CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–41 of 41 results for author: <span class="mathjax">Thapliyal, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Thapliyal%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Thapliyal, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Thapliyal%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Thapliyal, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23217">arXiv:2410.23217</a> <span> [<a href="https://arxiv.org/pdf/2410.23217">pdf</a>, <a href="https://arxiv.org/format/2410.23217">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Crosstalk Attack Resilient RNS Quantum Addition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gaur%2C+B">Bhaskar Gaur</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23217v1-abstract-short" style="display: inline;"> As quantum computers scale, the rise of multi-user and cloud-based quantum platforms can lead to new security challenges. Attacks within shared execution environments become increasingly feasible due to the crosstalk noise that, in combination with quantum computer's hardware specifications, can be exploited in form of crosstalk attack. Our work pursues crosstalk attack implementation in ion-trap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23217v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23217v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23217v1-abstract-full" style="display: none;"> As quantum computers scale, the rise of multi-user and cloud-based quantum platforms can lead to new security challenges. Attacks within shared execution environments become increasingly feasible due to the crosstalk noise that, in combination with quantum computer's hardware specifications, can be exploited in form of crosstalk attack. Our work pursues crosstalk attack implementation in ion-trap quantum computers. We propose three novel quantum crosstalk attacks designed for ion trap qubits: (i) Alternate CNOT attack (ii) Superposition Alternate CNOT (SAC) attack (iii) Alternate Phase Change (APC) attack. We demonstrate the effectiveness of proposed attacks by conducting noise-based simulations on a commercial 20-qubit ion-trap quantum computer. The proposed attacks achieve an impressive reduction of up to 42.2% in output probability for Quantum Full Adders (QFA) having 6 to 9-qubit output. Finally, we investigate the possibility of mitigating crosstalk attacks by using Residue Number System (RNS) based Parallel Quantum Addition (PQA). We determine that PQA achieves higher attack resilience against crosstalk attacks in the form of 24.3% to 133.5% improvement in output probability against existing Non Parallel Quantum Addition (NPQA). Through our systematic methodology, we demonstrate how quantum properties such as superposition and phase transition can lead to crosstalk attacks and also how parallel quantum computing can help secure against these attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23217v1-abstract-full').style.display = 'none'; document.getElementById('2410.23217v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02901">arXiv:2410.02901</a> <span> [<a href="https://arxiv.org/pdf/2410.02901">pdf</a>, <a href="https://arxiv.org/format/2410.02901">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/QCE57702.2023.00089">10.1109/QCE57702.2023.00089 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GTQCP: Greedy Topology-Aware Quantum Circuit Partitioning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Clark%2C+J">Joseph Clark</a>, <a href="/search/cs?searchtype=author&query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02901v1-abstract-short" style="display: inline;"> We propose Greedy Topology-Aware Quantum Circuit Partitioning (GTQCP), a novel quantum gate circuit partitioning method which partitions circuits by applying a greedy heuristic to the qubit dependency graph of the circuit. GTQCP is compared against three other gate partitioning methods, two of which (QuickPartitioner and ScanPartitioner) are part of the Berkley Quantum Synthesis Toolkit. GTQCP is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02901v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02901v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02901v1-abstract-full" style="display: none;"> We propose Greedy Topology-Aware Quantum Circuit Partitioning (GTQCP), a novel quantum gate circuit partitioning method which partitions circuits by applying a greedy heuristic to the qubit dependency graph of the circuit. GTQCP is compared against three other gate partitioning methods, two of which (QuickPartitioner and ScanPartitioner) are part of the Berkley Quantum Synthesis Toolkit. GTQCP is shown to have 18% run time improvement ratio over the fastest approach (QuickPartitioner), and a 96% improvement over the highest quality approach (ScanPartitioner). The algorithm also demonstrates nearly identical result quality (number of partitions) compared with ScanPartitioner, and a 38% quality improvement over QuickPartitioner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02901v1-abstract-full').style.display = 'none'; document.getElementById('2410.02901v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), 2023, pp. 739-744 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06020">arXiv:2409.06020</a> <span> [<a href="https://arxiv.org/pdf/2409.06020">pdf</a>, <a href="https://arxiv.org/format/2409.06020">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ISQED60706.2024.10528701">10.1109/ISQED60706.2024.10528701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Peephole Optimization for Quantum Approximate Synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Clark%2C+J">Joseph Clark</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06020v1-abstract-short" style="display: inline;"> Peephole optimization of quantum circuits provides a method of leveraging standard circuit synthesis approaches into scalable quantum circuit optimization. One application of this technique partitions an entire circuit into a series of peepholes and produces multiple approximations of each partitioned subcircuit. A single approximation of each subcircuit is then selected to form optimized result c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06020v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06020v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06020v1-abstract-full" style="display: none;"> Peephole optimization of quantum circuits provides a method of leveraging standard circuit synthesis approaches into scalable quantum circuit optimization. One application of this technique partitions an entire circuit into a series of peepholes and produces multiple approximations of each partitioned subcircuit. A single approximation of each subcircuit is then selected to form optimized result circuits. We propose a series of improvements to the final phase of this architecture, which include the addition of error awareness and a better method of approximating the correctness of the result. We evaluated these proposed improvements on a set of benchmark circuits using the IBMQ FakeWashington simulator. The results demonstrate that our best-performing method provides an average reduction in Total Variational Distance (TVD) and Jensen-Shannon Divergence (JSD) of 18.2% and 15.8%, respectively, compared with the Qiskit optimizer. This also constitutes an improvement in TVD of 11.4% and JSD of 9.0% over existing solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06020v1-abstract-full').style.display = 'none'; document.getElementById('2409.06020v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2024 25th International Symposium on Quality Electronic Design (ISQED), 2024, pp. 1-8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04935">arXiv:2409.04935</a> <span> [<a href="https://arxiv.org/pdf/2409.04935">pdf</a>, <a href="https://arxiv.org/format/2409.04935">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Anomaly Detection for Real-World Cyber-Physical Security using Quantum Hybrid Support Vector Machines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Cultice%2C+T">Tyler Cultice</a>, <a href="/search/cs?searchtype=author&query=Onim%2C+M+S+H">Md. Saif Hassan Onim</a>, <a href="/search/cs?searchtype=author&query=Giani%2C+A">Annarita Giani</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04935v1-abstract-short" style="display: inline;"> Cyber-physical control systems are critical infrastructures designed around highly responsive feedback loops that are measured and manipulated by hundreds of sensors and controllers. Anomalous data, such as from cyber-attacks, greatly risk the safety of the infrastructure and human operators. With recent advances in the quantum computing paradigm, the application of quantum in anomaly detection ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04935v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04935v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04935v1-abstract-full" style="display: none;"> Cyber-physical control systems are critical infrastructures designed around highly responsive feedback loops that are measured and manipulated by hundreds of sensors and controllers. Anomalous data, such as from cyber-attacks, greatly risk the safety of the infrastructure and human operators. With recent advances in the quantum computing paradigm, the application of quantum in anomaly detection can greatly improve identification of cyber-attacks in physical sensor data. In this paper, we explore the use of strong pre-processing methods and a quantum-hybrid Support Vector Machine (SVM) that takes advantage of fidelity in parameterized quantum circuits to efficiently and effectively flatten extremely high dimensional data. Our results show an F-1 Score of 0.86 and accuracy of 87% on the HAI CPS dataset using an 8-qubit, 16-feature quantum kernel, performing equally to existing work and 14% better than its classical counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04935v1-abstract-full').style.display = 'none'; document.getElementById('2409.04935v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, 2 tables, under ISVLSI 2024 proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00294">arXiv:2409.00294</a> <span> [<a href="https://arxiv.org/pdf/2409.00294">pdf</a>, <a href="https://arxiv.org/format/2409.00294">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantum Machine Learning for Anomaly Detection in Consumer Electronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bhowmik%2C+S">Sounak Bhowmik</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00294v1-abstract-short" style="display: inline;"> Anomaly detection is a crucial task in cyber security. Technological advancement brings new cyber-physical threats like network intrusion, financial fraud, identity theft, and property invasion. In the rapidly changing world, with frequently emerging new types of anomalies, classical machine learning models are insufficient to prevent all the threats. Quantum Machine Learning (QML) is emerging as… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00294v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00294v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00294v1-abstract-full" style="display: none;"> Anomaly detection is a crucial task in cyber security. Technological advancement brings new cyber-physical threats like network intrusion, financial fraud, identity theft, and property invasion. In the rapidly changing world, with frequently emerging new types of anomalies, classical machine learning models are insufficient to prevent all the threats. Quantum Machine Learning (QML) is emerging as a powerful computational tool that can detect anomalies more efficiently. In this work, we have introduced QML and its applications for anomaly detection in consumer electronics. We have shown a generic framework for applying QML algorithms in anomaly detection tasks. We have also briefly discussed popular supervised, unsupervised, and reinforcement learning-based QML algorithms and included five case studies of recent works to show their applications in anomaly detection in the consumer electronics field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00294v1-abstract-full').style.display = 'none'; document.getElementById('2409.00294v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, 1 table, under ISVLSI 2024 proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01002">arXiv:2408.01002</a> <span> [<a href="https://arxiv.org/pdf/2408.01002">pdf</a>, <a href="https://arxiv.org/format/2408.01002">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> A Logarithmic Depth Quantum Carry-Lookahead Modulo $(2^n-1)$ Adder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gaur%2C+B">Bhaskar Gaur</a>, <a href="/search/cs?searchtype=author&query=Mu%C3%B1oz-Coreas%2C+E">Edgard Mu帽oz-Coreas</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01002v1-abstract-short" style="display: inline;"> Quantum Computing is making significant advancements toward creating machines capable of implementing quantum algorithms in various fields, such as quantum cryptography, quantum image processing, and optimization. The development of quantum arithmetic circuits for modulo addition is vital for implementing these quantum algorithms. While it is ideal to use quantum circuits based on fault-tolerant g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01002v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01002v1-abstract-full" style="display: none;"> Quantum Computing is making significant advancements toward creating machines