To fill the gap, we introduce the **C**hinese **I**mage **I**mplication understanding **Bench**mark, **CII-Bench**, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13854v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13854v1-abstract-full" style="display: none;"> As the capabilities of Multimodal Large Language Models (MLLMs) continue to improve, the need for higher-order capability evaluation of MLLMs is increasing. However, there is a lack of work evaluating MLLM for higher-order perception and understanding of Chinese visual content. To fill the gap, we introduce the **C**hinese **I**mage **I**mplication understanding **Bench**mark, **CII-Bench**, which aims to assess the higher-order perception and understanding capabilities of MLLMs for Chinese images. CII-Bench stands out in several ways compared to existing benchmarks. Firstly, to ensure the authenticity of the Chinese context, images in CII-Bench are sourced from the Chinese Internet and manually reviewed, with corresponding answers also manually crafted. Additionally, CII-Bench incorporates images that represent Chinese traditional culture, such as famous Chinese traditional paintings, which can deeply reflect the model&#39;s understanding of Chinese traditional culture. Through extensive experiments on CII-Bench across multiple MLLMs, we have made significant findings. Initially, a substantial gap is observed between the performance of MLLMs and humans on CII-Bench. The highest accuracy of MLLMs attains 64.4%, where as human accuracy averages 78.2%, peaking at an impressive 81.0%. Subsequently, MLLMs perform worse on Chinese traditional culture images, suggesting limitations in their ability to understand high-level semantics and lack a deep knowledge base of Chinese traditional culture. Finally, it is observed that most models exhibit enhanced accuracy when image emotion hints are incorporated into the prompts. We believe that CII-Bench will enable MLLMs to gain a better understanding of Chinese semantics and Chinese-specific images, advancing the journey towards expert artificial general intelligence (AGI). Our project is publicly available at https://cii-bench.github.io/. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13854v1-abstract-full').style.display = 'none'; document.getElementById('2410.13854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages,18 figures. Project Page: https://cii-bench.github.io/ Code: https://github.com/MING_X/CII-Bench Dataset: https://huggingface.co/datasets/m-a-p/CII-Bench</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13835">arXiv:2410.13835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13835">pdf</a>, <a href="https://arxiv.org/format/2410.13835">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Active-Dormant Attention Heads: Mechanistically Demystifying Extreme-Token Phenomena in LLMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Guo%2C+T">Tianyu Guo</a>, <a href="/search/?searchtype=author&amp;query=Pai%2C+D">Druv Pai</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yu Bai</a>, <a href="/search/?searchtype=author&amp;query=Jiao%2C+J">Jiantao Jiao</a>, <a href="/search/?searchtype=author&amp;query=Jordan%2C+M+I">Michael I. Jordan</a>, <a href="/search/?searchtype=author&amp;query=Mei%2C+S">Song Mei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13835v2-abstract-short" style="display: inline;"> Practitioners have consistently observed three puzzling phenomena in transformer-based large language models (LLMs): attention sinks, value-state drains, and residual-state peaks, collectively referred to as extreme-token phenomena. These phenomena are characterized by certain so-called &#34;sink tokens&#34; receiving disproportionately high attention weights, exhibiting significantly smaller value states&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13835v2-abstract-full').style.display = 'inline'; document.getElementById('2410.13835v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13835v2-abstract-full" style="display: none;"> Practitioners have consistently observed three puzzling phenomena in transformer-based large language models (LLMs): attention sinks, value-state drains, and residual-state peaks, collectively referred to as extreme-token phenomena. These phenomena are characterized by certain so-called &#34;sink tokens&#34; receiving disproportionately high attention weights, exhibiting significantly smaller value states, and having much larger residual-state norms than those of other tokens. These extreme tokens give rise to various challenges in LLM inference, quantization, and interpretability. We elucidate the mechanisms behind extreme-token phenomena. First, we show that these phenomena arise in very simple architectures -- transformers with one to three layers -- trained on a toy model, the Bigram-Backcopy (BB) task. In this setting, we identify an active-dormant mechanism, where attention heads become sinks for specific input domains while remaining non-sinks for others. Our theoretical analysis of the training dynamics reveals that these phenomena are driven by a mutual reinforcement mechanism. Building on these insights, we propose strategies to mitigate extreme-token phenomena during pretraining, including replacing softmax with ReLU and Adam with SGD. Next, we extend our analysis to pretrained LLMs, including Llama and OLMo, showing that many attention heads exhibit a similar active-dormant mechanism as in the BB task, and that the mutual reinforcement mechanism also governs the emergence of extreme-token phenomena during LLM pretraining. Our results reveal that many of the static and dynamic properties of extreme-token phenomena predicted by the BB task align with observations in pretrained LLMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13835v2-abstract-full').style.display = 'none'; document.getElementById('2410.13835v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v1-abstract-short" style="display: inline;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v1-abstract-full" style="display: none;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the fundamental parameters of the Cabibbo-Kobayashi-Maskawa matrix in weak interaction theory. This article presents the first observation of the Cabibbo-suppressed $螞_c^+$ beta decay into a neutron $螞_c^+ \rightarrow n e^+ 谓_{e}$, based on $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector in the energy region above the $螞^+_c\bar螞^-_c$ threshold. A novel machine learning technique, leveraging Graph Neural Networks, has been utilized to effectively separate signals from dominant backgrounds, particularly $螞_c^+ \rightarrow 螞e^+ 谓_{e}$. This approach has yielded a statistical significance of more than $10蟽$. The absolute branching fraction of $螞_c^+ \rightarrow n e^+ 谓_{e}$ is measured to be $(3.57\pm0.34_{\mathrm{stat}}\pm0.14_{\mathrm{syst}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay to be $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This study provides a new probe to further understand fundamental interactions in the charmed baryon sector, and demonstrates the power of modern machine learning techniques in enhancing experimental capability in high energy physics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'none'; document.getElementById('2410.13515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13478">arXiv:2410.13478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13478">pdf</a>, <a href="https://arxiv.org/format/2410.13478">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of $蠂_{c0}\to危^{+}\bar危^{-}畏$ and evidence for $蠂_{c1,2}\to危^{+}\bar危^{-}畏$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (634 