CINXE.COM
(PDF) Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="iuqn3K2uJA8o2aAhFSbBXK6SjDfYqKf08DGLkwz9rjDl0rvFAnkjhmfwXA9D0Ja5HVnNWIBm8OYU1vcvC2wWlg==" /> <meta name="citation_title" content="Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series" /> <meta name="citation_publication_date" content="2006/01/01" /> <meta name="citation_author" content="Gyorgy Gat" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series" /> <meta name="twitter:title" content="Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series" /> <meta name="twitter:description" content="The main aim of this paper is to prove that the logarithmic means of the double Walsh-Fourier series do not improve the convergence in measure. In other words, we prove that for any Orlicz space, which is not a subspace of L log L(I 2), the set of" /> <meta name="twitter:image" content="https://0.academia-photos.com/32476274/18444977/18396189/s200_gyorgy.gat.jpg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series" /> <meta property="og:title" content="Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="The main aim of this paper is to prove that the logarithmic means of the double Walsh-Fourier series do not improve the convergence in measure. In other words, we prove that for any Orlicz space, which is not a subspace of L log L(I 2), the set of" /> <meta property="article:author" content="https://unideb.academia.edu/GyorgyGat" /> <meta name="description" content="The main aim of this paper is to prove that the logarithmic means of the double Walsh-Fourier series do not improve the convergence in measure. In other words, we prove that for any Orlicz space, which is not a subspace of L log L(I 2), the set of" /> <title>(PDF) Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series</title> <link rel="canonical" href="https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '48654d67e5106e06fb1e5c9a356c302510d6cfee'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1734509302000); window.Aedu.timeDifference = new Date().getTime() - 1734509302000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","author":[{"@context":"https://schema.org","@type":"Person","name":"Gyorgy Gat"}],"contributor":[],"dateCreated":"2022-01-20","datePublished":"2006-01-01","headline":"Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series","image":"https://attachments.academia-assets.com/79223354/thumbnails/1.jpg","inLanguage":"en","keywords":["Mathematics","Applied Mathematics","Pure Mathematics","Mathematical Analysis and Applications","Electrical And Electronic Engineering"],"publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"unideb"}],"thumbnailUrl":"https://attachments.academia-assets.com/79223354/thumbnails/1.jpg","url":"https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "3768616ae3116ab3723ec7fa5002bd5ea032fe3c177f0a1867c58536f69d28bf", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="roG/E364X4XJ48nMIEC50Cu29NaIqwbOut1VYUc+DlvBuaMK0W9YDIbKNeJ2tu41mH21udBlUdxeOindQK+2/Q==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="+086MKRfdaMngQnpxcG0X+DGBhlNFxfHt9YhplBGcFOUdyYpC4hyKmio9ceTN+O6Uw1HdhXZQNVTMV0aV9fI9Q==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-3f6c8d93606e71610593edcc4a66814b5eb01028a2b32194979a5b0c3df849c2.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 32476274; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F68924008%2FConvergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F68924008%2FConvergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":79223354,"identifier":"Attachment_79223354","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":68924008,"created_at":"2022-01-20T22:05:58.307-08:00","from_world_paper_id":192735739,"updated_at":"2024-11-25T03:18:22.793-08:00","_data":{"grobid_abstract":"The main aim of this paper is to prove that the logarithmic means of the double Walsh-Fourier series do not improve the convergence in measure. In other words, we prove that for any Orlicz space, which is not a subspace of L log L(I 2), the set of functions for which quadratic logarithmic means of the double Walsh-Fourier series converge in measure is of first Baire category.","publication_date":"2006,,","grobid_abstract_attachment_id":"79223354"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [32476274]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loginModal = {}; window.loginModal.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":79223354,"attachmentType":"pdf"}"><img alt="First page of “Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/79223354/mini_magick20220120-19689-1sei3u1.png?1642745690" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat"><img alt="Profile image of Gyorgy Gat" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/32476274/18444977/18396189/s65_gyorgy.gat.jpg" />Gyorgy Gat</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2006</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">12 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 68924008; const worksViewsPath = "/v0/works/views?subdomain_param=api&work_ids%5B%5D=68924008"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { try { const viewCountNumber = parseInt(viewCount, 10); if (viewCountNumber === 0) { // Remove the whole views element if there are zero views. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); return; } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (!viewCountBody) { throw new Error('Failed to find work views element'); } viewCountBody.textContent = `${commaizedViewCount} views`; } catch (error) { // Remove the whole views element if there was some issue parsing. