CINXE.COM
Giorgi Tutberidze - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Giorgi Tutberidze - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="F-scFLoe3ZjFLivXkTgjJq4B5e7qbOJaIENz6HRXr9qUqNzW9IdI6zVp6Nj1ZDDFuVrVjrJ1bB8vfHgMrrcwcQ" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze","image":"https://0.academia-photos.com/127157369/37666740/31788622/s200_giorgi.tutberidze.jpg","sameAs":[]},"dateCreated":"2019-09-19T03:49:23-07:00","dateModified":"2024-06-08T21:20:20-07:00","name":"Giorgi Tutberidze","description":"","image":"https://0.academia-photos.com/127157369/37666740/31788622/s200_giorgi.tutberidze.jpg","thumbnailUrl":"https://0.academia-photos.com/127157369/37666740/31788622/s65_giorgi.tutberidze.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/127157369/37666740/31788622/s200_giorgi.tutberidze.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/113754438/Maximal_operators_of_T_means_with_respect_to_the_Vilenkin_system"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="giorgi tutberidze" /> <meta name="description" content="Giorgi Tutberidze: 3 Followers, 1 Following, 10 Research papers. Research interests: Hello.....hoping to meet people all over the world, Czech Literature/Czech…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'ae6493cdbab9fe9cbc27dfcda4500513427e2df5'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13895,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286281131,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743685826000); window.Aedu.timeDifference = new Date().getTime() - 1743685826000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-ea9e09e22b561126b0d4119ad33eee5d92cc3c2c850b903dfd540d5d5bbafa8f.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-7619a748322c52a5dde35876bf9572375d489ce6dc0f5c94eadf71c265acf5fb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/Tutberidze" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-0d4749eb637d9acf3f125ef24206483a8378882ab36d57629c053436c6027b15.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze","photo":"https://0.academia-photos.com/127157369/37666740/31788622/s65_giorgi.tutberidze.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":273384,"name":"Hello.....hoping to meet people all over the world","url":"https://www.academia.edu/Documents/in/Hello.....hoping_to_meet_people_all_over_the_world"},{"id":18049,"name":"Czech Literature/Czech Culture/Language","url":"https://www.academia.edu/Documents/in/Czech_Literature_Czech_Culture_Language"},{"id":642622,"name":"Metodologia Científica","url":"https://www.academia.edu/Documents/in/Metodologia_Cient%C3%ADfica"},{"id":273611,"name":"Inglés","url":"https://www.academia.edu/Documents/in/Ingl%C3%A9s"},{"id":52387,"name":"Chinese minorities","url":"https://www.academia.edu/Documents/in/Chinese_minorities"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/Tutberidze","location":"/Tutberidze","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/Tutberidze","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-4cd093d5-0c01-4f63-8b71-728d2ea4827c"></div> <div id="ProfileCheckPaperUpdate-react-component-4cd093d5-0c01-4f63-8b71-728d2ea4827c"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Giorgi Tutberidze" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/127157369/37666740/31788622/s200_giorgi.tutberidze.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Giorgi Tutberidze</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Giorgi" data-follow-user-id="127157369" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="127157369"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://huji.academia.edu/MichalBiran"><img class="profile-avatar u-positionAbsolute" alt="Michal Biran related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/239371/16519458/16855399/s200_michal.biran.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://huji.academia.edu/MichalBiran">Michal Biran</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The Hebrew University of Jerusalem</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uzh.academia.edu/%D0%A2%D0%9E%D0%9C%D0%90SGLANC"><img class="profile-avatar u-positionAbsolute" alt="ТОМАS GLANC related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/322926/2639114/40370464/s200__s.glanc.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uzh.academia.edu/%D0%A2%D0%9E%D0%9C%D0%90SGLANC">ТОМАS GLANC</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Zurich, Switzerland</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uruguay.academia.edu/LNicol%C3%A1sGuigou"><img class="profile-avatar u-positionAbsolute" alt="L. Nicolás Guigou related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/692300/367799/19633589/s200_l._nicol_s.guigou.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uruguay.academia.edu/LNicol%C3%A1sGuigou">L. Nicolás Guigou</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad de la República</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://deu.academia.edu/ErhanAyd%C4%B1n"><img class="profile-avatar u-positionAbsolute" alt="Erhan Aydın related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/718026/244580/23305120/s200_erhan.ayd_n.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://deu.academia.edu/ErhanAyd%C4%B1n">Erhan Aydın</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Dokuz Eylül University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://maringa.academia.edu/DanteMedeiros"><img class="profile-avatar u-positionAbsolute" alt="Dante Medeiros related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/2768816/901150/1126112/s200_dante.medeiros.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://maringa.academia.edu/DanteMedeiros">Dante Medeiros</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade Estadual de Maringa</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://kuleuven.academia.edu/MarioCams%E5%BA%B7%E8%A8%80"><img class="profile-avatar u-positionAbsolute" alt="Mario Cams 康言 related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/3261508/1075960/18750989/s200_mario.cams_.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://kuleuven.academia.edu/MarioCams%E5%BA%B7%E8%A8%80">Mario Cams 康言</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">KU Leuven</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://iscedhuila.academia.edu/TomasYambi"><img class="profile-avatar u-positionAbsolute" alt="Tomas Yambi related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/5005253/2172206/12928767/s200_tomas.yambi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://iscedhuila.academia.edu/TomasYambi">Tomas Yambi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">ISCED-Huíla</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://spbu.academia.edu/VictorZakharov"><img class="profile-avatar u-positionAbsolute" alt="Victor Zakharov related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/12563326/3585036/4206666/s200_victor.zakharov.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://spbu.academia.edu/VictorZakharov">Victor Zakharov</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Saint-Petersburg State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://fgbueno.academia.edu/CarlosMMadridCasado"><img class="profile-avatar u-positionAbsolute" alt="Carlos M. Madrid Casado related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/31048960/9118409/10169618/s200_carlos_m..madrid_casado.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://fgbueno.academia.edu/CarlosMMadridCasado">Carlos M. Madrid Casado</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://cas-cz.academia.edu/BohumilVykyp%C4%9Bl"><img class="profile-avatar u-positionAbsolute" alt="Bohumil Vykypěl related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/32096954/9588992/10681405/s200_bohumil.vykyp_l.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cas-cz.academia.edu/BohumilVykyp%C4%9Bl">Bohumil Vykypěl</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Academy of Sciences of the Czech Republic</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Giorgi Tutberidze</h3></div><div class="js-work-strip profile--work_container" data-work-id="113754438"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/113754438/Maximal_operators_of_T_means_with_respect_to_the_Vilenkin_system"><img alt="Research paper thumbnail of Maximal operators of T means with respect to the Vilenkin system" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Maximal operators of T means with respect to the Vilenkin system</div><div class="wp-workCard_item"><span>Nonlinear Studies</span><span>, Nov 24, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113754438"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113754438"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113754438; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113754438]").text(description); $(".js-view-count[data-work-id=113754438]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113754438; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113754438']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=113754438]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113754438,"title":"Maximal operators of T means with respect to the Vilenkin system","translated_title":"","metadata":{"publication_date":{"day":24,"month":11,"year":2020,"errors":{}},"publication_name":"Nonlinear Studies"},"translated_abstract":null,"internal_url":"https://www.academia.edu/113754438/Maximal_operators_of_T_means_with_respect_to_the_Vilenkin_system","translated_internal_url":"","created_at":"2024-01-19T18:02:17.380-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Maximal_operators_of_T_means_with_respect_to_the_Vilenkin_system","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":91070,"name":"Inequality","url":"https://www.academia.edu/Documents/in/Inequality"},{"id":171883,"name":"Nonlinear Studies","url":"https://www.academia.edu/Documents/in/Nonlinear_Studies"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-113754438-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="93141645"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93141645/A_study_of_bounded_operators_on_martingale_Hardy_spaces"><img alt="Research paper thumbnail of A study of bounded operators on martingale Hardy spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/95961550/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93141645/A_study_of_bounded_operators_on_martingale_Hardy_spaces">A study of bounded operators on martingale Hardy spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The classical Fourier Analysis has been developed in an almost unbelievable way from the first fu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The classical Fourier Analysis has been developed in an almost unbelievable way from the first fundamental discoveries by Fourier. Especially a number of wonderful results have been proved and new directions of such research has been developed e.g. concerning Wavelets Theory, Gabor Theory, Time-Frequency Analysis, Fast Fourier Transform, Abstract Harmonic Analysis, etc. One important reason for this is that this development is not only important for improving the &quot;State of the art&quot;, but also for its importance in other areas of mathematics and also for several applications (e.g. theory of signal transmission, multiplexing, filtering, image enhancement, coding theory, digital signal processing and pattern recognition). The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. The development of the theory of Vilenkin-Fourier series has been strongly...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ecfdf23b2d83a5e48d74129e5a9be92" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":95961550,"asset_id":93141645,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/95961550/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93141645"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93141645"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93141645; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93141645]").text(description); $(".js-view-count[data-work-id=93141645]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93141645; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93141645']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ecfdf23b2d83a5e48d74129e5a9be92" } } $('.js-work-strip[data-work-id=93141645]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93141645,"title":"A study of bounded operators on martingale Hardy spaces","translated_title":"","metadata":{"abstract":"The classical Fourier Analysis has been developed in an almost unbelievable way from the first fundamental discoveries by Fourier. Especially a number of wonderful results have been proved and new directions of such research has been developed e.g. concerning Wavelets Theory, Gabor Theory, Time-Frequency Analysis, Fast Fourier Transform, Abstract Harmonic Analysis, etc. One important reason for this is that this development is not only important for improving the \u0026quot;State of the art\u0026quot;, but also for its importance in other areas of mathematics and also for several applications (e.g. theory of signal transmission, multiplexing, filtering, image enhancement, coding theory, digital signal processing and pattern recognition). The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. The development of the theory of Vilenkin-Fourier series has been strongly...","publisher":"'Allerton Press'","publication_date":{"day":13,"month":12,"year":2021,"errors":{}}},"translated_abstract":"The classical Fourier Analysis has been developed in an almost unbelievable way from the first fundamental discoveries by Fourier. Especially a number of wonderful results have been proved and new directions of such research has been developed e.g. concerning Wavelets Theory, Gabor Theory, Time-Frequency Analysis, Fast Fourier Transform, Abstract Harmonic Analysis, etc. One important reason for this is that this development is not only important for improving the \u0026quot;State of the art\u0026quot;, but also for its importance in other areas of mathematics and also for several applications (e.g. theory of signal transmission, multiplexing, filtering, image enhancement, coding theory, digital signal processing and pattern recognition). The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. The development of the theory of Vilenkin-Fourier series has been strongly...","internal_url":"https://www.academia.edu/93141645/A_study_of_bounded_operators_on_martingale_Hardy_spaces","translated_internal_url":"","created_at":"2022-12-18T00:56:51.048-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95961550,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95961550/thumbnails/1.jpg","file_name":"489822946.pdf","download_url":"https://www.academia.edu/attachments/95961550/download_file","bulk_download_file_name":"A_study_of_bounded_operators_on_martinga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95961550/489822946-libre.pdf?1671354456=\u0026response-content-disposition=attachment%3B+filename%3DA_study_of_bounded_operators_on_martinga.pdf\u0026Expires=1743686111\u0026Signature=Re5CXGcAA2N6r2K3aFSvaBYGq8bPNoxbxU9vHoDY628k1A1R0Ddu0L02uNLBohsdrggtqfVkXOjVtwUrMkerdROigiR5uQiies2F4jHPNFOpw~Dzrt6zP9STnWbIVaz4hMSEQs~JFptFnDruhB77O7POj6sWJpNRqZW8olc4H~w66gAlhOcZoO~s9K7BFpJa8PGJSE8XQNij24H7y9AaARQqtWkcoKWeEoROVrL-SE9RAtPRXtQiI1qOvHeQg1nCRizKCksHbkyOmmMy7eX8vu7j9pCqrlft372UmLryMxBssYOaVpXVd~euyg2ZlK2ay58LdDX97ja87FxTw0oYVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_study_of_bounded_operators_on_martingale_Hardy_spaces","translated_slug":"","page_count":171,"language":"en","content_type":"Work","summary":"The classical Fourier Analysis has been developed in an almost unbelievable way from the first fundamental discoveries by Fourier. Especially a number of wonderful results have been proved and new directions of such research has been developed e.g. concerning Wavelets Theory, Gabor Theory, Time-Frequency Analysis, Fast Fourier Transform, Abstract Harmonic Analysis, etc. One important reason for this is that this development is not only important for improving the \u0026quot;State of the art\u0026quot;, but also for its importance in other areas of mathematics and also for several applications (e.g. theory of signal transmission, multiplexing, filtering, image enhancement, coding theory, digital signal processing and pattern recognition). The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. The development of the theory of Vilenkin-Fourier series has been strongly...","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":95961550,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95961550/thumbnails/1.jpg","file_name":"489822946.pdf","download_url":"https://www.academia.edu/attachments/95961550/download_file","bulk_download_file_name":"A_study_of_bounded_operators_on_martinga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95961550/489822946-libre.pdf?1671354456=\u0026response-content-disposition=attachment%3B+filename%3DA_study_of_bounded_operators_on_martinga.pdf\u0026Expires=1743686111\u0026Signature=Re5CXGcAA2N6r2K3aFSvaBYGq8bPNoxbxU9vHoDY628k1A1R0Ddu0L02uNLBohsdrggtqfVkXOjVtwUrMkerdROigiR5uQiies2F4jHPNFOpw~Dzrt6zP9STnWbIVaz4hMSEQs~JFptFnDruhB77O7POj6sWJpNRqZW8olc4H~w66gAlhOcZoO~s9K7BFpJa8PGJSE8XQNij24H7y9AaARQqtWkcoKWeEoROVrL-SE9RAtPRXtQiI1qOvHeQg1nCRizKCksHbkyOmmMy7eX8vu7j9pCqrlft372UmLryMxBssYOaVpXVd~euyg2ZlK2ay58LdDX97ja87FxTw0oYVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":95961551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95961551/thumbnails/1.jpg","file_name":"489822946.pdf","download_url":"https://www.academia.edu/attachments/95961551/download_file","bulk_download_file_name":"A_study_of_bounded_operators_on_martinga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95961551/489822946-libre.pdf?1671354470=\u0026response-content-disposition=attachment%3B+filename%3DA_study_of_bounded_operators_on_martinga.pdf\u0026Expires=1743686111\u0026Signature=BBYAm31NoymKarrOVRhqDmYb0Hd7kspa3axZiYivKa1CYPYV511-pvduVWyhYH36HhvoT~Khk04xCp9GRfSPZ5xgrlSbx892zZYNKTVpOaXyXZIsLRzvxVA4xnRvkgUKwFbXiuM1lOgA74q-jYrr6M4Kfz4d7buFgJXYnYQG7k1JAzhieAGz2u8WTxQ9JlU--wnVlQHG8bsq5m3eIYZQlhDf7lo~6etBf0mt1BjnNYyFzadI6Ccq1IvFe8BqzP779gLn02KAkv6nrYQfR48i0DjfkhildJyY7NLmO~huj4Qqtx6n2kaLjQVafqJeTWMlBSXvq40wgyeT8~0MW-aBCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1188947,"name":"D","url":"https://www.academia.edu/Documents/in/D-351414216"},{"id":1188997,"name":"C","url":"https://www.academia.edu/Documents/in/C"},{"id":1194168,"name":"B","url":"https://www.academia.edu/Documents/in/B"},{"id":2760784,"name":"doktor","url":"https://www.academia.edu/Documents/in/doktor"}],"urls":[{"id":27154931,"url":"https://core.ac.uk/download/489822946.