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13478v1-abstract-short" style="display: inline;"> Using $(27.12\pm 0.14)\times10^{8}$ $蠄(3686)$ events collected with the BESIII detector, the decay $蠂_{c0}\to危^{+}\bar危^{-}畏$ is observed for the first time with a statistical significance of $7.0蟽$, and evidence for $蠂_{c1}\to危^{+}\bar危^{-}畏$ and $蠂_{c2}\to危^{+}\bar危^{-}畏$ is found with statistical significances of $4.3蟽$ and $4.6蟽$, respectively. The branching fractions are determined to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13478v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13478v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13478v1-abstract-full" style="display: none;"> Using $(27.12\pm 0.14)\times10^{8}$ $蠄(3686)$ events collected with the BESIII detector, the decay $蠂_{c0}\to危^{+}\bar危^{-}畏$ is observed for the first time with a statistical significance of $7.0蟽$, and evidence for $蠂_{c1}\to危^{+}\bar危^{-}畏$ and $蠂_{c2}\to危^{+}\bar危^{-}畏$ is found with statistical significances of $4.3蟽$ and $4.6蟽$, respectively. The branching fractions are determined to be $\mathcal{B}(蠂_{c0}\to危^{+}\bar危^{-}畏)=({1.26 \pm 0.20 \pm 0.13}) \times 10^{-4}, ~\mathcal{B}(蠂_{c1}\to危^{+}\bar危^{-}畏)=({5.10 \pm 1.21 \pm 0.67}) \times 10^{-5}$, and $\mathcal{B}(蠂_{c2}\to危^{+}\bar危^{-}畏)=({5.46 \pm 1.18 \pm 0.50}) \times 10^{-5}$, where the first uncertainties are statistical, and the second ones are systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13478v1-abstract-full').style.display = 'none'; document.getElementById('2410.13478v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13368">arXiv:2410.13368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13368">pdf</a>, <a href="https://arxiv.org/format/2410.13368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of the Singly Cabibbo-Suppressed Decay $螞_c^{+}\to p蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (638 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13368v1-abstract-short" style="display: inline;"> Utilizing 4.5${~\rm{fb}}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at center-of-mass energies between 4.600 and 4.699 GeV, the first observation of the singly Cabibbo-suppressed decay $螞_c^{+}\to p蟺^0$ is presented, with a statistical significance of $5.4蟽$. The ratio of the branching fractions of $螞_c^{+}\to p蟺^0$ and $螞_c^{+}\to p畏$ is measured&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13368v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13368v1-abstract-full" style="display: none;"> Utilizing 4.5${~\rm{fb}}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at center-of-mass energies between 4.600 and 4.699 GeV, the first observation of the singly Cabibbo-suppressed decay $螞_c^{+}\to p蟺^0$ is presented, with a statistical significance of $5.4蟽$. The ratio of the branching fractions of $螞_c^{+}\to p蟺^0$ and $螞_c^{+}\to p畏$ is measured as $\mathcal{B}(螞_c^{+}\to p蟺^0)/\mathcal{B}(螞_c^{+}\to p畏)=(0.120\pm0.026_{\rm stat.}\pm0.007_{\rm syst.})$. This result resolves the longstanding discrepancy between earlier experimental searches, providing both a decisive conclusion and valuable input for QCD-inspired theoretical models. A sophisticated deep learning approach using a Transformer-based architecture is employed to distinguish the signal from the prevalent hadronic backgrounds, complemented by thorough validation and systematic uncertainty quantification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13368v1-abstract-full').style.display = 'none'; document.getElementById('2410.13368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12620">arXiv:2410.12620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12620">pdf</a>, <a href="https://arxiv.org/format/2410.12620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Search for $e^{+}e^{-} \to 蠁蠂_{c0}$ and $蠁畏_{c2}(1D)$ at center-of-mass energies from 4.47 to 4.95 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (644 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12620v1-abstract-short" style="display: inline;"> Utilizing a data set of $6.7$ fb$^{-1}$ from electron-positron collisions recorded by the BESIII detector at the BEPCII storage ring, a search is conducted for the processes $e^{+}e^{-} \to 蠁蠂_{c0}$ and $蠁畏_{c2}(1D)$ across center-of-mass energies from 4.47 to 4.95 GeV. In the absence of any significant signals, upper limits are set. These include limits on the Born cross sections for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12620v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12620v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12620v1-abstract-full" style="display: none;"> Utilizing a data set of $6.7$ fb$^{-1}$ from electron-positron collisions recorded by the BESIII detector at the BEPCII storage ring, a search is conducted for the processes $e^{+}e^{-} \to 蠁蠂_{c0}$ and $蠁畏_{c2}(1D)$ across center-of-mass energies from 4.47 to 4.95 GeV. In the absence of any significant signals, upper limits are set. These include limits on the Born cross sections for $e^{+}e^{-} \to 蠁蠂_{c0}$, as well as the product of the Born cross section for $e^{+}e^{-} \to 蠁畏_{c2}(1D)$ and a sum of five branching fractions. Furthermore, the product of the electronic width of $Y(4660)$ and the branching fraction of the $Y(4660) \to 蠁蠂_{c0}$, denoted as $螕^{Y(4660)}_{e^{+}e^{-}} \mathcal{B}_{Y(4660) \to 蠁蠂_{c0}}$, is determined to be $&lt; 0.40$ eV at the 90\% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12620v1-abstract-full').style.display = 'none'; document.getElementById('2410.12620v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12176">arXiv:2410.12176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12176">pdf</a>, <a href="https://arxiv.org/format/2410.12176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Metric Geometry">math.MG</span> </div> </div> <p class="title is-5 mathjax"> Expected Sliced Transport Plans </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Liu%2C+X">Xinran Liu</a>, <a href="/search/?searchtype=author&amp;query=Mart%C3%ADn%2C+R+D">Roc铆o D铆az Mart铆n</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yikun Bai</a>, <a href="/search/?searchtype=author&amp;query=Shahbazi%2C+A">Ashkan Shahbazi</a>, <a href="/search/?searchtype=author&amp;query=Thorpe%2C+M">Matthew Thorpe</a>, <a href="/search/?searchtype=author&amp;query=Aldroubi%2C+A">Akram Aldroubi</a>, <a href="/search/?searchtype=author&amp;query=Kolouri%2C+S">Soheil Kolouri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12176v2-abstract-short" style="display: inline;"> The optimal transport (OT) problem has gained significant traction in modern machine learning for its ability to: (1) provide versatile metrics, such as Wasserstein distances and their variants, and (2) determine optimal couplings between probability measures. To reduce the computational complexity of OT solvers, methods like entropic regularization and sliced optimal transport have been proposed.