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); throw new Error(`Failed to parse view count: ${viewCount}`, error); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">The main aim of this paper is to prove that the logarithmic means of the double Walsh-Fourier series do not improve the convergence in measure. In other words, we prove that for any Orlicz space, which is not a subspace of L log L(I 2), the set of functions for which quadratic logarithmic means of the double Walsh-Fourier series converge in measure is of first Baire category.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":79223354,"attachmentType":"pdf","workUrl":"https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":79223354,"attachmentType":"pdf","workUrl":"https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="79223354" data-landing_url="https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="68924055" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924055/Convergence_in_measure_of_logarithmic_means_of_multiple_Fourier_series">Convergence in measure of logarithmic means of multiple Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Contemporary Mathematical Analysis, 2014</p><p class="ds-related-work--abstract ds2-5-body-sm">The main aim of this paper is to prove that the logarithmic means of the double Walsh-Fourier series do not improve the convergence in measure. In other words, we prove that for any Orlicz space, which is not a subspace of L log L(I 2), the set of functions for which quadratic logarithmic means of the double Walsh-Fourier series converge in measure is of first Baire category.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Convergence in measure of logarithmic means of multiple Fourier series","attachmentId":79223357,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924055/Convergence_in_measure_of_logarithmic_means_of_multiple_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924055/Convergence_in_measure_of_logarithmic_means_of_multiple_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="68923986" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923986/Convergence_of_logarithmic_means_of_multiple_Walsh_Fourier_series">Convergence of logarithmic means of multiple Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Analysis in Theory and Applications, 2005</p><p class="ds-related-work--abstract ds2-5-body-sm">Nörlund logarithmic means of multiple Walsh-Fourier series acting from spaceLlnd-1 L([0, 1)d), d&gt;-1 into space weak-L1([0, 1)d) are studied. The maximal Orlicz space such that the Nörlund logarithmic means of multiple Walsh-Fourier series for the functions from this space converge in d-dimensional measure is found.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Convergence of logarithmic means of multiple Walsh-Fourier series","attachmentId":79222978,"attachmentType":"pdf","work_url":"https://www.academia.edu/68923986/Convergence_of_logarithmic_means_of_multiple_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68923986/Convergence_of_logarithmic_means_of_multiple_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="68924097" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924097/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series">Almost everywhere convergence of a subsequence of the logarithmic means of quadratical partial sums of double Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Publicationes Mathematicae, 2007</p><p class="ds-related-work--abstract ds2-5-body-sm">The main aim of this paper is to prove that the maximal operator of the logarithmic means of quadratical partial sums of double Walsh-Fourier series is of weak type (1, 1) provided that the supremum in the maximal operator is taken over special indicies. The set of Walsh polynomials is dense in L 1 (I × I) , so by the well-known density argument we have that t 2 n f x 1 , x 2 → f x 1 , x 2 a. e. for all integrable two-variable function f .</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Almost everywhere convergence of a subsequence of the logarithmic means of quadratical partial sums of double Walsh-Fourier series","attachmentId":79223359,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924097/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924097/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="68923982" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923982/Uniform_and_L_convergence_of_Logarithmic_Means_of_Walsh_Fourier_Series">Uniform and L–convergence of Logarithmic Means of Walsh–Fourier Series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Acta Mathematica Sinica, English Series, 2006</p><p class="ds-related-work--abstract ds2-5-body-sm">We discuss some convergence and divergence properties of twodimensional (Nörlund) logarithmic means of two-dimensional Walsh-Fourier series of functions both in the uniform and in the Lebesgue norm. We give necessary and sufficient conditions for the convergence regarding the modulus of continuity of the function, and also the function space.