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-93141645-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377259"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377259/Bounded_operators_on_Martingale_Hardy_spaces"><img alt="Research paper thumbnail of Bounded operators on Martingale Hardy spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/90843464/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377259/Bounded_operators_on_Martingale_Hardy_spaces">Bounded operators on Martingale Hardy spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of my thesis is to discuss, develop and apply the newest developments of this fascinating...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of my thesis is to discuss, develop and apply the newest developments of this fascinating theory connected to modern harmonic analysis. In particular, we investigate some strong convergence result of partial sums of Vilenkin-Fourier series. Moreover, we derive necessary and sufficient conditions for the modulus of continuity so that norm convergence of subsequences of Fejér means is valid. Furthermore, we consider Riesz and Nörlund logarithmic means. It is also proved that these results are the best possible in a special sense. As applications both some well-known and new results are pointed out. In addition, we investigate some $T$ means, which are &quot;inverse&quot; summability methods of Nörlund, but only in the case when their coefficients are monotone.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-86377259-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-86377259-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431783/figure-20-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_020.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431772/figure-17-proof-since-sequence-is-non-increasing-number-we"><img alt="Proof: Since sequence is non-increasing number we get that If we apply (3.15) and (3.16) in Lemma 3.1 we immediately get that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_017.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431777/figure-18-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_018.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431779/figure-19-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_019.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431786/figure-21-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_021.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431787/figure-22-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_022.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431789/figure-23-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_023.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431790/figure-24-without-lost-the-generality-we-may-assume-that-in"><img alt="Without lost the generality we may assume that c = 1 in (3.23). By combining (3.32) and (3.33) we get " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_024.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431791/figure-25-number-of-special-cases-of-our-results-are-of"><img alt="A number of special cases of our results are of particular interest and give both well- known and new information. We just give the following examples of such 7’ means with non-increasing sequence {q, : k > 0}: " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_025.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431763/figure-13-lemma-let-and-be-sequence-of-non-increasing"><img alt="Lemma 3.2 Let n © N and {q, : k © N} be a sequence of non-increasing numbers, or non-decreasing function satisfying condition (3.13). Then Moreover, if f € Hy/2 and {a : k > 0} be a sequence of non-increasing numbers, sat- isfying the condition (3.13), then there exists an absolute constant c, such that the inequality " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_013.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431765/figure-14-lemma-let-be-sequence-of-non-increasing-numbers"><img alt="Lemma 3.3 Let {q, : k € N} be a sequence of non-increasing numbers andn > My. Ther " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_014.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431768/figure-15-proof-since-sequence-is-non-increasing-number-we"><img alt="Proof: Since sequence is non-increasing number we get that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_015.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431739/figure-1-it-is-well-known-that-for-all"><img alt="It is well-known that for all n € N, " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431741/figure-2-we-state-well-known-equalities-for-dirichlet"><img alt="We state well-known equalities for Dirichlet kernels (for details see e.g. [62] and [112]): is finite. It is well known that L” is a Banach space for each 1 < p < on. is finite. Let L© represent the collection of f € L° for which " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431743/figure-3-kernels-of-norlund-logarithmic-mean-and-riesz"><img alt="Kernels of Norlund logarithmic mean and Riesz logarithmic mean are respectively de- ~~. J ke, " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431744/figure-4-as-corollary-we-also-get-that-that-if-hy-then"><img alt="As a corollary we also get that that if f € Hy /2, then " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431745/figure-5-in-blahota-and-tephnadze-also-considered-the"><img alt="In Blahota and Tephnadze [13] also considered the endpoint case p = 1/2 and they proved that if f € H,2 then there exists an absolute constant c such that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431746/figure-6-since-if-we-use-the-estimates-above-then-we-obtain"><img alt="Since m;_; <1; — 2 if we use the estimates above, then we obtain that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431747/figure-7-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431749/figure-8-hence-by-applying-we-find-that"><img alt="Hence, by applying (1.14) we find that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431751/figure-9-without-loss-the-generality-we-may-assume-that-let"><img alt="Without loss the generality we may assume that? < 7. Let x € ie and 7 < (nz). Then x —t € I,? fort € Iy and, according to (1.9), we obtain that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431755/figure-10-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431756/figure-11-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431760/figure-12-hence-for-sufficiently-large-we-can-write-that"><img alt="Hence, for sufficiently large k, we can write that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_012.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431769/figure-16-lemma-let-my-and-be-sequence-of-non-increasing"><img alt="Lemma 3.5 Let n > My and {q, : k © N} be a sequence of non-increasing number satisfying condition (3.43). Then " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_016.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431793/figure-26-if-we-apply-according-that-is-bounded-from-the"><img alt="If we apply (3.38), according that o* is bounded from the Hardy space Hj 2 to the space weak — L1/2, we can conclude that the maximal operators 7™* of all J’ means with non- decreasing sequence {q, : k > 0} satisfying the condition 3.37 are bounded from the Hardy space Hj /2 to the space weak — L1/2. The proof of part a) is complete. According to (3.34), (3.35) and (3.36) we can conclude that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_026.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431794/figure-27-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_027.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431796/figure-28-proof-let-the-sequence-be-non-decreasing"><img alt="Proof: Let the sequence {q, : k > 0} be non-decreasing satisfying the condition (3.40). 3y combining (3.15) and (3.17) we get that Then all such T means are bounded from the Hardy space H,, to the space L, " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_028.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431798/figure-29-let-by-using-we-find-that"><img alt="Let 0 < p < 1/2. By using (1.1), (3.47), (3.48) we find that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_029.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431800/figure-30-let-and-be-means-with-non-increasing-coefficients"><img alt="Let p = 1/2 and T;, be T means, with non-increasing coefficients {q, : k > O}, sat- isfying condition (3.43). By Lemma 1.3, the proof of part b) will be complete, if we show that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_030.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431802/figure-31-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_031.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431804/figure-32-hence-by-simple-calculation-we-can-conclude-that"><img alt="Hence, by simple calculation we can conclude that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_032.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431806/figure-33-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_033.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431807/figure-34-by-combining-for-and-we-find-that"><img alt="By combining (4.2), (4.23)-(4.28) for € I2(e9 + e1) and 0 < p < 1/2 we find that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_034.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431809/figure-35-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_035.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431811/figure-36-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_036.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431813/figure-37-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_037.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431817/figure-38-for-all-lebesgue-points-of-by-using-we-can"><img alt="for all Lebesgue points of f € L,(G,,). By using (1.2) we can conclude that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_038.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431822/table-1-the-proof-of-lemma-can-be-found-in-tephnadze"><img alt="The proof of Lemma can be found in Tephnadze [143]. " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/table_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-86377259-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9fff3e7b8016f2b7e0251fcebf4ab21f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843464,"asset_id":86377259,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843464/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377259"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377259"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377259; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377259]").text(description); $(".js-view-count[data-work-id=86377259]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377259; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377259']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9fff3e7b8016f2b7e0251fcebf4ab21f" } } $('.js-work-strip[data-work-id=86377259]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377259,"title":"Bounded operators on Martingale Hardy spaces","translated_title":"","metadata":{"abstract":"The aim of my thesis is to discuss, develop and apply the newest developments of this fascinating theory connected to modern harmonic analysis. In particular, we investigate some strong convergence result of partial sums of Vilenkin-Fourier series. Moreover, we derive necessary and sufficient conditions for the modulus of continuity so that norm convergence of subsequences of Fejér means is valid. Furthermore, we consider Riesz and Nörlund logarithmic means. It is also proved that these results are the best possible in a special sense. As applications both some well-known and new results are pointed out. In addition, we investigate some $T$ means, which are \u0026quot;inverse\u0026quot; summability methods of Nörlund, but only in the case when their coefficients are monotone.","publisher":"arXiv","ai_title_tag":"Bounded Operators and Convergence in Martingale Hardy Spaces","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"The aim of my thesis is to discuss, develop and apply the newest developments of this fascinating theory connected to modern harmonic analysis. In particular, we investigate some strong convergence result of partial sums of Vilenkin-Fourier series. Moreover, we derive necessary and sufficient conditions for the modulus of continuity so that norm convergence of subsequences of Fejér means is valid. Furthermore, we consider Riesz and Nörlund logarithmic means. It is also proved that these results are the best possible in a special sense. As applications both some well-known and new results are pointed out. In addition, we investigate some $T$ means, which are \u0026quot;inverse\u0026quot; summability methods of Nörlund, but only in the case when their coefficients are monotone.","internal_url":"https://www.academia.edu/86377259/Bounded_operators_on_Martingale_Hardy_spaces","translated_internal_url":"","created_at":"2022-09-09T15:12:32.604-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843464/thumbnails/1.jpg","file_name":"2201.12134v3.pdf","download_url":"https://www.academia.edu/attachments/90843464/download_file","bulk_download_file_name":"Bounded_operators_on_Martingale_Hardy_sp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843464/2201.12134v3-libre.pdf?1662763582=\u0026response-content-disposition=attachment%3B+filename%3DBounded_operators_on_Martingale_Hardy_sp.pdf\u0026Expires=1743686111\u0026Signature=Iy~7cRdk0PL~f0vGbC6q-9a2PzCo-syOdI3Dlp5SbOGi6gtIue-~AN8pjQy~1yZ4IBRPX-PDG-ONHYgZGKfXCI7FUrFNLCdYDbaI8pYFnGEs5v7LRbp41zt8TCz7vBLQjHXfaVcjkKwVrEbOXE11nrOYFEvC3RLYyvo0eVq27wi~z0J7JAtY6LQ~nOfej5UTlLQ9J4g00Fl7CABaftNZAqmfg7uQxJHXzPrFCHIgwrdEvybWqEGieDue~OeGaeGVdwSR3Svb5rF3gaiuaBw59hSOxr3MfRCt5OG-8J~ltk2-Z9k6~8jIbDkUfp3A6HUvMwXWJI~G1QyjtFLqhdWkcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bounded_operators_on_Martingale_Hardy_spaces","translated_slug":"","page_count":134,"language":"en","content_type":"Work","summary":"The aim of my thesis is to discuss, develop and apply the newest developments of this fascinating theory connected to modern harmonic analysis. In particular, we investigate some strong convergence result of partial sums of Vilenkin-Fourier series. Moreover, we derive necessary and sufficient conditions for the modulus of continuity so that norm convergence of subsequences of Fejér means is valid. Furthermore, we consider Riesz and Nörlund logarithmic means. It is also proved that these results are the best possible in a special sense. As applications both some well-known and new results are pointed out. In addition, we investigate some $T$ means, which are \u0026quot;inverse\u0026quot; summability methods of Nörlund, but only in the case when their coefficients are monotone.