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12176v2-abstract-full').style.display = 'inline'; document.getElementById('2410.12176v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12176v2-abstract-full" style="display: none;"> The optimal transport (OT) problem has gained significant traction in modern machine learning for its ability to: (1) provide versatile metrics, such as Wasserstein distances and their variants, and (2) determine optimal couplings between probability measures. To reduce the computational complexity of OT solvers, methods like entropic regularization and sliced optimal transport have been proposed. The sliced OT framework improves efficiency by comparing one-dimensional projections (slices) of high-dimensional distributions. However, despite their computational efficiency, sliced-Wasserstein approaches lack a transportation plan between the input measures, limiting their use in scenarios requiring explicit coupling. In this paper, we address two key questions: Can a transportation plan be constructed between two probability measures using the sliced transport framework? If so, can this plan be used to define a metric between the measures? We propose a &#34;lifting&#34; operation to extend one-dimensional optimal transport plans back to the original space of the measures. By computing the expectation of these lifted plans, we derive a new transportation plan, termed expected sliced transport (EST) plans. We prove that using the EST plan to weight the sum of the individual Euclidean costs for moving from one point to another results in a valid metric between the input discrete probability measures. We demonstrate the connection between our approach and the recently proposed min-SWGG, along with illustrative numerical examples that support our theoretical findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12176v2-abstract-full').style.display = 'none'; document.getElementById('2410.12176v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11607">arXiv:2410.11607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11607">pdf</a>, <a href="https://arxiv.org/format/2410.11607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of $蠂_{cJ}\to p \bar p K^0_S K^- 蟺^+ + c.c.$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (648 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11607v1-abstract-short" style="display: inline;"> By analyzing $(27.12\pm0.14)\times10^8$ $蠄(3686)$ events collected with the BESIII detector operating at the BEPCII collider, the decays of $蠂_{cJ} \to p \bar{p} K^0_S K^- 蟺^+ +c.c.(J=0, 1, 2)$ are observed for the first time with statistical significances greater than $10蟽$. The branching fractions of these decays are determined to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11607v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11607v1-abstract-full" style="display: none;"> By analyzing $(27.12\pm0.14)\times10^8$ $蠄(3686)$ events collected with the BESIII detector operating at the BEPCII collider, the decays of $蠂_{cJ} \to p \bar{p} K^0_S K^- 蟺^+ +c.c.(J=0, 1, 2)$ are observed for the first time with statistical significances greater than $10蟽$. The branching fractions of these decays are determined to be $\mathcal{B}(蠂_{c0}\to p \bar p K^{0}_{S} K^- 蟺^+ + c.c.)=(2.61\pm0.27\pm0.32)\times10^{-5},$ $\mathcal{B}(蠂_{c1}\to p \bar p K^{0}_{S} K^- 蟺^+ + c.c.)=(4.16\pm0.24\pm0.46)\times10^{-5},$ and $\mathcal{B}(蠂_{c2}\to p \bar p K^{0}_{S} K^- 蟺^+ + c.c.)=(5.63\pm0.28\pm0.46)\times10^{-5}$, respectively. The processes $蠂_{c1,2} \to \bar{p} 螞(1520) K^0_S 蟺^{+} + c.c.$ are also observed, with statistical significances of 5.7$蟽$ and 7.0$蟽$, respectively. Evidence for $蠂_{c0} \to\bar{p} 螞(1520) K^0_S 蟺^{+} + c.c.$ is found with statistical significances of 3.3$蟽$ each. The corresponding branching fractions are determined to be $\mathcal{B}(蠂_{c0}\to \bar{p} 螞(1520) K^0_S 蟺^{+} + c.c.) =(1.61^{+0.68}_{-0.64}\pm0.23)\times10^{-5}$, $\mathcal{B}(蠂_{c1}\to \bar{p} 螞(1520) K^0_S 蟺^{+} + c.c.)=(4.06^{+0.80}_{-0.76}\pm0.52)\times10^{-5}$, and $\mathcal{B}(蠂_{c2}\to \bar{p} 螞(1520) K^0_S 蟺^{+} + c.c.)=(4.09^{+0.87}_{-0.84}\pm0.42)\times10^{-5}$. Here, the first uncertainties are statistical and the second ones are systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11607v1-abstract-full').style.display = 'none'; document.getElementById('2410.11607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08603">arXiv:2410.08603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08603">pdf</a>, <a href="https://arxiv.org/format/2410.08603">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of $D^+\to畏^\prime渭^+谓_渭$ and First Study of $D^+\to 畏^\prime \ell^+谓_\ell$ Decay Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (643 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08603v1-abstract-short" style="display: inline;"> Using $20.3\,\rm fb^{-1}$ of $e^+e^-$ collision data collected at the center-of-mass energy 3.773\,GeV with the BESIII detector, we report the first observation of the semileptonic decay $D^+\to 畏^\prime 渭^+谓_渭$ with significance of $8.6蟽$ including systematic uncertainties, and an improved measurement of $D^+\to 畏^\prime e^+谓_e$. The branching fractions of $D^+\to 畏^\prime 渭^+谓_渭$ and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08603v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08603v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08603v1-abstract-full" style="display: none;"> Using $20.3\,\rm fb^{-1}$ of $e^+e^-$ collision data collected at the center-of-mass energy 3.773\,GeV with the BESIII detector, we report the first observation of the semileptonic decay $D^+\to 畏^\prime 渭^+谓_渭$ with significance of $8.6蟽$ including systematic uncertainties, and an improved measurement of $D^+\to 畏^\prime e^+谓_e$. The branching fractions of $D^+\to 畏^\prime 渭^+谓_渭$ and $D^+\to 畏^\prime e^+谓_e$ are determined to be $(1.92\pm0.28_{\rm stat}\pm 0.08_{\rm syst})\times 10^{-4}$ and $(1.79\pm0.19_{\rm stat}\pm 0.07_{\rm syst})\times 10^{-4}$, respectively. From an analysis of the $D^+\to 畏^\prime \ell^+谓_\ell$ decay dynamics, the product of the hadronic form factor $f_+^{畏^{\prime}}(0)$ and the CKM matrix element $|V_{cd}|$ is measured for the first time, giving $f^{畏^\prime}_+(0)|V_{cd}| = (5.92\pm0.56_{\rm stat}\pm0.13_{\rm syst})\times 10^{-2}$. No evidence for violation of $渭-e$ lepton-flavor universality is found in both the full range and several bins of $\ell^+谓_\ell$ four-momentum transfer. The $畏-畏^\prime$ mixing angle in the quark flavor basis is determined to be $蠁_{\rm P} =(39.8\pm0.8_{\rm stat}\pm0.3_{\rm syst})^\circ$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08603v1-abstract-full').style.display = 'none'; document.getElementById('2410.08603v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07626">arXiv:2410.07626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07626">pdf</a>, <a href="https://arxiv.org/format/2410.07626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Precision Measurement of the Branching Fraction of $D^{+}\to 渭^{+}谓_渭$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (643 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07626v1-abstract-short" style="display: inline;"> Using $20.3~\mathrm{fb}^{-1}$ of $e^+e^-$ collision data collected at a center-of-mass energy of $E_{\rm cm}=3.773$ GeV with the BESIII detector operating at the BEPCII collider, we determine the branching fraction of the leptonic decay $D^+\to渭^+谓_渭$ to be $(3.981\pm0.079_{\rm stat}\pm0.040_{\rm syst})\times10^{-4}$. Interpreting our measurement with knowledge of the Fermi coupling constant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07626v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07626v1-abstract-full" style="display: none;"> Using $20.3~\mathrm{fb}^{-1}$ of $e^+e^-$ collision data collected at a center-of-mass energy of $E_{\rm cm}=3.773$ GeV with the BESIII detector operating at the BEPCII collider, we determine the branching fraction of the leptonic decay $D^+\to渭^+谓_渭$ to be $(3.981\pm0.079_{\rm stat}\pm0.040_{\rm syst})\times10^{-4}$. Interpreting our measurement with knowledge of the Fermi coupling constant $G_F$, the masses of the $D^+$ and $渭^+$ as well as the lifetime of the $D^+$, we determine $f_{D^+}|V_{cd}|=(47.53\pm0.48_{\rm stat}\pm0.24_{\rm