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Uniform and L–convergence of Logarithmic Means of Walsh–Fourier Series","attachmentId":79223055,"attachmentType":"pdf","work_url":"https://www.academia.edu/68923982/Uniform_and_L_convergence_of_Logarithmic_Means_of_Walsh_Fourier_Series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68923982/Uniform_and_L_convergence_of_Logarithmic_Means_of_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="68924061" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924061/Uniform_and_L_Convergence_of_Logarithmic_Means_of_Double_Walsh_Fourier_Series">Uniform and 𝐿-Convergence of Logarithmic Means of Double Walsh–Fourier Series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--abstract ds2-5-body-sm">We discuss some convergence and divergence properties of twodimensional (Nörlund) logarithmic means of two-dimensional Walsh-Fourier series of functions both in the uniform and in the Lebesgue norm. We give necessary and sufficient conditions for the convergence regarding the modulus of continuity of the function, and also the function space.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Uniform and 𝐿-Convergence of Logarithmic Means of Double Walsh–Fourier Series","attachmentId":79223039,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924061/Uniform_and_L_Convergence_of_Logarithmic_Means_of_Double_Walsh_Fourier_Series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924061/Uniform_and_L_Convergence_of_Logarithmic_Means_of_Double_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="68924074" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series">Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Analysis Mathematica, 2014</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper we study the a. e. strong convergence of the quadratical partial sums of the two-dimensional Walsh-Fourier series. Namely, we prove the a.e. relation (1 n n−1 m=0 |Smmf − f | p) 1/p → 0 for every two-dimensional functions belonging to L log L and 0 < p ≤ 2. From the theorem of Getsadze [6] it follows that the space L log L can not be enlarged with preserving this strong summability property.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series","attachmentId":79223376,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="68924094" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924094/Uniform_and_L_convergence_of_logarithmic_means_of_cubical_partial_sums_of_double_Walsh_Fourier_series">Uniform and $L$-convergence of logarithmic means of cubical partial sums of double Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2004</p><p class="ds-related-work--abstract ds2-5-body-sm">We discuss some convergence and divergence properties of twodimensional (Nörlund) logarithmic means of two-dimensional Walsh-Fourier series of functions both in the uniform and in the Lebesgue norm. We give necessary and sufficient conditions for the convergence regarding the modulus of continuity of the function, and also the function space.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Uniform and $L$-convergence of logarithmic means of cubical partial sums of double Walsh-Fourier series","attachmentId":79223452,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924094/Uniform_and_L_convergence_of_logarithmic_means_of_cubical_partial_sums_of_double_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924094/Uniform_and_L_convergence_of_logarithmic_means_of_cubical_partial_sums_of_double_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="68924106" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924106/Maximal_Convergence_Space_of_a_Subsequence_of_the_Logarithmic_Means_of_Rectangular_Partial_Sums_of_Double_Walsh_Fourier_Series">Maximal Convergence Space of a Subsequence of the Logarithmic Means of Rectangular Partial Sums of Double Walsh-Fourier Series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Real Analysis Exchange</p><p class="ds-related-work--abstract ds2-5-body-sm">The main aim of this paper is to prove that the maximal operator of the logarithmic means of rectangular partial sums of double Walsh-Fourier series is of type (H # , L 1) provided that the supremum in the maximal operator is taken over some special indicies. The set of Walsh polynomials is dense in H # , so by the well-known density argument we have that t 2 n ,2 m f x 1 , x 2 → f x 1 , x 2 a. e. as m, n → ∞ for all f ∈ H # (⊃ L log + L). We also prove the sharpness of this result. Namely, For all measurable function δ : [0, +∞) → [0, +∞), lim t→∞ δ(t) = 0 we have a function f such as f ∈ Llog + Lδ(L) and the two-dimensional Nörlund logarithmic means does not converge to f a.e. (in the Pringsheim sense) on I 2 .</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Maximal Convergence Space of a Subsequence of the Logarithmic Means of Rectangular Partial Sums of Double Walsh-Fourier Series","attachmentId":79223372,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924106/Maximal_Convergence_Space_of_a_Subsequence_of_the_Logarithmic_Means_of_Rectangular_Partial_Sums_of_Double_Walsh_Fourier_Series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924106/Maximal_Convergence_Space_of_a_Subsequence_of_the_Logarithmic_Means_of_Rectangular_Partial_Sums_of_Double_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="110444322" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series">Almost everywhere strong summability of double Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Contemporary Mathematical Analysis, 2015</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper we study the a. e. strong convergence of the quadratical partial sums of the two-dimensional Walsh-Fourier series. Namely, we prove the a.e. relation (1 n n−1 m=0 |Smmf − f | p) 1/p → 0 for every two-dimensional functions belonging to L log L and 0 < p ≤ 2. From the theorem of Getsadze [6] it follows that the space L log L can not be enlarged with preserving this strong summability property.