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843464/thumbnails/1.jpg","file_name":"2201.12134v3.pdf","download_url":"https://www.academia.edu/attachments/90843464/download_file","bulk_download_file_name":"Bounded_operators_on_Martingale_Hardy_sp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843464/2201.12134v3-libre.pdf?1662763582=\u0026response-content-disposition=attachment%3B+filename%3DBounded_operators_on_Martingale_Hardy_sp.pdf\u0026Expires=1743686111\u0026Signature=Iy~7cRdk0PL~f0vGbC6q-9a2PzCo-syOdI3Dlp5SbOGi6gtIue-~AN8pjQy~1yZ4IBRPX-PDG-ONHYgZGKfXCI7FUrFNLCdYDbaI8pYFnGEs5v7LRbp41zt8TCz7vBLQjHXfaVcjkKwVrEbOXE11nrOYFEvC3RLYyvo0eVq27wi~z0J7JAtY6LQ~nOfej5UTlLQ9J4g00Fl7CABaftNZAqmfg7uQxJHXzPrFCHIgwrdEvybWqEGieDue~OeGaeGVdwSR3Svb5rF3gaiuaBw59hSOxr3MfRCt5OG-8J~ltk2-Z9k6~8jIbDkUfp3A6HUvMwXWJI~G1QyjtFLqhdWkcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":893194,"name":"Inverse","url":"https://www.academia.edu/Documents/in/Inverse"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-86377259-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377258"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377258/a_e_Convergence_of_N%C3%B6rlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions"><img alt="Research paper thumbnail of a.e. Convergence of Nörlund means with respect to Vilenkin systems of integrable functions" class="work-thumbnail" src="https://attachments.academia-assets.com/90843430/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377258/a_e_Convergence_of_N%C3%B6rlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions">a.e. Convergence of Nörlund means with respect to Vilenkin systems of integrable functions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coeffi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise and norm convergence in L_p norms of such Nörlund means.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="adef441297e20248975f6c10a132c006" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843430,"asset_id":86377258,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843430/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377258"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377258"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377258; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377258]").text(description); $(".js-view-count[data-work-id=86377258]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377258; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377258']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "adef441297e20248975f6c10a132c006" } } $('.js-work-strip[data-work-id=86377258]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377258,"title":"a.e. Convergence of Nörlund means with respect to Vilenkin systems of integrable functions","translated_title":"","metadata":{"abstract":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise and norm convergence in L_p norms of such Nörlund means.","publication_date":{"day":1,"month":7,"year":2021,"errors":{}}},"translated_abstract":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise and norm convergence in L_p norms of such Nörlund means.","internal_url":"https://www.academia.edu/86377258/a_e_Convergence_of_N%C3%B6rlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions","translated_internal_url":"","created_at":"2022-09-09T15:12:32.410-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843430/thumbnails/1.jpg","file_name":"2107.02898v1.pdf","download_url":"https://www.academia.edu/attachments/90843430/download_file","bulk_download_file_name":"a_e_Convergence_of_Norlund_means_with_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843430/2107.02898v1-libre.pdf?1662763563=\u0026response-content-disposition=attachment%3B+filename%3Da_e_Convergence_of_Norlund_means_with_re.pdf\u0026Expires=1743686111\u0026Signature=DAYa-MXAoNoPpqHTFNsn6haNeDxGb9-fudRpX5L~zzSIhKIfv2cea6hVEzF6slchcIXw8wWLQ-yqb9XA12Jd~HXTER6G5e5L-nDxP-ZL5SiZXG65zU9wVEXdlnACzpM2jd-z2C-uGdb7LPN3mPobREo3~AI65A1FfgIS5BRUzSi1~D3Odmk7nK0LrE9an2auT~stms3pd4wqhFhlpAAdlOgrRQZ8P~fIBvt1ZiYT2OtZyC2oF0-qTrhHbpIfLb5JIyrdfsVGlpMlJveY6FN9ZXx-l9GZ2noQTsw7Wo~1m3s04Wd5OWWw8P8N-jONX5v4Fkr4I6BQqHSs20KGnB-xSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"a_e_Convergence_of_Nörlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise and norm convergence in L_p norms of such Nörlund means.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843430/thumbnails/1.jpg","file_name":"2107.02898v1.pdf","download_url":"https://www.academia.edu/attachments/90843430/download_file","bulk_download_file_name":"a_e_Convergence_of_Norlund_means_with_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843430/2107.02898v1-libre.pdf?1662763563=\u0026response-content-disposition=attachment%3B+filename%3Da_e_Convergence_of_Norlund_means_with_re.pdf\u0026Expires=1743686111\u0026Signature=DAYa-MXAoNoPpqHTFNsn6haNeDxGb9-fudRpX5L~zzSIhKIfv2cea6hVEzF6slchcIXw8wWLQ-yqb9XA12Jd~HXTER6G5e5L-nDxP-ZL5SiZXG65zU9wVEXdlnACzpM2jd-z2C-uGdb7LPN3mPobREo3~AI65A1FfgIS5BRUzSi1~D3Odmk7nK0LrE9an2auT~stms3pd4wqhFhlpAAdlOgrRQZ8P~fIBvt1ZiYT2OtZyC2oF0-qTrhHbpIfLb5JIyrdfsVGlpMlJveY6FN9ZXx-l9GZ2noQTsw7Wo~1m3s04Wd5OWWw8P8N-jONX5v4Fkr4I6BQqHSs20KGnB-xSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":90843429,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843429/thumbnails/1.jpg","file_name":"2107.02898v1.pdf","download_url":"https://www.academia.edu/attachments/90843429/download_file","bulk_download_file_name":"a_e_Convergence_of_Norlund_means_with_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843429/2107.02898v1-libre.pdf?1662763567=\u0026response-content-disposition=attachment%3B+filename%3Da_e_Convergence_of_Norlund_means_with_re.pdf\u0026Expires=1743686111\u0026Signature=OQCKNXMjR6rmb6LWenFrjfzYHgQBuQrh3i~3bHga0O4y1Neuo4oKMMk1DsIPhzOOgf7oS6FhRVz~RlTspXnVDB0OC2qrvgJssH9tUBWCO4rshxwIwpWMmFT19AQ7BT1N~7CdcvOx0TJosPADbuSL85sBRZtzEpjLzprVITZLYc1NaMmq9GWDRHgIsrXWUX5ZHhTzyqLgQ4w~b5GZbvkQfMAGpSgoCk4v3mbyIHrV4SCxVIesI3i6VaL-7x6pNuPNdEOghIYPBSQCCJnh36lyaGY20nHiZZyIlDc6bpypABuncZwOOqqdFrnKFATXduMMOkkIhAvbU40fdMS7b7Psaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":23718435,"url":"https://arxiv.org/pdf/2107.02898v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-86377258-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377257"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377257/On_the_strong_convergence_of_partial_sums_with_respect_to_bounded_Vilenkin_systems"><img alt="Research paper thumbnail of On the strong convergence of partial sums with respect to bounded Vilenkin systems" class="work-thumbnail" src="https://attachments.academia-assets.com/90843462/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377257/On_the_strong_convergence_of_partial_sums_with_respect_to_bounded_Vilenkin_systems">On the strong convergence of partial sums with respect to bounded Vilenkin systems</a></div><div class="wp-workCard_item"><span>arXiv: Classical Analysis and ODEs</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we investigate some strong convergence theorems for partial sums with respect to Vi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we investigate some strong convergence theorems for partial sums with respect to Vilenkin system.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d76064d19bae819feb00b12fc6e2e55" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843462,"asset_id":86377257,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843462/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377257"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377257"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377257; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377257]").text(description); $(".js-view-count[data-work-id=86377257]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377257; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377257']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d76064d19bae819feb00b12fc6e2e55" } } $('.js-work-strip[data-work-id=86377257]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377257,"title":"On the strong convergence of partial sums with respect to bounded Vilenkin systems","translated_title":"","metadata":{"abstract":"In this paper we investigate some strong convergence theorems for partial sums with respect to Vilenkin system.","ai_title_tag":"Strong Convergence in Vilenkin Systems","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"arXiv: Classical Analysis and ODEs"},"translated_abstract":"In this paper we investigate some strong convergence theorems for partial sums with respect to Vilenkin system.","internal_url":"https://www.academia.edu/86377257/On_the_strong_convergence_of_partial_sums_with_respect_to_bounded_Vilenkin_systems","translated_internal_url":"","created_at":"2022-09-09T15:12:32.216-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843462/thumbnails/1.jpg","file_name":"1901.01316v1.pdf","download_url":"https://www.academia.edu/attachments/90843462/download_file","bulk_download_file_name":"On_the_strong_convergence_of_partial_sum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843462/1901.01316v1-libre.pdf?1662763563=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_strong_convergence_of_partial_sum.pdf\u0026Expires=1743686111\u0026Signature=PmI9z8Po4ma-PZXed~PCbxDzfGeoSIrjv7wq7NL67KVpn1QD4il5yfFKOn1gEbVdAZgb~IiZChoCIjajrql~Yf76AZrF0tRf8phs8Y1kdVPCnfh4r-fd1LQd7Hh7MSuIBf3c7RA6f7px~uc8VxTD36v~QK7Xyq1lco1EpFH~CO0G-BSfK8NJ6udxImSePpP2guRcPqGIvi2FkkUMtwQR78Pkb7psO4K5vkEd8Gh62h7ZnWrSwgaCWsaP8aG3XyihBtLkrvaTwrNB7F8FGq8lbThn5bxWcfqdNPkt5RoXvlY9Cqhemi8eCadm5w-cV7dbyzKrPym0xJasAL1tJ9FpGw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_strong_convergence_of_partial_sums_with_respect_to_bounded_Vilenkin_systems","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"In this paper we investigate some strong convergence theorems for partial sums with respect to Vilenkin system.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843462/thumbnails/1.jpg","file_name":"1901.01316v1.pdf","download_url":"https://www.academia.edu/attachments/90843462/download_file","bulk_download_file_name":"On_the_strong_convergence_of_partial_sum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843462/1901.01316v1-libre.pdf?1662763563=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_strong_convergence_of_partial_sum.pdf\u0026Expires=1743686111\u0026Signature=PmI9z8Po4ma-PZXed~PCbxDzfGeoSIrjv7wq7NL67KVpn1QD4il5yfFKOn1gEbVdAZgb~IiZChoCIjajrql~Yf76AZrF0tRf8phs8Y1kdVPCnfh4r-fd1LQd7Hh7MSuIBf3c7RA6f7px~uc8VxTD36v~QK7Xyq1lco1EpFH~CO0G-BSfK8NJ6udxImSePpP2guRcPqGIvi2FkkUMtwQR78Pkb7psO4K5vkEd8Gh62h7ZnWrSwgaCWsaP8aG3XyihBtLkrvaTwrNB7F8FGq8lbThn5bxWcfqdNPkt5RoXvlY9Cqhemi8eCadm5w-cV7dbyzKrPym0xJasAL1tJ9FpGw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23718434,"url":"https://arxiv.org/pdf/1901.01316v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-86377257-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377256"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377256/Lebesgue_and_Vilenkin_Lebesgue_points_and_a_e_Convergence_of_N_orlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions"><img alt="Research paper thumbnail of Lebesgue and Vilenkin-Lebesgue points and a. e. Convergence of N\"orlund means with respect to Vilenkin systems of integrable functions" class="work-thumbnail" src="https://attachments.academia-assets.com/90843431/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377256/Lebesgue_and_Vilenkin_Lebesgue_points_and_a_e_Convergence_of_N_orlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions">Lebesgue and Vilenkin-Lebesgue points and a. e. Convergence of N\"orlund means with respect to Vilenkin systems of integrable functions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coeffi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise convergence and convergence in Lp norms of such Nörlund means. 2000 Mathematics Subject Classification. 42C10, 42B25.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="10a81e4bf46504697ce844564f904220" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843431,"asset_id":86377256,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843431/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377256"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377256"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377256; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377256]").text(description); $(".js-view-count[data-work-id=86377256]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377256; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377256']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "10a81e4bf46504697ce844564f904220" } } $('.js-work-strip[data-work-id=86377256]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377256,"title":"Lebesgue and Vilenkin-Lebesgue points and a. e. Convergence of N\\\"orlund means with respect to Vilenkin systems of integrable functions","translated_title":"","metadata":{"abstract":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise convergence and convergence in Lp norms of such Nörlund means. 2000 Mathematics Subject Classification. 42C10, 42B25.","ai_title_tag":"Nörlund Means Convergence in Vilenkin Systems of Integrable Functions","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise convergence and convergence in Lp norms of such Nörlund means. 2000 Mathematics Subject Classification. 42C10, 42B25.","internal_url":"https://www.academia.edu/86377256/Lebesgue_and_Vilenkin_Lebesgue_points_and_a_e_Convergence_of_N_orlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions","translated_internal_url":"","created_at":"2022-09-09T15:12:32.015-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843431/thumbnails/1.jpg","file_name":"2107.02898v2.pdf","download_url":"https://www.academia.edu/attachments/90843431/download_file","bulk_download_file_name":"Lebesgue_and_Vilenkin_Lebesgue_points_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843431/2107.02898v2-libre.pdf?1662763567=\u0026response-content-disposition=attachment%3B+filename%3DLebesgue_and_Vilenkin_Lebesgue_points_an.pdf\u0026Expires=1743686111\u0026Signature=bDHxO~zTvOVlt1zDUSQJMtPvWfcwiRMArXpRrME2YwLUfNZGzkpY4GN23~YRn5TMSKYv2thDg6txtPQKnZtDD-cRUa59Fs1ejvozO6EKWPwo-OeefKkqkZr5J0UEz9C8l916EtkE07HAYTnrShTxpspyy-ku~x9cmaWWvwWNOuM04yqtAAD44m7gYJbKHkqD~5fZmaN9a2GtPUhjGKGe98uPGqx4QSzYL2pEsl4853Hu17vDJQWh8S1etRQu6OVsWZoOLozYXjApzU4vZ3uuv1dkzUzLfpc8SFw0SO-WPzxoL-ILrW0qUGG37~An8kKiHsIkRCtp-5NPnHj1Z0VwWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lebesgue_and_Vilenkin_Lebesgue_points_and_a_e_Convergence_of_N_orlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise convergence and convergence in Lp norms of such Nörlund means. 2000 Mathematics Subject Classification. 42C10, 42B25.