syst}\pm0.12_{\rm input})~\mathrm{MeV}$. This result is a factor of 2.3 more precise than the previous best measurement. Using the value of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cd}|$ given by the global standard model fit, we obtain the $D^+$ decay constant $f_{D^+}=(211.5\pm2.3_{\rm stat}\pm1.1_{\rm syst}\pm0.8_{\rm input})$ MeV. Alternatively, using the value of $f_{D^+}$ from a precise lattice quantum chromodynamics calculation, we extract $|V_{cd}|=0.2242\pm0.0023_{\rm stat}\pm0.0011_{\rm syst}\pm0.0009_{\rm input}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07626v1-abstract-full').style.display = 'none'; document.getElementById('2410.07626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06500">arXiv:2410.06500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06500">pdf</a>, <a href="https://arxiv.org/format/2410.06500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Search for the radiative decays $D^+\to纬蟻^+$ and $D^+\to纬K^{*+}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (648 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06500v1-abstract-short" style="display: inline;"> We search for the radiative decays $D^{+} \to 纬蟻^+$ and $D^{+} \to 纬K^{*+}$ using 20.3~fb$^{-1}$ of $e^+e^-$ annihilation data collected at the center-of-mass energy $\sqrt{s}=3.773$ GeV by the BESIII detector operating at the BEPCII collider. No significant signals are observed, and the upper limits on the branching fractions of $D^{+} \to 纬蟻^+$ and $D^{+} \to 纬K^{*+}$ at 90\% confidence level ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06500v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06500v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06500v1-abstract-full" style="display: none;"> We search for the radiative decays $D^{+} \to 纬蟻^+$ and $D^{+} \to 纬K^{*+}$ using 20.3~fb$^{-1}$ of $e^+e^-$ annihilation data collected at the center-of-mass energy $\sqrt{s}=3.773$ GeV by the BESIII detector operating at the BEPCII collider. No significant signals are observed, and the upper limits on the branching fractions of $D^{+} \to 纬蟻^+$ and $D^{+} \to 纬K^{*+}$ at 90\% confidence level are set to be $1.3\times10^{-5}$ and $1.8\times10^{-5}$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06500v1-abstract-full').style.display = 'none'; document.getElementById('2410.06500v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06456">arXiv:2410.06456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06456">pdf</a>, <a href="https://arxiv.org/format/2410.06456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> From Generalist to Specialist: Adapting Vision Language Models via Task-Specific Visual Instruction Tuning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yang Bai</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y">Yang Zhou</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+J">Jun Zhou</a>, <a href="/search/?searchtype=author&amp;query=Goh%2C+R+S+M">Rick Siow Mong Goh</a>, <a href="/search/?searchtype=author&amp;query=Ting%2C+D+S+W">Daniel Shu Wei Ting</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Yong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06456v1-abstract-short" style="display: inline;"> Large vision language models (VLMs) combine large language models with vision encoders, demonstrating promise across various tasks. However, they often underperform in task-specific applications due to domain gaps between pre-training and fine-tuning. We introduce VITask, a novel framework that enhances task-specific adaptability of VLMs by integrating task-specific models (TSMs). VITask employs t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06456v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06456v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06456v1-abstract-full" style="display: none;"> Large vision language models (VLMs) combine large language models with vision encoders, demonstrating promise across various tasks. However, they often underperform in task-specific applications due to domain gaps between pre-training and fine-tuning. We introduce VITask, a novel framework that enhances task-specific adaptability of VLMs by integrating task-specific models (TSMs). VITask employs three key strategies: exemplar prompting (EP), response distribution alignment (RDA), and contrastive response tuning (CRT) to improve the task-specific performance of VLMs by adjusting their response distributions. EP allows TSM features to guide VLMs, while RDA enables VLMs to adapt without TSMs during inference by learning from exemplar-prompted models. CRT further optimizes the ranking of correct image-response pairs, thereby reducing the risk of generating undesired responses. Experiments on 12 medical diagnosis datasets across 9 imaging modalities show that VITask outperforms both vanilla instruction-tuned VLMs and TSMs, showcasing its ability to integrate complementary features from both models effectively. Additionally, VITask offers practical advantages such as flexible TSM integration and robustness to incomplete instructions, making it a versatile and efficient solution for task-specific VLM tuning. Our code are available at https://github.com/baiyang4/VITask. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06456v1-abstract-full').style.display = 'none'; document.getElementById('2410.06456v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05736">arXiv:2410.05736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05736">pdf</a>, <a href="https://arxiv.org/ps/2410.05736">ps</a>, <a href="https://arxiv.org/format/2410.05736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of an axial-vector state in the study of $蠄(3686) \to 蠁畏畏&#39;$ decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (625 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05736v1-abstract-short" style="display: inline;"> Using (2712.4 $\pm$ 14.3)$\times 10^{6}$ $蠄(3686)$ events collected with the BESIII detector at BEPCII, a partial wave analysis of the decay $蠄(3686) \to 蠁畏畏&#39; $ is performed with the covariant tensor approach. An axial-vector state with a mass near 2.3 $\rm GeV/c^2$ is observed for the first time. Its mass and width are measured to be 2316&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05736v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05736v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05736v1-abstract-full" style="display: none;"> Using (2712.4 $\pm$ 14.3)$\times 10^{6}$ $蠄(3686)$ events collected with the BESIII detector at BEPCII, a partial wave analysis of the decay $蠄(3686) \to 蠁畏畏&#39; $ is performed with the covariant tensor approach. An axial-vector state with a mass near 2.3 $\rm GeV/c^2$ is observed for the first time. Its mass and width are measured to be 2316 $\pm 9_{\mathrm{stat}} \pm 30_{\mathrm{syst}}\,\rm MeV/c^2$ and 89 $\pm 15_{\mathrm{stat}} \pm 26_{\mathrm{syst}}\,\rm MeV$, respectively. The product branching fractions of $\mathcal{B}(蠄(3686) \to X(2300) 畏&#39;) \mathcal{B}(X(2300)\to 蠁畏)$ and $\mathcal{B}(蠄(3686) \to X(2300) 畏)\mathcal{B}(X(2300)\to 蠁畏&#39;)$ are determined to be (4.8 $\pm 1.3_{\mathrm{stat}} \pm 0.7_{\mathrm{syst}})\times 10^{-6}$ and (2.2 $\pm 0.7_{\mathrm{stat}} \pm 0.7_{\mathrm{syst}})\times 10^{-6}$, respectively. The branching fraction $\mathcal{B}(蠄(3686) \to 蠁畏畏&#39;)$ is measured for the first time to be (3.14$\pm0.17_{\mathrm{stat}}\pm0.24_{\mathrm{syst}})\times10^{-5}$. The first uncertainties are statistical and the second are systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05736v1-abstract-full').style.display = 