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Almost everywhere strong summability of double Walsh-Fourier series","attachmentId":108260131,"attachmentType":"pdf","work_url":"https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="68923983" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923983/On_the_divergence_of_N%C3%B6rlund_logarithmic_means_of_Walsh_Fourier_series">On the divergence of Nörlund logarithmic means of Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Acta Mathematica Sinica, English Series, 2009</p><p class="ds-related-work--abstract ds2-5-body-sm">It is well known in the literature that the logarithmic means 1 log n n−1 k=1 S k (f) k of Walsh or trigonometric Fourier series converge a.e. to the function for each integrable function on the unit interval. This is not the case if we take the partial sums. In this paper we prove that the behavior of the so-called Nörlund logarithmic means 1 log n n−1 k=1 S k (f) n − k is closer to the properties of partial sums in this point of view.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the divergence of Nörlund logarithmic means of Walsh-Fourier series","attachmentId":79223051,"attachmentType":"pdf","work_url":"https://www.academia.edu/68923983/On_the_divergence_of_N%C3%B6rlund_logarithmic_means_of_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68923983/On_the_divergence_of_N%C3%B6rlund_logarithmic_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":79223354,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":79223354,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_79223354" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="122045480" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/122045480/Walsh_Fourier_Series_and_Their_Generalizations_in_Orlicz_Spaces">Walsh–Fourier Series and Their Generalizations in Orlicz Spaces</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="230893575" href="https://independent.academia.edu/CatherineFinet">Catherine Finet</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mathematical Analysis and Applications, 1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Walsh–Fourier Series and Their Generalizations in Orlicz Spaces","attachmentId":116786286,"attachmentType":"pdf","work_url":"https://www.academia.edu/122045480/Walsh_Fourier_Series_and_Their_Generalizations_in_Orlicz_Spaces","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/122045480/Walsh_Fourier_Series_and_Their_Generalizations_in_Orlicz_Spaces"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="5316802" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5316802/Lacunary_Fourier_and_Walsh_Fourier_series_near_L_1">Lacunary Fourier and Walsh-Fourier series near L^1</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2000086" href="https://brown.academia.edu/FrancescoDiPlinio">Francesco Di Plinio</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Lacunary Fourier and Walsh-Fourier series near L^1","attachmentId":32479273,"attachmentType":"pdf","work_url":"https://www.academia.edu/5316802/Lacunary_Fourier_and_Walsh_Fourier_series_near_L_1","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5316802/Lacunary_Fourier_and_Walsh_Fourier_series_near_L_1"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="68924076" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924076/On_the_C_alpha_means_of_quadratic_partial_sums_of_double_Walsh_Kaczmarz_Fourier_series">On the $(C,\alpha)$-means of quadratic partial sums of double Walsh-Kaczmarz-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Georgian Mathematical Journal</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the $(C,\\alpha)$-means of quadratic partial sums of double Walsh-Kaczmarz-Fourier series","attachmentId":79223212,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924076/On_the_C_alpha_means_of_quadratic_partial_sums_of_double_Walsh_Kaczmarz_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924076/On_the_C_alpha_means_of_quadratic_partial_sums_of_double_Walsh_Kaczmarz_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="68924085" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924085/A_remark_on_the_divergence_of_strong_power_means_of_Walsh_Fourier_series">A remark on the divergence of strong power means of Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Mathematical Notes, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A remark on the divergence of strong power means of Walsh-Fourier series","attachmentId":79223443,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924085/A_remark_on_the_divergence_of_strong_power_means_of_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924085/A_remark_on_the_divergence_of_strong_power_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="68923995" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923995/On_the_divergence_of_the_C_1_means_of_double_Walsh_Fourier_series">On the divergence of the (C, 1) means of double Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the divergence of the (C, 1) means of double Walsh-Fourier series","attachmentId":79223023,"attachmentType":"pdf","work_url":"https://www.academia.edu/68923995/On_the_divergence_of_the_C_1_means_of_double_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68923995/On_the_divergence_of_the_C_1_means_of_double_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="79990993" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79990993/Almost_everywhere_convergence_of_a_subsequence_of_logarithmic_means_of_Fourier_series_on_the_group_of_2_adic_integers">Almost