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843431/thumbnails/1.jpg","file_name":"2107.02898v2.pdf","download_url":"https://www.academia.edu/attachments/90843431/download_file","bulk_download_file_name":"Lebesgue_and_Vilenkin_Lebesgue_points_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843431/2107.02898v2-libre.pdf?1662763567=\u0026response-content-disposition=attachment%3B+filename%3DLebesgue_and_Vilenkin_Lebesgue_points_an.pdf\u0026Expires=1743686111\u0026Signature=bDHxO~zTvOVlt1zDUSQJMtPvWfcwiRMArXpRrME2YwLUfNZGzkpY4GN23~YRn5TMSKYv2thDg6txtPQKnZtDD-cRUa59Fs1ejvozO6EKWPwo-OeefKkqkZr5J0UEz9C8l916EtkE07HAYTnrShTxpspyy-ku~x9cmaWWvwWNOuM04yqtAAD44m7gYJbKHkqD~5fZmaN9a2GtPUhjGKGe98uPGqx4QSzYL2pEsl4853Hu17vDJQWh8S1etRQu6OVsWZoOLozYXjApzU4vZ3uuv1dkzUzLfpc8SFw0SO-WPzxoL-ILrW0qUGG37~An8kKiHsIkRCtp-5NPnHj1Z0VwWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":23718433,"url":"https://arxiv.org/pdf/2107.02898v2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-86377256-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377210"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377210/A_note_on_The_maximal_operators_of_the_N_orlund_logaritmic_means_of_Vilenkin_Fourier_series"><img alt="Research paper thumbnail of A note on The maximal operators of the N\"orlund logaritmic means of Vilenkin-Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/90843392/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377210/A_note_on_The_maximal_operators_of_the_N_orlund_logaritmic_means_of_Vilenkin_Fourier_series">A note on The maximal operators of the N\"orlund logaritmic means of Vilenkin-Fourier series</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The main aim of this paper is to investigate $\left(H_{p},L_{p}\right)$- type inequalities for th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The main aim of this paper is to investigate $\left(H_{p},L_{p}\right)$- type inequalities for the the maximal operators of N\&quot;orlund logaritmic means, for $0</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9463c616e4531e450fd41becacc98783" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843392,"asset_id":86377210,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843392/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377210"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377210]").text(description); $(".js-view-count[data-work-id=86377210]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377210']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9463c616e4531e450fd41becacc98783" } } $('.js-work-strip[data-work-id=86377210]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377210,"title":"A note on The maximal operators of the N\\\"orlund logaritmic means of Vilenkin-Fourier series","translated_title":"","metadata":{"abstract":"The main aim of this paper is to investigate $\\left(H_{p},L_{p}\\right)$- type inequalities for the the maximal operators of N\\\u0026quot;orlund logaritmic means, for $0","ai_title_tag":"Maximal Operators of Nörlund Means Analysis","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"The main aim of this paper is to investigate $\\left(H_{p},L_{p}\\right)$- type inequalities for the the maximal operators of N\\\u0026quot;orlund logaritmic means, for $0","internal_url":"https://www.academia.edu/86377210/A_note_on_The_maximal_operators_of_the_N_orlund_logaritmic_means_of_Vilenkin_Fourier_series","translated_internal_url":"","created_at":"2022-09-09T15:11:19.084-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843392,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843392/thumbnails/1.jpg","file_name":"v1741-13.pdf","download_url":"https://www.academia.edu/attachments/90843392/download_file","bulk_download_file_name":"A_note_on_The_maximal_operators_of_the_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843392/v1741-13-libre.pdf?1662763568=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_The_maximal_operators_of_the_N.pdf\u0026Expires=1743686111\u0026Signature=BEmTAq5c4xr0ktxl4VPD6ob-m7iHWAKn4RI6rrE51rbPwHxW3ycQHGlC7jn4WR1yu63hZDS87RPffm~wx2NpFW~9DCBgQtIaOL5Mp7SA6Yui~UzpGNweQJ7RW6PSHv~ZTlP9u9vZHij3ZjcuW2U6KKRma6AdGncCZvJwJarJdUwbLfUv1brhAv-EhmCEzupK-edBBbMO8ATObhJpY0eLLb8hE-6uh7LD2MTZblfpmI2ldvJeez6rrKCfAXgCn9F11ODUjz3j9N7lrlH966izX7emvY5-8wKOoPC6Z9nYflv9~dugJlUi1ye-wVcYQ~37L00iCwgTcQQljeu070NKUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_note_on_The_maximal_operators_of_the_N_orlund_logaritmic_means_of_Vilenkin_Fourier_series","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"The main aim of this paper is to investigate $\\left(H_{p},L_{p}\\right)$- type inequalities for the the maximal operators of N\\\u0026quot;orlund logaritmic means, for $0","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843392,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843392/thumbnails/1.jpg","file_name":"v1741-13.pdf","download_url":"https://www.academia.edu/attachments/90843392/download_file","bulk_download_file_name":"A_note_on_The_maximal_operators_of_the_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843392/v1741-13-libre.pdf?1662763568=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_The_maximal_operators_of_the_N.pdf\u0026Expires=1743686111\u0026Signature=BEmTAq5c4xr0ktxl4VPD6ob-m7iHWAKn4RI6rrE51rbPwHxW3ycQHGlC7jn4WR1yu63hZDS87RPffm~wx2NpFW~9DCBgQtIaOL5Mp7SA6Yui~UzpGNweQJ7RW6PSHv~ZTlP9u9vZHij3ZjcuW2U6KKRma6AdGncCZvJwJarJdUwbLfUv1brhAv-EhmCEzupK-edBBbMO8ATObhJpY0eLLb8hE-6uh7LD2MTZblfpmI2ldvJeez6rrKCfAXgCn9F11ODUjz3j9N7lrlH966izX7emvY5-8wKOoPC6Z9nYflv9~dugJlUi1ye-wVcYQ~37L00iCwgTcQQljeu070NKUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":90843391,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843391/thumbnails/1.jpg","file_name":"v1741-13.pdf","download_url":"https://www.academia.edu/attachments/90843391/download_file","bulk_download_file_name":"A_note_on_The_maximal_operators_of_the_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843391/v1741-13-libre.pdf?1662763570=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_The_maximal_operators_of_the_N.pdf\u0026Expires=1743686111\u0026Signature=G4tosDjSPsKZl9IhZLQt2IwfPBfVegs0uHTNYxdt7wgH6Mncyr3J1Wi~Bc0jUeWkfNvH2Dxl-BMYYvCSFTovqbZBXjUx-C3CifPs3dbI5x46WL9-p2AtB8viSH1A7IvjtZyzx1fQC9~7RYhst5KZ2lWy8kbYLk8eiVVAvAdjA8HM2WhHyDp~Buqtfeyn12IhBkcucxHfgTJ~FWnDsQ5k9hoBRLkC2GcBcUszR9GpzoNwSZ7kuw6cBvecxwhGzbJKECz8yyRQW8~wtIAW63pAProqe6tSEJflnhUOWC-WAIIr1XE6fgHQwZq2-JczXq7HZcG20Uc7OM2E-8SdzpBz5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":23718413,"url":"http://www.rmi.ge/transactions/TRMI-volumes/174-1/v174(1)-13.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-86377210-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377209"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377209/Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means"><img alt="Research paper thumbnail of Some inequalities related to strong convergence of Riesz logarithmic means" class="work-thumbnail" src="https://attachments.academia-assets.com/90843386/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377209/Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means">Some inequalities related to strong convergence of Riesz logarithmic means</a></div><div class="wp-workCard_item"><span>Journal of Inequalities and Applications</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we derive a new strong convergence theorem of Riesz logarithmic means of the one-di...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we derive a new strong convergence theorem of Riesz logarithmic means of the one-dimensional Vilenkin–Fourier (Walsh–Fourier) series. The corresponding inequality is pointed out and it is also proved that the inequality is in a sense sharp, at least for the case with Walsh–Fourier series.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a6fb49d11fe86df3894d5687a1fcfae2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843386,"asset_id":86377209,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843386/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377209"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377209"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377209; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377209]").text(description); $(".js-view-count[data-work-id=86377209]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377209; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377209']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a6fb49d11fe86df3894d5687a1fcfae2" } } $('.js-work-strip[data-work-id=86377209]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377209,"title":"Some inequalities related to strong convergence of Riesz logarithmic means","translated_title":"","metadata":{"abstract":"In this paper we derive a new strong convergence theorem of Riesz logarithmic means of the one-dimensional Vilenkin–Fourier (Walsh–Fourier) series. The corresponding inequality is pointed out and it is also proved that the inequality is in a sense sharp, at least for the case with Walsh–Fourier series.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Journal of Inequalities and Applications"},"translated_abstract":"In this paper we derive a new strong convergence theorem of Riesz logarithmic means of the one-dimensional Vilenkin–Fourier (Walsh–Fourier) series. The corresponding inequality is pointed out and it is also proved that the inequality is in a sense sharp, at least for the case with Walsh–Fourier series.","internal_url":"https://www.academia.edu/86377209/Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means","translated_internal_url":"","created_at":"2022-09-09T15:11:18.943-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843386,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843386/thumbnails/1.jpg","file_name":"s13660-020-02342-8.pdf","download_url":"https://www.academia.edu/attachments/90843386/download_file","bulk_download_file_name":"Some_inequalities_related_to_strong_conv.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843386/s13660-020-02342-8-libre.pdf?1662763577=\u0026response-content-disposition=attachment%3B+filename%3DSome_inequalities_related_to_strong_conv.pdf\u0026Expires=1743686111\u0026Signature=Jl6I-Tv5CFooIwEL7o36BqBWYYWSRYjN7DSOnyLhrLBK4FbeCIzQqd7hrpzbZwm5EahiM9IoXu2ZHpgs0GNfKvHGsn~XmqSRl3pSacStdvlprv6wCctdlmdTWKahsXTqxH1RKf6Aog4aQBrb~cPAbLJfjwlCub5tRTGDigG411ZZAAKbpAIPXfFgcmAtxFGAQ8yiFNSfWF90ZfDYz0vdY~5QTH9hTTLgqFIYUn0eD2ywm0V4H0DiSsa1WekZW0si04DMlcixUH~Tx8Sw6NQvk244zqsv9a8dtlQYWjugTgISgrwDZOWWW0ClwCgyGllfzvWsEDSI7kdATv2968v74w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"In this paper we derive a new strong convergence theorem of Riesz logarithmic means of the one-dimensional Vilenkin–Fourier (Walsh–Fourier) series. The corresponding inequality is pointed out and it is also proved that the inequality is in a sense sharp, at least for the case with Walsh–Fourier series.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843386,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843386/thumbnails/1.jpg","file_name":"s13660-020-02342-8.pdf","download_url":"https://www.academia.edu/attachments/90843386/download_file","bulk_download_file_name":"Some_inequalities_related_to_strong_conv.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843386/s13660-020-02342-8-libre.pdf?1662763577=\u0026response-content-disposition=attachment%3B+filename%3DSome_inequalities_related_to_strong_conv.pdf\u0026Expires=1743686111\u0026Signature=Jl6I-Tv5CFooIwEL7o36BqBWYYWSRYjN7DSOnyLhrLBK4FbeCIzQqd7hrpzbZwm5EahiM9IoXu2ZHpgs0GNfKvHGsn~XmqSRl3pSacStdvlprv6wCctdlmdTWKahsXTqxH1RKf6Aog4aQBrb~cPAbLJfjwlCub5tRTGDigG411ZZAAKbpAIPXfFgcmAtxFGAQ8yiFNSfWF90ZfDYz0vdY~5QTH9hTTLgqFIYUn0eD2ywm0V4H0DiSsa1WekZW0si04DMlcixUH~Tx8Sw6NQvk244zqsv9a8dtlQYWjugTgISgrwDZOWWW0ClwCgyGllfzvWsEDSI7kdATv2968v74w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":90843389,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843389/thumbnails/1.jpg","file_name":"s13660-020-02342-8.pdf","download_url":"https://www.academia.edu/attachments/90843389/download_file","bulk_download_file_name":"Some_inequalities_related_to_strong_conv.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843389/s13660-020-02342-8-libre.pdf?1662763575=\u0026response-content-disposition=attachment%3B+filename%3DSome_inequalities_related_to_strong_conv.pdf\u0026Expires=1743686111\u0026Signature=EvNZg1bkNtbysbtERme7pWsguqZo6L8q4nYvDNoyyrFVr-3tcvQEYy97ojiihmQNxTp99KXNSoU81t9mGNWycpwgQ8S4rimh6O7YbnCmU3ivnSEmdadntc9-4-1BZwkdzpcUJ~4TWipyvdoG~50SWyigJYOBdjC7FWgutEztTaoL75TFw8VRQEA5mdUU1yeWrAeI~fdECgQQ94SQW-8XqrLJZi9nfBf8VaV6lD-qYntOFzFdEcsrA4yO6vCDb-vue042rr26HONOf-mRz4iCccD3SMk3TBv39pwxGjJtCQJ1-SswlNlq2GD67pRqIJQ67Wp~GJ6owwUP0KrUgy-TuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":91070,"name":"Inequality","url":"https://www.academia.edu/Documents/in/Inequality"},{"id":932075,"name":"Mathematical Inequalities and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Inequalities_and_Applications"}],"urls":[{"id":23718412,"url":"http://link.springer.com/content/pdf/10.1186/s13660-020-02342-8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-86377209-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="71066348"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/71066348/Modulus_of_continuity_and_convergence_of_subsequences_of_Vilenkin_Fej%C3%A9r_means_in_martingale_Hardy_spaces"><img alt="Research paper thumbnail of Modulus of continuity and convergence of subsequences of Vilenkin–Fejér means in martingale Hardy spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Modulus of continuity and convergence of subsequences of Vilenkin–Fejér means in martingale Hardy spaces</div><div class="wp-workCard_item"><span>Georgian Mathematical Journal</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we find a necessary and sufficient condition for the modulus of continuity for whi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we find a necessary and sufficient condition for the modulus of continuity for which subsequences of Fejér means with respect to Vilenkin systems are bounded from the Hardy space H p {H_{p}} to the Lebesgue space L p {L_{p}} for all 0 &lt; p &lt; 1 2 {0</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71066348"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71066348"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71066348; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71066348]").text(description); $(".js-view-count[data-work-id=71066348]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71066348; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71066348']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=71066348]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71066348,"title":"Modulus of continuity and convergence of subsequences of Vilenkin–Fejér means in martingale Hardy spaces","translated_title":"","metadata":{"abstract":"In this paper, we find a necessary and sufficient condition for the modulus of continuity for which subsequences of Fejér means with respect to Vilenkin systems are bounded from the Hardy space H p {H_{p}} to the Lebesgue space L p {L_{p}} for all 0 \u0026lt; p \u0026lt; 1 2 {0","publisher":"Walter de Gruyter GmbH","publication_name":"Georgian Mathematical Journal"},"translated_abstract":"In this paper, we find a necessary and sufficient condition for the modulus of continuity for which subsequences of Fejér means with respect to Vilenkin systems are bounded from the Hardy space H p {H_{p}} to the Lebesgue space L p {L_{p}} for all 0 \u0026lt; p \u0026lt; 1 2 {0","internal_url":"https://www.academia.edu/71066348/Modulus_of_continuity_and_convergence_of_subsequences_of_Vilenkin_Fej%C3%A9r_means_in_martingale_Hardy_spaces","translated_internal_url":"","created_at":"2022-02-10T09:25:28.169-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Modulus_of_continuity_and_convergence_of_subsequences_of_Vilenkin_Fejér_means_in_martingale_Hardy_spaces","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this paper, we find a necessary and sufficient condition for the modulus of continuity for which subsequences of Fejér means with respect to Vilenkin systems are bounded from the Hardy space H p {H_{p}} to the Lebesgue space L p {L_{p}} for all 0 \u0026lt; p \u0026lt; 1 2 {0","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":17507283,"url":"https://www.degruyter.com/document/doi/10.1515/gmj-2021-2106/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-71066348-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="61065297"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/61065297/Absolute_convergence_factors_of_Lipschitz_class_functions_for_general_Fourier_series"><img alt="Research paper thumbnail of Absolute convergence factors of Lipschitz class functions for general Fourier series" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Absolute convergence factors of Lipschitz class functions for general Fourier series</div><div class="wp-workCard_item"><span>Georgian Mathematical Journal</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The main aim of this paper is to investigate the sequences of positive numbers, for which multipl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The main aim of this paper is to investigate the sequences of positive numbers, for which multiplication with Fourier coefficients of functions f ∈ Lip 1 {f\in\operatorname{Lip}1} class provides absolute convergence of Fourier series. In particular, we found special conditions for the functions of orthonormal system (ONS), for which the above sequences are absolute convergence factors of Fourier series of functions of Lip 1 {\operatorname{Lip}1} class. It is established that the resulting conditions are best possible in certain sense.