'none'; document.getElementById('2410.05736v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04452">arXiv:2410.04452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04452">pdf</a>, <a href="https://arxiv.org/format/2410.04452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> MindScope: Exploring cognitive biases in large language models through Multi-Agent Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Xie%2C+Z">Zhentao Xie</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+J">Jiabao Zhao</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Yilei Wang</a>, <a href="/search/?searchtype=author&amp;query=Shi%2C+J">Jinxin Shi</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yanhong Bai</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+X">Xingjiao Wu</a>, <a href="/search/?searchtype=author&amp;query=He%2C+L">Liang He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04452v1-abstract-short" style="display: inline;"> Detecting cognitive biases in large language models (LLMs) is a fascinating task that aims to probe the existing cognitive biases within these models. Current methods for detecting cognitive biases in language models generally suffer from incomplete detection capabilities and a restricted range of detectable bias types. To address this issue, we introduced the &#39;MindScope&#39; dataset, which distinctiv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04452v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04452v1-abstract-full" style="display: none;"> Detecting cognitive biases in large language models (LLMs) is a fascinating task that aims to probe the existing cognitive biases within these models. Current methods for detecting cognitive biases in language models generally suffer from incomplete detection capabilities and a restricted range of detectable bias types. To address this issue, we introduced the &#39;MindScope&#39; dataset, which distinctively integrates static and dynamic elements. The static component comprises 5,170 open-ended questions spanning 72 cognitive bias categories. The dynamic component leverages a rule-based, multi-agent communication framework to facilitate the generation of multi-round dialogues. This framework is flexible and readily adaptable for various psychological experiments involving LLMs. In addition, we introduce a multi-agent detection method applicable to a wide range of detection tasks, which integrates Retrieval-Augmented Generation (RAG), competitive debate, and a reinforcement learning-based decision module. Demonstrating substantial effectiveness, this method has shown to improve detection accuracy by as much as 35.10% compared to GPT-4. Codes and appendix are available at https://github.com/2279072142/MindScope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04452v1-abstract-full').style.display = 'none'; document.getElementById('2410.04452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages,7 figures,Our paper has been accepted for presentation at the 2024 European Conference on Artificial Intelligence (ECAI 2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04425">arXiv:2410.04425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04425">pdf</a>, <a href="https://arxiv.org/format/2410.04425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> LHAASO detection of very-high-energy gamma-ray emission surrounding PSR J0248+6021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cao%2C+Z">Zhen Cao</a>, <a href="/search/?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Axikegu"> Axikegu</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/?searchtype=author&amp;query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/?searchtype=author&amp;query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/?searchtype=author&amp;query=Cai%2C+J+T">J. T. Cai</a>, <a href="/search/?searchtype=author&amp;query=Cao%2C+Q">Q. Cao</a>, <a href="/search/?searchtype=author&amp;query=Cao%2C+W+Y">W. Y. Cao</a>, <a href="/search/?searchtype=author&amp;query=Cao%2C+Z">Zhe Cao</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+A+M">A. M. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+E+S">E. S. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+L">Long Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+S+H">S. H. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+S+Z">S. Z. Chen</a> , et al. (255 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04425v1-abstract-short" style="display: inline;"> We report the detection of an extended very-high-energy (VHE) gamma-ray source coincident with the locations of middle-aged (62.4~\rm kyr) pulsar PSR J0248+6021, by using the LHAASO-WCDA data of live 796 days and LHAASO-KM2A data of live 1216 days. A significant excess of \gray induced showers is observed both by WCDA in energy bands of 1-25~\rm TeV and KM2A in energy bands of $&gt;$ 25~\rm TeV with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04425v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04425v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04425v1-abstract-full" style="display: none;"> We report the detection of an extended very-high-energy (VHE) gamma-ray source coincident with the locations of middle-aged (62.4~\rm kyr) pulsar PSR J0248+6021, by using the LHAASO-WCDA data of live 796 days and LHAASO-KM2A data of live 1216 days. A significant excess of \gray induced showers is observed both by WCDA in energy bands of 1-25~\rm TeV and KM2A in energy bands of $&gt;$ 25~\rm TeV with 7.3 $蟽$ and 13.5 $蟽$, respectively. The best-fit position derived through WCDA data is R.A. = 42.06$^\circ \pm$ 0.12$^\circ$ and Dec. = 60.24$^\circ \pm $ 0.13$^\circ$ with an extension of 0.69$^\circ\pm$0.15$^\circ$ and that of the KM2A data is R.A.= 42.29$^\circ \pm $ 0.13$^\circ$ and Dec. = 60.38$^\circ \pm$ 0.07$^\circ$ with an extension of 0.37$^\circ\pm$0.07$^\circ$. No clear extended multiwavelength counterpart of this LHAASO source has been found from the radio band to the GeV band. The most plausible explanation of the VHE \gray emission is the inverse Compton process of highly relativistic electrons and positrons injected by the pulsar. These electrons/positrons are hypothesized to be either confined within the pulsar wind nebula or to have already escaped into the interstellar medium, forming a pulsar halo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04425v1-abstract-full').style.display = 'none'; document.getElementById('2410.04425v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures, Accepted by Sci. China-Phys. Mech. Astron</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03274">arXiv:2410.03274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03274">pdf</a>, <a href="https://arxiv.org/format/2410.03274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance assessment of the HERD calorimeter with a photo-diode read-out system for high-energy electron beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Adriani%2C+O">O. Adriani</a>, <a href="/search/?