everywhere convergence of a subsequence of logarithmic means of Fourier series on the group of 2-adic integers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="142093004" href="https://independent.academia.edu/Istv%C3%A1nBlahota">István Blahota</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Georgian Mathematical Journal, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Almost everywhere convergence of a subsequence of logarithmic means of Fourier series on the group of 2-adic integers","attachmentId":86521090,"attachmentType":"pdf","work_url":"https://www.academia.edu/79990993/Almost_everywhere_convergence_of_a_subsequence_of_logarithmic_means_of_Fourier_series_on_the_group_of_2_adic_integers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/79990993/Almost_everywhere_convergence_of_a_subsequence_of_logarithmic_means_of_Fourier_series_on_the_group_of_2_adic_integers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="68924007" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924007/Divergence_of_the_C_1_means_of_d_dimensional_Walsh_Fourier_series">Divergence of the (C, 1) means of d-dimensional Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2001</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Divergence of the (C, 1) means of d-dimensional Walsh-Fourier series","attachmentId":79223200,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924007/Divergence_of_the_C_1_means_of_d_dimensional_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924007/Divergence_of_the_C_1_means_of_d_dimensional_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="86377209" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/86377209/Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means">Some inequalities related to strong convergence of Riesz logarithmic means</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="127157369" href="https://independent.academia.edu/Tutberidze">Giorgi Tutberidze</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Inequalities and Applications, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Some inequalities related to strong convergence of Riesz logarithmic means","attachmentId":90843386,"attachmentType":"pdf","work_url":"https://www.academia.edu/86377209/Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/86377209/Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="110444357" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/110444357/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series">Almost everywhere convergence of a subsequence of the logarithmic means of Vilenkin-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Facta universitatis. Series electronics and energetics, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Almost everywhere convergence of a subsequence of the logarithmic means of Vilenkin-Fourier series","attachmentId":108260151,"attachmentType":"pdf","work_url":"https://www.academia.edu/110444357/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/110444357/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="68924086" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924086/On_everywhere_divergence_of_the_strong_%CE%A6_means_of_Walsh_Fourier_series">On everywhere divergence of the strong Φ-means of Walsh–Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mathematical Analysis and Applications, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On everywhere divergence of the strong Φ-means of Walsh–Fourier series","attachmentId":79223537,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924086/On_everywhere_divergence_of_the_strong_%CE%A6_means_of_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924086/On_everywhere_divergence_of_the_strong_%CE%A6_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="6119563" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/6119563/Strong_means_and_the_oscillation_of_multiple_Fourier_Walsh_series">Strong means and the oscillation of multiple Fourier-Walsh series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="9266195" href="https://bakustate.academia.edu/VladimirRodin">Vladimir Rodin</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Mathematical Notes, 1994</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Strong means and the oscillation of multiple Fourier-Walsh series","attachmentId":49010905,"attachmentType":"pdf","work_url":"https://www.academia.edu/6119563/Strong_means_and_the_oscillation_of_multiple_Fourier_Walsh_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/6119563/Strong_means_and_the_oscillation_of_multiple_Fourier_Walsh_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="68924006" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924006/On_the_Marcinkiewicz_Fej%C3%A9r_means_of_double_Fourier_series_with_respect_to_the_Walsh_Kaczmarz_system">On the Marcinkiewicz-Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Marcinkiewicz-Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system","attachmentId":79223203,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924006/On_the_Marcinkiewicz_Fej%C3%A9r_means_of_double_Fourier_series_with_respect_to_the_Walsh_Kaczmarz_system","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924006/On_the_Marcinkiewicz_Fej%C3%A9r_means_of_double_Fourier_series_with_respect_to_the_Walsh_Kaczmarz_system"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="110444351" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series">Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh–Fourier