capable of implementing quantum algorithms in various fields, such as quantum cryptography, quantum image processing, and optimization. The development of quantum arithmetic circuits for modulo addition is vital for implementing these quantum algorithms. While it is ideal to use quantum circuits based on fault-tolerant gates to overcome noise and decoherence errors, the current Noisy Intermediate Scale Quantum (NISQ) era quantum computers cannot handle the additional computational cost associated with fault-tolerant designs. Our research aims to minimize circuit depth, which can reduce noise and facilitate the implementation of quantum modulo addition circuits on NISQ machines. This work presents quantum carry-lookahead modulo $(2^n - 1)$ adder (QCLMA), which is designed to receive two n-bit numbers and perform their addition with an O(log n) depth. Compared to existing work of O(n) depth, our proposed QCLMA reduces the depth and helps increase the noise fidelity. In order to increase error resilience, we also focus on creating a tree structure based Carry path, unlike the chain based Carry path of the current work. We run experiments on Quantum Computer IBM Cairo to evaluate the performance of the proposed QCLMA against the existing work and define Quantum State Fidelity Ratio (QSFR) to quantify the closeness of the correct output to the top output. When compared against existing work, the proposed QCLMA achieves a 47.21% increase in QSFR for 4-qubit modulo addition showcasing its superior noise fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01002v1-abstract-full').style.display = 'none'; document.getElementById('2408.01002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00927">arXiv:2408.00927</a> <span> [<a href="https://arxiv.org/pdf/2408.00927">pdf</a>, <a href="https://arxiv.org/format/2408.00927">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3583781.3590315">10.1145/3583781.3590315 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise-Resilient and Reduced Depth Approximate Adders for NISQ Quantum Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gaur%2C+B">Bhaskar Gaur</a>, <a href="/search/cs?searchtype=author&query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00927v1-abstract-short" style="display: inline;"> The "Noisy intermediate-scale quantum" NISQ machine era primarily focuses on mitigating noise, controlling errors, and executing high-fidelity operations, hence requiring shallow circuit depth and noise robustness. Approximate computing is a novel computing paradigm that produces imprecise results by relaxing the need for fully precise output for error-tolerant applications including multimedia, d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00927v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00927v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00927v1-abstract-full" style="display: none;"> The "Noisy intermediate-scale quantum" NISQ machine era primarily focuses on mitigating noise, controlling errors, and executing high-fidelity operations, hence requiring shallow circuit depth and noise robustness. Approximate computing is a novel computing paradigm that produces imprecise results by relaxing the need for fully precise output for error-tolerant applications including multimedia, data mining, and image processing. We investigate how approximate computing can improve the noise resilience of quantum adder circuits in NISQ quantum computing. We propose five designs of approximate quantum adders to reduce depth while making them noise-resilient, in which three designs are with carryout, while two are without carryout. We have used novel design approaches that include approximating the Sum only from the inputs (pass-through designs) and having zero depth, as they need no quantum gates. The second design style uses a single CNOT gate to approximate the SUM with a constant depth of O(1). We performed our experimentation on IBM Qiskit on noise models including thermal, depolarizing, amplitude damping, phase damping, and bitflip: (i) Compared to exact quantum ripple carry adder without carryout the proposed approximate adders without carryout have improved fidelity ranging from 8.34% to 219.22%, and (ii) Compared to exact quantum ripple carry adder with carryout the proposed approximate adders with carryout have improved fidelity ranging from 8.23% to 371%. Further, the proposed approximate quantum adders are evaluated in terms of various error metrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00927v1-abstract-full').style.display = 'none'; document.getElementById('2408.00927v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07486">arXiv:2406.07486</a> <span> [<a href="https://arxiv.org/pdf/2406.07486">pdf</a>, <a href="https://arxiv.org/format/2406.07486">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Novel Optimized Designs of Modulo $2n+1$ Adder for Quantum Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gaur%2C+B">Bhaskar Gaur</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07486v1-abstract-short" style="display: inline;"> Quantum modular adders are one of the most fundamental yet versatile quantum computation operations. They help implement functions of higher complexity, such as subtraction and multiplication, which are used in applications such as quantum cryptanalysis, quantum image processing, and securing communication. To the best of our knowledge, there is no existing design of quantum modulo $(2n+1)$ adder.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07486v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07486v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07486v1-abstract-full" style="display: none;"> Quantum modular adders are one of the most fundamental yet versatile quantum computation operations. They help implement functions of higher complexity, such as subtraction and multiplication, which are used in applications such as quantum cryptanalysis, quantum image processing, and securing communication. To the best of our knowledge, there is no existing design of quantum modulo $(2n+1)$ adder. In this work, we propose four quantum adders targeted specifically for modulo $(2n+1)$ addition. These adders can provide both regular and modulo $(2n+1)$ sum concurrently, enhancing their application in residue number system based arithmetic. Our first design, QMA1, is a novel quantum modulo $(2n+1)$ adder. The second proposed adder, QMA2, optimizes the utilization of quantum gates within the QMA1, resulting in 37.5% reduced CNOT gate count, 46.15% reduced CNOT depth, and 26.5% decrease in both Toffoli gates and depth. We propose a third adder QMA3 that uses zero resets, a dynamic circuits based feature that reuses qubits, leading to 25% savings in qubit count. Our fourth design, QMA4, demonstrates the benefit of incorporating additional zero resets to achieve a purer zero state, reducing quantum state preparation errors. Notably, we conducted experiments using 5-qubit configurations of the proposed modulo $(2n+1)$ adders on the IBM Washington, a 127-qubit quantum computer based on the Eagle R1 architecture, to demonstrate a 28.8% reduction in QMA1's error of which: (i) 18.63% error reduction happens due to gate and depth reduction in QMA2, and (ii) 2.53% drop in error due to qubit reduction in QMA3, and (iii) 7.64% error decreased due to application of additional zero resets in QMA4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07486v1-abstract-full').style.display = 'none'; document.getElementById('2406.07486v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Figures, 1 Table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05294">arXiv:2406.05294</a> <span> [<a href="https://arxiv.org/pdf/2406.05294">pdf</a>, <a href="https://arxiv.org/format/2406.05294">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Residue Number System (RNS) based Distributed Quantum Addition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gaur%2C+B">Bhaskar Gaur</a>, <a href="/search/cs?searchtype=author&query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05294v1-abstract-short" style="display: inline;"> Quantum Arithmetic faces limitations such as noise and resource constraints in the current Noisy Intermediate Scale Quantum (NISQ) era quantum computers. We propose using Distributed Quantum Computing (DQC) to overcome these limitations by substituting a higher depth quantum addition circuit with Residue Number System (RNS) based quantum modulo adders. The RNS-based distributed quantum addition ci… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05294v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05294v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05294v1-abstract-full" style="display: none;"> Quantum Arithmetic faces limitations such as noise and resource constraints in the current Noisy Intermediate Scale Quantum (NISQ) era quantum computers. We propose using Distributed Quantum Computing (DQC) to overcome these limitations by substituting a higher depth quantum addition circuit with Residue Number System (RNS) based quantum modulo adders. The RNS-based distributed quantum addition circuits possess lower depth and are distributed across multiple quantum computers/jobs, resulting in higher noise resilience. We propose the Quantum Superior Modulo Addition based on RNS Tool (QSMART), which can generate RNS sets of quantum adders based on multiple factors such as depth, range, and efficiency. We also propose a novel design of Quantum Diminished-1 Modulo (2n + 1) Adder (QDMA), which forms a crucial part of RNS-based distributed quantum addition and the QSMART tool. We demonstrate the higher noise resilience of the Residue Number System (RNS) based distributed quantum addition by conducting simulations modeling Quantinuum's H1 ion trap-based quantum computer. Our simulations demonstrate that RNS-based distributed quantum addition has 11.36% to 133.15% higher output probability over 6-bit to 10-bit non-distributed quantum full adders, indicating higher noise fidelity. Furthermore, we present a scalable way of achieving distributed quantum addition higher than limited otherwise by the 20-qubit range of Quantinuum H1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05294v1-abstract-full').style.display = 'none'; document.getElementById('2406.05294v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12235">arXiv:2301.12235</a> <span> [<a href="https://arxiv.org/pdf/2301.12235">pdf</a>, <a href="https://arxiv.org/format/2301.12235">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Vulnerabilities and Attacks on CAN-Based 3D Printing/Additive Manufacturing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Cultice%2C+T">Tyler Cultice</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12235v1-abstract-short" style="display: inline;"> Recent advancements in 3D-printing/additive manufacturing has brought forth a new interest in the use of Controller Area Network (CAN) for multi-module, plug-and-play bus support for their embedded systems. CAN systems provide a variety of benefits that can outweigh typical conventional wire-loom protocols in many categories. However, implementation of CAN also brings forth vulnerabilities provide… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12235v1-abstract-full').style.display = 'inline'; document.getElementById('2301.12235v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12235v1-abstract-full" style="display: none;"> Recent advancements in 3D-printing/additive manufacturing has brought forth a new interest in the use of Controller Area Network (CAN) for multi-module, plug-and-play bus support for their embedded systems. CAN systems provide a variety of benefits that can outweigh typical conventional wire-loom protocols in many categories. However, implementation of CAN also brings forth vulnerabilities provided by its spoofable, destination-encoded shared communication bus. These vulnerabilities result in undetectable fault injection, packet manipulation, unauthorized packet logging/sniffing, and more. They also provide attackers the capability to manipulate all sensor information, commands, and create unsafe operating conditions using only a single compromised node on the CAN network (bypassing all root-of-trust in the modules). Thus, malicious hardware requires only a connection to the bus for access to all traffic. In this paper, we discuss the effects of repurposed CAN-based attacks capable of manipulating sensor data, overriding systems, and injecting dangerous commands on the Controller Area Network using various entry methods. As a case study, we also showed a spoofing attack on critical data modules within a commercial 3D printer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12235v1-abstract-full').style.display = 'none'; document.getElementById('2301.12235v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Consumer Electronics Magazine, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.03506">arXiv:2211.03506</a> <span> [<a href="https://arxiv.org/pdf/2211.03506">pdf</a>, <a href="https://arxiv.org/format/2211.03506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> CAN Bus: The Future of Additive Manufacturing (3D Printing) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chin%2C+J">Jun-Cheng Chin</a>, <a href="/search/cs?searchtype=author&query=Cultice%2C+T">Tyler Cultice</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.03506v1-abstract-short" style="display: inline;"> Additive Manufacturing (AM) is gaining renewed popularity and attention due to low-cost fabrication systems proliferating the market. Current