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61065297"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61065297"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61065297; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61065297]").text(description); $(".js-view-count[data-work-id=61065297]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61065297; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61065297']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61065297]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61065297,"title":"Absolute convergence factors of Lipschitz class functions for general Fourier series","translated_title":"","metadata":{"abstract":"The main aim of this paper is to investigate the sequences of positive numbers, for which multiplication with Fourier coefficients of functions f ∈ Lip 1 {f\\in\\operatorname{Lip}1} class provides absolute convergence of Fourier series. In particular, we found special conditions for the functions of orthonormal system (ONS), for which the above sequences are absolute convergence factors of Fourier series of functions of Lip 1 {\\operatorname{Lip}1} class. It is established that the resulting conditions are best possible in certain sense.","publisher":"Walter de Gruyter GmbH","publication_name":"Georgian Mathematical Journal"},"translated_abstract":"The main aim of this paper is to investigate the sequences of positive numbers, for which multiplication with Fourier coefficients of functions f ∈ Lip 1 {f\\in\\operatorname{Lip}1} class provides absolute convergence of Fourier series. In particular, we found special conditions for the functions of orthonormal system (ONS), for which the above sequences are absolute convergence factors of Fourier series of functions of Lip 1 {\\operatorname{Lip}1} class. It is established that the resulting conditions are best possible in certain sense.","internal_url":"https://www.academia.edu/61065297/Absolute_convergence_factors_of_Lipschitz_class_functions_for_general_Fourier_series","translated_internal_url":"","created_at":"2021-11-05T10:59:35.465-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Absolute_convergence_factors_of_Lipschitz_class_functions_for_general_Fourier_series","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The main aim of this paper is to investigate the sequences of positive numbers, for which multiplication with Fourier coefficients of functions f ∈ Lip 1 {f\\in\\operatorname{Lip}1} class provides absolute convergence of Fourier series. In particular, we found special conditions for the functions of orthonormal system (ONS), for which the above sequences are absolute convergence factors of Fourier series of functions of Lip 1 {\\operatorname{Lip}1} class. It is established that the resulting conditions are best possible in certain sense.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":14037862,"url":"https://www.degruyter.com/document/doi/10.1515/gmj-2021-2107/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-61065297-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="12837021" id="papers"><div class="js-work-strip profile--work_container" data-work-id="113754438"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/113754438/Maximal_operators_of_T_means_with_respect_to_the_Vilenkin_system"><img alt="Research paper thumbnail of Maximal operators of T means with respect to the Vilenkin system" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Maximal operators of T means with respect to the Vilenkin system</div><div class="wp-workCard_item"><span>Nonlinear Studies</span><span>, Nov 24, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113754438"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113754438"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113754438; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113754438]").text(description); $(".js-view-count[data-work-id=113754438]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113754438; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113754438']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=113754438]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113754438,"title":"Maximal operators of T means with respect to the Vilenkin system","translated_title":"","metadata":{"publication_date":{"day":24,"month":11,"year":2020,"errors":{}},"publication_name":"Nonlinear Studies"},"translated_abstract":null,"internal_url":"https://www.academia.edu/113754438/Maximal_operators_of_T_means_with_respect_to_the_Vilenkin_system","translated_internal_url":"","created_at":"2024-01-19T18:02:17.380-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Maximal_operators_of_T_means_with_respect_to_the_Vilenkin_system","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":91070,"name":"Inequality","url":"https://www.academia.edu/Documents/in/Inequality"},{"id":171883,"name":"Nonlinear Studies","url":"https://www.academia.edu/Documents/in/Nonlinear_Studies"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-113754438-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="93141645"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93141645/A_study_of_bounded_operators_on_martingale_Hardy_spaces"><img alt="Research paper thumbnail of A study of bounded operators on martingale Hardy spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/95961550/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93141645/A_study_of_bounded_operators_on_martingale_Hardy_spaces">A study of bounded operators on martingale Hardy spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The classical Fourier Analysis has been developed in an almost unbelievable way from the first fu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The classical Fourier Analysis has been developed in an almost unbelievable way from the first fundamental discoveries by Fourier. Especially a number of wonderful results have been proved and new directions of such research has been developed e.g. concerning Wavelets Theory, Gabor Theory, Time-Frequency Analysis, Fast Fourier Transform, Abstract Harmonic Analysis, etc. One important reason for this is that this development is not only important for improving the &quot;State of the art&quot;, but also for its importance in other areas of mathematics and also for several applications (e.g. theory of signal transmission, multiplexing, filtering, image enhancement, coding theory, digital signal processing and pattern recognition). The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. The development of the theory of Vilenkin-Fourier series has been strongly...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ecfdf23b2d83a5e48d74129e5a9be92" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":95961550,"asset_id":93141645,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/95961550/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93141645"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93141645"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93141645; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93141645]").text(description); $(".js-view-count[data-work-id=93141645]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93141645; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93141645']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ecfdf23b2d83a5e48d74129e5a9be92" } } $('.js-work-strip[data-work-id=93141645]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93141645,"title":"A study of bounded operators on martingale Hardy spaces","translated_title":"","metadata":{"abstract":"The classical Fourier Analysis has been developed in an almost unbelievable way from the first fundamental discoveries by Fourier. Especially a number of wonderful results have been proved and new directions of such research has been developed e.g. concerning Wavelets Theory, Gabor Theory, Time-Frequency Analysis, Fast Fourier Transform, Abstract Harmonic Analysis, etc. One important reason for this is that this development is not only important for improving the \u0026quot;State of the art\u0026quot;, but also for its importance in other areas of mathematics and also for several applications (e.g. theory of signal transmission, multiplexing, filtering, image enhancement, coding theory, digital signal processing and pattern recognition). The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. The development of the theory of Vilenkin-Fourier series has been strongly...","publisher":"'Allerton Press'","publication_date":{"day":13,"month":12,"year":2021,"errors":{}}},"translated_abstract":"The classical Fourier Analysis has been developed in an almost unbelievable way from the first fundamental discoveries by Fourier. Especially a number of wonderful results have been proved and new directions of such research has been developed e.g. concerning Wavelets Theory, Gabor Theory, Time-Frequency Analysis, Fast Fourier Transform, Abstract Harmonic Analysis, etc. One important reason for this is that this development is not only important for improving the \u0026quot;State of the art\u0026quot;, but also for its importance in other areas of mathematics and also for several applications (e.g. theory of signal transmission, multiplexing, filtering, image enhancement, coding theory, digital signal processing and pattern recognition). The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. The development of the theory of Vilenkin-Fourier series has been strongly...","internal_url":"https://www.academia.edu/93141645/A_study_of_bounded_operators_on_martingale_Hardy_spaces","translated_internal_url":"","created_at":"2022-12-18T00:56:51.048-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95961550,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95961550/thumbnails/1.jpg","file_name":"489822946.pdf","download_url":"https://www.academia.edu/attachments/95961550/download_file","bulk_download_file_name":"A_study_of_bounded_operators_on_martinga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95961550/489822946-libre.pdf?1671354456=\u0026response-content-disposition=attachment%3B+filename%3DA_study_of_bounded_operators_on_martinga.pdf\u0026Expires=1743686111\u0026Signature=Re5CXGcAA2N6r2K3aFSvaBYGq8bPNoxbxU9vHoDY628k1A1R0Ddu0L02uNLBohsdrggtqfVkXOjVtwUrMkerdROigiR5uQiies2F4jHPNFOpw~Dzrt6zP9STnWbIVaz4hMSEQs~JFptFnDruhB77O7POj6sWJpNRqZW8olc4H~w66gAlhOcZoO~s9K7BFpJa8PGJSE8XQNij24H7y9AaARQqtWkcoKWeEoROVrL-SE9RAtPRXtQiI1qOvHeQg1nCRizKCksHbkyOmmMy7eX8vu7j9pCqrlft372UmLryMxBssYOaVpXVd~euyg2ZlK2ay58LdDX97ja87FxTw0oYVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_study_of_bounded_operators_on_martingale_Hardy_spaces","translated_slug":"","page_count":171,"language":"en","content_type":"Work","summary":"The classical Fourier Analysis has been developed in an almost unbelievable way from the first fundamental discoveries by Fourier. Especially a number of wonderful results have been proved and new directions of such research has been developed e.g. concerning Wavelets Theory, Gabor Theory, Time-Frequency Analysis, Fast Fourier Transform, Abstract Harmonic Analysis, etc. One important reason for this is that this development is not only important for improving the \u0026quot;State of the art\u0026quot;, but also for its importance in other areas of mathematics and also for several applications (e.g. theory of signal transmission, multiplexing, filtering, image enhancement, coding theory, digital signal processing and pattern recognition). The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. The development of the theory of Vilenkin-Fourier series has been strongly...","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":95961550,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95961550/thumbnails/1.jpg","file_name":"489822946.pdf","download_url":"https://www.academia.edu/attachments/95961550/download_file","bulk_download_file_name":"A_study_of_bounded_operators_on_martinga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95961550/489822946-libre.pdf?1671354456=\u0026response-content-disposition=attachment%3B+filename%3DA_study_of_bounded_operators_on_martinga.pdf\u0026Expires=1743686111\u0026Signature=Re5CXGcAA2N6r2K3aFSvaBYGq8bPNoxbxU9vHoDY628k1A1R0Ddu0L02uNLBohsdrggtqfVkXOjVtwUrMkerdROigiR5uQiies2F4jHPNFOpw~Dzrt6zP9STnWbIVaz4hMSEQs~JFptFnDruhB77O7POj6sWJpNRqZW8olc4H~w66gAlhOcZoO~s9K7BFpJa8PGJSE8XQNij24H7y9AaARQqtWkcoKWeEoROVrL-SE9RAtPRXtQiI1qOvHeQg1nCRizKCksHbkyOmmMy7eX8vu7j9pCqrlft372UmLryMxBssYOaVpXVd~euyg2ZlK2ay58LdDX97ja87FxTw0oYVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":95961551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95961551/thumbnails/1.jpg","file_name":"489822946.pdf","download_url":"https://www.academia.edu/attachments/95961551/download_file","bulk_download_file_name":"A_study_of_bounded_operators_on_martinga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95961551/489822946-libre.pdf?1671354470=\u0026response-content-disposition=attachment%3B+filename%3DA_study_of_bounded_operators_on_martinga.pdf\u0026Expires=1743686111\u0026Signature=BBYAm31NoymKarrOVRhqDmYb0Hd7kspa3axZiYivKa1CYPYV511-pvduVWyhYH36HhvoT~Khk04xCp9GRfSPZ5xgrlSbx892zZYNKTVpOaXyXZIsLRzvxVA4xnRvkgUKwFbXiuM1lOgA74q-jYrr6M4Kfz4d7buFgJXYnYQG7k1JAzhieAGz2u8WTxQ9JlU--wnVlQHG8bsq5m3eIYZQlhDf7lo~6etBf0mt1BjnNYyFzadI6Ccq1IvFe8BqzP779gLn02KAkv6nrYQfR48i0DjfkhildJyY7NLmO~huj4Qqtx6n2kaLjQVafqJeTWMlBSXvq40wgyeT8~0MW-aBCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1188947,"name":"D","url":"https://www.academia.edu/Documents/in/D-351414216"},{"id":1188997,"name":"C","url":"https://www.academia.edu/Documents/in/C"},{"id":1194168,"name":"B","url":"https://www.academia.edu/Documents/in/B"},{"id":2760784,"name":"doktor","url":"https://www.academia.edu/Documents/in/doktor"}],"urls":[{"id":27154931,"url":"https://core.ac.uk/download/489822946.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-93141645-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377259"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377259/Bounded_operators_on_Martingale_Hardy_spaces"><img alt="Research paper thumbnail of Bounded operators on Martingale Hardy spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/90843464/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377259/Bounded_operators_on_Martingale_Hardy_spaces">Bounded operators on Martingale Hardy spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of my thesis is to discuss, develop and apply the newest developments of this fascinating...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of my thesis is to discuss, develop and apply the newest developments of this fascinating theory connected to modern harmonic analysis. In particular, we investigate some strong convergence result of partial sums of Vilenkin-Fourier series. Moreover, we derive necessary and sufficient conditions for the modulus of continuity so that norm convergence of subsequences of Fejér means is valid. Furthermore, we consider Riesz and Nörlund logarithmic means. It is also proved that these results are the best possible in a special sense. As applications both some well-known and new results are pointed out. In addition, we investigate some $T$ means, which are &quot;inverse&quot; summability methods of Nörlund, but only in the case when their coefficients are monotone.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-86377259-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-86377259-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431783/figure-20-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_020.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431772/figure-17-proof-since-sequence-is-non-increasing-number-we"><img alt="Proof: Since sequence is non-increasing number we get that If we apply (3.15) and (3.16) in Lemma 3.1 we immediately get that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_017.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431777/figure-18-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_018.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431779/figure-19-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_019.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431786/figure-21-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_021.