Series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Fourier Analysis and Applications, 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh–Fourier Series","attachmentId":108260147,"attachmentType":"pdf","work_url":"https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="110444339" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series">On everywhere divergence of the strong $\Phi$-means of Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On everywhere divergence of the strong $\\Phi$-means of Walsh-Fourier series","attachmentId":108260144,"attachmentType":"pdf","work_url":"https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="110444355" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/110444355/Almost_everywhere_convergence_and_divergence_of_Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series">Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh–Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Arabian Journal of Mathematics, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh–Fourier series","attachmentId":108260150,"attachmentType":"pdf","work_url":"https://www.academia.edu/110444355/Almost_everywhere_convergence_and_divergence_of_Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/110444355/Almost_everywhere_convergence_and_divergence_of_Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="68924048" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924048/On_almost_everywhere_convergence_and_divergence_of_Marcinkiewicz_like_means_of_integrable_functions_with_respect_to_the_two_dimensional_Walsh_system">On almost everywhere convergence and divergence of Marcinkiewicz-like means of integrable functions with respect to the two-dimensional Walsh system</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Approximation Theory, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On almost everywhere convergence and divergence of Marcinkiewicz-like means of integrable functions with respect to the two-dimensional Walsh system","attachmentId":79223064,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924048/On_almost_everywhere_convergence_and_divergence_of_Marcinkiewicz_like_means_of_integrable_functions_with_respect_to_the_two_dimensional_Walsh_system","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924048/On_almost_everywhere_convergence_and_divergence_of_Marcinkiewicz_like_means_of_integrable_functions_with_respect_to_the_two_dimensional_Walsh_system"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="21953862" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21953862/Cesaro_Summability_of_Double_Walsh_Fourier_Series">Cesaro Summability of Double Walsh-Fourier Series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="43203026" href="https://independent.academia.edu/FerencSchipp">Ferenc Schipp</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Transactions of the American Mathematical Society, 1992</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Cesaro Summability of Double Walsh-Fourier Series","attachmentId":42674062,"attachmentType":"pdf","work_url":"https://www.academia.edu/21953862/Cesaro_Summability_of_Double_Walsh_Fourier_Series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/21953862/Cesaro_Summability_of_Double_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="2724989" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2724989/A_Statistical_Summability_of_Fourier_Series_and_Walsh_Fourier_Series">A-Statistical Summability of Fourier Series and Walsh-Fourier Series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="599035" href="https://amu-in.academia.edu/MMursaleen">M. Mursaleen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A-Statistical Summability of Fourier Series and Walsh-Fourier Series","attachmentId":30703109,"attachmentType":"pdf","work_url":"https://www.academia.edu/2724989/A_Statistical_Summability_of_Fourier_Series_and_Walsh_Fourier_Series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/2724989/A_Statistical_Summability_of_Fourier_Series_and_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="68923984" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923984/Pointwise_convergence_of_cone_like_restricted_two_dimensional_Fej%C3%A9r_means_of_Walsh_Fourier_series">Pointwise convergence of cone-like restricted two-dimensional Fejér means of Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Acta Mathematica Sinica, English Series, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Pointwise convergence of cone-like restricted two-dimensional Fejér means of Walsh-Fourier series","attachmentId":79223364,"attachmentType":"pdf","work_url":"https://www.academia.edu/68923984/Pointwise_convergence_of_cone_like_restricted_two_dimensional_Fej%C3%A9r_means_of_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68923984/Pointwise_convergence_of_cone_like_restricted_two_dimensional_Fej%C3%A9r_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="126166702" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/126166702/On_the_divergence_of_subsequences_of_partial_Walsh_Fourier_sums">On the divergence of subsequences of partial Walsh-Fourier sums</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="298744359" href="https://independent.academia.edu/GiorgiOniani7">Giorgi