communication protocols used in AM limit the connection flexibility between the control board and peripherals; they are often complex in their wiring and thus restrict their avenue of expansion. Thus, the Controller Area Network (CAN) bus is an attractive pa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03506v1-abstract-full').style.display = 'inline'; document.getElementById('2211.03506v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.03506v1-abstract-full" style="display: none;"> Additive Manufacturing (AM) is gaining renewed popularity and attention due to low-cost fabrication systems proliferating the market. Current communication protocols used in AM limit the connection flexibility between the control board and peripherals; they are often complex in their wiring and thus restrict their avenue of expansion. Thus, the Controller Area Network (CAN) bus is an attractive pathway for inter-hardware connections due to its innate quality. However, the combination of CAN and AM is not well explored and documented in existing literature. This article aims to provide examples of CAN bus applications in AM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03506v1-abstract-full').style.display = 'none'; document.getElementById('2211.03506v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Consumer Electronics Magazine, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.09509">arXiv:2107.09509</a> <span> [<a href="https://arxiv.org/pdf/2107.09509">pdf</a>, <a href="https://arxiv.org/format/2107.09509">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Wearable Health Monitoring System for Older Adults in a Smart Home Environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Nath%2C+R+K">Rajdeep Kumar Nath</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.09509v1-abstract-short" style="display: inline;"> The advent of IoT has enabled the design of connected and integrated smart health monitoring systems. These smart health monitoring systems could be realized in a smart home context to render long-term care to the elderly population. In this paper, we present the design of a wearable health monitoring system suitable for older adults in a smart home context. The proposed system offers solutions to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09509v1-abstract-full').style.display = 'inline'; document.getElementById('2107.09509v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.09509v1-abstract-full" style="display: none;"> The advent of IoT has enabled the design of connected and integrated smart health monitoring systems. These smart health monitoring systems could be realized in a smart home context to render long-term care to the elderly population. In this paper, we present the design of a wearable health monitoring system suitable for older adults in a smart home context. The proposed system offers solutions to monitor the stress, blood pressure, and location of an individual within a smart home environment. The stress detection model proposed in this work uses Electrodermal Activity (EDA), Photoplethysmogram (PPG), and Skin Temperature (ST) sensors embedded in a smart wristband for detecting physiological stress. The stress detection model is trained and tested using stress labels obtained from salivary cortisol which is a clinically established biomarker for physiological stress. A voice-based prototype is also implemented and the feasibility of the proposed system for integration in a smart home environment is analyzed by simulating a data acquisition and streaming scenario. We have also proposed a blood pressure estimation model using PPG signal and advanced regression techniques for integration with the stress detection model in the wearable health monitoring system. Finally, the design of a voice-assisted indoor location system is proposed for integration with the proposed system within a smart home environment. The proposed wearable health monitoring system is an important direction to realize a smart home environment with extensive diagnostic capabilities so that such a system could be useful for rendering long-term and personalized care to the aging population in the comfort of their home. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09509v1-abstract-full').style.display = 'none'; document.getElementById('2107.09509v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages, 2021 IEEE Computer Society Annual Symposium on VLSI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07855">arXiv:2106.07855</a> <span> [<a href="https://arxiv.org/pdf/2106.07855">pdf</a>, <a href="https://arxiv.org/format/2106.07855">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Low-Energy and CPA-Resistant Adiabatic CMOS/MTJ Logic for IoT Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kahleifeh%2C+Z">Zachary Kahleifeh</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07855v1-abstract-short" style="display: inline;"> The tremendous growth in the number of Internet of Things (IoT) devices has increased focus on the energy efficiency and security of an IoT device. In this paper, we will present a design level, non-volatile adiabatic architecture for low-energy and Correlation Power Analysis (CPA) resistant IoT devices. IoT devices constructed with CMOS integrated circuits suffer from high dynamic energy and leak… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07855v1-abstract-full').style.display = 'inline'; document.getElementById('2106.07855v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07855v1-abstract-full" style="display: none;"> The tremendous growth in the number of Internet of Things (IoT) devices has increased focus on the energy efficiency and security of an IoT device. In this paper, we will present a design level, non-volatile adiabatic architecture for low-energy and Correlation Power Analysis (CPA) resistant IoT devices. IoT devices constructed with CMOS integrated circuits suffer from high dynamic energy and leakage power. To solve this, we look at both adiabatic logic and STT-MTJs (Spin Transfer Torque Magnetic Tunnel Junctions) to reduce both dynamic energy and leakage power. Furthermore, CMOS integrated circuits suffer from side-channel leakage making them insecure against power analysis attacks. We again look to adiabatic logic to design secure circuits with uniform power consumption, thus, defending against power analysis attacks. We have developed a hybrid adiabatic- MTJ architecture using two-phase adiabatic logic. We show that hybrid adiabatic-MTJ circuits are both low energy and secure when compared with CMOS circuits. As a case study, we have constructed one round of PRESENT and have shown energy savings of 64.29% at a frequency of 25 MHz. Furthermore, we have performed a correlation power analysis attack on our proposed design and determined that the key was kept hidden. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07855v1-abstract-full').style.display = 'none'; document.getElementById('2106.07855v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2021 IEEE Computer Society Annual Symposium on VLSI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07542">arXiv:2106.07542</a> <span> [<a href="https://arxiv.org/pdf/2106.07542">pdf</a>, <a href="https://arxiv.org/format/2106.07542">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning Based Prediction of Future Stress Events in a Driving Scenario </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Clark%2C+J">Joseph Clark</a>, <a href="/search/cs?searchtype=author&query=Nath%2C+R+K">Rajdeep Kumar Nath</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07542v1-abstract-short" style="display: inline;"> This paper presents a model for predicting a driver's stress level up to one minute in advance. Successfully predicting future stress would allow stress mitigation to begin before the subject becomes stressed, reducing or possibly avoiding the performance penalties of stress. The proposed model takes features extracted from Galvanic Skin Response (GSR) signals on the foot and hand and Respiration… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07542v1-abstract-full').style.display = 'inline'; document.getElementById('2106.07542v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07542v1-abstract-full" style="display: none;"> This paper presents a model for predicting a driver's stress level up to one minute in advance. Successfully predicting future stress would allow stress mitigation to begin before the subject becomes stressed, reducing or possibly avoiding the performance penalties of stress. The proposed model takes features extracted from Galvanic Skin Response (GSR) signals on the foot and hand and Respiration and Electrocardiogram (ECG) signals from the chest of the driver. The data used to train the model was retrieved from an existing database and then processed to create statistical and frequency features. A total of 42 features were extracted from the data and then expanded into a total of 252 features by grouping the data and taking six statistical measurements of each group for each feature. A Random Forest Classifier was trained and evaluated using a leave-one-subject-out testing approach. The model achieved 94% average accuracy on the test data. Results indicate that the model performs well and could be used as part of a vehicle stress prevention system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07542v1-abstract-full').style.display = 'none'; document.getElementById('2106.07542v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Pages, IEEE 7th World Forum on Internet of Things 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05134">arXiv:2106.05134</a> <span> [<a href="https://arxiv.org/pdf/2106.05134">pdf</a>, <a href="https://arxiv.org/format/2106.05134">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantum Annealing for Automated Feature Selection in Stress Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Nath%2C+R+K">Rajdeep Kumar Nath</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05134v1-abstract-short" style="display: inline;"> We present a novel methodology for automated feature subset selection from a pool of physiological signals using Quantum Annealing (QA). As a case study, we will investigate the effectiveness of QA-based feature selection techniques in selecting the optimal feature subset for stress detection. Features are extracted from four signal sources: foot EDA, hand EDA, ECG, and respiration. The proposed m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05134v1-abstract-full').style.display = 'inline'; document.getElementById('2106.05134v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05134v1-abstract-full" style="display: none;"> We present a novel methodology for automated feature subset selection from a pool of physiological signals using Quantum Annealing (QA). As a case study, we will investigate the effectiveness of QA-based feature selection techniques in selecting the optimal feature subset for stress detection. Features are extracted from four signal sources: foot EDA, hand EDA, ECG, and respiration. The proposed method embeds the feature variables extracted from the physiological signals in a binary quadratic model. The bias of the feature variable is calculated using the Pearson correlation coefficient between the feature variable and the target variable. The weight of the edge connecting the two feature variables is calculated using the Pearson correlation coefficient between two feature variables in the binary quadratic model. Subsequently, D-Wave's clique sampler is used to sample cliques from the binary quadratic model. The underlying solution is then re-sampled to obtain multiple good solutions and the clique with the lowest energy is returned as the optimal solution. The proposed method is compared with commonly used feature selection techniques for stress detection. Results indicate that QA-based feature subset selection performed equally as that of classical techniques. However, under data uncertainty conditions such as limited training data, the performance of quantum annealing for selecting optimum features remained unaffected, whereas a significant decrease in performance is observed with classical feature selection techniques. Preliminary results show the promise of quantum annealing in optimizing the training phase of a machine learning classifier, especially under data uncertainty conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05134v1-abstract-full').style.display = 'none'; document.getElementById('2106.05134v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages, 2nd International Workshop on Quantum Computing: Circuits Systems Automation and Applications (QC-CSAA) in conjuction with the ISVLSI 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.04758">arXiv:2106.04758</a> <span> [<a href="https://arxiv.org/pdf/2106.04758">pdf</a>, <a href="https://arxiv.org/format/2106.04758">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Quantum Carry Lookahead Adders for NISQ and Quantum Image Processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Mu%C3%B1oz-Coreas%2C+E">Edgard Mu帽oz-Coreas</a>, <a href="/search/cs?searchtype=author&query=Khalus%2C+V">Vladislav Khalus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.04758v1-abstract-short" style="display: inline;"> Progress in quantum hardware design is progressing toward machines of sufficient size to begin realizing quantum algorithms in disciplines such as encryption and physics. Quantum circuits for addition are crucial to realize many quantum algorithms on these machines. Ideally, quantum circuits