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431787/figure-22-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_022.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431789/figure-23-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_023.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431790/figure-24-without-lost-the-generality-we-may-assume-that-in"><img alt="Without lost the generality we may assume that c = 1 in (3.23). By combining (3.32) and (3.33) we get " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_024.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431791/figure-25-number-of-special-cases-of-our-results-are-of"><img alt="A number of special cases of our results are of particular interest and give both well- known and new information. We just give the following examples of such 7’ means with non-increasing sequence {q, : k > 0}: " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_025.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431763/figure-13-lemma-let-and-be-sequence-of-non-increasing"><img alt="Lemma 3.2 Let n © N and {q, : k © N} be a sequence of non-increasing numbers, or non-decreasing function satisfying condition (3.13). Then Moreover, if f € Hy/2 and {a : k > 0} be a sequence of non-increasing numbers, sat- isfying the condition (3.13), then there exists an absolute constant c, such that the inequality " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_013.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431765/figure-14-lemma-let-be-sequence-of-non-increasing-numbers"><img alt="Lemma 3.3 Let {q, : k € N} be a sequence of non-increasing numbers andn > My. Ther " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_014.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431768/figure-15-proof-since-sequence-is-non-increasing-number-we"><img alt="Proof: Since sequence is non-increasing number we get that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_015.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431739/figure-1-it-is-well-known-that-for-all"><img alt="It is well-known that for all n € N, " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431741/figure-2-we-state-well-known-equalities-for-dirichlet"><img alt="We state well-known equalities for Dirichlet kernels (for details see e.g. [62] and [112]): is finite. It is well known that L” is a Banach space for each 1 < p < on. is finite. Let L© represent the collection of f € L° for which " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431743/figure-3-kernels-of-norlund-logarithmic-mean-and-riesz"><img alt="Kernels of Norlund logarithmic mean and Riesz logarithmic mean are respectively de- ~~. J ke, " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431744/figure-4-as-corollary-we-also-get-that-that-if-hy-then"><img alt="As a corollary we also get that that if f € Hy /2, then " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431745/figure-5-in-blahota-and-tephnadze-also-considered-the"><img alt="In Blahota and Tephnadze [13] also considered the endpoint case p = 1/2 and they proved that if f € H,2 then there exists an absolute constant c such that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431746/figure-6-since-if-we-use-the-estimates-above-then-we-obtain"><img alt="Since m;_; <1; — 2 if we use the estimates above, then we obtain that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431747/figure-7-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431749/figure-8-hence-by-applying-we-find-that"><img alt="Hence, by applying (1.14) we find that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431751/figure-9-without-loss-the-generality-we-may-assume-that-let"><img alt="Without loss the generality we may assume that? < 7. Let x € ie and 7 < (nz). Then x —t € I,? fort € Iy and, according to (1.9), we obtain that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431755/figure-10-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431756/figure-11-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431760/figure-12-hence-for-sufficiently-large-we-can-write-that"><img alt="Hence, for sufficiently large k, we can write that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_012.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431769/figure-16-lemma-let-my-and-be-sequence-of-non-increasing"><img alt="Lemma 3.5 Let n > My and {q, : k © N} be a sequence of non-increasing number satisfying condition (3.43). Then " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_016.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431793/figure-26-if-we-apply-according-that-is-bounded-from-the"><img alt="If we apply (3.38), according that o* is bounded from the Hardy space Hj 2 to the space weak — L1/2, we can conclude that the maximal operators 7™* of all J’ means with non- decreasing sequence {q, : k > 0} satisfying the condition 3.37 are bounded from the Hardy space Hj /2 to the space weak — L1/2. The proof of part a) is complete. According to (3.34), (3.35) and (3.36) we can conclude that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_026.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431794/figure-27-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_027.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431796/figure-28-proof-let-the-sequence-be-non-decreasing"><img alt="Proof: Let the sequence {q, : k > 0} be non-decreasing satisfying the condition (3.40). 3y combining (3.15) and (3.17) we get that Then all such T means are bounded from the Hardy space H,, to the space L, " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_028.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431798/figure-29-let-by-using-we-find-that"><img alt="Let 0 < p < 1/2. By using (1.1), (3.47), (3.48) we find that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_029.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431800/figure-30-let-and-be-means-with-non-increasing-coefficients"><img alt="Let p = 1/2 and T;, be T means, with non-increasing coefficients {q, : k > O}, sat- isfying condition (3.43). By Lemma 1.3, the proof of part b) will be complete, if we show that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_030.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431802/figure-31-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_031.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431804/figure-32-hence-by-simple-calculation-we-can-conclude-that"><img alt="Hence, by simple calculation we can conclude that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_032.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431806/figure-33-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_033.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431807/figure-34-by-combining-for-and-we-find-that"><img alt="By combining (4.2), (4.23)-(4.28) for € I2(e9 + e1) and 0 < p < 1/2 we find that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_034.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431809/figure-35-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_035.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431811/figure-36-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_036.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431813/figure-37-bounded-operators-on-martingale-hardy-spaces"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_037.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431817/figure-38-for-all-lebesgue-points-of-by-using-we-can"><img alt="for all Lebesgue points of f € L,(G,,). By using (1.2) we can conclude that " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/figure_038.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33431822/table-1-the-proof-of-lemma-can-be-found-in-tephnadze"><img alt="The proof of Lemma can be found in Tephnadze [143]. " class="figure-slide-image" src="https://figures.academia-assets.com/90843464/table_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-86377259-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9fff3e7b8016f2b7e0251fcebf4ab21f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843464,"asset_id":86377259,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843464/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377259"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377259"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377259; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377259]").text(description); $(".js-view-count[data-work-id=86377259]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377259; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377259']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9fff3e7b8016f2b7e0251fcebf4ab21f" } } $('.js-work-strip[data-work-id=86377259]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377259,"title":"Bounded operators on Martingale Hardy spaces","translated_title":"","metadata":{"abstract":"The aim of my thesis is to discuss, develop and apply the newest developments of this fascinating theory connected to modern harmonic analysis. In particular, we investigate some strong convergence result of partial sums of Vilenkin-Fourier series. Moreover, we derive necessary and sufficient conditions for the modulus of continuity so that norm convergence of subsequences of Fejér means is valid. Furthermore, we consider Riesz and Nörlund logarithmic means. It is also proved that these results are the best possible in a special sense. As applications both some well-known and new results are pointed out. In addition, we investigate some $T$ means, which are \u0026quot;inverse\u0026quot; summability methods of Nörlund, but only in the case when their coefficients are monotone.","publisher":"arXiv","ai_title_tag":"Bounded Operators and Convergence in Martingale Hardy Spaces","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"The aim of my thesis is to discuss, develop and apply the newest developments of this fascinating theory connected to modern harmonic analysis. In particular, we investigate some strong convergence result of partial sums of Vilenkin-Fourier series. Moreover, we derive necessary and sufficient conditions for the modulus of continuity so that norm convergence of subsequences of Fejér means is valid. Furthermore, we consider Riesz and Nörlund logarithmic means. It is also proved that these results are the best possible in a special sense. As applications both some well-known and new results are pointed out. In addition, we investigate some $T$ means, which are \u0026quot;inverse\u0026quot; summability methods of Nörlund, but only in the case when their coefficients are monotone.","internal_url":"https://www.academia.edu/86377259/Bounded_operators_on_Martingale_Hardy_spaces","translated_internal_url":"","created_at":"2022-09-09T15:12:32.604-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843464/thumbnails/1.jpg","file_name":"2201.12134v3.pdf","download_url":"https://www.academia.edu/attachments/90843464/download_file","bulk_download_file_name":"Bounded_operators_on_Martingale_Hardy_sp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843464/2201.12134v3-libre.pdf?1662763582=\u0026response-content-disposition=attachment%3B+filename%3DBounded_operators_on_Martingale_Hardy_sp.pdf\u0026Expires=1743686111\u0026Signature=Iy~7cRdk0PL~f0vGbC6q-9a2PzCo-syOdI3Dlp5SbOGi6gtIue-~AN8pjQy~1yZ4IBRPX-PDG-ONHYgZGKfXCI7FUrFNLCdYDbaI8pYFnGEs5v7LRbp41zt8TCz7vBLQjHXfaVcjkKwVrEbOXE11nrOYFEvC3RLYyvo0eVq27wi~z0J7JAtY6LQ~nOfej5UTlLQ9J4g00Fl7CABaftNZAqmfg7uQxJHXzPrFCHIgwrdEvybWqEGieDue~OeGaeGVdwSR3Svb5rF3gaiuaBw59hSOxr3MfRCt5OG-8J~ltk2-Z9k6~8jIbDkUfp3A6HUvMwXWJI~G1QyjtFLqhdWkcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bounded_operators_on_Martingale_Hardy_spaces","translated_slug":"","page_count":134,"language":"en","content_type":"Work","summary":"The aim of my thesis is to discuss, develop and apply the newest developments of this fascinating theory connected to modern harmonic analysis. In particular, we investigate some strong convergence result of partial sums of Vilenkin-Fourier series. Moreover, we derive necessary and sufficient conditions for the modulus of continuity so that norm convergence of subsequences of Fejér means is valid. Furthermore, we consider Riesz and Nörlund logarithmic means. It is also proved that these results are the best possible in a special sense. As applications both some well-known and new results are pointed out. In addition, we investigate some $T$ means, which are \u0026quot;inverse\u0026quot; summability methods of Nörlund, but only in the case when their coefficients are monotone.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843464/thumbnails/1.jpg","file_name":"2201.12134v3.pdf","download_url":"https://www.academia.edu/attachments/90843464/download_file","bulk_download_file_name":"Bounded_operators_on_Martingale_Hardy_sp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843464/2201.12134v3-libre.pdf?1662763582=\u0026response-content-disposition=attachment%3B+filename%3DBounded_operators_on_Martingale_Hardy_sp.pdf\u0026Expires=1743686111\u0026Signature=Iy~7cRdk0PL~f0vGbC6q-9a2PzCo-syOdI3Dlp5SbOGi6gtIue-~AN8pjQy~1yZ4IBRPX-PDG-ONHYgZGKfXCI7FUrFNLCdYDbaI8pYFnGEs5v7LRbp41zt8TCz7vBLQjHXfaVcjkKwVrEbOXE11nrOYFEvC3RLYyvo0eVq27wi~z0J7JAtY6LQ~nOfej5UTlLQ9J4g00Fl7CABaftNZAqmfg7uQxJHXzPrFCHIgwrdEvybWqEGieDue~OeGaeGVdwSR3Svb5rF3gaiuaBw59hSOxr3MfRCt5OG-8J~ltk2-Z9k6~8jIbDkUfp3A6HUvMwXWJI~G1QyjtFLqhdWkcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":893194,"name":"Inverse","url":"https://www.academia.edu/Documents/in/Inverse"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-86377259-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377258"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377258/a_e_Convergence_of_N%C3%B6rlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions"><img alt="Research paper thumbnail of a.e. Convergence of Nörlund means with respect to Vilenkin systems of integrable functions" class="work-thumbnail" src="https://attachments.academia-assets.com/90843430/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377258/a_e_Convergence_of_N%C3%B6rlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions">a.e. Convergence of Nörlund means with respect to Vilenkin systems of integrable functions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coeffi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise and norm convergence in L_p norms of such Nörlund means.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="adef441297e20248975f6c10a132c006" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843430,"asset_id":86377258,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843430/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377258"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377258"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377258; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377258]").text(description); $(".js-view-count[data-work-id=86377258]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377258; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377258']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "adef441297e20248975f6c10a132c006" } } $('.js-work-strip[data-work-id=86377258]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377258,"title":"a.e. Convergence of Nörlund means with respect to Vilenkin systems of integrable functions","translated_title":"","metadata":{"abstract":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise and norm convergence in L_p norms of such Nörlund means.","publication_date":{"day":1,"month":7,"year":2021,"errors":{}}},"translated_abstract":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise and norm convergence in L_p norms of such Nörlund means.","internal_url":"https://www.academia.edu/86377258/a_e_Convergence_of_N%C3%B6rlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions","translated_internal_url":"","created_at":"2022-09-09T15:12:32.410-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843430/thumbnails/1.jpg","file_name":"2107.02898v1.pdf","download_url":"https://www.academia.edu/attachments/90843430/download_file","bulk_download_file_name":"a_e_Convergence_of_Norlund_means_with_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843430/2107.02898v1-libre.pdf?1662763563=\u0026response-content-disposition=attachment%3B+filename%3Da_e_Convergence_of_Norlund_means_with_re.pdf\u0026Expires=1743686111\u0026Signature=DAYa-MXAoNoPpqHTFNsn6haNeDxGb9-fudRpX5L~zzSIhKIfv2cea6hVEzF6slchcIXw8wWLQ-yqb9XA12Jd~HXTER6G5e5L-nDxP-ZL5SiZXG65zU9wVEXdlnACzpM2jd-z2C-uGdb7LPN3mPobREo3~AI65A1FfgIS5BRUzSi1~D3Odmk7nK0LrE9an2auT~stms3pd4wqhFhlpAAdlOgrRQZ8P~fIBvt1ZiYT2OtZyC2oF0-qTrhHbpIfLb5JIyrdfsVGlpMlJveY6FN9ZXx-l9GZ2noQTsw7Wo~1m3s04Wd5OWWw8P8N-jONX5v4Fkr4I6BQqHSs20KGnB-xSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"a_e_Convergence_of_Nörlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise and norm convergence in L_p norms of such Nörlund means.