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/?searchtype=author&amp;query=Antonelli%2C+M">M. Antonelli</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+T">T. Bao</a>, <a href="/search/?searchtype=author&amp;query=Barbanera%2C+M">M. Barbanera</a>, <a href="/search/?searchtype=author&amp;query=Berti%2C+E">E. Berti</a>, <a href="/search/?searchtype=author&amp;query=Betti%2C+P">P. Betti</a>, <a href="/search/?searchtype=author&amp;query=Bigongiari%2C+G">G. Bigongiari</a>, <a href="/search/?searchtype=author&amp;query=Bongi%2C+M">M. Bongi</a>, <a href="/search/?searchtype=author&amp;query=Bonvicini%2C+V">V. Bonvicini</a>, <a href="/search/?searchtype=author&amp;query=Bottai%2C+S">S. Bottai</a>, <a href="/search/?searchtype=author&amp;query=Cagnoli%2C+I">I. Cagnoli</a>, <a href="/search/?searchtype=author&amp;query=Cao%2C+W">W. Cao</a>, <a href="/search/?searchtype=author&amp;query=Casaus%2C+J">J. Casaus</a>, <a href="/search/?searchtype=author&amp;query=Cerasole%2C+D">D. Cerasole</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Z">Z. Chen</a>, <a href="/search/?searchtype=author&amp;query=Cui%2C+X">X. Cui</a>, <a href="/search/?searchtype=author&amp;query=D%27Alessandro%2C+R">R. D&#39;Alessandro</a>, <a href="/search/?searchtype=author&amp;query=Di+Venere%2C+L">L. Di Venere</a>, <a href="/search/?searchtype=author&amp;query=Diaz%2C+C">C. Diaz</a>, <a href="/search/?searchtype=author&amp;query=Dong%2C+Y">Y. Dong</a>, <a href="/search/?searchtype=author&amp;query=Detti%2C+S">S. Detti</a>, <a href="/search/?searchtype=author&amp;query=Duranti%2C+M">M. Duranti</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03274v1-abstract-short" style="display: inline;"> The measurement of cosmic rays at energies exceeding 100 TeV per nucleon is crucial for enhancing the understanding of high-energy particle propagation and acceleration models in the Galaxy. HERD is a space-borne calorimetric experiment that aims to extend the current direct measurements of cosmic rays to unexplored energies. The payload is scheduled to be installed on the Chinese Space Station in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03274v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03274v1-abstract-full" style="display: none;"> The measurement of cosmic rays at energies exceeding 100 TeV per nucleon is crucial for enhancing the understanding of high-energy particle propagation and acceleration models in the Galaxy. HERD is a space-borne calorimetric experiment that aims to extend the current direct measurements of cosmic rays to unexplored energies. The payload is scheduled to be installed on the Chinese Space Station in 2027. The primary peculiarity of the instrument is its capability to measure particles coming from all directions, with the main detector being a deep, homogeneous, 3D calorimeter. The active elements are read out using two independent systems: one based on wavelength shifter fibers coupled to CMOS cameras, and the other based on photo-diodes read-out with custom front-end electronics. A large calorimeter prototype was tested in 2023 during an extensive beam test campaign at CERN. In this paper, the performance of the calorimeter for high-energy electron beams, as obtained from the photo-diode system data, is presented. The prototype demonstrated excellent performance, e.g., an energy resolution better than 1% for electrons at 250 GeV. A comparison between beam test data and Monte Carlo simulation data is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03274v1-abstract-full').style.display = 'none'; document.getElementById('2410.03274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02421">arXiv:2410.02421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02421">pdf</a>, <a href="https://arxiv.org/format/2410.02421">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Search for lepton number violating decays of $D_s^+\to h^-h^0e^+e^+$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (650 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02421v2-abstract-short" style="display: inline;"> Based on 7.33 fb$^{-1}$ of $e^+e^-$ collision data collected by the BESIII detector operating at the BEPCII collider at center-of-mass energies from 4.128 to 4.226 GeV, a search for the Majorana neutrino $谓_m$ is conducted in the lepton-number-violating decays of $D_s^+\to h^-h^0e^+e^+$. Here, $h^-$ represents a $K^-$ or $蟺^-$, and $h^0$ represents a $蟺^0$, $K_S^0$ or $蠁$. No significant signal is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02421v2-abstract-full').style.display = 'inline'; document.getElementById('2410.02421v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02421v2-abstract-full" style="display: none;"> Based on 7.33 fb$^{-1}$ of $e^+e^-$ collision data collected by the BESIII detector operating at the BEPCII collider at center-of-mass energies from 4.128 to 4.226 GeV, a search for the Majorana neutrino $谓_m$ is conducted in the lepton-number-violating decays of $D_s^+\to h^-h^0e^+e^+$. Here, $h^-$ represents a $K^-$ or $蟺^-$, and $h^0$ represents a $蟺^0$, $K_S^0$ or $蠁$. No significant signal is observed, and the upper limits of their branching fractions at the 90\% confidence level are determined to be $\mathcal{B}(D_s^+\to 蠁蟺^-e^+e^+) &lt; 6.9 \times 10^{-5}$, $\mathcal{B}(D_s^+\to 蠁K^-e^+e^+) &lt; 9.9 \times 10^{-5}$, $\mathcal{B}(D_s^+\to K_S^0蟺^-e^+e^+) &lt; 1.3 \times 10^{-5}$, $\mathcal{B}(D_s^+\to K_S^0K^-e^+e^+) &lt; 2.9 \times 10^{-5}$, $\mathcal{B}(D_s^+\to 蟺^-蟺^0e^+e^+) &lt; 2.9 \times 10^{-5}$ and $\mathcal{B}(D_s^+\to K^-蟺^0e^+e^+) &lt; 3.4 \times 10^{-5}$. The Majorana neutrino is searched for with different mass assumptions within the range [0.20, 0.80] GeV$/c^2$ in the decay of $D_s^+\to蠁e^+谓_m$ with $谓_m\to蟺^-e^+$, and the upper limits of the branching fractions at the 90\% confidence level are at the level of $10^{-5}-10^{-2}$, depending on the mass of the Majorana neutrino. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02421v2-abstract-full').style.display = 'none'; document.getElementById('2410.02421v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18943">arXiv:2409.18943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18943">pdf</a>, <a href="https://arxiv.org/format/2409.18943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Ruler: A Model-Agnostic Method to Control Generated Length for Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jiaming Li</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yunshui Li</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Z">Ziqiang Liu</a>, <a href="/search/?searchtype=author&amp;query=bai%2C+y">yuelin bai</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+R">Run Luo</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+L">Longze Chen</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+M">Min Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18943v2-abstract-short" style="display: inline;"> The instruction-following ability of large language models enables humans to interact with AI agents in a natural way. However, when required to generate responses of a specific length, large language models often struggle to meet users&#39; needs due to their inherent difficulty in accurately perceiving numerical constraints. To explore the ability of large language models to control the length of ge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18943v2-abstract-full').style.display = 'inline'; document.getElementById('2409.18943v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18943v2-abstract-full" style="display: none;"> The instruction-following ability of large language models enables humans to interact with AI agents in a natural way. However, when required to generate responses of a specific length, large language models often struggle to meet users&#39; needs due to their inherent difficulty in accurately perceiving numerical constraints. To explore the ability of large language models to control the length of generated responses, we propose the Target Length Generation Task (TLG) and design two metrics, Precise Match (PM) and Flexible Match (FM) to evaluate the model&#39;s performance in adhering to specified response lengths. Furthermore, we introduce a novel, model-agnostic approach called Ruler, which employs Meta Length Tokens (MLTs) to enhance the instruction-following ability of large language models under length-constrained instructions. Specifically, Ruler equips LLMs with the ability to generate responses of a specified length based on length constraints within the instructions. Moreover, Ruler can automatically generate appropriate MLT when length constraints are not explicitly provided, demonstrating excellent versatility and generalization. Comprehensive experiments show the effectiveness of Ruler across different LLMs on Target Length Generation Task, e.g., at All Level 27.97 average gain on PM, 29.57 average gain on FM. In addition, we conduct extensive ablation experiments to further substantiate the efficacy and generalization of Ruler. Our code and data is available at https://github.com/Geaming2002/Ruler. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18943v2-abstract-full').style.display = 'none'; document.getElementById('2409.18943v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16487">arXiv:2409.16487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16487">pdf</a>, <a href="https://arxiv.org/format/2409.16487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Radioactivity of Quark Nuggets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yang Bai</a>, <a href="/search/?searchtype=author&amp;query=Korwar%2C+M">Mrunal Korwar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16487v1-abstract-short" style="display: inline;"> Quark nuggets $^A_ZQ$, as Fermionic non-topological solitons, could have their mass per baryon smaller than ordinary nuclei and behave as exotic nuclei with different relations of atomic number and atomic mass number. Using both the degenerate Fermi gas model and the Friedberg-Lee shell model, we calculate the properties of quark nuggets made of up and down quarks. Similar to ordinary nuclei, quar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16487v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16487v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16487v1-abstract-full" style="display: none;"> Quark nuggets $^A_ZQ$, as Fermionic non-topological solitons, could have their mass per baryon smaller than ordinary nuclei and behave as exotic nuclei with different relations of atomic number and atomic mass number. Using both the degenerate Fermi gas model and the Friedberg-Lee shell model, we calculate the properties of quark nuggets made of up and down quarks. Similar to ordinary nuclei, quark nuggets could exhibit their own radioactivity, including gamma decay, beta decay, and (explosive) spontaneous fission, with the qualitative properties presented here. These quark nugget properties may provide guidance for searching for quark nuggets in situ from binary neutron star mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16487v1-abstract-full').style.display = 'none'; document.getElementById('2409.16487v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> N3AS-24-034 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15044">arXiv:2409.15044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15044">pdf</a>, <a href="https://arxiv.org/ps/2409.15044">ps</a>, <a href="https://arxiv.org/format/2409.15044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Search for $D^0\to K^-畏e^+谓_e$, $D^+\to K_S^0 畏e^+谓_e$ and $D^+\to 畏畏e^+谓_e$ decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (634 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15044v3-abstract-short" style="display: inline;"> By analyzing $e^+e^-$ annihilation data corresponding to an integrated luminosity of 7.93 fb$^{-1}$, collected at the center-of-mass energy of 3.773 GeV with the BESIII detector, we search for the semileptonic decays $D^0\to K^-畏e^+谓_e$, $D^+\to K_S^0 畏e^+谓_e$ and $D^+\to 畏畏e^+谓_e$ for the first time. We present evidence for $D^0\to K^-畏e^+谓_e$ with a significance of $3.3蟽$. The branching fraction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15044v3-abstract-full').style.display = 'inline'; document.getElementById('2409.15044v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15044v3-abstract-full" style="display: none;"> By analyzing $e^+e^-$ annihilation data corresponding to an integrated luminosity of 7.93 fb$^{-1}$, collected at the center-of-mass energy of 3.773 GeV with the BESIII detector, we search for the semileptonic decays $D^0\to K^-畏e^+谓_e$, $D^+\to K_S^0 畏e^+谓_e$ and $D^+\to 畏畏e^+谓_e$ for the first time. We present evidence for $D^0\to K^-畏e^+谓_e$ with a significance of $3.3蟽$. The branching fraction of $D^0\to K^-畏e^+谓_e$ is measured to be $(0.84_{-0.34}^{+0.29}\pm0.22)\times 10^{-4}$. Here, the first uncertainties are statistical and the second ones are systematic. No significant signals are observed for the decays $D^+\to K_S^0 畏e^+谓_e$ and $D^+\to 畏畏e^+谓_e$ and we set the upper limits on their branching fractions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15044v3-abstract-full').style.display = 'none'; document.getElementById('2409.15044v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14976">arXiv:2409.14976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14976">pdf</a>, <a href="https://arxiv.org/format/2409.14976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> A new baseline for edge detection: Make Encoder-Decoder great again </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yachuan Li</a>, <a href="/search/?searchtype=author&amp;query=Pomab%2C+X+S">Xavier Soria Pomab</a>, <a href="/search/?searchtype=author&amp;query=Xi%2C+Y">Yongke Xi</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+G">Guanlin Li</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+C">Chaozhi Yang</a>, <a href="/search/?searchtype=author&amp;query=Xiao%2C+Q">Qian Xiao</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yun Bai</a>, <a href="/search/?searchtype=author&amp;query=LI%2C+Z">Zongmin LI</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14976v1-abstract-short" style="display: inline;"> The performance of deep learning based edge detector has far exceeded that of humans, but the huge computational cost and complex training strategy hinder its further development and application. In this paper, we eliminate these complexities with a vanilla encoder-decoder based detector. Firstly, we design a bilateral encoder to decouple the extraction process of location features and semantic fe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14976v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14976v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14976v1-abstract-full" style="display: none;"> The performance of deep learning based edge detector has far exceeded that of humans, but the huge computational cost and complex training strategy hinder its further development and application. In this paper, we eliminate these complexities with a vanilla encoder-decoder based detector. Firstly, we design a bilateral encoder to decouple the extraction process of location features and semantic features. Since the location branch no longer provides cues for the semantic branch, the richness of features can be further compressed, which is the key to make our model more compact. We propose a cascaded feature fusion decoder, where the location features are progressively refined by semantic features. The refined location features are the only basis for generating the edge map. The coarse original location features and semantic features are avoided from direct contact with the final result. So the noise in the location features and the location error in the semantic features can be suppressed in the generated edge map. The proposed New Baseline for Edge Detection (NBED) achieves superior performance consistently across multiple edge detection benchmarks, even compared with those methods with huge computational cost and complex training strategy. The ODS of NBED on BSDS500 is 0.838, achieving state-of-the-art performance. Our study shows that what really matters in the current edge detection is high-quality features, and we can make the encoder-decoder based detector great again even without complex training strategies and huge computational cost. The code is available at https://github.com/Li-yachuan/NBED. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14976v1-abstract-full').style.display = 'none'; document.getElementById('2409.14976v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14855">arXiv:2409.14855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14855">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear field dependence of Hall effect and high-mobility multi-carrier transport in an altermagnet CrSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yuqing Bai</a>, <a href="/search/?searchtype=author&amp;query=Xiang%2C+X">Xinji Xiang</a>, <a href="/search/?searchtype=author&amp;query=Pan%2C+S">Shuang Pan</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+S">Shichao Zhang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+H+C+X">Haifeng Chen Xi Chen</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+Z">Zhida Han</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+G">Guizhou Xu</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14855v1-abstract-short" style="display: inline;"> As a promising candidate for altermagnet, CrSb possesses a distinctive compensated spin split band structure that could bring groundbreaking concepts to the field of spintronics. In this work, we have grown high-quality CrSb single crystals and comprehensively investigated their electronic and magneto-transport properties. We have observed large, positive, and non-saturated magnetoresistance (MR)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14855v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14855v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14855v1-abstract-full" style="display: none;"> As a promising candidate for altermagnet, CrSb possesses a distinctive compensated spin split band structure that could bring groundbreaking concepts to the field of spintronics. In this work, we have grown high-quality CrSb single crystals and comprehensively investigated their electronic and magneto-transport properties. We have observed large, positive, and non-saturated magnetoresistance (MR) in CrSb, which well obeys Kohler&#39;s rule, indicating its classic Lorentz scattering origins. Remarkably, a nonlinear magnetic field dependence of Hall effect resembling the spontaneous anomalous Hall is identified over a wide temperature range. After careful analysis of the transport data, we conclude the non-linearity mainly stems from the incorporation of different carriers in the magnetoconductivity. According to the Fermi surface analyses of CrSb, we applied the three-carrier model to fit the conductivity data, yielding good agreement. The extracted carrier concentration and mobility indicates that CrSb behaves more like a semimetal, with the highest mobility reaching 3*103 cm2V-1s-1. Furthermore, calculations using the semiclassical Boltzmann transport theory have successfully reproduced the main features of the experimental MR and Hall effect in CrSb. These exceptional transport properties make CrSb unique for applications in spintronics as an altermagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14855v1-abstract-full').style.display = 'none'; document.getElementById('2409.14855v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13138">arXiv:2409.13138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13138">pdf</a>, <a href="https://arxiv.org/format/2409.13138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3670474.3685940">10.1145/3670474.3685940 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Learning to Compare Hardware Designs for High-Level Synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Yunsheng Bai</a>, <a href="/search/?searchtype=author&amp;query=Sohrabizadeh%2C+A">Atefeh Sohrabizadeh</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+Z">Zijian Ding</a>, <a href="/search/?searchtype=author&amp;query=Liang%2C+R">Rongjian Liang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+W">Weikai Li</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+D">Ding Wang</a>, <a href="/search/?searchtype=author&amp;query=Ren%2C+H">Haoxing Ren</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+Y">Yizhou Sun</a>, <a href="/search/?searchtype=author&amp;query=Cong%2C+J">Jason Cong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13138v1-abstract-short" style="display: inline;"> High-level synthesis (HLS) is an automated design process that transforms high-level code into hardware designs, enabling the rapid development of hardware accelerators. HLS relies on pragmas, which are directives inserted into the source code to guide the synthesis process, and pragmas have various settings and values that significantly impact the resulting hardware design. State-of-the-art ML-ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13138v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13138v1-abstract-full" style="display: none;"> High-level synthesis (HLS) is an automated design process that transforms high-level code into hardware designs, enabling the rapid development of hardware accelerators. HLS relies on pragmas, which are directives inserted into the source code to guide the synthesis process, and pragmas have various settings and values that significantly impact the resulting hardware design. State-of-the-art ML-based HLS methods, such as HARP, first train a deep learning model, typically based on graph neural networks (GNNs) applied to graph-based representations of the source code and pragmas. They then perform design space exploration (DSE) to explore the pragma design space, rank candidate designs using the model, and return the top designs. However, traditional DSE methods face challenges due to the highly nonlinear relationship between pragma settings and performance metrics, along with complex interactions between pragmas that affect performance in non-obvious ways. To address these challenges, we propose compareXplore, a novel approach that learns to compare hardware designs for effective HLS optimization. CompareXplore introduces a hybrid loss function that combines pairwise preference learning with pointwise performance prediction, enabling the model to capture both relative preferences and absolute performance. Moreover, we introduce a novel node difference attention module that focuses on the most informative differences between designs, enabling the model to identify critical pragmas impacting performance. CompareXplore adopts a two-stage DSE, where a pointwise prediction model is used for the initial design pruning, followed by a pairwise comparison stage for precise performance verification. In extensive experiments, compareXplore achieves significant improvements in ranking metrics and generates high-quality HLS results for the selected designs, outperforming the existing SOTA method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13138v1-abstract-full').style.display = 'none'; document.getElementById('2409.13138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in MLCAD 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the 2024 ACM/IEEE International Symposium on Machine Learning for CAD (MLCAD &#39;24), ACM, 2024, Article 2, 1-7 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bai%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10