based on fault-tolerant gates and error-correcting codes should be used as they tolerant environmental nois… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04758v1-abstract-full').style.display = 'inline'; document.getElementById('2106.04758v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.04758v1-abstract-full" style="display: none;"> Progress in quantum hardware design is progressing toward machines of sufficient size to begin realizing quantum algorithms in disciplines such as encryption and physics. Quantum circuits for addition are crucial to realize many quantum algorithms on these machines. Ideally, quantum circuits based on fault-tolerant gates and error-correcting codes should be used as they tolerant environmental noise. However, current machines called Noisy Intermediate Scale Quantum (NISQ) machines cannot support the overhead associated with faulttolerant design. In response, low depth circuits such as quantum carry lookahead adders (QCLA)s have caught the attention of researchers. The risk for noise errors and decoherence increase as the number of gate layers (or depth) in the circuit increases. This work presents an out-of-place QCLA based on Clifford+T gates. The QCLAs optimized for T gate count and make use of a novel uncomputation gate to save T gates. We base our QCLAs on Clifford+T gates because they can eventually be made faulttolerant with error-correcting codes once quantum hardware that can support fault-tolerant designs becomes available. We focus on T gate cost as the T gate is significantly more costly to make faulttolerant than the other Clifford+T gates. The proposed QCLAs are compared and shown to be superior to existing works in terms of T-count and therefore the total number of quantum gates. Finally, we illustrate the application of the proposed QCLAs in quantum image processing by presenting quantum circuits for bilinear interpolation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04758v1-abstract-full').style.display = 'none'; document.getElementById('2106.04758v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Pages, 2020 IEEE 38th International Conference on Computer Design (ICCD), Hartford, CT, USA, 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03750">arXiv:2106.03750</a> <span> [<a href="https://arxiv.org/pdf/2106.03750">pdf</a>, <a href="https://arxiv.org/format/2106.03750">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> Smart Village: An IoT Based Digital Transformation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Degada%2C+A">Amit Degada</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Mohanty%2C+S+P">Saraju P. Mohanty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03750v1-abstract-short" style="display: inline;"> Almost 46% of the world's population resides in a rural landscape. Smart villages, alongside smart cities, are in need of time for future economic growth, improved agriculture, better health, and education. The smart village is a concept that improves the traditional rural aspects with the help of digital transformation. The smart village is built up using heterogeneous digital technologies pillar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03750v1-abstract-full').style.display = 'inline'; document.getElementById('2106.03750v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03750v1-abstract-full" style="display: none;"> Almost 46% of the world's population resides in a rural landscape. Smart villages, alongside smart cities, are in need of time for future economic growth, improved agriculture, better health, and education. The smart village is a concept that improves the traditional rural aspects with the help of digital transformation. The smart village is built up using heterogeneous digital technologies pillared around the Internet-of-Thing (IoT). There exist many opportunities in research to design a low-cost, secure, and efficient technical ecosystem. This article identifies the key application areas, where the IoT can be applied in the smart village. The article also presents a comparative study of communication technology options. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03750v1-abstract-full').style.display = 'none'; document.getElementById('2106.03750v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages, Conference: IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, June 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03019">arXiv:2106.03019</a> <span> [<a href="https://arxiv.org/pdf/2106.03019">pdf</a>, <a href="https://arxiv.org/format/2106.03019">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning Based Anxiety Detection in Older Adults using Wristband Sensors and Context Feature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Nath%2C+R+K">Rajdeep Kumar Nath</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03019v1-abstract-short" style="display: inline;"> This paper explores a novel method for anxiety detection in older adults using simple wristband sensors such as Electrodermal Activity (EDA) and Photoplethysmogram (PPG) and a context-based feature. The proposed method for anxiety detection combines features from a single physiological signal with an experimental context-based feature to improve the performance of the anxiety detection model. The… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03019v1-abstract-full').style.display = 'inline'; document.getElementById('2106.03019v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03019v1-abstract-full" style="display: none;"> This paper explores a novel method for anxiety detection in older adults using simple wristband sensors such as Electrodermal Activity (EDA) and Photoplethysmogram (PPG) and a context-based feature. The proposed method for anxiety detection combines features from a single physiological signal with an experimental context-based feature to improve the performance of the anxiety detection model. The experimental data for this work is obtained from a year-long experiment on 41 healthy older adults (26 females and 15 males) in the age range 60-80 with mean age 73.36+-5.25 during a Trier Social Stress Test (TSST) protocol. The anxiety level ground truth was obtained from State-Trait Anxiety Inventory (STAI), which is regarded as the gold standard to measure perceived anxiety. EDA and Blood Volume Pulse (BVP) signals were recorded using a wrist-worn EDA and PPG sensor respectively. 47 features were computed from EDA and BVP signal, out of which a final set of 24 significantly correlated features were selected for analysis. The phases of the experimental study are encoded as unique integers to generate the context feature vector. A combination of features from a single sensor with the context feature vector is used for training a machine learning model to distinguish between anxious and not-anxious states. Results and analysis showed that the EDA and BVP machine learning models that combined the context feature along with the physiological features achieved 3.37% and 6.41% higher accuracy respectively than the models that used only physiological features. Further, end-to-end processing of EDA and BVP signals was simulated for real-time anxiety level detection. This work demonstrates the practicality of the proposed anxiety detection method in facilitating long-term monitoring of anxiety in older adults using low-cost consumer devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03019v1-abstract-full').style.display = 'none'; document.getElementById('2106.03019v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Springer Nature Computer Science (SNCS), 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.02976">arXiv:2106.02976</a> <span> [<a href="https://arxiv.org/pdf/2106.02976">pdf</a>, <a href="https://arxiv.org/format/2106.02976">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Fortifying Vehicular Security Through Low Overhead Physically Unclonable Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Labrado%2C+C">Carson Labrado</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Mohanty%2C+S+P">Saraju P. Mohanty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.02976v1-abstract-short" style="display: inline;"> Within vehicles, the Controller Area Network (CAN) allows efficient communication between the electronic control units (ECUs) responsible for controlling the various subsystems. The CAN protocol was not designed to include much support for secure communication. The fact that so many critical systems can be accessed through an insecure communication network presents a major security concern. Adding… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02976v1-abstract-full').style.display = 'inline'; document.getElementById('2106.02976v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.02976v1-abstract-full" style="display: none;"> Within vehicles, the Controller Area Network (CAN) allows efficient communication between the electronic control units (ECUs) responsible for controlling the various subsystems. The CAN protocol was not designed to include much support for secure communication. The fact that so many critical systems can be accessed through an insecure communication network presents a major security concern. Adding security features to CAN is difficult due to the limited resources available to the individual ECUs and the costs that would be associated with adding the necessary hardware to support any additional security operations without overly degrading the performance of standard communication. Replacing the protocol is another option, but it is subject to many of the same problems. The lack of security becomes even more concerning as vehicles continue to adopt smart features. Smart vehicles have a multitude of communication interfaces would an attacker could exploit to gain access to the networks. In this work we propose a security framework that is based on physically unclonable functions (PUFs) and lightweight cryptography (LWC). The framework does not require any modification to the standard CAN protocol while also minimizing the amount of additional message overhead required for its operation. The improvements in our proposed framework results in major reduction in the number of CAN frames that must be sent during operation. For a system with 20 ECUs for example, our proposed framework only requires 6.5% of the number of CAN frames that is required by the existing approach to successfully authenticate every ECU. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02976v1-abstract-full').style.display = 'none'; document.getElementById('2106.02976v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 Pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACM Journal on Emerging Technologies in Computing Systems, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.02964">arXiv:2106.02964</a> <span> [<a href="https://arxiv.org/pdf/2106.02964">pdf</a>, <a href="https://arxiv.org/format/2106.02964">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Review of Machine Learning Classification Using Quantum Annealing for Real-world Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Nath%2C+R+K">Rajdeep Kumar Nath</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.02964v1-abstract-short" style="display: inline;"> Optimizing the training of a machine learning pipeline helps in reducing training costs and improving model performance. One such optimizing strategy is quantum annealing, which is an emerging computing paradigm that has shown potential in optimizing the training of a machine learning model. The implementation of a physical quantum annealer has been realized by D-Wave systems and is available to t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02964v1-abstract-full').style.display = 'inline'; document.getElementById('2106.02964v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.02964v1-abstract-full" style="display: none;"> Optimizing the training of a machine learning pipeline helps in reducing training costs and improving model performance. One such optimizing strategy is quantum annealing, which is an emerging computing paradigm that has shown potential in optimizing the training of a machine learning model. The implementation of a physical quantum annealer has been realized by D-Wave systems and is available to the research community for experiments. Recent experimental results on a variety of machine learning applications using quantum annealing have shown interesting results where the performance of classical machine learning techniques is limited by limited training data and high dimensional features. This article explores the application of D-Wave's quantum annealer for optimizing machine learning pipelines for real-world classification problems. We review the application domains on which a physical quantum annealer has been used to train machine learning classifiers. We discuss and analyze the experiments performed on the D-Wave quantum annealer for applications such as image recognition, remote sensing imagery, computational biology, and particle physics. We discuss the possible advantages and the problems for which quantum annealing is likely to be advantageous over classical computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02964v1-abstract-full').style.display = 'none'; document.getElementById('2106.02964v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 Pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Springer Nature Computer Science (SNCS), 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.01826">arXiv:2004.01826</a> <span> [<a href="https://arxiv.org/pdf/2004.01826">pdf</a>, <a