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843430/thumbnails/1.jpg","file_name":"2107.02898v1.pdf","download_url":"https://www.academia.edu/attachments/90843430/download_file","bulk_download_file_name":"a_e_Convergence_of_Norlund_means_with_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843430/2107.02898v1-libre.pdf?1662763563=\u0026response-content-disposition=attachment%3B+filename%3Da_e_Convergence_of_Norlund_means_with_re.pdf\u0026Expires=1743686111\u0026Signature=DAYa-MXAoNoPpqHTFNsn6haNeDxGb9-fudRpX5L~zzSIhKIfv2cea6hVEzF6slchcIXw8wWLQ-yqb9XA12Jd~HXTER6G5e5L-nDxP-ZL5SiZXG65zU9wVEXdlnACzpM2jd-z2C-uGdb7LPN3mPobREo3~AI65A1FfgIS5BRUzSi1~D3Odmk7nK0LrE9an2auT~stms3pd4wqhFhlpAAdlOgrRQZ8P~fIBvt1ZiYT2OtZyC2oF0-qTrhHbpIfLb5JIyrdfsVGlpMlJveY6FN9ZXx-l9GZ2noQTsw7Wo~1m3s04Wd5OWWw8P8N-jONX5v4Fkr4I6BQqHSs20KGnB-xSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":90843429,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843429/thumbnails/1.jpg","file_name":"2107.02898v1.pdf","download_url":"https://www.academia.edu/attachments/90843429/download_file","bulk_download_file_name":"a_e_Convergence_of_Norlund_means_with_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843429/2107.02898v1-libre.pdf?1662763567=\u0026response-content-disposition=attachment%3B+filename%3Da_e_Convergence_of_Norlund_means_with_re.pdf\u0026Expires=1743686111\u0026Signature=OQCKNXMjR6rmb6LWenFrjfzYHgQBuQrh3i~3bHga0O4y1Neuo4oKMMk1DsIPhzOOgf7oS6FhRVz~RlTspXnVDB0OC2qrvgJssH9tUBWCO4rshxwIwpWMmFT19AQ7BT1N~7CdcvOx0TJosPADbuSL85sBRZtzEpjLzprVITZLYc1NaMmq9GWDRHgIsrXWUX5ZHhTzyqLgQ4w~b5GZbvkQfMAGpSgoCk4v3mbyIHrV4SCxVIesI3i6VaL-7x6pNuPNdEOghIYPBSQCCJnh36lyaGY20nHiZZyIlDc6bpypABuncZwOOqqdFrnKFATXduMMOkkIhAvbU40fdMS7b7Psaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":23718435,"url":"https://arxiv.org/pdf/2107.02898v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-86377258-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377257"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377257/On_the_strong_convergence_of_partial_sums_with_respect_to_bounded_Vilenkin_systems"><img alt="Research paper thumbnail of On the strong convergence of partial sums with respect to bounded Vilenkin systems" class="work-thumbnail" src="https://attachments.academia-assets.com/90843462/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377257/On_the_strong_convergence_of_partial_sums_with_respect_to_bounded_Vilenkin_systems">On the strong convergence of partial sums with respect to bounded Vilenkin systems</a></div><div class="wp-workCard_item"><span>arXiv: Classical Analysis and ODEs</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we investigate some strong convergence theorems for partial sums with respect to Vi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we investigate some strong convergence theorems for partial sums with respect to Vilenkin system.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d76064d19bae819feb00b12fc6e2e55" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843462,"asset_id":86377257,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843462/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377257"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377257"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377257; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377257]").text(description); $(".js-view-count[data-work-id=86377257]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377257; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377257']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d76064d19bae819feb00b12fc6e2e55" } } $('.js-work-strip[data-work-id=86377257]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377257,"title":"On the strong convergence of partial sums with respect to bounded Vilenkin systems","translated_title":"","metadata":{"abstract":"In this paper we investigate some strong convergence theorems for partial sums with respect to Vilenkin system.","ai_title_tag":"Strong Convergence in Vilenkin Systems","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"arXiv: Classical Analysis and ODEs"},"translated_abstract":"In this paper we investigate some strong convergence theorems for partial sums with respect to Vilenkin system.","internal_url":"https://www.academia.edu/86377257/On_the_strong_convergence_of_partial_sums_with_respect_to_bounded_Vilenkin_systems","translated_internal_url":"","created_at":"2022-09-09T15:12:32.216-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843462/thumbnails/1.jpg","file_name":"1901.01316v1.pdf","download_url":"https://www.academia.edu/attachments/90843462/download_file","bulk_download_file_name":"On_the_strong_convergence_of_partial_sum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843462/1901.01316v1-libre.pdf?1662763563=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_strong_convergence_of_partial_sum.pdf\u0026Expires=1743686111\u0026Signature=PmI9z8Po4ma-PZXed~PCbxDzfGeoSIrjv7wq7NL67KVpn1QD4il5yfFKOn1gEbVdAZgb~IiZChoCIjajrql~Yf76AZrF0tRf8phs8Y1kdVPCnfh4r-fd1LQd7Hh7MSuIBf3c7RA6f7px~uc8VxTD36v~QK7Xyq1lco1EpFH~CO0G-BSfK8NJ6udxImSePpP2guRcPqGIvi2FkkUMtwQR78Pkb7psO4K5vkEd8Gh62h7ZnWrSwgaCWsaP8aG3XyihBtLkrvaTwrNB7F8FGq8lbThn5bxWcfqdNPkt5RoXvlY9Cqhemi8eCadm5w-cV7dbyzKrPym0xJasAL1tJ9FpGw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_strong_convergence_of_partial_sums_with_respect_to_bounded_Vilenkin_systems","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"In this paper we investigate some strong convergence theorems for partial sums with respect to Vilenkin system.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843462/thumbnails/1.jpg","file_name":"1901.01316v1.pdf","download_url":"https://www.academia.edu/attachments/90843462/download_file","bulk_download_file_name":"On_the_strong_convergence_of_partial_sum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843462/1901.01316v1-libre.pdf?1662763563=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_strong_convergence_of_partial_sum.pdf\u0026Expires=1743686111\u0026Signature=PmI9z8Po4ma-PZXed~PCbxDzfGeoSIrjv7wq7NL67KVpn1QD4il5yfFKOn1gEbVdAZgb~IiZChoCIjajrql~Yf76AZrF0tRf8phs8Y1kdVPCnfh4r-fd1LQd7Hh7MSuIBf3c7RA6f7px~uc8VxTD36v~QK7Xyq1lco1EpFH~CO0G-BSfK8NJ6udxImSePpP2guRcPqGIvi2FkkUMtwQR78Pkb7psO4K5vkEd8Gh62h7ZnWrSwgaCWsaP8aG3XyihBtLkrvaTwrNB7F8FGq8lbThn5bxWcfqdNPkt5RoXvlY9Cqhemi8eCadm5w-cV7dbyzKrPym0xJasAL1tJ9FpGw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23718434,"url":"https://arxiv.org/pdf/1901.01316v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-86377257-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377256"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377256/Lebesgue_and_Vilenkin_Lebesgue_points_and_a_e_Convergence_of_N_orlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions"><img alt="Research paper thumbnail of Lebesgue and Vilenkin-Lebesgue points and a. e. Convergence of N\"orlund means with respect to Vilenkin systems of integrable functions" class="work-thumbnail" src="https://attachments.academia-assets.com/90843431/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377256/Lebesgue_and_Vilenkin_Lebesgue_points_and_a_e_Convergence_of_N_orlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions">Lebesgue and Vilenkin-Lebesgue points and a. e. Convergence of N\"orlund means with respect to Vilenkin systems of integrable functions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coeffi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise convergence and convergence in Lp norms of such Nörlund means. 2000 Mathematics Subject Classification. 42C10, 42B25.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="10a81e4bf46504697ce844564f904220" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843431,"asset_id":86377256,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843431/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377256"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377256"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377256; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377256]").text(description); $(".js-view-count[data-work-id=86377256]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377256; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377256']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "10a81e4bf46504697ce844564f904220" } } $('.js-work-strip[data-work-id=86377256]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377256,"title":"Lebesgue and Vilenkin-Lebesgue points and a. e. Convergence of N\\\"orlund means with respect to Vilenkin systems of integrable functions","translated_title":"","metadata":{"abstract":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise convergence and convergence in Lp norms of such Nörlund means. 2000 Mathematics Subject Classification. 42C10, 42B25.","ai_title_tag":"Nörlund Means Convergence in Vilenkin Systems of Integrable Functions","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise convergence and convergence in Lp norms of such Nörlund means. 2000 Mathematics Subject Classification. 42C10, 42B25.","internal_url":"https://www.academia.edu/86377256/Lebesgue_and_Vilenkin_Lebesgue_points_and_a_e_Convergence_of_N_orlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions","translated_internal_url":"","created_at":"2022-09-09T15:12:32.015-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843431/thumbnails/1.jpg","file_name":"2107.02898v2.pdf","download_url":"https://www.academia.edu/attachments/90843431/download_file","bulk_download_file_name":"Lebesgue_and_Vilenkin_Lebesgue_points_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843431/2107.02898v2-libre.pdf?1662763567=\u0026response-content-disposition=attachment%3B+filename%3DLebesgue_and_Vilenkin_Lebesgue_points_an.pdf\u0026Expires=1743686111\u0026Signature=bDHxO~zTvOVlt1zDUSQJMtPvWfcwiRMArXpRrME2YwLUfNZGzkpY4GN23~YRn5TMSKYv2thDg6txtPQKnZtDD-cRUa59Fs1ejvozO6EKWPwo-OeefKkqkZr5J0UEz9C8l916EtkE07HAYTnrShTxpspyy-ku~x9cmaWWvwWNOuM04yqtAAD44m7gYJbKHkqD~5fZmaN9a2GtPUhjGKGe98uPGqx4QSzYL2pEsl4853Hu17vDJQWh8S1etRQu6OVsWZoOLozYXjApzU4vZ3uuv1dkzUzLfpc8SFw0SO-WPzxoL-ILrW0qUGG37~An8kKiHsIkRCtp-5NPnHj1Z0VwWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lebesgue_and_Vilenkin_Lebesgue_points_and_a_e_Convergence_of_N_orlund_means_with_respect_to_Vilenkin_systems_of_integrable_functions","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"In this paper we derive converge of Nörlund means of Vilenkin-Fourier series with monotone coefficients of integrable functions in Lebesgue and Vilinkin-Lebesgue points. Moreover, we discuss pointwise convergence and convergence in Lp norms of such Nörlund means. 2000 Mathematics Subject Classification. 42C10, 42B25.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843431/thumbnails/1.jpg","file_name":"2107.02898v2.pdf","download_url":"https://www.academia.edu/attachments/90843431/download_file","bulk_download_file_name":"Lebesgue_and_Vilenkin_Lebesgue_points_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843431/2107.02898v2-libre.pdf?1662763567=\u0026response-content-disposition=attachment%3B+filename%3DLebesgue_and_Vilenkin_Lebesgue_points_an.pdf\u0026Expires=1743686111\u0026Signature=bDHxO~zTvOVlt1zDUSQJMtPvWfcwiRMArXpRrME2YwLUfNZGzkpY4GN23~YRn5TMSKYv2thDg6txtPQKnZtDD-cRUa59Fs1ejvozO6EKWPwo-OeefKkqkZr5J0UEz9C8l916EtkE07HAYTnrShTxpspyy-ku~x9cmaWWvwWNOuM04yqtAAD44m7gYJbKHkqD~5fZmaN9a2GtPUhjGKGe98uPGqx4QSzYL2pEsl4853Hu17vDJQWh8S1etRQu6OVsWZoOLozYXjApzU4vZ3uuv1dkzUzLfpc8SFw0SO-WPzxoL-ILrW0qUGG37~An8kKiHsIkRCtp-5NPnHj1Z0VwWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":23718433,"url":"https://arxiv.org/pdf/2107.02898v2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-86377256-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377210"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377210/A_note_on_The_maximal_operators_of_the_N_orlund_logaritmic_means_of_Vilenkin_Fourier_series"><img alt="Research paper thumbnail of A note on The maximal operators of the N\"orlund logaritmic means of Vilenkin-Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/90843392/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377210/A_note_on_The_maximal_operators_of_the_N_orlund_logaritmic_means_of_Vilenkin_Fourier_series">A note on The maximal operators of the N\"orlund logaritmic means of Vilenkin-Fourier series</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The main aim of this paper is to investigate $\left(H_{p},L_{p}\right)$- type inequalities for th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The main aim of this paper is to investigate $\left(H_{p},L_{p}\right)$- type inequalities for the the maximal operators of N\&quot;orlund logaritmic means, for $0</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9463c616e4531e450fd41becacc98783" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843392,"asset_id":86377210,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843392/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377210"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377210]").text(description); $(".js-view-count[data-work-id=86377210]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377210']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9463c616e4531e450fd41becacc98783" } } $('.js-work-strip[data-work-id=86377210]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377210,"title":"A note on The maximal operators of the N\\\"orlund logaritmic means of Vilenkin-Fourier series","translated_title":"","metadata":{"abstract":"The main aim of this paper is to investigate $\\left(H_{p},L_{p}\\right)$- type inequalities for the the maximal operators of N\\\u0026quot;orlund logaritmic means, for $0","ai_title_tag":"Maximal Operators of Nörlund Means Analysis","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"The main aim of this paper is to investigate $\\left(H_{p},L_{p}\\right)$- type inequalities for the the maximal operators of N\\\u0026quot;orlund logaritmic means, for $0","internal_url":"https://www.academia.edu/86377210/A_note_on_The_maximal_operators_of_the_N_orlund_logaritmic_means_of_Vilenkin_Fourier_series","translated_internal_url":"","created_at":"2022-09-09T15:11:19.084-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843392,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843392/thumbnails/1.jpg","file_name":"v1741-13.pdf","download_url":"https://www.academia.edu/attachments/90843392/download_file","bulk_download_file_name":"A_note_on_The_maximal_operators_of_the_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843392/v1741-13-libre.pdf?1662763568=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_The_maximal_operators_of_the_N.pdf\u0026Expires=1743686111\u0026Signature=BEmTAq5c4xr0ktxl4VPD6ob-m7iHWAKn4RI6rrE51rbPwHxW3ycQHGlC7jn4WR1yu63hZDS87RPffm~wx2NpFW~9DCBgQtIaOL5Mp7SA6Yui~UzpGNweQJ7RW6PSHv~ZTlP9u9vZHij3ZjcuW2U6KKRma6AdGncCZvJwJarJdUwbLfUv1brhAv-EhmCEzupK-edBBbMO8ATObhJpY0eLLb8hE-6uh7LD2MTZblfpmI2ldvJeez6rrKCfAXgCn9F11ODUjz3j9N7lrlH966izX7emvY5-8wKOoPC6Z9nYflv9~dugJlUi1ye-wVcYQ~37L00iCwgTcQQljeu070NKUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_note_on_The_maximal_operators_of_the_N_orlund_logaritmic_means_of_Vilenkin_Fourier_series","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"The main aim of this paper is to investigate $\\left(H_{p},L_{p}\\right)$- type inequalities for the the maximal operators of N\\\u0026quot;orlund logaritmic means, for $0","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843392,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843392/thumbnails/1.jpg","file_name":"v1741-13.pdf","download_url":"https://www.academia.edu/attachments/90843392/download_file","bulk_download_file_name":"A_note_on_The_maximal_operators_of_the_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843392/v1741-13-libre.pdf?1662763568=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_The_maximal_operators_of_the_N.pdf\u0026Expires=1743686111\u0026Signature=BEmTAq5c4xr0ktxl4VPD6ob-m7iHWAKn4RI6rrE51rbPwHxW3ycQHGlC7jn4WR1yu63hZDS87RPffm~wx2NpFW~9DCBgQtIaOL5Mp7SA6Yui~UzpGNweQJ7RW6PSHv~ZTlP9u9vZHij3ZjcuW2U6KKRma6AdGncCZvJwJarJdUwbLfUv1brhAv-EhmCEzupK-edBBbMO8ATObhJpY0eLLb8hE-6uh7LD2MTZblfpmI2ldvJeez6rrKCfAXgCn9F11ODUjz3j9N7lrlH966izX7emvY5-8wKOoPC6Z9nYflv9~dugJlUi1ye-wVcYQ~37L00iCwgTcQQljeu070NKUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":90843391,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843391/thumbnails/1.jpg","file_name":"v1741-13.pdf","download_url":"https://www.academia.edu/attachments/90843391/download_file","bulk_download_file_name":"A_note_on_The_maximal_operators_of_the_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843391/v1741-13-libre.pdf?1662763570=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_The_maximal_operators_of_the_N.pdf\u0026Expires=1743686111\u0026Signature=G4tosDjSPsKZl9IhZLQt2IwfPBfVegs0uHTNYxdt7wgH6Mncyr3J1Wi~Bc0jUeWkfNvH2Dxl-BMYYvCSFTovqbZBXjUx-C3CifPs3dbI5x46WL9-p2AtB8viSH1A7IvjtZyzx1fQC9~7RYhst5KZ2lWy8kbYLk8eiVVAvAdjA8HM2WhHyDp~Buqtfeyn12IhBkcucxHfgTJ~FWnDsQ5k9hoBRLkC2GcBcUszR9GpzoNwSZ7kuw6cBvecxwhGzbJKECz8yyRQW8~wtIAW63pAProqe6tSEJflnhUOWC-WAIIr1XE6fgHQwZq2-JczXq7HZcG20Uc7OM2E-8SdzpBz5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":23718413,"url":"http://www.rmi.ge/transactions/TRMI-volumes/174-1/v174(1)-13.