Oniani</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mathematical Analysis and Applications, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the divergence of subsequences of partial Walsh-Fourier sums","attachmentId":120085343,"attachmentType":"pdf","work_url":"https://www.academia.edu/126166702/On_the_divergence_of_subsequences_of_partial_Walsh_Fourier_sums","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/126166702/On_the_divergence_of_subsequences_of_partial_Walsh_Fourier_sums"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="29415277" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/29415277/A_few_remarks_on_Riesz_summability_of_orthogonal_series">A few remarks on Riesz summability of orthogonal series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="55567278" href="https://racjonalista.academia.edu/Pawe%C5%82Szab%C5%82owski">Paweł J Szabłowski</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the American Mathematical Society, 1991</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A few remarks on Riesz summability of orthogonal series","attachmentId":49858627,"attachmentType":"pdf","work_url":"https://www.academia.edu/29415277/A_few_remarks_on_Riesz_summability_of_orthogonal_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/29415277/A_few_remarks_on_Riesz_summability_of_orthogonal_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="14524342" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/14524342/Absolute_convergence_of_double_Walsh_Fourier_series_and_related_results">Absolute convergence of double Walsh–Fourier series and related results</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33480643" href="https://independent.academia.edu/FerencM%C3%B3ricz">Ferenc Móricz</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33525817" href="https://independent.academia.edu/AntalVeres">Antal Veres</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Acta Mathematica Hungarica, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Absolute convergence of double Walsh–Fourier series and related results","attachmentId":44092452,"attachmentType":"pdf","work_url":"https://www.academia.edu/14524342/Absolute_convergence_of_double_Walsh_Fourier_series_and_related_results","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/14524342/Absolute_convergence_of_double_Walsh_Fourier_series_and_related_results"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="68924072" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924072/Convergence_and_divergence_of_Fej%C3%A9r_means_of_Fourier_series_on_one_and_two_dimensional_Walsh_and_Vilenkin_groups">Convergence and divergence of Fejér means of Fourier series on one and two-dimensional Walsh and Vilenkin groups</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Facta universitatis - series: Electronics and Energetics, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Convergence and divergence of Fejér means of Fourier series on one and two-dimensional Walsh and Vilenkin groups","attachmentId":79223192,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924072/Convergence_and_divergence_of_Fej%C3%A9r_means_of_Fourier_series_on_one_and_two_dimensional_Walsh_and_Vilenkin_groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924072/Convergence_and_divergence_of_Fej%C3%A9r_means_of_Fourier_series_on_one_and_two_dimensional_Walsh_and_Vilenkin_groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="23" data-entity-id="68924066" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924066/Summation_of_Walsh_Fourier_Series_Convergence_and_Divergence">Summation of Walsh-Fourier Series, Convergence and Divergence</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Summation of Walsh-Fourier Series, Convergence and Divergence","attachmentId":79223038,"attachmentType":"pdf","work_url":"https://www.academia.edu/68924066/Summation_of_Walsh_Fourier_Series_Convergence_and_Divergence","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924066/Summation_of_Walsh_Fourier_Series_Convergence_and_Divergence"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="24" data-entity-id="123076969" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/123076969/Norm_and_almost_everywhere_convergence_of_matrix_transform_means_of_Walsh_Fourier_series">Norm and almost everywhere convergence of matrix transform means of Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="142093004" href="https://independent.academia.edu/Istv%C3%A1nBlahota">István Blahota</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Acta Universitatis Sapientiae: Mathematica, 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Norm and almost everywhere convergence of matrix transform means of Walsh-Fourier series","attachmentId":117597626,"attachmentType":"pdf","work_url":"https://www.academia.edu/123076969/Norm_and_almost_everywhere_convergence_of_matrix_transform_means_of_Walsh_Fourier_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/123076969/Norm_and_almost_everywhere_convergence_of_matrix_transform_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="518958" href="https://www.academia.edu/Documents/in/Mathematical_Analysis_and_Applications">Mathematical Analysis and Applic...</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1237788" href="https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering">Electrical And Electronic Engine...</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>