href="https://arxiv.org/ps/2004.01826">ps</a>, <a href="https://arxiv.org/format/2004.01826">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> T-count and Qubit Optimized Quantum Circuit Designs of Carry Lookahead Adder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Mu%C3%B1oz-Coreas%2C+E">Edgard Mu帽oz-Coreas</a>, <a href="/search/cs?searchtype=author&query=Khalus%2C+V">Vladislav Khalus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.01826v1-abstract-short" style="display: inline;"> Quantum circuits of arithmetic operations such as addition are needed to implement quantum algorithms in hardware. Quantum circuits based on Clifford+T gates are used as they can be made tolerant to noise. The tradeoff of gaining fault tolerance from using Clifford+T gates and error correcting codes is the high implementation overhead of the T gate. As a result, the T-count performance measure has… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01826v1-abstract-full').style.display = 'inline'; document.getElementById('2004.01826v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.01826v1-abstract-full" style="display: none;"> Quantum circuits of arithmetic operations such as addition are needed to implement quantum algorithms in hardware. Quantum circuits based on Clifford+T gates are used as they can be made tolerant to noise. The tradeoff of gaining fault tolerance from using Clifford+T gates and error correcting codes is the high implementation overhead of the T gate. As a result, the T-count performance measure has become important in quantum circuit design. Due to noise, the risk for errors in a quantum circuit computation increases as the number of gate layers (or depth) in the circuit increases. As a result, low depth circuits such as quantum carry lookahead adders (QCLA)s have caught the attention of researchers. This work presents two QCLA designs each optimized with emphasis on T-count or qubit cost respectively. In-place and out-of-place versions of each design are shown. The proposed QCLAs are compared against the existing works in terms of T-count. The proposed QCLAs for out-of-place addition achieve average T gate savings of $54.34 \%$ and $37.21 \%$, respectively. The proposed QCLAs for in-place addition achieve average T gate savings of $72.11 \%$ and $35.87 \%$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01826v1-abstract-full').style.display = 'none'; document.getElementById('2004.01826v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.09732">arXiv:1809.09732</a> <span> [<a href="https://arxiv.org/pdf/1809.09732">pdf</a>, <a href="https://arxiv.org/ps/1809.09732">ps</a>, <a href="https://arxiv.org/format/1809.09732">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Quantum Circuit Designs of Integer Division Optimizing T-count and T-depth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Mu%C3%B1oz-Coreas%2C+E">Edgard Mu帽oz-Coreas</a>, <a href="/search/cs?searchtype=author&query=Varun%2C+T+S+S">T. S. S. Varun</a>, <a href="/search/cs?searchtype=author&query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.09732v1-abstract-short" style="display: inline;"> Quantum circuits for mathematical functions such as division are necessary to use quantum computers for scientific computing. Quantum circuits based on Clifford+T gates can easily be made fault-tolerant but the T gate is very costly to implement. The small number of qubits available in existing quantum computers adds another constraint on quantum circuits. As a result, reducing T-count and qubit c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09732v1-abstract-full').style.display = 'inline'; document.getElementById('1809.09732v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.09732v1-abstract-full" style="display: none;"> Quantum circuits for mathematical functions such as division are necessary to use quantum computers for scientific computing. Quantum circuits based on Clifford+T gates can easily be made fault-tolerant but the T gate is very costly to implement. The small number of qubits available in existing quantum computers adds another constraint on quantum circuits. As a result, reducing T-count and qubit cost have become important optimization goals. The design of quantum circuits for integer division has caught the attention of researchers and designs have been proposed in the literature. However, these designs suffer from excessive T gate and qubit costs. Many of these designs also produce significant garbage output resulting in additional qubit and T gate costs to eliminate these outputs. In this work, we propose two quantum integer division circuits. The first proposed quantum integer division circuit is based on the restoring division algorithm and the second proposed design implements the non-restoring division algorithm. Both proposed designs are optimized in terms of T-count, T-depth and qubits. Both proposed quantum circuit designs are based on (i) a quantum subtractor, (ii) a quantum adder-subtractor circuit, and (iii) a novel quantum conditional addition circuit. Our proposed restoring division circuit achieves average T-count savings from $79.03 \%$ to $91.69 \%$ compared to the existing works. Our proposed non-restoring division circuit achieves average T-count savings from $49.75 \%$ to $90.37 \%$ compared to the existing works. Further, both our proposed designs have linear T-depth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09732v1-abstract-full').style.display = 'none'; document.getElementById('1809.09732v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.09249">arXiv:1809.09249</a> <span> [<a href="https://arxiv.org/pdf/1809.09249">pdf</a>, <a href="https://arxiv.org/ps/1809.09249">ps</a>, <a href="https://arxiv.org/format/1809.09249">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> T-count Optimized Quantum Circuits for Bilinear Interpolation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Mu%C3%B1oz-Coreas%2C+E">Edgard Mu帽oz-Coreas</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.09249v3-abstract-short" style="display: inline;"> Quantum circuits for basic image processing functions such as bilinear interpolation are required to implement image processing algorithms on quantum computers. In this work, we propose quantum circuits for the bilinear interpolation of NEQR encoded images based on Clifford+T gates. Quantum circuits for the scale up operation and scale down operation are illustrated. The proposed quantum circuits… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09249v3-abstract-full').style.display = 'inline'; document.getElementById('1809.09249v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.09249v3-abstract-full" style="display: none;"> Quantum circuits for basic image processing functions such as bilinear interpolation are required to implement image processing algorithms on quantum computers. In this work, we propose quantum circuits for the bilinear interpolation of NEQR encoded images based on Clifford+T gates. Quantum circuits for the scale up operation and scale down operation are illustrated. The proposed quantum circuits are based on quantum Clifford+T gates and are optimized for T-count. Quantum circuits based on Clifford+T gates can be made fault tolerant but the T gate is very costly to implement. As a result, reducing T-count is an important optimization goal. The proposed quantum bilinear interpolation circuits are based on (i) a quantum adder, (ii) a proposed quantum subtractor, and (iii) a quantum multiplication circuit. Further, both designs are compared and shown to be superior to existing work in terms of T-count. The proposed quantum bilinear interpolation circuits for the scale down operation and for the scale up operation each have a $92.52\%$ improvement in terms of T-count compared to the existing work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09249v3-abstract-full').style.display = 'none'; document.getElementById('1809.09249v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08254">arXiv:1712.08254</a> <span> [<a href="https://arxiv.org/pdf/1712.08254">pdf</a>, <a href="https://arxiv.org/format/1712.08254">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> T-count and Qubit Optimized Quantum Circuit Design of the Non-Restoring Square Root Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Mu%C3%B1oz-Coreas%2C+E">Edgard Mu帽oz-Coreas</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08254v3-abstract-short" style="display: inline;"> Quantum circuits for basic mathematical functions such as the square root are required to implement scientific computing algorithms on quantum computers. Quantum circuits that are based on Clifford+T gates can easily be made fault tolerant but the T gate is very costly to implement. As a result, reducing T-count has become an important optimization goal. Further, quantum circuits with many qubits… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08254v3-abstract-full').style.display = 'inline'; document.getElementById('1712.08254v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08254v3-abstract-full" style="display: none;"> Quantum circuits for basic mathematical functions such as the square root are required to implement scientific computing algorithms on quantum computers. Quantum circuits that are based on Clifford+T gates can easily be made fault tolerant but the T gate is very costly to implement. As a result, reducing T-count has become an important optimization goal. Further, quantum circuits with many qubits are difficult to realize, making designs that save qubits and produce no garbage outputs desirable. In this work, we present a T-count optimized quantum square root circuit with only $2 \cdot n +1$ qubits and no garbage output. To make a fair comparison against existing work, the Bennett's garbage removal scheme is used to remove garbage output from existing works. We determined that our proposed design achieves an average T-count savings of $43.44 \%$, $98.95 \%$, $41.06 \%$ and $20.28 \%$ as well as qubit savings of $85.46 \%$, $95.16 \%$, $90.59 \%$ and $86.77 \%$ compared to existing works. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08254v3-abstract-full').style.display = 'none'; document.getElementById('1712.08254v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.02630">arXiv:1712.02630</a> <span> [<a href="https://arxiv.org/pdf/1712.02630">pdf</a>, <a href="https://arxiv.org/ps/1712.02630">ps</a>, <a href="https://arxiv.org/format/1712.02630">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/2491682">10.1145/2491682 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design of Efficient Reversible Logic Based Binary and BCD Adder Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Ranganathan%2C+N">Nagarajan Ranganathan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.02630v1-abstract-short" style="display: inline;"> In this work, we present a class of new designs for reversible binary and BCD adder circuits. The proposed designs are primarily optimized for the number of ancilla inputs and the number of garbage outputs and are designed for possible best values for the quantum cost and delay. First, we propose two new designs for the reversible ripple carry adder: (i) one with no input carry $c_0$ and no ancill… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02630v1-abstract-full').style.display = 'inline'; document.getElementById('1712.02630v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.02630v1-abstract-full" style="display: none;"> In this work, we present a class of new designs for reversible binary and BCD adder circuits. The proposed designs are primarily optimized for the number of ancilla inputs and the number of garbage outputs and are designed for possible best values for the quantum cost and delay. First, we propose two new designs for the reversible ripple carry adder: (i) one with no input carry $c_0$ and no ancilla input bits, and (ii) one with input carry $c_0$ and no ancilla input bits. The proposed reversible ripple carry adder designs with no ancilla input bits have less quantum cost and logic depth (delay) compared to their existing counterparts in the literature. In these designs, the quantum cost and delay are reduced by deriving designs based on the reversible Peres gate and the TR gate. Next, four new designs for the reversible BCD adder are presented based on the following two approaches: (i) the addition is performed in binary mode and correction is applied to convert to BCD when required through detection and correction, and (ii) the addition is performed in binary mode and the result is always converted using a binary to BCD converter. The proposed reversible binary and BCD adders can be applied in a wide variety of digital signal processing applications and constitute important design components of reversible computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02630v1-abstract-full').style.display = 'none'; document.getElementById('1712.02630v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 21 figures. arXiv admin note: text overlap with arXiv:1410.2373 by other authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Emerg. Technol. Comput. Syst. 9 (2013) 17:1-17:31 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.05114">arXiv:1706.05114</a> <span> [<a href="https://arxiv.org/pdf/1706.05114">pdf</a>, <a href="https://arxiv.org/format/1706.05114">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Design of Quantum Circuits for Galois Field Squaring and Exponentiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Mu%C3%B1oz-Coreas%2C+E">Edgard