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-86377210-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="86377209"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86377209/Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means"><img alt="Research paper thumbnail of Some inequalities related to strong convergence of Riesz logarithmic means" class="work-thumbnail" src="https://attachments.academia-assets.com/90843386/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86377209/Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means">Some inequalities related to strong convergence of Riesz logarithmic means</a></div><div class="wp-workCard_item"><span>Journal of Inequalities and Applications</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we derive a new strong convergence theorem of Riesz logarithmic means of the one-di...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we derive a new strong convergence theorem of Riesz logarithmic means of the one-dimensional Vilenkin–Fourier (Walsh–Fourier) series. The corresponding inequality is pointed out and it is also proved that the inequality is in a sense sharp, at least for the case with Walsh–Fourier series.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a6fb49d11fe86df3894d5687a1fcfae2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90843386,"asset_id":86377209,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90843386/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86377209"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86377209"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86377209; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86377209]").text(description); $(".js-view-count[data-work-id=86377209]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86377209; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86377209']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a6fb49d11fe86df3894d5687a1fcfae2" } } $('.js-work-strip[data-work-id=86377209]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86377209,"title":"Some inequalities related to strong convergence of Riesz logarithmic means","translated_title":"","metadata":{"abstract":"In this paper we derive a new strong convergence theorem of Riesz logarithmic means of the one-dimensional Vilenkin–Fourier (Walsh–Fourier) series. The corresponding inequality is pointed out and it is also proved that the inequality is in a sense sharp, at least for the case with Walsh–Fourier series.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Journal of Inequalities and Applications"},"translated_abstract":"In this paper we derive a new strong convergence theorem of Riesz logarithmic means of the one-dimensional Vilenkin–Fourier (Walsh–Fourier) series. The corresponding inequality is pointed out and it is also proved that the inequality is in a sense sharp, at least for the case with Walsh–Fourier series.","internal_url":"https://www.academia.edu/86377209/Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means","translated_internal_url":"","created_at":"2022-09-09T15:11:18.943-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90843386,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843386/thumbnails/1.jpg","file_name":"s13660-020-02342-8.pdf","download_url":"https://www.academia.edu/attachments/90843386/download_file","bulk_download_file_name":"Some_inequalities_related_to_strong_conv.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843386/s13660-020-02342-8-libre.pdf?1662763577=\u0026response-content-disposition=attachment%3B+filename%3DSome_inequalities_related_to_strong_conv.pdf\u0026Expires=1743686111\u0026Signature=Jl6I-Tv5CFooIwEL7o36BqBWYYWSRYjN7DSOnyLhrLBK4FbeCIzQqd7hrpzbZwm5EahiM9IoXu2ZHpgs0GNfKvHGsn~XmqSRl3pSacStdvlprv6wCctdlmdTWKahsXTqxH1RKf6Aog4aQBrb~cPAbLJfjwlCub5tRTGDigG411ZZAAKbpAIPXfFgcmAtxFGAQ8yiFNSfWF90ZfDYz0vdY~5QTH9hTTLgqFIYUn0eD2ywm0V4H0DiSsa1WekZW0si04DMlcixUH~Tx8Sw6NQvk244zqsv9a8dtlQYWjugTgISgrwDZOWWW0ClwCgyGllfzvWsEDSI7kdATv2968v74w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_inequalities_related_to_strong_convergence_of_Riesz_logarithmic_means","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"In this paper we derive a new strong convergence theorem of Riesz logarithmic means of the one-dimensional Vilenkin–Fourier (Walsh–Fourier) series. The corresponding inequality is pointed out and it is also proved that the inequality is in a sense sharp, at least for the case with Walsh–Fourier series.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[{"id":90843386,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843386/thumbnails/1.jpg","file_name":"s13660-020-02342-8.pdf","download_url":"https://www.academia.edu/attachments/90843386/download_file","bulk_download_file_name":"Some_inequalities_related_to_strong_conv.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843386/s13660-020-02342-8-libre.pdf?1662763577=\u0026response-content-disposition=attachment%3B+filename%3DSome_inequalities_related_to_strong_conv.pdf\u0026Expires=1743686111\u0026Signature=Jl6I-Tv5CFooIwEL7o36BqBWYYWSRYjN7DSOnyLhrLBK4FbeCIzQqd7hrpzbZwm5EahiM9IoXu2ZHpgs0GNfKvHGsn~XmqSRl3pSacStdvlprv6wCctdlmdTWKahsXTqxH1RKf6Aog4aQBrb~cPAbLJfjwlCub5tRTGDigG411ZZAAKbpAIPXfFgcmAtxFGAQ8yiFNSfWF90ZfDYz0vdY~5QTH9hTTLgqFIYUn0eD2ywm0V4H0DiSsa1WekZW0si04DMlcixUH~Tx8Sw6NQvk244zqsv9a8dtlQYWjugTgISgrwDZOWWW0ClwCgyGllfzvWsEDSI7kdATv2968v74w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":90843389,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90843389/thumbnails/1.jpg","file_name":"s13660-020-02342-8.pdf","download_url":"https://www.academia.edu/attachments/90843389/download_file","bulk_download_file_name":"Some_inequalities_related_to_strong_conv.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90843389/s13660-020-02342-8-libre.pdf?1662763575=\u0026response-content-disposition=attachment%3B+filename%3DSome_inequalities_related_to_strong_conv.pdf\u0026Expires=1743686111\u0026Signature=EvNZg1bkNtbysbtERme7pWsguqZo6L8q4nYvDNoyyrFVr-3tcvQEYy97ojiihmQNxTp99KXNSoU81t9mGNWycpwgQ8S4rimh6O7YbnCmU3ivnSEmdadntc9-4-1BZwkdzpcUJ~4TWipyvdoG~50SWyigJYOBdjC7FWgutEztTaoL75TFw8VRQEA5mdUU1yeWrAeI~fdECgQQ94SQW-8XqrLJZi9nfBf8VaV6lD-qYntOFzFdEcsrA4yO6vCDb-vue042rr26HONOf-mRz4iCccD3SMk3TBv39pwxGjJtCQJ1-SswlNlq2GD67pRqIJQ67Wp~GJ6owwUP0KrUgy-TuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":91070,"name":"Inequality","url":"https://www.academia.edu/Documents/in/Inequality"},{"id":932075,"name":"Mathematical Inequalities and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Inequalities_and_Applications"}],"urls":[{"id":23718412,"url":"http://link.springer.com/content/pdf/10.1186/s13660-020-02342-8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-86377209-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="71066348"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/71066348/Modulus_of_continuity_and_convergence_of_subsequences_of_Vilenkin_Fej%C3%A9r_means_in_martingale_Hardy_spaces"><img alt="Research paper thumbnail of Modulus of continuity and convergence of subsequences of Vilenkin–Fejér means in martingale Hardy spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Modulus of continuity and convergence of subsequences of Vilenkin–Fejér means in martingale Hardy spaces</div><div class="wp-workCard_item"><span>Georgian Mathematical Journal</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we find a necessary and sufficient condition for the modulus of continuity for whi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we find a necessary and sufficient condition for the modulus of continuity for which subsequences of Fejér means with respect to Vilenkin systems are bounded from the Hardy space H p {H_{p}} to the Lebesgue space L p {L_{p}} for all 0 &lt; p &lt; 1 2 {0</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71066348"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71066348"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71066348; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71066348]").text(description); $(".js-view-count[data-work-id=71066348]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71066348; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71066348']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=71066348]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71066348,"title":"Modulus of continuity and convergence of subsequences of Vilenkin–Fejér means in martingale Hardy spaces","translated_title":"","metadata":{"abstract":"In this paper, we find a necessary and sufficient condition for the modulus of continuity for which subsequences of Fejér means with respect to Vilenkin systems are bounded from the Hardy space H p {H_{p}} to the Lebesgue space L p {L_{p}} for all 0 \u0026lt; p \u0026lt; 1 2 {0","publisher":"Walter de Gruyter GmbH","publication_name":"Georgian Mathematical Journal"},"translated_abstract":"In this paper, we find a necessary and sufficient condition for the modulus of continuity for which subsequences of Fejér means with respect to Vilenkin systems are bounded from the Hardy space H p {H_{p}} to the Lebesgue space L p {L_{p}} for all 0 \u0026lt; p \u0026lt; 1 2 {0","internal_url":"https://www.academia.edu/71066348/Modulus_of_continuity_and_convergence_of_subsequences_of_Vilenkin_Fej%C3%A9r_means_in_martingale_Hardy_spaces","translated_internal_url":"","created_at":"2022-02-10T09:25:28.169-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Modulus_of_continuity_and_convergence_of_subsequences_of_Vilenkin_Fejér_means_in_martingale_Hardy_spaces","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this paper, we find a necessary and sufficient condition for the modulus of continuity for which subsequences of Fejér means with respect to Vilenkin systems are bounded from the Hardy space H p {H_{p}} to the Lebesgue space L p {L_{p}} for all 0 \u0026lt; p \u0026lt; 1 2 {0","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":17507283,"url":"https://www.degruyter.com/document/doi/10.1515/gmj-2021-2106/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-71066348-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="61065297"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/61065297/Absolute_convergence_factors_of_Lipschitz_class_functions_for_general_Fourier_series"><img alt="Research paper thumbnail of Absolute convergence factors of Lipschitz class functions for general Fourier series" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Absolute convergence factors of Lipschitz class functions for general Fourier series</div><div class="wp-workCard_item"><span>Georgian Mathematical Journal</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The main aim of this paper is to investigate the sequences of positive numbers, for which multipl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The main aim of this paper is to investigate the sequences of positive numbers, for which multiplication with Fourier coefficients of functions f ∈ Lip 1 {f\in\operatorname{Lip}1} class provides absolute convergence of Fourier series. In particular, we found special conditions for the functions of orthonormal system (ONS), for which the above sequences are absolute convergence factors of Fourier series of functions of Lip 1 {\operatorname{Lip}1} class. It is established that the resulting conditions are best possible in certain sense.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61065297"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61065297"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61065297; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61065297]").text(description); $(".js-view-count[data-work-id=61065297]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61065297; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61065297']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61065297]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61065297,"title":"Absolute convergence factors of Lipschitz class functions for general Fourier series","translated_title":"","metadata":{"abstract":"The main aim of this paper is to investigate the sequences of positive numbers, for which multiplication with Fourier coefficients of functions f ∈ Lip 1 {f\\in\\operatorname{Lip}1} class provides absolute convergence of Fourier series. In particular, we found special conditions for the functions of orthonormal system (ONS), for which the above sequences are absolute convergence factors of Fourier series of functions of Lip 1 {\\operatorname{Lip}1} class. It is established that the resulting conditions are best possible in certain sense.","publisher":"Walter de Gruyter GmbH","publication_name":"Georgian Mathematical Journal"},"translated_abstract":"The main aim of this paper is to investigate the sequences of positive numbers, for which multiplication with Fourier coefficients of functions f ∈ Lip 1 {f\\in\\operatorname{Lip}1} class provides absolute convergence of Fourier series. In particular, we found special conditions for the functions of orthonormal system (ONS), for which the above sequences are absolute convergence factors of Fourier series of functions of Lip 1 {\\operatorname{Lip}1} class. It is established that the resulting conditions are best possible in certain sense.","internal_url":"https://www.academia.edu/61065297/Absolute_convergence_factors_of_Lipschitz_class_functions_for_general_Fourier_series","translated_internal_url":"","created_at":"2021-11-05T10:59:35.465-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":127157369,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Absolute_convergence_factors_of_Lipschitz_class_functions_for_general_Fourier_series","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The main aim of this paper is to investigate the sequences of positive numbers, for which multiplication with Fourier coefficients of functions f ∈ Lip 1 {f\\in\\operatorname{Lip}1} class provides absolute convergence of Fourier series. In particular, we found special conditions for the functions of orthonormal system (ONS), for which the above sequences are absolute convergence factors of Fourier series of functions of Lip 1 {\\operatorname{Lip}1} class. It is established that the resulting conditions are best possible in certain sense.","owner":{"id":127157369,"first_name":"Giorgi","middle_initials":null,"last_name":"Tutberidze","page_name":"Tutberidze","domain_name":"independent","created_at":"2019-09-19T03:49:23.296-07:00","display_name":"Giorgi Tutberidze","url":"https://independent.academia.edu/Tutberidze"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":14037862,"url":"https://www.degruyter.com/document/doi/10.1515/gmj-2021-2107/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-61065297-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "54a1206ecd3c462fcada92a4009a9ce1d035a5cb3b3b906f524576d6be5678b2", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="6lKuIIXf7c-wyHd8GrOUHPrSVn11NY40oJ81VgXK7IJpEW7iy0Z4vECPtHN-74f_7YlmHS0sAHGvoD6y3ypzKQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/Tutberidze" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="AwukvVB9KhYEWHg3fv3JvL1o4nQ3VZAQVbuam9kPv8mASGR_HuS_ZfQfuzgaodpfqjPSFG9MHlVahJF_A-8gYg" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>