Mu帽oz-Coreas</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.05114v1-abstract-short" style="display: inline;"> This work presents an algorithm to generate depth, quantum gate and qubit optimized circuits for $GF(2^m)$ squaring in the polynomial basis. Further, to the best of our knowledge the proposed quantum squaring circuit algorithm is the only work that considers depth as a metric to be optimized. We compared circuits generated by our proposed algorithm against the state of the art and determine that t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05114v1-abstract-full').style.display = 'inline'; document.getElementById('1706.05114v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.05114v1-abstract-full" style="display: none;"> This work presents an algorithm to generate depth, quantum gate and qubit optimized circuits for $GF(2^m)$ squaring in the polynomial basis. Further, to the best of our knowledge the proposed quantum squaring circuit algorithm is the only work that considers depth as a metric to be optimized. We compared circuits generated by our proposed algorithm against the state of the art and determine that they require $50 \%$ fewer qubits and offer gates savings that range from $37 \%$ to $68 \%$. Further, existing quantum exponentiation are based on either modular or integer arithmetic. However, Galois arithmetic is a useful tool to design resource efficient quantum exponentiation circuit applicable in quantum cryptanalysis. Therefore, we present the quantum circuit implementation of Galois field exponentiation based on the proposed quantum Galois field squaring circuit. We calculated a qubit savings ranging between $44\%$ to $50\%$ and quantum gate savings ranging between $37 \%$ to $68 \%$ compared to identical quantum exponentiation circuit based on existing squaring circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05114v1-abstract-full').style.display = 'none'; document.getElementById('1706.05114v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in conference proceedings of the 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2017)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.05113">arXiv:1706.05113</a> <span> [<a href="https://arxiv.org/pdf/1706.05113">pdf</a>, <a href="https://arxiv.org/ps/1706.05113">ps</a>, <a href="https://arxiv.org/format/1706.05113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> T-count Optimized Design of Quantum Integer Multiplication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Mu%C3%B1oz-Coreas%2C+E">Edgard Mu帽oz-Coreas</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.05113v1-abstract-short" style="display: inline;"> Quantum circuits of many qubits are extremely difficult to realize; thus, the number of qubits is an important metric in a quantum circuit design. Further, scalable and reliable quantum circuits are based on Clifford + T gates. An efficient quantum circuit saves quantum hardware resources by reducing the number of T gates without substantially increasing the number of qubits. Recently, the design… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05113v1-abstract-full').style.display = 'inline'; document.getElementById('1706.05113v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.05113v1-abstract-full" style="display: none;"> Quantum circuits of many qubits are extremely difficult to realize; thus, the number of qubits is an important metric in a quantum circuit design. Further, scalable and reliable quantum circuits are based on Clifford + T gates. An efficient quantum circuit saves quantum hardware resources by reducing the number of T gates without substantially increasing the number of qubits. Recently, the design of a quantum multiplier is presented by Babu [1] which improves the existing works in terms of number of quantum gates, number of qubits, and delay. However, the recent design is not based on fault-tolerant Clifford + T gates. Also, it has large number of qubits and garbage outputs. Therefore, this work presents a T-count optimized quantum circuit for integer multiplication with only $4 \cdot n + 1$ qubits and no garbage outputs. The proposed quantum multiplier design saves the T-count by using a novel quantum conditional adder circuit. Also, where one operand to the controlled adder is zero, the conditional adder is replaced with a Toffoli gate array to further save the T gates. To have fair comparison with the recent design by Babu and get an actual estimate of the T-count, it is made garbageless by using Bennett's garbage removal scheme. The proposed design achieves an average T-count savings of $47.55\%$ compared to the recent work by Babu. Further, comparison is also performed with other recent works by Lin et. al. [2], and Jayashree et. al.[3]. Average T-count savings of $62.71\%$ and $26.30\%$ are achieved compared to the recent works by Lin et. al., and Jayashree et. al., respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05113v1-abstract-full').style.display = 'none'; document.getElementById('1706.05113v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01228">arXiv:1608.01228</a> <span> [<a href="https://arxiv.org/pdf/1608.01228">pdf</a>, <a href="https://arxiv.org/ps/1608.01228">ps</a>, <a href="https://arxiv.org/format/1608.01228">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Ancilla-Input and Garbage-Output Optimized Design of a Reversible Quantum Integer Multiplier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=HV%2C+J">Jayashree HV</a>, <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Arabnia%2C+H+R">Hamid R. Arabnia</a>, <a href="/search/cs?searchtype=author&query=Agrawal%2C+V+K">V K Agrawal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01228v1-abstract-short" style="display: inline;"> A reversible logic has application in quantum computing. A reversible logic design needs resources such as ancilla and garbage qubits to reconfigure circuit functions or gate functions. The removal of garbage qubits and ancilla qubits are essential in designing an efficient quantum circuit. In the literature, there are multiple designs that have been proposed for a reversible multiplication operat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01228v1-abstract-full').style.display = 'inline'; document.getElementById('1608.01228v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01228v1-abstract-full" style="display: none;"> A reversible logic has application in quantum computing. A reversible logic design needs resources such as ancilla and garbage qubits to reconfigure circuit functions or gate functions. The removal of garbage qubits and ancilla qubits are essential in designing an efficient quantum circuit. In the literature, there are multiple designs that have been proposed for a reversible multiplication operation. A multiplication hardware is essential for the circuit design of quantum algorithms, quantum cryptanalysis, and digital signal processing (DSP) applications. The existing designs of reversible quantum integer multipliers suffer from redundant garbage qubits. In this work, we propose a reversible logic based, garbage-free and ancilla qubit optimized design of a quantum integer multiplier. The proposed quantum integer multiplier utilizes a novel add and rotate methodology that is specially suitable for a reversible computing paradigm. The proposed design methodology is the modified version of a conventional shift and add method. The proposed design of the quantum integer multiplier incorporates add or no operation based on multiplier qubits and followed by a rotate right operation. The proposed design of the quantum integer multiplier produces zero garbage qubits and shows an improvement ranging from 60% to 90% in ancilla qubits count over the existing work on reversible quantum integer multipliers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01228v1-abstract-full').style.display = 'none'; document.getElementById('1608.01228v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Jounal of Supercomputing April 2016, Volume 72, Issue 4, pp 1477-1493 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.4222">arXiv:1101.4222</a> <span> [<a href="https://arxiv.org/pdf/1101.4222">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Reversible Logic Based Concurrent Error Detection Methodology For Emerging Nanocircuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Ranganathan%2C+N">Nagarajan Ranganathan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.4222v1-abstract-short" style="display: inline;"> Reversible logic has promising applications in emerging nanotechnologies, such as quantum computing, quantum dot cellular automata and optical computing, etc. Faults in reversible logic circuits that result in multi-bit error at the outputs are very tough to detect, and thus in literature, researchers have only addressed the problem of online testing of faults that result single-bit error at the o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.4222v1-abstract-full').style.display = 'inline'; document.getElementById('1101.4222v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.4222v1-abstract-full" style="display: none;"> Reversible logic has promising applications in emerging nanotechnologies, such as quantum computing, quantum dot cellular automata and optical computing, etc. Faults in reversible logic circuits that result in multi-bit error at the outputs are very tough to detect, and thus in literature, researchers have only addressed the problem of online testing of faults that result single-bit error at the outputs based on parity preserving logic. In this work, we propose a methodology for the concurrent error detection in reversible logic circuits to detect faults that can result in multi-bit error at the outputs. The methodology is based on the inverse property of reversible logic and is termed as 'inverse and compare' method. By using the inverse property of reversible logic, all the inputs can be regenerated at the outputs. Thus, by comparing the original inputs with the regenerated inputs, the faults in reversible circuits can be detected. Minimizing the garbage outputs is one of the main goals in reversible logic design and synthesis. We show that the proposed methodology results in 'garbageless' reversible circuits. A design of reversible full adder that can be concurrently tested for multi-bit error at the outputs is illustrated as the application of the proposed scheme. Finally, we showed the application of the proposed scheme of concurrent error detection towards fault detection in quantum dot cellular automata (QCA) emerging nanotechnology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.4222v1-abstract-full').style.display = 'none'; document.getElementById('1101.4222v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">H. Thapliyal and N.Ranganathan, "Reversible Logic Based Concurrent Error Detection Methodology For Emerging Nanocircuits", Proceedings of the 10th IEEE International Conference on Nanotechnology, Seoul, Korea, Aug 2010</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0711.2674">arXiv:0711.2674</a> <span> [<a href="https://arxiv.org/pdf/0711.2674">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Partial Reversible Gates(PRG) for Reversible BCD Arithmetic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Arabnia%2C+H+R">Hamid R. Arabnia</a>, <a href="/search/cs?searchtype=author&query=Bajpai%2C+R">Rajnish Bajpai</a>, <a href="/search/cs?searchtype=author&query=Sharma%2C+K+K">Kamal K. Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0711.2674v1-abstract-short" style="display: inline;"> IEEE 754r is the ongoing revision to the IEEE 754 floating point standard and a major enhancement to the standard is the addition of decimal format. Furthermore, in the recent years reversible logic has emerged as a promising computing paradigm having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. The major goal in reversible logic is to minimize th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.2674v1-abstract-full').style.display = 'inline'; document.getElementById('0711.2674v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0711.2674v1-abstract-full" style="display: none;"> IEEE 754r is the ongoing revision to the IEEE 754 floating point standard and a major enhancement to the standard is the addition of decimal format. Furthermore, in the recent years reversible logic has emerged as a promising computing paradigm having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. The major goal in reversible logic is to minimize the number of reversible gates and garbage outputs. Thus, this paper proposes the novel concept of partial reversible gates that will satisfy the reversibility criteria for specific cases in BCD arithmetic. The partial reversible gate is proposed to minimize the number of reversible gates and garbage outputs, while designing the reversible BCD arithmetic circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.2674v1-abstract-full').style.display = 'none'; document.getElementById('0711.2674v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Proceedings of the 2007 International Conference on Computer Design(CDES'07), Las Vegas, U.S.A, June 2007, pp. 90-91(CSREA Press)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0711.2671">arXiv:0711.2671</a> <span> [<a href="https://arxiv.org/pdf/0711.2671">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Combined Integer and Variable Precision (CIVP) Floating Point Multiplication Architecture for FPGAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Arabnia%2C+H+R">Hamid R. Arabnia</a>, <a href="/search/cs?searchtype=author&query=Bajpai%2C+R">Rajnish Bajpai</a>, <a href="/search/cs?searchtype=author&query=Sharma%2C+K+K">Kamal K. Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0711.2671v1-abstract-short" style="display: inline;"> In this paper, we propose an architecture/methodology for making FPGAs suitable for integer as well as variable precision floating point multiplication. The proposed work will of great importance in applications which requires variable precision floating point multiplication such as multi-media processing applications. In the proposed architecture/methodology, we propose the replacement of exist… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.2671v1-abstract-full').style.display = 'inline'; document.getElementById('0711.2671v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0711.2671v1-abstract-full" style="display: none;"> In this paper, we propose an architecture/methodology for making FPGAs suitable for integer as well as variable precision floating point multiplication. The proposed work will of great importance in applications which requires variable precision floating point multiplication such as multi-media processing applications. In the proposed architecture/methodology, we propose the replacement of existing 18x18 bit and 25x18 bit dedicated multipliers in FPGAs with dedicated 24x24 bit and 24x9 bit multipliers, respectively. We have proved that our approach of providing the dedicated 24x24 bit and 24x9 bit multipliers in FPGAs will make them efficient for performing integer as well as single precision, double precision, and Quadruple precision floating point multiplications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.2671v1-abstract-full').style.display = 'none'; document.getElementById('0711.2671v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Proceedings of the 2007 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'07), Las Vegas, U.S.A, June 2007, Volume 1, pp. 449-450.(CSREA Press)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/0610090">arXiv:cs/0610090</a> <span> [<a href="https://arxiv.org/pdf/cs/0610090">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/MWSCAS.2006.382306">10.1109/MWSCAS.2006.382306 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combined Integer and Floating Point Multiplication Architecture(CIFM) for FPGAs and Its Reversible Logic Implementation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Arabnia%2C+H+R">Hamid R. Arabnia</a>, <a href="/search/cs?searchtype=author&query=Vinod%2C+A+P">A. P Vinod</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/0610090v1-abstract-short" style="display: inline;"> In this paper, the authors propose the idea of a combined integer and floating point multiplier(CIFM) for FPGAs. The authors propose the replacement of existing 18x18 dedicated multipliers in FPGAs with dedicated 24x24 multipliers designed with small 4x4 bit multipliers. It is also proposed that for every dedicated 24x24 bit multiplier block designed with 4x4 bit multipliers, four redundant 4x4… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0610090v1-abstract-full').style.display = 'inline'; document.getElementById('cs/0610090v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/0610090v1-abstract-full" style="display: none;"> In this paper, the authors propose the idea of a combined integer and floating point multiplier(CIFM) for FPGAs. The authors propose the replacement of existing 18x18 dedicated multipliers in FPGAs with dedicated 24x24 multipliers designed with small 4x4 bit multipliers. It is also proposed that for every dedicated 24x24 bit multiplier block designed with 4x4 bit multipliers, four redundant 4x4 multiplier should be provided to enforce the feature of self repairability (to recover from the faults). In the proposed CIFM reconfigurability at run time is also provided resulting in low power. The major source of motivation for providing the dedicated 24x24 bit multiplier stems from the fact that single precision floating point multiplier requires 24x24 bit integer multiplier for mantissa multiplication. A reconfigurable, self-repairable 24x24 bit multiplier (implemented with 4x4 bit multiply modules) will ideally suit this purpose, making FPGAs more suitable for integer as well floating point operations. A dedicated 4x4 bit multiplier is also proposed in this paper. Moreover, in the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. It is not possible to realize quantum computing without reversible logic. Thus, this paper also paper provides the reversible logic implementation of the proposed CIFM. The reversible CIFM designed and proposed here will form the basis of the completely reversible FPGAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0610090v1-abstract-full').style.display = 'none'; document.getElementById('cs/0610090v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in the proceedings of the The 49th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2006), Puerto Rico, August 2006. Nominated for the Student Paper Award(12 papers are nominated for Student paper Award among all submissions)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/0610089">arXiv:cs/0610089</a> <span> [<a href="https://arxiv.org/pdf/cs/0610089">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Reversible Logic to Cryptographic Hardware: A New Paradigm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Zwolinski%2C+M">Mark Zwolinski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/0610089v1-abstract-short" style="display: inline;"> Differential Power Analysis (DPA) presents a major challenge to mathematically-secure cryptographic protocols. Attackers can break the encryption by measuring the energy consumed in the working digital circuit. To prevent this type of attack, this paper proposes the use of reversible logic for designing the ALU of a cryptosystem. Ideally, reversible circuits dissipate zero energy. Thus, it would… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0610089v1-abstract-full').style.display = 'inline'; document.getElementById('cs/0610089v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/0610089v1-abstract-full" style="display: none;"> Differential Power Analysis (DPA) presents a major challenge to mathematically-secure cryptographic protocols. Attackers can break the encryption by measuring the energy consumed in the working digital circuit. To prevent this type of attack, this paper proposes the use of reversible logic for designing the ALU of a cryptosystem. Ideally, reversible circuits dissipate zero energy. Thus, it would be of great significance to apply reversible logic to designing secure cryptosystems. As far as is known, this is the first attempt to apply reversible logic to developing secure cryptosystems. In a prototype of a reversible ALU for a crypto-processor, reversible designs of adders and Montgomery multipliers are presented. The reversible designs of a carry propagate adder, four-to-two and five-to-two carry save adders are presented using a reversible TSG gate. One of the important properties of the TSG gate is that it can work singly as a reversible full adder. In order to design the reversible Montgomery multiplier, novel reversible sequential circuits are also proposed which are integrated with the proposed adders to design a reversible modulo multiplier. It is intended that this paper will provide a starting point for developing cryptosystems secure against DPA attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0610089v1-abstract-full').style.display = 'none'; document.getElementById('cs/0610089v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in the proceedings of the The 49th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2006), Puerto Rico, August 2006. Nominated for the Student Paper Award</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/0609036">arXiv:cs/0609036</a> <span> [<a href="https://arxiv.org/pdf/cs/0609036">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Reduced Area Low Power High Throughput BCD Adders for IEEE 754r Format </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Arabnia%2C+H+R">Hamid R. Arabnia</a>, <a href="/search/cs?searchtype=author&query=Srinivas%2C+M+B">M. B Srinivas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/0609036v1-abstract-short" style="display: inline;"> IEEE 754r is the ongoing revision to the IEEE 754 floating point standard and a major enhancement to the standard is the addition of decimal format. Firstly, this paper proposes novel two transistor AND and OR gates. The proposed AND gate has no power supply, thus it can be referred as the Powerless AND gate. Similarly, the proposed two transistor OR gate has no ground and can be referred as Gro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0609036v1-abstract-full').style.display = 'inline'; document.getElementById('cs/0609036v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/0609036v1-abstract-full" style="display: none;"> IEEE 754r is the ongoing revision to the IEEE 754 floating point standard and a major enhancement to the standard is the addition of decimal format. Firstly, this paper proposes novel two transistor AND and OR gates. The proposed AND gate has no power supply, thus it can be referred as the Powerless AND gate. Similarly, the proposed two transistor OR gate has no ground and can be referred as Groundless OR. Secondly for IEEE 754r format, two novel BCD adders called carry skip and carry look-ahead BCD adders are also proposed in this paper. In order to design the carry look-ahead BCD adder, a novel 4 bit carry look-ahead adder called NCLA is proposed which forms the basic building block of the proposed carry look-ahead BCD adder. Finally, the proposed two transistors AND and OR gates are used to provide the optimized small area low power high throughput circuitries of the proposed BCD adders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0609036v1-abstract-full').style.display = 'none'; document.getElementById('cs/0609036v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages;Published in Proceedings of the 11th International CSI Computer Conference (CSICC'06), Tehran, Jan 24-26, 2006, pp.59-64</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/0609029">arXiv:cs/0609029</a> <span> [<a href="https://arxiv.org/pdf/cs/0609029">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Reversible Programmable Logic Array (RPLA) using Fredkin & Feynman Gates for Industrial Electronics and Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Arabnia%2C+H+R">Hamid R. Arabnia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/0609029v1-abstract-short" style="display: inline;"> In recent years, reversible logic has emerged as a promising computing paradigm having application in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. In this paper, the authors have proposed reversible programmable logic array (RPLA) architecture using reversible Fredkin and Feynman gates. The prop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0609029v1-abstract-full').style.display = 'inline'; document.getElementById('cs/0609029v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/0609029v1-abstract-full" style="display: none;"> In recent years, reversible logic has emerged as a promising computing paradigm having application in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. In this paper, the authors have proposed reversible programmable logic array (RPLA) architecture using reversible Fredkin and Feynman gates. The proposed RPLA has n inputs and m outputs and can realize m functions of n variables. In order to demonstrate the design of RPLA, a 3 input RPLA is designed which can perform any 28 functions using the combination of 8 min terms (23). Furthermore, the application of the designed 3 input RPLA is shown by implementing the full adder and full subtractor functions through it. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0609029v1-abstract-full').style.display = 'none'; document.getElementById('cs/0609029v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Proceedings of the International Conference on Embedded Systems and Applications(ESA'06),Las Vegas, U.S.A, June 2006(CSREA Press)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/0609028">arXiv:cs/0609028</a> <span> [<a href="https://arxiv.org/pdf/cs/0609028">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> VLSI Implementation of RSA Encryption System Using Ancient Indian Vedic Mathematics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Srinivas%2C+M+B">M. B Srinivas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/0609028v1-abstract-short" style="display: inline;"> This paper proposes the hardware implementation of RSA encryption/decryption algorithm using the algorithms of Ancient Indian Vedic Mathematics that have been modified to improve performance. The recently proposed hierarchical overlay multiplier architecture is used in the RSA circuitry for multiplication operation. The most significant aspect of the paper is the development of a division archit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0609028v1-abstract-full').style.display = 'inline'; document.getElementById('cs/0609028v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/0609028v1-abstract-full" style="display: none;"> This paper proposes the hardware implementation of RSA encryption/decryption algorithm using the algorithms of Ancient Indian Vedic Mathematics that have been modified to improve performance. The recently proposed hierarchical overlay multiplier architecture is used in the RSA circuitry for multiplication operation. The most significant aspect of the paper is the development of a division architecture based on Straight Division algorithm of Ancient Indian Vedic Mathematics and embedding it in RSA encryption/decryption circuitry for improved efficiency. The coding is done in Verilog HDL and the FPGA synthesis is done using Xilinx Spartan library. The results show that RSA circuitry implemented using Vedic division and multiplication is efficient in terms of area/speed compared to its implementation using conventional multiplication and division architectures <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0609028v1-abstract-full').style.display = 'none'; document.getElementById('cs/0609028v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages: Proceedings of SPIE -- Volume 5837 VLSI Circuits and Systems II, Jose F. Lopez, Francisco V. Fernandez, Jose Maria Lopez-Villegas, Jose M. de la Rosa, Editors, June 2005, pp. 888-892</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/0609023">arXiv:cs/0609023</a> <span> [<a href="https://arxiv.org/pdf/cs/0609023">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ICICS.2005.1689293">10.1109/ICICS.2005.1689293 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel Reversible TSG Gate and Its Application for Designing Components of Primitive Reversible/Quantum ALU </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Srinivas%2C+M+B">M. B. Srinivas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/0609023v1-abstract-short" style="display: inline;"> In recent years, reversible logic has emerged as a promising computing paradigm having application in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. This paper utilizes a new 4 * 4 reversible gate called TSG gate to build the components of a primitive reversible/quantum ALU. The most significant a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0609023v1-abstract-full').style.display = 'inline'; document.getElementById('cs/0609023v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/0609023v1-abstract-full" style="display: none;"> In recent years, reversible logic has emerged as a promising computing paradigm having application in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. This paper utilizes a new 4 * 4 reversible gate called TSG gate to build the components of a primitive reversible/quantum ALU. The most significant aspect of the TSG gate is that it can work singly as a reversible full adder, that is reversible full adder can now be implemented with a single gate only. A Novel reversible 4:2 compressor is also designed from the TSG gate which is later used to design a novel 8x8 reversible Wallace tree multiplier. It is proved that the adder, 4:2 compressor and multiplier architectures designed using the TSG gate are better than their counterparts available in literature, in terms of number of reversible gates and garbage outputs. This is perhaps, the first attempt to design a reversible 4:2 compressor and a reversible Wallace tree multiplier as far as existing literature and our knowledge is concerned. Thus, this paper provides an initial threshold to build more complex systems which can execute complicated operations using reversible logic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0609023v1-abstract-full').style.display = 'none'; document.getElementById('cs/0609023v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages; Published in Proceedings of the Fifth IEEE International Conference on Information, Communications and Signal Processing (ICICS 2005), Bangkok, Thailand, 6-9 December 2005,pp.1425-1429</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/0605004">arXiv:cs/0605004</a> <span> [<a href="https://arxiv.org/pdf/cs/0605004">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Novel Reversible Multiplier Architecture Using Reversible TSG Gate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Srinivas%2C+M+B">M. B Srinivas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/0605004v1-abstract-short" style="display: inline;"> In the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. Recently a 4 * 4 reversible gate called TSG is proposed. The most significant aspect of the proposed gate is that it can work singly as a reversible… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0605004v1-abstract-full').style.display = 'inline'; document.getElementById('cs/0605004v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/0605004v1-abstract-full" style="display: none;"> In the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. Recently a 4 * 4 reversible gate called TSG is proposed. The most significant aspect of the proposed gate is that it can work singly as a reversible full adder, that is reversible full adder can now be implemented with a single gate only. This paper proposes a NXN reversible multiplier using TSG gate. It is based on two concepts. The partial products can be generated in parallel with a delay of d using Fredkin gates and thereafter the addition can be reduced to log2N steps by using reversible parallel adder designed from TSG gates. Similar multiplier architecture in conventional arithmetic (using conventional logic) has been reported in existing literature, but the proposed one in this paper is totally based on reversible logic and reversible cells as its building block. A 4x4 architecture of the proposed reversible multiplier is also designed. It is demonstrated that the proposed multiplier architecture using the TSG gate is much better and optimized, compared to its existing counterparts in literature; in terms of number of reversible gates and garbage outputs. Thus, this paper provides the initial threshold to building of more complex system which can execute more complicated operations using reversible logic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0605004v1-abstract-full').style.display = 'none'; document.getElementById('cs/0605004v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Pages; Published in Proceedings of the 4th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA-06), Dubai, March 2006. pp. 100-103. Contains the missing reference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/0603092">arXiv:cs/0603092</a> <span> [<a href="https://arxiv.org/pdf/cs/0603092">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> An Extension to DNA Based Fredkin Gate Circuits: Design of Reversible Sequential Circuits using Fredkin Gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Srinivas%2C+M+B">M. B Srinivas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/0603092v1-abstract-short" style="display: inline;"> In recent years, reversible logic has emerged as a promising computing paradigm having its applications in low power computing, quantum computing, nanotechnology, optical computing and DNA computing. The classical set of gates such as AND, OR, and EXOR are not reversible. Recently, it has been shown how to encode information in DNA and use DNA amplification to implement Fredkin gates. Furthermor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0603092v1-abstract-full').style.display = 'inline'; document.getElementById('cs/0603092v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/0603092v1-abstract-full" style="display: none;"> In recent years, reversible logic has emerged as a promising computing paradigm having its applications in low power computing, quantum computing, nanotechnology, optical computing and DNA computing. The classical set of gates such as AND, OR, and EXOR are not reversible. Recently, it has been shown how to encode information in DNA and use DNA amplification to implement Fredkin gates. Furthermore, in the past Fredkin gates have been constructed using DNA, whose outputs are used as inputs for other Fredkin gates. Thus, it can be concluded that arbitrary circuits of Fredkin gates can be constructed using DNA. This paper provides the initial threshold to building of more complex system having reversible sequential circuits and which can execute more complicated operations. The novelty of the paper is the reversible designs of sequential circuits using Fredkin gate. Since, Fredkin gate has already been realized using DNA, it is expected that this work will initiate the building of complex systems using DNA. The reversible circuits designed here are highly optimized in terms of number of gates and garbage outputs. The modularization approach that is synthesizing small circuits and thereafter using them to construct bigger circuits is used for designing the optimal reversible sequential circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0603092v1-abstract-full').style.display = 'none'; document.getElementById('cs/0603092v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages: Deals with design of reversible sequential circuits. Published: Proceedings of SPIE Volume: 6050, pp.196-202.Optomechatronic Micro/Nano Devices and Components, Sapporo, Japan, December 5-7, 2005; Editor(s): Yoshitada Katagiri</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/0603091">arXiv:cs/0603091</a> <span> [<a href="https://arxiv.org/pdf/cs/0603091">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> A New Reversible TSG Gate and Its Application For Designing Efficient Adder Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Srinivas%2C+M+B">M. B Srinivas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/0603091v1-abstract-short" style="display: inline;"> In the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. This paper proposes a new 4 * 4 reversible gate called TSG gate. The proposed gate is used to design efficient adder units. The most significant asp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0603091v1-abstract-full').style.display = 'inline'; document.getElementById('cs/0603091v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/0603091v1-abstract-full" style="display: none;"> In the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. This paper proposes a new 4 * 4 reversible gate called TSG gate. The proposed gate is used to design efficient adder units. The most significant aspect of the proposed gate is that it can work singly as a reversible full adder i.e reversible full adder can now be implemented with a single gate only. The proposed gate is then used to design reversible ripple carry and carry skip adders. It is demonstrated that the adder architectures designed using the proposed gate are much better and optimized, compared to their existing counterparts in literature; in terms of number of reversible gates and garbage outputs. Thus, this paper provides the initial threshold to building of more complex system which can execute more complicated operations using reversible logic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0603091v1-abstract-full').style.display = 'none'; document.getElementById('cs/0603091v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages: Published in 7th International Symposium on Representations and Methodology of Future Computing Technologies(RM 2005), Tokyo, Japan, September 5-6, 2005</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/0603088">arXiv:cs/0603088</a> <span> [<a href="https://arxiv.org/pdf/cs/0603088">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Novel BCD Adders and Their Reversible Logic Implementation for IEEE 754r Format </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&query=Kotiyal%2C+S">Saurabh Kotiyal</a>, <a href="/search/cs?searchtype=author&query=Srinivas%2C+M+B">M. B Srinivas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/0603088v1-abstract-short" style="display: inline;"> IEEE 754r is the ongoing revision to the IEEE 754 floating point standard and a major enhancement to the standard is the addition of decimal format. This paper proposes two novel BCD adders called carry skip and carry look-ahead BCD adders respectively. Furthermore, in the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum comp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0603088v1-abstract-full').style.display = 'inline'; document.getElementById('cs/0603088v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/0603088v1-abstract-full" style="display: none;"> IEEE 754r is the ongoing revision to the IEEE 754 floating point standard and a major enhancement to the standard is the addition of decimal format. This paper proposes two novel BCD adders called carry skip and carry look-ahead BCD adders respectively. Furthermore, in the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. It is not possible to realize quantum computing without reversible logic. Thus, this paper also paper provides the reversible logic implementation of the conventional BCD adder as the well as the proposed Carry Skip BCD adder using a recently proposed TSG gate. Furthermore, a new reversible gate called TS-3 is also being proposed and it has been shown that the proposed reversible logic implementation of the BCD Adders is much better compared to recently proposed one, in terms of number of reversible gates used and garbage outputs produced. The reversible BCD circuits designed and proposed here form the basis of the decimal ALU of a primitive quantum CPU. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/0603088v1-abstract-full').style.display = 'none'; document.getElementById('cs/0603088v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages: This paper is a corrected version of our recent publication published in 19th International Conference on VLSI Design and 5th International Conference on Embedded Systems (VLSI Design 2006), Hyderabad, India, Jan 4-7, 2006</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>